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Abstract

Bacteriophages are virus organisms that infect and destroy bacteria. They are used in

phage therapy, which has great potential for future diagnosis and treatment of bacte-

rial infections. Phages use their tail fibers to identify and attach themselves to host

bacteria. The goal of this thesis is to create a classifier, which can classify tail fiber

proteins of phages. It will look at how the data are collected and prepared, what ma-

chine learning methods can be used and what their effectiveness is.

Keywords: bacteriophage, classification, machine learning, logistic regression, sup-

port vector machine
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Abstrakt

Bakteriofágy sú vírusové organizmy, ktoré infikujú a ničia baktérie. Používajú sa v

bakteriofágovej terapii, ktorá má veľký potenciál pre budúce diagnózy a liečbu bak-

teriálych infekcií. Bakteriofágy používajú svoje chvostové vlákna na identifikáciu hos-

titeľská baktérie a prichytenie sa na ňu. Cieľom tejto práce je vytvoriť klasifikátor,

ktorý by vedel klasifikovať proteíny chovstových vlákien bakteriofágov. V práci sa

pozrieme na zdroj dát a ich spracovanie, možné metódy strojového učenia a na ich

efektívnosť.

Kľúčové slová: bakteriofágy, klasifikácia, strojové učenie, logistická regresia, metóda

podporných vektorov
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Introduction

Bacterial infections have been on the rise ever since the appearance of multidrug-

resistant and extremely drug-resistant bacteria in the 1980s. With sparse prospects of

producing new antibiotics and the list of effective ones shortened every year, scientists

have once again returned to examine the potential of bacteriophages and their use as

a powerful treatment [16] of mutating bacteria. Phages are one of the most abundant

and the most diverse of life forms. It is estimated that there are over 4.8 · 1031 phages

on Earth [5] and are omnipresent in the soil, water and even in our food. Bacterio-

phages are viruses that infect and kill bacteria and bacteria only while having virtually

no negative effect on humans or animals[20]. These properties make them the ideal

candidate to introduce brand new methods to combat ever more resistant bacteria.

The medical use of bacteriophages is nothing out of ordinary, as the first studies

in this field took place before the Second World War, but had been discontinued once

antibiotics were invented. It was believed that bacteria could not develop resistance

to antibiotics, which unfortunately led to overuse and the first cases of resistance have

been reported as early as 1979.

In this work, we focus on identifying the tail fiber proteins. The identification of tail

fibers via biological methods is expensive and time-consuming. While we have large

databases of phage genomes, a substantial part of the genes has not yet been properly

annotated with their corresponding function and around a quarterof the genes remain

without any assigned function [8]. AI can help resolve this issue based on common

properties among identified genes. The first part of this thesis presents needed biologi-

cal background and already existing software. The second chapter shows the data and

its preparation. The third section aims to show the implementation of machine learning

methods and validate their accuracy. The last chapter summarizes results and findings.
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Chapter 1

Methods

1.1 Definitions of the basic biological terms

1.1.1 Genome

A genome is a set of information in an organism’s DNA [3]. Just like the DNA, it

is commonly written in a four-letter nucleotide alphabet consisted of capital Roman

characters G, C, A and T representing the nucleotides most frequently found in DNA.

The information carried are instructions for all the proteins the organism will ever

synthesize [3]. Each cell’s DNA in our bodies consists of genomes and will pass them

to both daughter cells when cell division occurs. The genome sequence of an organism

gives us information about the properties and functions of the genome.

1.1.2 Gene

The genes are the basic physical unit of inheritance [10] and are arranged on structures

called chromosomes. They consist of segments of DNA that contain instructions for

building molecules, most of which are proteins [10]. These proteins then carry out the

function [10]. The definition of what exactly is a gene has been lately questioned in

the scientific community, but it is still a useful turn in this thesis.

1.1.3 Genome versus Gene

Genes are in length significantly shorter than Genomes, as the information of the latter

carries instructions for even 30,000 proteins in some cases [3].

3



4 CHAPTER 1. METHODS

1.1.4 Protein

Proteins are complex molecules, that are linked in sequences to form a functional

molecule [21]. They are made up of a large quantity of amino acids. The sequence of

amino acids determines each protein’s unique 3-dimensional structure and its specific

function [25]. They serve as antibodies defecting our body from viruses and bacteria,

or as the transmitters of signals which coordinate biological processes in our bodies.

They carry out the most basic of functions in our bodies and, as a matter of fact, in

phages too.

1.1.5 Phages and tail fibers

Figure 1.1: Bacteriophage is composed of a head with stored genetic material and tail,

which is made of tail tube and tail fibers.

Bacteriophages (phages) are viruses that invade bacterial cells and kill the host

bacteria. In the 1940s Soviet Union and the Eastern Block were developing phage

therapy. The basis of this treatment is binding of phage to bacterial cells and causing

rapid lysis of the cells [16], in practical terms, killing the bacteria without any harm

to human cells. With the overuse of conventional drugs and the consequent rise of

drug-resistant superbacteria, this treatment could become an effective treatment for

bacterial illnesses. Although modern medicine and biology have made great advances

towards identifying phage proteins, a segment needed to correctly use phages as a

form of treatment, most phage proteins have not yet been identified. In this work, we

attempt to tackle the problem of the identification of phage tail fibers with machine

learning.
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Phages, as shown in figure 1.1, consist of 3 main parts [12]:

1. tail - longer middle part of the body, which functions as protein infection pro-

moting structure

2. capsid - resembles head situated on the top of the tail, contains the genetic

material of the virus

3. tail fibers - receptor binding proteins that come in two sets: long tail fibers which

can detect the right host bacteria and short tail fibers that trigger the infection

process.

