
COMENIUS UNIVERSITY IN BRATISLAVA

FACULTY OF MATHEMATICS, PHYSICS AND

INFORMATICS

ACCESS CONTROL
FOR CLIENT-SIDE GRAPH-BASED QUERIES

Diploma thesis

2023 Bc. Miroslav Baluch

COMENIUS UNIVERSITY IN BRATISLAVA

FACULTY OF MATHEMATICS, PHYSICS AND

INFORMATICS

ACCESS CONTROL
FOR CLIENT-SIDE GRAPH-BASED QUERIES

Diploma thesis

Study programme: Applied Computer Science

Field of Study: Computer Science

Department: Department of Applied Informatics

Supervisor: Mgr. Ján K©uka, PhD.

Bratislava, 2023 Bc. Miroslav Baluch

Comenius University Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Bc. Miroslav Baluch
Study programme: Applied Computer Science (Single degree study, master II.

deg., full time form)
Field of Study: Computer Science
Type of Thesis: Diploma Thesis
Language of Thesis: English
Secondary language: Slovak

Title: Access control for client-side graph-based queries

Annotation: Modern full-stack web development approach favours data access via graph-
base query languages such as GraphQL and JSON-LD-Query. Client-side query
composition offers flexibility for the developers but introduces security risks as
queries composed on the client are executed on the server.

Aim: The goal is to propose an access control mechanisms that enables to verify and
pass only such data to the client for which the current user actually has access.
This will be implemented and tested in the existing system courses.matfyz.sk
which uses JSON-LD data representation.The goal of this thesis is to propose
an access control mechanisms that enables to verify and pass only such data to
the client for which the current user on the client side has permissions. This will
be implemented and tested in the existing system courses.matfyz.sk which uses
JSON-LD data representation.

Literature: 1. Homola, M., Kl’uka, J., Kubincová, Z., Marmanová, P. and Cifra, M., 2019.
Timing the Adaptive Learning Process with Events Ontology. In International
Conference on Web-Based Learning (pp. 3-14). Springer.
2. Antoniou, G. and Van Harmelen, F., 2004. A semantic web primer. MIT press.
3. Taelman, R., Vander Sande, M. and Verborgh, R., 2019. Bridges between
GraphQL and RDF. In W3C Workshop on Web Standardization for Graph Data.
W3C.
4. Taelman, R., Vander Sande, M. and Verborgh, R., 2018. GraphQL-
LD: Linked Data Querying with GraphQL. In International Semantic Web
Conference (P&D/Industry/BlueSky).

Supervisor: Mgr. Ján Kľuka, PhD.
Consultant: doc. RNDr. Martin Homola, PhD.
Department: FMFI.KAI - Department of Applied Informatics
Head of
department:

prof. Ing. Igor Farkaš, Dr.

Assigned: 21.10.2018

Approved: 13.10.2021 prof. RNDr. Roman Ďurikovič, PhD.
Guarantor of Study Programme

Comenius University Bratislava
Faculty of Mathematics, Physics and Informatics

Student Supervisor

v

I declare honestly that I have developed this diploma

thesis separately only using the literature and with the

help of my supervisor.

. .

Bratislava, 2023 Bc. Miroslav Baluch

Thanks

TBD

vi

Abstract

The work deals with the design and implementation of control of access rights

of graph requests on the client side for the support study system named

Courses. The current system does not su�ciently control access rights, with

result that unauthorized users having access to data to which they should not

have access. Due to this fact this system which is already fully deployed and

used by students of the Faculty of Mathematics, Physics, and Informatics,

will be modi�ed and expanded with new components. The main changes will

be made to the current application server, which ensures the operation of the

application and provides users with the necessary and optional data. As this

server is currently not su�ciently protected, each user has almost full access

to the entire database. In addition, HTTP requests to the application server

currently retrieve all data, even that the user does not need at all. This results

in higher application and database server utilization, slower user response,

and higher data transfer. Due to upcoming changes in the application server,

it will be possible to extract a certain part of data and send only those which

are required by the client. A common interface will be done for requests which

will serve as the frontend part of the application. An additional feature that

should be added is the simpli�cation of the creation and deployment of new

instances of the course system. In addition, straightforward changes in the

database structure will be processed by the application server without the

vii

viii

need for intervention by the programmer.

Keywords: application server, database, ontology, access rights, RDF

Abstrakt

Práca sa zaoberá navrhnutím a implementovaním kontroly prístupových práv

grafových dopytov na strane klienta pre podporný kurzový systém Courses.

Momentálny systém nedostato£ne kontroluje prístupové práva, £o ma za

následok, ºe neautorizovaný pouºívatelia majú prístup k dátam, ku ktorým

by prístup nemali ma´. Kvôli tomu bude tento systém, ktorý uº je plne

nasadený a vyuºívaný ²tudentami Fakulty matematiky, fyziky a informatiky

pozmenený a roz²írený o nové sú£asti. Hlavnou zmenou prejde momentálny

aplika£ný server, ktorý zabezpe£uje fungovanie aplikácie a podáva pouºí-

vate©om potrebné dáta. Ke¤ºe tento server nie je momentálne dostato£ne

chránený, kaºdý pouºívate© má prístup takmer k celej databáze. Okrem toho

sa momentálne pomocou HTTP poºiadaviek na aplika£ný server získavajú

v²etky dáta, aj tie, ktoré pouºívate© vôbec nepotrebuje. To ma za dôsledok

vy²²iu vy´aºenos´ aplika£ného a databázového servera, pomal²iu odozvu pre

pouºívate©ov a vy²²í prenos dát. V¤aka zmenám v aplika£nom serveri bude

moºnos´ vytiahnu´ iba ur£itú skupinu dát. Taktieº je snahou zjednodu²i´

vytváranie a nasadenie nových in²tancií tohto kurzového systému. Zárove¬

jednoduch²ie zmeny v ²truktúre databázy budú spracované aplika£ným serverom

bez nutnosti zásahu programátorom.

K©ú£ové slová: aplika£ný server, databáza, ontológia, prístupové práva, RDF

ix

Contents

Introduction 1

1 Semantic Data Model 3

1.1 Linked Data . 3

1.2 Graph representation . 4

1.3 Resource Description Framework (RDF) 5

1.3.1 Structure of triple . 6

1.3.2 Turtle Syntax . 8

1.4 Data-modelling vocabulary . 9

1.4.1 RDF schema . 9

1.4.2 OWL . 11

1.5 Representation in JSON-LD 12

1.6 SPARQL . 12

1.7 Virtuoso . 14

2 GraphQL 15

2.1 GraphQL interface . 15

2.2 HyperGraphQL . 15

2.3 UltraGraphQL . 15

x

CONTENTS xi

3 Existing Course System 16

3.1 Base technologies . 16

3.2 Frontend . 17

3.2.1 React . 17

3.2.2 Redux . 18

3.3 Backend . 18

3.4 Frontend and Backend communication 19

3.4.1 RTK Query . 19

3.5 Functionality of existing application 19

4 Analysis of issue 20

4.1 Existing issues . 20

4.2 Required funcionality . 20

5 Design 21

5.1 Replacement of REST API to GraphQL 21

5.2 Courses system schema . 23

5.3 Script for creating a schema 23

5.4 UPDATE of the existing �elds 23

6 Implementation 25

6.1 Create Script . 25

6.1.1 Design purpose . 26

6.1.2 Implementation . 26

6.2 Refactoring . 26

6.2.1 Frontend issues �xes 26

6.3 UltraGraphQL adjustments 26

6.3.1 Initial state . 26

6.3.2 Adjustments . 26

CONTENTS xii

6.3.3 New features . 26

7 Authorization 27

7.1 User authorization . 27

7.2 Sensitive �elds . 27

Conclusion 28

Introduction

Education is a crucial aspect of this century characterized by rapid devel-

opment, with major changes in every �eld of study. Web tools are not an

exception and are created every moment to catch up with the trend. New

services rise with a focus on the simpli�cation of the teaching process. Web

applications are in such growth because of their easy accessibility, with al-

most instantaneous availability and mostly they do not require the user to

own the most recent hardware. In this thesis, I also strive to create a web

application server that will be used as the main backbone for the new student

system.

My work will be based on the existing diploma thesis of Milana Cifru,

Semantic Data Model for a Course Management System [Cif20].

I will work with the code of this existing thesis and use it to expand the

functionality of the back-end part of the application. The current back end

can handle requests from the client, ful�ll them and send back the response.

The application can handle simple requests, while complex ones are also

supported. Custom routes and HTTP methods are also used in the system

to give the front-end developers more possibilities. The application server

communicates with the database server and supports the insertion, update,

and deletion of the information. There is no common interface made for

front-end developers when sending requests. Each developer invented his

1

CONTENTS 2

way of how the requests are created, thus making the debugging process in

case of issues harder and the code more is complex. The access management

system is also present in the application, thus its usage is quite limited and

must be improved to increase the security measure.