Tail fibers are essential for successful infection of a bacteria, as the phages use them to

recognize the host and attach themselves to it.

1.2 Available tools

The first step in addressing the problem of phage tail fibers identification was the

research of the current literature on the topic. We identified multiple studies with

similar goals. Next, we describe their approaches and compare the differences in their

methods.

1.2.1 VIRALpro

VIRALpro [8] was developed using Support Vector Machines (SVM) to detect and

identify capsid and tail sequences. To refer to the tail fibers, it was fitted on a dataset

of 4895 tail fiber sequences with 10-fold cross-validation on the training set, using one

of the folds as a validation set.

The study claims that the F1-score on the validation set is 92,6%, although the size of

the mentioned dataset is relatively small.

1.2.2 DeepCapTail

DeepCapTail [1] was designed to outperform VIRALpro. For this purpose, deep neural

network models were used, for their known exceptional performance. K-mer frequencies

were used as features to train the models, with k-mer sizes of 1 to 4.

Best F1-score, when detecting tail fiber sequences, was achieved with a model structure

consisting of 4 layers of nodes 600:300:150:60 and k-mer size of 2, reaching 0.93.
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1.2.3 PhANNs

PhANNs [4] is an open-source machine learning tool that can classify proteins into one

of ten classes and non-phage proteins into a class called "other". Tail fiber is one of

those classes. Feature sets used are composition of 2-mers, 3-mers, 4-mers and side-

chain groups. Its model is an Artificial Neural Network ensemble and was trained on

features extracted from an 11-fold cross-validation and reached F1-score of 0.875.

While overall accuracy of PhANNs is admirable 86.2%, tail fiber is among those classes

where PhAANs struggles, with values of F1-score on our validation dataset being

55,36%. PhANNs was published in April 2020 and is the latest tool we looked into.

The study aimed to create a faster and more accurate tool than VIRALpro.

1.3 Machine learning

In this section, we go through machine learning models and methods used in this work.

We also discuss the basics of machine learning itself and the main concepts associated

with learning. The work of this thesis consisted of using classification models, thus this

section discussed theory only related to classification.

1.3.1 Basic Framework

In our daily life, we are facing countless problems, which we try to define, analyze

and then solve based on our analysis. The world is, however, not always analytically

describable or easily assessable. Machine learning can be used to deal with problems,

to which we have no analytical solutions. Instead, it helps us to construct an empirical

solution, without any theory, regarding a given problem, based on the data describing

it. The data is the determining element of machine learning. They form the basis for

machine learning to be able to predict solution to the problem. Its values represent

influential factors from the real world. These discrete units of information are called

data points and they form the input for machine learning, e.g. how much one likes

comedy. Based on them we want to get to the optimal unknown function f : X→ Y,

where X is the input space for all possible input sets x and Y is the output space.

Function f represents the optimal solution function for our problem and is unknown

as it cannot be analytically defined, however, we know what its outputs are from the
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data. The data is a data set of pairs of inputs and outputs (x1, y1), (x2, y2), (x3, y3), ...

with size n, where for i = 1, 2, ..., n:

yi = f(xi). (1.1)

Each yi is the correct decision for data point xi. Function f is therefore the target

function, to which we want to acquire a function as similar as possible.

y = f(x) (1.2)

The algorithm chooses and compares functions from the set of hypothesis H. In this

work we will refer to the best hypothesis function as h. Input for this function will be

the data input x ∈ X. In (1.1) we can substitute h for f and get for i = 1, 2, ..., n with

input size n:

yi = h(xi) (1.3)

or from equation (1.2)

y = h(x). (1.4)

The function h(x) requires set of parameters w, also known as weights, each correspond-

ing to one input from the set x. Parameters define what shape does the hypothesis

function have. Finding the best set w is the main goal of machine learning models.

They estimate parameters via their learning algorithms. The main challenge is to

find the right hypothesis function h from the hypothesis set H, which is infinite.([2],

Components of Learning)

The h we are looking for is the function from H that has the smallest error rate

E(h). To calculate E(h) let us first introduce function I:

I(yi 6= h(xi)) =

0 if yi = h(xi)

1 if yi 6= h(xi)

. (1.5)

To amplify the error rate E(h) appropriately, we want the function I to return value

only if misclassification happens, which in our case is when the result of function h(x)

differs from the expected value y. Having defined I, we can write error rate formula:

E(h) =
1

n

n∑
i=1

I(yi 6= h(xi)) (1.6)

where n is the size of input set. ([13], The Classification Settings)
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1.3.2 Logistic regression

Logistic regression is a model of linear classification used to classify inputs into two

classes. Therefore it separates inputs that are wanted from those that are not, which

makes it appropriate for binary decisions, although another possible use is also mak-

ing a probabilistic prediction. Typical examples include detecting spam e-mails and

predicting heart disease. Positive and negative classes represent values 1 and 0 respec-

tively, with values in the former being the ones that are accepted and the ones that are

not in the latter. The cornerstone of logistic regression is calculating the prediction of

input and that is the result of its hypothesis function h. Because probability prediction

is always a number between 0 and 1, so is h.