The database server will not be changed and I will use an RDF database

server called Virtuoso. Virtuoso is �exible and connected - we can easily �nd

out concrete attributes, e.g. User, or �nd out all User's �rst names with ease.

The main priority is to be able to query and modify data over the RDF

database. For this case, I will use a GraphQL interface. Two options could

have been used for this matter. The �rst option (HyperGraphQL) however

does not support modi�cation and extraction of schema therefore we went

with a second option called UltraGraphQL.

The UltraGraphQL has to run over our RDF triple store database (Vir-

tuoso server). It will provide an easy way to access the data in the database.

However, for UltraGraphQL to be able to fetch data, we need a complete

schema. Normally UltraGraphQL doesn't see the schema so it must be pro-

vided to it and thus an export script (which we call Create Script) must

be created. The schema was never fully described in RDF data, but in

the backend, it is written in JavaScript form as a JavaScript object. The

schema will be extracted from the backend code and after that served to Ul-

traGraphQLEndpoint. Furthermore, Create Script provides us with an easy

way how to create additional instances (for example for testing) which can

be even automatized.

Chapter 1

Semantic Data Model

1.1 Linked Data

Linked Data [BHBL11] represents data that are available on the web. They

are stored in machine-readable form. Data are interlinked and are repre-

sented by entities. Each entity can have an inde�nite number of attributes.

Attributes describe properties of the given entity. Entities can be found by

attributes that are assigned to them or list all attributes for the given en-

tity. Each entity has an IRI, an Internationalized Resource Identi�er which

symbolizes the name or the identi�er of the given entity. Usually, they are

similar to classic URLs which are used to access web pages. Indeed they are

similar as each URL is an IRI, but not each IRI is an URL because of special

characters which can be also used in the IRIs. IRI can represent anything,

de�ne a person from the real world, an object, or some �ctional items - there

is no limit to what it can represent, it is just an identi�er for something with

attributes that can provide more information about the given entity. Each

attribute is also an identi�er which can have other attributes. Links between

entities are described by RDF and are encoded as HTTP URIs. This al-

3

CHAPTER 1. SEMANTIC DATA MODEL 4

Figure 1.1: Links between datasets represented as graph nodes from [Wik21]

lows the content to be accessible in a readable way for humans and also for

machines.

Entities are located on the given domain and can be accessed from this

domain by the identi�er. The domain represents a dataset. Each dataset can

be then connected to another dataset. By multiple datasets, we are creating

a network of connected datasets which usually are also interlinked. Linked

data are usually represented in a graph way, where datasets and entities are

presented as nodes that are linked.

1.2 Graph representation

Graph representation use graph structures to represent the structure of data.

Nodes represent entities and each entity can have multiple multiple attributes

and relations with other nodes. Attributes and relations are represented by

CHAPTER 1. SEMANTIC DATA MODEL 5

links (or edges in the graph sense). Graphs used in this sense are oriented,

therefore the relation or attributes goes from one node to another but might

not go the other way.

1.3 Resource Description Framework (RDF)

Resource Description Framework [SARB14] is used to describe data (entities)

and information about them (connections between them). Its mainly used for

applications and processes which should be capable to read the information.

Description can be made for any object, or record, including individuals or

some conceptual ideas. The syntax is commonly based on XML, Terse RDF

Triple Language (Turtle), or JavaScript Object Notation for Linked Data

(JSON-LD).

The description of entities is made in form of triples. Each triple repre-

sents a statement or information about the given entity. The �rst parameter

of the triple is a subject or entity about which we are creating a statement.

The second parameter is a predicate which tells what we want to describe

the given relationship between subject and object. A third parameter is an

object which represents another entity, which we interlinked with the subject.

The statement (or relation) for one triple is always de�ned from subject to

object and not in the other way.

<subject> <pred i ca te> <object>

Listing 1.1: Notation of statement as triple

CHAPTER 1. SEMANTIC DATA MODEL 6

1.3.1 Structure of triple

An entity represents an IRI, an identi�er. IRI is an object, a record, a person,

or some conceptual idea. The subject of the triple must be always an IRI,

while the object can be an IRI or some data-type object (called literal).

Literal is plain values that do not represent an IRI. Literal can be any data

types, like string, date, or number. When we supply a literal to an object we

always associate the respecting datatype so that the value can be properly

processed by machines.