0 ≤ h(x) ≤ 1 (1.7)

Figure 1.2: Data points: red Xs represent negative samples and blue circles represent

positive samples.

To calculate the predicted value, we use equations, where the output depends on

the chosen hypothesis θ and the input x.

h(x) = wTx (1.8)

This format returns a predicted value, which can be any number. In order to get the

probabilistic value, we use the sigmoid function (( sigm)), which maps any real number

to a value between 0 and 1.

sigm(x) =
1

1 + e−x
(1.9)
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Then we can say that for logistic model with h

h(x) = sigm(wTx). (1.10)

Figure 1.3: Sigmoid function graph.

Let us have some data points, positive and negative 1.2. After applying the logistic

model using sigmoid function, we will be able to separate the data points by their value

1.3. The sigmoid function is referred to as a soft threshold and can help us determine

an error measure for learning from the data. The data gives us sample probabilities

and [2] therefore generate a distribution (noisy target) P (y|x)

P (y|x) =

h(x) for y = 1

1− h(x) for y = 0

(1.11)

P (y|x) is therefore equal to h(x) or 1 − h(x), based on the value of y. The goal of

learning is now to estimate parameter vector θ, which we can do by estimating the

error of the current θ. Consider N data points labeled 0 or 1. Based on equation (1.11)

• for all data points labeled 1, we want to estimate w such that P (y|x) is as large

as possible (as close to 1 as possible), so maximize
∏N

i=1 h(xi)

• for all data points labeled 0, we want to estimate w such that 1 − P (y|x) is as

large as possible (as close to 1 as possible), so maximize
∏N

i=1(1− h(xi))

Error measure of w is equal to the product of these 2 possibilities.

E(w) =
N∏
i=1

P (y|x) (1.12)
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By applying method of maximum likelihood on (1.12), the error measure E(w) is equal

to

E(w) =
1

N

N∑
n=1

ln
( 1

sigm(ynwTxn)

)
. (1.13)

The most common way to minimize this error is to use the gradient descent algorithm.

Gradient descent is an iterative optimisation algorithm that finds the local minimum of

a twice-differentiable function, such as E(w). Error measure function E(w) is always

convex in the case of logistic regression, which consequently implies that found local

minimum will also be the global minimum of the function. An important parameter of

gradient descent is the step size η, which determines the gradient itself. When we take

a step, we also need to know in which direction the step was taken. That is represented

by direction vector v. Therefore if we take a step of size η in the direction v, the new

weights are w(0) + ηv. The gradient descent in logistic regression is iterative, so to

calculate the gradient at the iterative step t, we use equation

gt = −
1

N

N∑
n=1

ynxn
1 + eynxnθT

(1.14)

where gt is the gradient at step t. To optimalize the weights (minimalize the error E)

in logistic regression we use the gradient descent in following steps [2]:

1. Initialize the weights w, so that at step t = 0 the weight is w(0).

2. Set step t to 0.

3. Compute the gradient for step t using (1.14).

4. Set the direction vt = −gt.

5. Update weights: w(t+ 1) = w(t) + ηvt.

6. Iterate to t = t+ 1 and return to step 3., unless it is time to stop.

7. Return computed weights w.

Now, with this algorithm, we are able to choose the best hypothesis function h(w),

which will return the probability of its input being in a positive class. The last step is

to set a threshold. All probabilities above it are classified as positive and all below as

negative.
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1.3.3 Support vector machine

The support vector machine (SVM) is a supervised-learning model that was first in-

troduced in 1995 by Vladimir Vapnik, who at the time worked for AT&T Bell Labs.

in the USA [7]. In this section, we explain the main ideas of SVM and show the basic

mathematics behind it. All information was greatly influenced by Kilian Weinberger’s

lecture on SVM [15].

SVM is a supervised learning method that works on a similar basis as a percep-

tron, in that it is also an algorithm that will find a hyperplane. The main difference is

that perceptron will find any hyperplane that divides the data points into two distinct

regions, while SVM will find the hyperplane with the maximal margin. Another dif-

ference is that the target classes, negative and positive, are represented by values −1

and 1 respectively. Firstly we discuss how we define a hyperplane and what role does

it play, what maximal margin is and how do we find it and finally what options do we

have when data is not linearly separable.

(a) Hyperplane defined 1+2X1+3X2 = 0. (b) 2 examples of hyperplanes.

Figure 1.4: Positive (blue circles) and negative (red xs) data points in 2-dimensional

space. Graph 1.4a shows one example of a possible partition of space, for positive data

points applies 1 + 2X1 + 3X2 > 0 and for negative points 1 + 2X1 + 3X2 < 0. Graph

1.4b shows example of hyperplanes which divide the space, but not optimally.

Let us have a p-dimensional space with a p − 1-dimensional hyperplane. Let us

also have a point X, that is on this hyperplane. The mathematical description of such

hyperplane is [9]:

β0 + β1X1 + ...+ βpXp = 0 (1.15)

where β0, ..., βp are hyperplane parameters and point X = (X1, ...Xp)
T . Hyperplane in
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(1.15) divides the p-dimensional space into two distinct regions, in which for any point

X holds:

• β0 + β1X1 + ...+ βpXp < 0 if point X is on one side

• β0 + β1X1 + ...+ βpXp > 0 if point X is on the other

All data points from the training set with p features can be represented as points in

p-dimensional space. The main idea is then to find such a hyperplane, that divides this

space into 2 regions. One with only positive points and the other with only negative

points. An example of this division is shown in figure 1.4a. This hyperplane would

be the result of a perceptron. The problems arise, however, when perceptron finds a

hyperplane that is closer to one group of data points than to the other, which is not

an optimal solution, with examples shown in 1.4b.

While perceptron finds any hyperplane that divides the positive and negative points,

SVM will find hyperplane, which “maximizes the distance to the closest data points

from both classes”[15]. This distance is called maximal margin. Separating hyperplane

with maximal margin is the one farthest from the training data points, which makes

it the optimal separating hyperplane [9]. To find maximal margin, we must find the

shortest distance from the separating hyperplane to each training data point. Minimal

shortest distance from them is called margin γ. The maximum margin hyperplane

is the one hyperplane, for which the margin is the largest. The maximal margin

hyperplane leaves the maximal possible space between itself and the training points,

which we believe, provides enough space to avoid incorrectly classified data points when

classifying the test dataset.

Hyperplane is a set of points defined with parameters w (which also is a perpen-

dicular vector to H), b for some point x on the hyperplane by

H = {x|wTx + b = 0}. (1.16)

Let us take some point x from the training dataset. Let xP be the projected point x

onto H, so xP ∈ H. Then there exists vector d such that d = x − xP , which means

that norm of d represents the distance between point x and H, and also that d is

perpendicular to H. Vector d is then parallel to w, therefore w can be rescaled to d

by some scale α: d = αw. Taking into account xP ∈ H, we can substitute (1.16):

wTxP + b = wT (x− d) + b = wT (x− αw) + b = 0
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which implies

α =
wTx + b

wTw
.

To get the shortest distance, we compute the Euclidean norm of d:

‖d‖2 =
√

dTd =
√
α2wTw =

|wTx + b|√
wTw

=
|wTx + b|
‖w‖2

(1.17)

Then the margin γ (minimal shortest distance) with trainig dataset D and hyperplane

with w, b is defined by

γ(w, b) = min
x∈D

|wTx + b|
‖w‖2

. (1.18)

Now we want to find such w that maximizes the margin:

max
w,b

γ(w, b) such that ∀i yi(wTxi + b) ≥ 0. (1.19)

which using (1.18) can be formulated as

max
w,b

1

wTw
min
x∈D
|wTx + b| (1.20)

Figure 1.5: Maximum margin hyperplane graph.

To find maximum of a minimum requires complex calculations and so we need

to simplify this equation. We can do that thanks to the definition of a hyperplane

H = {x|wTx + b = 0}, where we can multiply w and b by any constant and it would
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still remain the same hyperplane, we would only rescale the vector w. Let us then fix

the scale of w such that

min
x∈D
|wTx + b| = 1. (1.21)

Substituting this into (1.20) we get

max
w,b

1

wTw
· 1 = min

w,b
wTw. (1.22)

The optimization problem then has to consider 3 constraints from (1.19, 1.21, 1.22):

1. ∀i yi(wTxi + b) ≥ 0

2. minx∈D |wTx + b| = 1

3. minw,bwTw

We can join the constraints 1. and 2. and get 2 constraints

1. ∀i yi(wTxi + b) ≥ 1

2. minw,bwTw.

When the optimal w and b are found, that means that some data points in the training

dataset fit the optimal constraint. For some i-th data point x from the training dataset

the constraint would be

yi(wTxi + b) = 1. (1.23)

We say that these data points have tight constraint and we call these data points

support vectors. These are the points, that are the closet to the hyperplane and their

distance to the hyperplane is the maximal margin.

With data from the real world it is often the case, that the positive and negative

points from the training dataset cannot be separated by a hyperplane, therefore no

support vectors with no maximal margin would be found, in other words, no data

points would satisfy the tight constraints. However, there is also another type of

constraint - soft constraint. It allows the optimization problem to ignore some data

points which violate the tight constraint. Firstly let us introduce variable ξi, which

permits xi to be closer to the hyperplane than the maximal margin. The soft constraint

is

1. minw,bwTw + C
∑n

i=1 ξi

2. ∀i yi(wTx + b) ≥ 1− ξi
3. ∀i ξi ≥ 0
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where parameter C controls the strength of the ξ parameter. Another way to use SVM

on linearly inseperable data is to use kernel functions.

1.3.4 Kernel functions and kernel trick

Figure 1.6: Non-linearly separable data. Blue dots represent positive and red xs rep-

resent data points.

Kernel functions are used by SVMs to extract features from the training data. They

also work as a similarity function between 2 data points. For two data points xi and

xj from the training data, the the kernel function K is defined as the dot product:

K(xi,xj) = 〈φ(xi), φ(xj)〉. (1.24)

where φ is a mapping function which we will discuss later. For linear classification,

SVMs use linear kernel function [14]:

K(xi,xj) = xTi xj (1.25)

Many models, like Support Vector Machine or Logistic regression, rely on the data

being linearly separable. However, in the real world, this is rarely the case and we need

to transform the data in such a way, that we achieve linear data separability.