Statements can be made about any IRI. Even if the IRI does not have

any statements about it, the IRI exists and a statement can be made about

it in the future. We call IRIs that does not have any statements about them

as blank nodes. These nodes in the graph representation do not have any

edges and are not linked with any other nodes, however, they can appear in

the subject or object position of the triple.

<John> <i s a> <User >.

<John> <i s a student of> <Mathematics 2022/23>.

<John> <nickname i s> <Legolas >.

<John> <has pub l i c p r o f i l e > <True>.

<John> <i s a member of> <Ninjas >.

Listing 1.2: Statements about entity

In the examples 1.2, we made some statements about John, the subject.

John also represents an IRI, an identi�er. As we already know, a statement

consists of a triple. The �rst argument in our case is John. The second

argument of the triple is reserved for the predicate that implies what we

want to tell about John and in which relation he is with the object. The

third argument, the object, tells us that John is speci�cally in relation to

CHAPTER 1. SEMANTIC DATA MODEL 7

this object.

Examples represent the existing MatFyz Courses system structure of

Users and Teams and show relations between multiple models. The Mat-

Fyz Courses system's design is described in depth in chapter 3.

In the �rst example, we are saying that John is a User. This statement

is also human-readable. A User, in this matter, might present a literal (a

data type) or some other IRI. Usually, we do not mark these types as literal

but as IRIs, which we call classes. Classes de�ne some information about

the given object in a more general matter. In the following example, we are

stating that John is a student of Mathematics 2022/23. We are linking these

two IRIs together, creating a relationship between John and Mathematics

2022/23. There might also be some statements about Mathematics 2022/23.

In the third example, we assign to John his nickname. A nickname, the

subject is, in this case, a string that we represent as a literal - a data type.

The last example tells us that John is a member of another entity identi�ed

as Ninjas.

Figure 1.2: An example of entities with relations and attributes.

CHAPTER 1. SEMANTIC DATA MODEL 8

1.3.2 Turtle Syntax

The statements in the example 1.2 abstractly represent the triples. Therefore,

we can use one of the possible syntaxes to write the triples. Each syntax

has its own syntax rules. One of the most common is Turtle syntax. They

represent an extension of N-Triples, which are just plain triples. Turtle syntax

helps to make the notation straightforward by providing syntax shortcuts,

like de�ning pre�xes so that we don't have to type relative or absolute IRIs

for each triple.

@PREFIX cour s e s : <http ://www. cour s e s . matfyz . sk/> .

@PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf=schema#> .

@PREFIX rd f : <http ://www.w3 . org /1999/02/22= rdf=syntax=ns#> .

@PREFIX schema : <http :// schema . org/> .

@PREFIX xsd : <http ://www.w3 . org /2001/XMLSchema#> .

cour s e s : User a r d f s : Class ;

c ou r s e s : John

a cour s e s : User ;

c ou r s e s : studentOf cour s e s : Mathematics 2022/23 ;

cou r s e s : p u b l i c P r o f i l e " f a l s e "^^xsd : boolean ;

cou r s e s : nickName "Lego las " ;

course : memberOf cour s e s : Ninjas ;

c ou r s e s : Mathematics 2022/23

a cour s e s : CourseInstance ;

cou r s e s : ins tanceOf cour s e s : Mathematics f o r programmers ;

Listing 1.3: Notation in Turtle syntax

CHAPTER 1. SEMANTIC DATA MODEL 9

Each pre�x starts with a '@' character. With pre�xes, we are making

pointers to ontologies. After that, we can begin typing triples from 1.2. So

instead of absolute IRI, we use the pre�x of the given ontology, followed by

a predicate. If we have multiple triples about the same subject, we don't

have to type the subject for each triple. Instead, we write a subject in one

line and add the predicate and object in additional lines. In this case, each

statement ends with the ';' character. When we look at the �rst example, it

uses the predicate 'a', a short notation for rdf:type, which is taken from the

RDF schema.

1.4 Data-modelling vocabulary

Triples de�ne relationships between entities. For a better understanding of

these relationships, it's bene�cial to assign them a semantic meaning. We can

create our semantic vocabulary or use the existing one. For some standard

types, it is better to use the global semantics that is already commonly used.

With that, we ensure that the meaning of these relationships will be iden-

tical when we create them, and other ontologies will easily recognize them.

Semantic vocabularies in RDF used to describe the relationships between

entities are called schemas.

1.4.1 RDF schema

RDF schema mainly consists of class and property systems.

The most basic notation of the RDF schema is an rdfs:Resource. There-

fore, each entity written by the RDF is also de�ned as a resource. One of

the most commonly used notations is an rdfs:Class. It helps us to determine

the category of the RDF entity. Class meaning is similar to the one used in

CHAPTER 1. SEMANTIC DATA MODEL 10

object-oriented programming languages like Java. The statement that some

subject type is a Class means that when we create an object with this type

of class, we know that it's an instance of the given class.

Figure 1.3: Common used notations in RDF schema.

Other commonly used notations are rdfs: Literal and rdfs:Property. All of

them are subtypes of the rdfs:Resource type. Each subject that is entitled as

rdfs:Literal represents a literal. A literal represents string, integer, or other

data type. Therefore, we usually assign a notation rdfs: Datatype to these

subjects and a subtype of rdfs: Literal.

Notation rdfs:Property de�nes a relation between subject and object re-

sources. There exist multiple instances of this notation, but these are the

most commonly used:

With notations rdfs:range and rdfs:domain we describe what can be used

on the subject's or the object's side - �eld of values and the domain. The

�eld of values is described through rdfs:range - that the values, subjects,

are instances of one or more speci�ed classes. The domain de�ned by the

rdfs:domain means that any resource, the object, is an instance of one or

CHAPTER 1. SEMANTIC DATA MODEL 11

more classes.

To state that a given resource belongs to the instance of a class, we use

the notation rdf:type or, in short, the notation 'a'.

If we want to de�ne that one class is a subtype of another class, we use

the notation rdfs:subClassOf. This notation is also transitive, meaning that

if A is a class and is a subclass of B and B is a class and a subclass of another

class C, then A is a subclass of C.

The same things can also be de�ned for the property - one property can

be a subproperty of another. This notation is also transitive.

1.4.2 OWL

OWL [HKP+12] is used to describe ontologies. It provides rich notations and

streamlines the process of creating new ontologies. Owl can be written in

multiple syntaxes, like Turtle, RDF/XML, or OWL2 XML syntax. It is an

extension of RDFS notations. For example, a notation owl:ObjectProperty

is a subclass of the RDF class rdf:Property. Notations are usually the same

or similar to the ones used in the RDFS. However, it adds new attributes and

properties. For sets, we can de�ne union, intersection, or conjunction. For

example, rdfs:domain should be represented as a conjunction as we should

be able to explain one or multiple subjects belonging to the class. Thus, in

that case, we should use owl:unionOf. For example, we have an attribute

name that should be a part of a Team and Course. In this case, we might

write:

<owl : ObjectProperty rd f : ID="name">

<rd f s : domain>

<owl : Class>

<owl : unionOf rd f : parseType="Co l l e c t i o n">

CHAPTER 1. SEMANTIC DATA MODEL 12

<owl : Class rd f : about="#Team"/>

<owl : Class rd f : about="#Course"/>

</owl : unionOf>

</owl : Class>

</rd f s : domain>

</owl : ObjectProperty>

Listing 1.4: Domain of attribute name is Team and Course

1.5 Representation in JSON-LD

The JSON for Linked Data represents [SARB14] linked data using the JSON

format. It provides an easy change of JSON documents to RDF. Developers

can e�ortlessly write in this format as it is human-readable and writable. On

the web, it is, for example, used with the REST API. Each object de�ned

through JSON-LD must contain required �elds, like id. Field id starts with

the character '@' followed by the object's identi�er. Field @id can be an

object identi�er or a reference to an object identi�er across multiple JSON

�les.

1.6 SPARQL

SPARQL [PS08] is a query language used for data written in the RDF format.

When we write a query, it is run over the database and returns an output

shown in one of the possible syntaxes of the RDF. The basic actions in

SPARQL are SELECT, INSERT and DELETE actions. The syntax of the

queries is similar to the one used in relational databases. The query can

return a triple or part of the triple. SELECT will return data in the graph

CHAPTER 1. SEMANTIC DATA MODEL 13

that matches the given condition.

@PREFIX cour s e s : <http ://www. cour s e s . matfyz . sk/> .

@PREFIX rd f : <http ://www.w3 . org /1999/02/22= rdf=syntax=ns#> .

SELECT ? user

WHERE {

? user a cour s e s : User .