Kernel trick is a function that maps the input space to a feature space. To achieve

linear data separability, it transforms the input space into a higher dimensional feature

space, so that the data is then linearly separable in this higher dimensional space.

Let us consider mapping function φ from 2-dimensional input space to 3-dimensional

feature space:

φ((x, y)) = (x, y, x2 + y2) (1.26)
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Figure 1.7: Non-linear separable data from Figure 1.6 mapped by function 1.26.

We can now notice that a non-linearly separable data set as shown in Figure 1.6

has transformed into a linearly separable data set shown in Figure 1.7, thus making

previously inapplicable linear classification models suitable for this data set [11]. For

example a kernel function using φ from (1.26) would take form

K(xi,xj) = xi · xj + ‖xi‖2 ‖xj‖2 . (1.27)

There are many kernel functions, among most used are the polynomial kernel, Radial

Basis Function and Sigmoid Kernel.

1.3.5 Radial basis kernel

Radial basis kernel, also known as Gaussian Kernel or Radial Basis Function (RBF),

is a kernel function designed for training datasets that are not linearly separable. It

computes the Euclidean distance to figure out how far away from each other are data

points from the same class. For data points xi and xj from the training set, RBF is

defined as [9]:

K(xi,xj) = exp(−γ
p∑

k=1

(xik − xjk)2) (1.28)

where gamma γ is some positive constant. In (1.28) the bigger the distance
∑p

k=1(xik−

xjk)2 is, the smaller result exp(−γ
∑p

k=1(xik − xjk)2) becomes. When we look at the

kernel function as a measure of similarity, the bigger the distance is, the less similar

2 data points are. Similarity is also indirectly proportional to how large gamma γ is,

therefore it defines how much influence does a single training data point have [24]. The

larger gamma γ is, the closer the other data point has to be.
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In this work, we will use RBF on our training data and analyze results with different

values of gamma γ and C parameter of the soft constraint.

1.3.6 String kernel

Until now, we have discussed p-dimensional data points x with p features that were

given by the training dataset. These features can be some precomputed k-mers that

the machine learning models do not do anything about. However, it can be beneficial

to merge the feature extraction with the model fitting process. This has been mostly

used when the training data are texts, strings of characters that can represent messages,

voice interactions, or biological information as protein or DNA strings. The feature

extraction is then done by the kernel function and is called string kernel.

String kernels are functions that use the occurrence of the same substrings as the

features to obtain the similarity properties of 2 strings. String kernels can vary in their

function and so we will now describe the string kernel we fitted on our training dataset

in this work. We chose an algorithm, that compares strings’ substrings of length k = 2.

The steps of the algorithm are:

1. create dictionary d for each string s, where keys are all possible substrings of

length k and values are the number of its occurrences

2. iterate over all pairs of strings get rid of all substrings that are not common in

at least one pair, let us call the final set of substrings U .

3. iterate over all pairs and compute their similarity with the functionK from (1.29)

K(si, sj) =
∑
u∈U

si[u] · sj[u] (1.29)

Let us demonstrate on a example, where set of strings S = {mommy,mummy,mum, ummm}.

First we calculate all possible substrings of length k = 2 shown in Figure 1.1.

Next we take those substrings that are common with at least 2 strings and get their

number of occurrences shown in Figure 1.2.

With (1.29) we can show the similarity between strings mommy and mummy as

K(mommy,mummy) = 1 · 1 + 1 · 1 = 2. The final kernel is shown in figure 1.3.
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string substrings

mommy mo, om, mm, my

mummy mu, um, mm, my

mum mu, um

ummm um, mm

Table 1.1: Strings from S with their substring possibilities of length k = 2. We can

notice that substrings that are common for at least 2 strings U = {mm,my,mu, um}.

string

substring
mm my mu um

mommy 1 1 0 0

mummy 1 1 1 1

mum 0 0 1 1

ummm 2 0 0 1

Table 1.2: Strings from S with number of occurrences of substrings from U .

string

string
mommy mummy mum ummm

mommy 2 2 0 2

mummy 2 4 2 3

mum 0 2 2 1

ummm 2 3 1 5

Table 1.3: Resulted kernel using our string kernel function with strings S.

1.3.7 Datasets

Before we can use any machine learning models, we need to prepare our data for the

models. Important fact to keep in mind is that we cannot use all of the data to fit

the models, as the model is biased towards any data it was based on. Firstly we need

to create a dataset that does not influence the model and is only used once the model

tweaking is finished to test the model. That is why we call it test dataset. The rest of

the data is used to create the model. With most of data we train the model, we call
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them the training dataset and the remaining data is used to analyze the performance

of our models to tweak its parameters. This set of data is called validation dataset.

As for the ratios of these datasets, a rule of thumb says that 20% of the data should

be assigned to the validation set [2]. In practise, it can be smaller depending on how

many parameters the model has. Likewise, the test dataset should also be around 20%

and the remaining 60% should be the training dataset.

1.3.8 Possible problems in data

We will now present a few problems that can occur within the data itself.

An imbalanced dataset means that there are more positive data points in the dataset

than negative ones. The model is then more influenced by one class data points than

the other. It can also mean that the model does not have enough data points of one

class to determine the difference between them. One possible solution is to randomly

delete some data points from the more populated class so that the sizes are compara-

ble. A similar but more complicated solution is to generate more data points of the

underrepresented class based on the ones you already have.

Feature extraction is a strategically important moment in machine learning, as it

determines the values that represent the data. The more features we have, the easier

it can be for the model to classify data points, but more features also mean that more

computational power is required. K-mers are a good example of this problem. The

larger k we choose, the more features we have that represent the data which can lead

to more precise classification. It however also means, that with 20 letters that are used

to describe a protein genome and k = 2, we have 202 = 400 possible features. With

k = 3, bigger just by 1, there are 203 = 8000 possible features.

As we demonstrated in section 1.3.6, kernel functions can get quite complex. The

final kernel that needs to be calculated has a size of N ×N for N being the size of the

training dataset. Each cell of this kernel is computed with kernel functions for each

pair of data points. These are some of the problems that we encountered during our

work.
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Chapter 2

Data and bioinformatics tools

In this chapter, we will present the source of our data and bioinformatics tools we used

to prepare the dataset. All components were free and publicly available at the time

this work was made.

2.1 Data

2.1.1 Phage database

In our work, we decided to use the virus database of the National Center for Biotech-

nology Information (NCBI). NCBI’s database has been widely used in numerous pub-

lications on virus genomes and sequences [17]. Our dataset is comprised of data from

NCBI’s database [18] downloaded on the 31st of August 2020. This data mainly con-

sisted of the phage references, their functions and genomic DNA sequences. DNA

sequences were needed to be annotated to fully represent genomic features. For this

part, the Prokka tool 2.2.1 was used and the resulting dataset included fully annotated

genomic features that were written as strings of 20 capital letters of the alphabet. It

was these strings that we utilized as data representations of phage proteins.

2.1.2 K-mer features

When the data in machine learning is presented as strings, one important question

arises: how to get the features that the models would use from the strings. This

problem can be sometimes addressed in the model itself, e.g. using string kernels in

21
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SVMs shown in 1.3.6, but not all models can implement such functions. One of the

ways to represent strings as data is to take substrings of length k and count their

occurrence in the string. Let us take the word BANANA and let us try a few different

values of k (shown in figure 2.1).

k substrings

1 B, A, N, A, N, A

2 BA, AN, NA, AN, NA

3 BAN, ANA, NAN, ANA

4 BANA, ANAN, NANA

Table 2.1: K-mers of BANANA with different values of k.

Let us follow this by counting the number of occurrences of each substring.

substring A B N

value 3 1 2

(a) k = 1

substring AN BA NA

value 2 1 2

(b) k = 2

substring ANA BAN NAN

value 2 1 1

(c) k = 3

substring ANAN BANA NANA

value 1 1 1

(d) k = 4

Table 2.2: Tables show number of occurrences of substrings from figure 2.1. Using

substrings as features, one can represented words with numbers.

The final result is that we can compare how similar words based on how many

instances of the same substrings are in the words. Used substrings of length k as

features are called k-mers. Finally we are only left dealing with the parameter k and

what value should it hold. This can only be done by testing different values of k, which

requires extensive computational power.

2.2 Tools

Listed tools are bioinformatics tools that we needed to process the biological data into

forms that machine learning models can work with.
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2.2.1 Prokka

Genome annotation is the process of identifying and labeling all the relevant features

on a genome sequence [22]. Genome annotation is required when working with protein

genome data. Most tools created were server or mail-based, but in 2014 new installable

command-line tool was introduced called Prokka [23]. Unlike its predecessors which

provided results in hours, Prokka can annotate a typical bacterial genome in around

10 minutes on an average desktop computer. For this reason, it is a great option when

a larger dataset of genomes needs to be annotated. Prokka’s annotation process has 2

steps:

1. Prokka finds coordinates of genes in a genome sequence (f.e. finds gene starting

on 20th position in the sequence and has length 100)

2. Prokka tries to assign a function to every gene by comparing each one of them

to databases of known proteins - UniProt, RefSeq, Pfam and TIGRFAMs

2.2.2 Biopython

Biopython is a freely available open-source tool based on python programming lan-

guage. It is a cluster of modules intended to simplify computational biology and bioin-

formatics scripts and software [6]. It includes module Bio.SeqIO, which makes reading

and writing bioinformatics format FASTA easier for programmers and enhances soft-

ware performances. Together with numpy and matplotlib offers great foundation for

bioinformatics programming.

2.2.3 Sci-kit

As the demand for statistical analysis and machine learning methods grew, Sci-kit learn

was created to be an intuitive and user-friendly python package integrating the state-

of-the-art algorithms [19]. Written mostly in python programming language, it can

be easily incorporated in software with other most commonly used scientific modules,

especially with numpy. Most notably, it includes models for linear regression, logistic

regression and support vector machine.
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Chapter 3

Implementation

The goal of this work was to try different machine learning models to detect phage

tail fiber proteins and analyse models’ performances. In the present chapter, we will

go through the creation of our datasets, implementations of models and present their

validation. Validations will be shown using confusion matrix 3.1 and its derivations

(F1 score, TPR - True Positive Rate, FPR - False Positive Rate, TNR - True Negative

Rate, FNR - False Negative Rate).

Actual

Predicted
tail fiber other protein

tail fiber True Positives False Negatives

other protein False Positives True Negatives

Table 3.1: Illustration of confusion matrix.

3.1 Preparation of the dataset

As the first step, we had to prepare our datasets. This started with downloading the

data from an existing database, followed by using bioinformatics tools to acquire protein

sequences, computing their features and ended with creating the training, validation

and test datasets.

After we downloaded data from the NCBI’s database (see 2.1.1), we used Prokka

(see 2.2.1) to annotate the genomes. After that, we omitted hypothetical proteins.

25
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Those are proteins whose function is yet unknown. Using proteins with known func-

tions, we created the fundamental dataset, which consisted of 54,627 protein sequences.

Out of them, only 5,602 were tail fibers. With sequences prepared, we transformed the

dataset to contain features instead of the whole sequences. K-mer features with k = 2

were chosen because they were relatively easy to compute. With these features, the

dataset contained 400 features.

54,627

training dataset valdiation dataset test dataset

34,961 8,740 10,926

Table 3.2: Sizes of final datasets.

We then randomly divided this dataset into training, validation and test datasets.

Instead of using common ratios of 60:20:20, we decided to approximately use ratios

65:15:20 as we did not intend to tweak a lot of parameters in machine learning models.

Division is shown in figure 3.2. At that point, we had our datasets prepared and were

ready to start training models.

3.2 Logistic regression

Logistic regression is one of the most basic and easiest classifying machine learn-

ing models and therefore was a good choice to start with. We used scikit’s model

linear_model.LogisticRegression to fit the training dataset.

Actual

Predicted
tail fiber other protein

tail fiber 680 195

other protein 103 7762

Table 3.3: Confusion matrix of logistic regression model on validation dataset.

We proceeded with predicting the validation dataset. The resulted confusion matrix

is shown in table 3.3 and confusion matrix rates in figure 3.1. Without any tweaking,

the linear model achieved a true positive rate of 77,71% and an F1-score of 82,03%.
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Figure 3.1: Graph shows values of rates of the confusion matrix.

At 98,69% the true negative rate shows the influence of an unbalanced dataset with

only 10% of sequences being tail fibers. However, that did not indicate, that the model

was confident with classifying the negative class, because the false negative rate was

at a relatively high 22,29%, compared to false positive rate at 1,31%. The accuracy of

a binary classifier can also be illustrated with ROC curve. It is acquired by plotting

true and negative positive rates, that are achieved with different threshold values of

the model. ROC curve of this model is shown in figure 3.2.

Figure 3.2: ROC curve of our logistic regression model.
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3.3 Logistic regression with chosen features

Having trained the logistic regression model, we can extract from it the importance

of each feature. Feature importance tells us, how much influence does every feature

have on the classification process. To speed up the classification, we can then choose

only those features, that have a strong influence on it, lowering the number of features

that need to be computed. Using scikit’s clf._coef, we chose the 40 most influencing

Actual

Predicted
tail fiber other protein

tail fiber 163 712

other protein 88 7777

Table 3.4: Confusion matrix of logistic regression model trained on chosen features

with the highest influence.

features of the first model and fitted another logistic regression model with the dataset

restricted to only those features. Confusion matrix of this model is shown in table

3.4. In the rates graph 3.3 it is clearly visible, that this model is not as accurate as

the previous one. With F1-score of only 28,95% and true positive rate of 18,63%, this

model is not an improvement.

Figure 3.3: Graph shows values of rates of confusion matrix of logistic regression model

with 40 chosen features.
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3.4 Linear support vector machine

Support vector machine was our second choice to fit the training dataset. SVMs are

more computationally demanding, but are usually more accurate than the previously

fitted models. We implemented scikit’s model svm.SVC() without changing any of

the default values of its parameters, therefore the model used a linear kernel function.

Confusion matrix of this model is shown in table 3.5. This model had great F1-score

Actual

Predicted
tail fiber other protein

tail fiber 769 106

other protein 11 7854

Table 3.5: Confusion matrix of support vector machine model on validation dataset.

of 92,93%. True confusion matrix rates 3.4 are fairly high, while false positive and

negative rates are at only 0.14% and 12,11% respectively.

Figure 3.4: Graph shows values of rates of confusion matrix of a simple support vector

machine model.
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3.5 Support Vector Machine with RBF kernel

We followed the linear SVM model by fitting a SVM with RBF kernel function. Addi-

tionally, we wanted to try different values of parameters C and gamma γ. To get a first

glance at the impact of these parameters on model accuracy, we chose combinations

of values 0.1, 1, 10 for C and 0.01, 1, 100 for gamma γ. In graph 3.5, we can see the

Figure 3.5: Graph shows confusion matrix rates for svm models using rbf kernel func-

tion with values 0.1, 1, 10 for C and 0.01, 1, 100 for gamma γ.

confusion matrix rates for these models. Most noticeable is the fact, that all models

had almost 100% true negative rates. Just as visible is the notion, that only models

with gamma γ = 0.01 had true positive rates higher than 0%. That lead us to believe,

that in future models, C parameter is not so influential and gamma γ should be at

most 0.01. And so we fitted 3 further models, all with C = 1 and values of gamma γ

0.001, 0.0001 and 0.00001.

Graph 3.6 shows confusion matrix rates of these 3 models. All of them outperform
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Figure 3.6: Confusion matrix rates of SVM RBF models with values C = 1 and gamma

γ 0.001, 0.0001 and 0.00001.

models with previous values of parameters. A model with gamma γ = 0.001 was the

best out of the 3 with the highest true positive and true negative rates. The F1-score

of this model was 93,31%. Its confusion matrix is shown in table 3.6.

Actual

Predicted
tail fiber other protein

tail fiber 774 101

other protein 10 7855

Table 3.6: Confusion matrix of support vector machine model using radial basis func-

tion with C = 1 and gamma γ = 0.001 on validation dataset.
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3.6 Best model

The last part of our work was to identify the best model based on these validations.

We decided to choose the one with the best F1-score.

Figure 3.7: Graph shows F1 scores of our models achieved on validation dataset.

The best one was the support vector machine using radial basis function with

parameters C = 1 and gamma γ = 0.001. We then validated this final model on the

test dataset. Confusion matrix of this test dataset validation is shown in table 3.7.

The final model achieved an F1-score of 94,7% on the test dataset.

Actual

Predicted
tail fiber other protein

tail fiber 1027 109

other protein 6 9784

Table 3.7: Confusion matrix of support vector machine model using radial basis func-

tion with C = 1 and gamma γ = 0.001 on test dataset.
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3.7 PhANNs comparison

From the tools we looked into, PhAANs was the most modern. We, therefore, wanted

to compare its performance to our best model. The performance of PhAANs on the

test dataset is shown in table 3.8.

Actual

Predicted
tail fiber other protein

tail fiber 863 273

other protein 1065 8725

Table 3.8: Confusion matrix of PhANNs on test dataset.

On this dataset, PhANNs reached an F1-score of 56,33%. Our best model from

previous section 3.6 reached F1-score of 94,7% on the test dataset.

Figure 3.8: Confusion matrix rates of PhANNs on test dataset.
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Chapter 4

Discussion

In this work, we trained several models to classify protein genome sequences into the

positive and negative categories. Based upon conducted research and our accomplish-

ments, in this chapter, we discuss remarks for future works in a similar field.

Throughout our work, we only considered k-mers features of length 2, as this was

the least computationally demanding option of k. Higher k values would provide the

models more divergent features to work with, helping to describe the similarity of two

strings in more detail. Another convenient kernel function when dealing with strings is

the string kernel. SVM using string kernel computes the strings’ features by computing

its kernel, unlike linear or RBF kernels, which need the features precomputed in the

training dataset. Less computation means faster model classification performance.

The logistic regression model showed us, how the unbalanced dataset influenced

the model’s decision-making process and what sort of confusion matrix rates can be

achieved. It also provided us with information on feature importance. However, when

we tried to capitalize on this and create a model focused on these features, its perfor-

mance was far worst than before. This prompted the idea, that feature importance

cannot be obtained from models, but rather should be founded on biological properties.

It could also be the case, that there are no particular 2-mer features that would decide

the class and that all features are somewhat significant.

Support vector machine surprised us with remarkable accuracy even without making

any tweaks to its parameters, though once we started tweaking them, the performance

grew better. Parameter values we used were roughly estimated to give us an idea of

how they influence the model’s performance. It was clearly demonstrated, that SVM
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with well-chosen kernel functions and parameter values can be very precise. Instead

of approximately estimating them, advanced data science methods could find better

values than the ones we used.



Conclusion

The goal of this work was to use machine learning models to classify tail fiber proteins

of bacteriophages, which could replace the current demanding lab work in the future.

This meant to process the existing data, try different machine learning models and

validate their performances.

In the first chapter, we explored the biological background and terms surrounding

bacteriophages, explained the importance of tail fibers and their genomes to phage

therapy. We looked into already existing tools such as VIRALpro and DeepCapTail and

investigated their functionality. Later we also validated tool PhANNs and compared its

F1-score to our model. We explored machine learning hypothesis, introduced logistic

regression and support vector machines, and researched their mathematical functions

and error calculations.

In the second section, we went through the data acquiring process. We presented

NCBI’s database and downloaded its data. After that, we described the k-mer feature

extraction and gave examples of its use. Here we introduced the bioinformatics tools

Prokka and Biopython, which enabled us to work with data and prepare the datasets.

We also mentioned the sci-kit package, whose models we used for machine learning.

The third chapter contains the details and figures we obtained during our imple-

mentation. Firstly we computed the 2-mer features and explained the ratios we used

to divide the data into training, validation and test datasets. We displayed the use of

logistic regression on the training dataset as an easy classification model that can show

us the feature importance. We then explored the application of support vector ma-

chine models. Linear kernel implementation already showed better performance than

logistic regression without any tweak to the default parameter values. We then trained

more models with RBF kernel changing the C and gamma γ values, which revealed the

importance of gamma γ parameter to get better accuracy from the SVM model. Based
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upon this we trained a model with C = 1 and gamma γ = 0.001 that accomplished the

best performance among our models with an F1-score of 94,7%. We then compared

this model to the existing PhANNs tool to get an idea, of how this model behaves in

contrast to existing tools.

In the last chapter, we discussed the option of better performance with higher

k value k-mer features, at the expense of more demanding computation. We also

summarised the models’ performances and gave suggestions for future research in this

field.

To sum up, we used an existing NCBI phage database to explore data with bioin-

formatics tools. We then created a dataset with extracted features and divided it into

datasets, that were used in the machine learning process. Machine learning was done

using logistic regression and support vector machine models and we analysed their

performances using figures and confusion matrices.
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