}

Listing 1.5: SELECT query for �nding subjects that are of type User

INSERT is used to insert data into the database in the speci�c graph. A

graph is similar to a relational database, which has multiple tables. However,

there are no tables in the RDF databases as in the relational databases.

Instead, we have a graph containing all of its speci�ed triples. If the graph is

not speci�ed in the query, then the default one is used for querying. DELETE

action serves for the deletion of speci�c triples from the graph.

@PREFIX cour s e s : <http ://www. cour s e s . matfyz . sk/> .

@PREFIX rd f : <http ://www.w3 . org /1999/02/22= rdf=syntax=ns#> .

INSERT DATA { GRAPH <https : // cour s e s . matfyz . sk> {

cour s e s : John a cour s e s : User .

c ou r s e s : John cour s e s : nickName "Lego las " .

}

}

Listing 1.6: INSERT query to the speci�c graph

Speci�c notations make it possible to perform INSERT and DELETE

as one action (as one transaction), which in the end serves as an UPDATE

action. We can also perform an ASK query, which does not return a triple,

CHAPTER 1. SEMANTIC DATA MODEL 14

but a simple answer, True or False, for the given matter.

1.7 Virtuoso

Virtuoso [Sof20] is a database engine that supports the querying of RDF data

through SPARQL. In the sense of RDF, it consists of multiple graphs. The

web interface is used to con�gure the Virtuoso server, providing management

of the Virtuoso users, rules, and other con�gs. The query editor is also

bundled in the basic version. Users execute queries. Each user has a set of

rules de�ning which actions might be executed. Rules can be de�ned for the

whole database server or the speci�c graph. Two versions of Virtuoso exist.

One is a free and open source edition, and paid one.

Chapter 2

GraphQL

This chapter is devoted to the explanation of the GraphQL speci�cation and

its superstructures.

2.1 GraphQL interface

2.2 HyperGraphQL

2.3 UltraGraphQL

15

Chapter 3

Existing Course System

This chapter explains the structure and functionality of the existing applica-

tion, which is already deployed and used. Understanding the existing backend

is a critical part of creating additional features.

3.1 Base technologies

This diploma thesis will use standard technologies that are common for the

creation of the application server.

This includes JavaScript, Node.js, NPM, React, Apollo Client and Java.

JavaScript [con22b] is a scriptable interpreted programming language. It is

used primarily in the creation of interactive website pages or for application

servers. The application server used in this thesis is based on the Express.js,

Node.js web application framework.

Node.js [con22a] is used for application servers, which represents the

server side of the web application. It is for example used to take requests

from the front-end side of the application, ful�ll them and then send a re-

sponse back to the front end. It is not bound to the browser and is run

16

CHAPTER 3. EXISTING COURSE SYSTEM 17

directly on the given OS server (or computer).

However, writing speci�c handlings of the requests in plain Node.js might

be sometimes cumbersome. For that, there exist web frameworks that make

the handling of requests easier, with more options without a need to reinvent

the wheel.

One of the most commonly used is Express.js which is built on top of

Node.js. It is a library that provides a set of features, like the possibility

to handle requests with di�erent HTTP methods (which on contrary must

be programmed on your own by using Node.js), some basic web application

settings like setting the port for connection or serving �les.

To install libraries (packages), I will use the Node package manager tool

(in short npm). With this software, it is possible to install all necessary pack-

ages from one place, so it is not necessary to access each package separately.

3.2 Frontend

Following section is dedicated to the frontend of the application. The fron-

tend part of the application is written in React.

3.2.1 React

React [MP22] represents a Javascript library for more accessible user interface

creation. It is currently managed by Meta Platforms which also developed

Facebook. An advantage of React over other frameworks is the ability to

divide the application's user interface into components. The component rep-

resents the fundamental element of the library. It typically represents a class

or function. At the same time, it is possible to create bigger components

from the smaller ones, and each can be used as separate, reusable parts.

CHAPTER 3. EXISTING COURSE SYSTEM 18

The state of the application is saved by using the Redux package.

3.2.2 Redux

Redux [AtRda22] is a JavaScript library used to control the state of variables,

i.e., what values variables acquire. It is used, for example, in combination

with React. All data (or application status) processed by applications are

grouped under one JavaScript object, called a store - Storage. As a result,

it is possible to access all variables from one place, which is much clearer,

and work with data is better manageable. Thus, Redux represents a model,

a structure by which we control data access, change, addition, and deletion.

Within Redux, we should not change the state of variables directly to avoid

errors. Instead, actions are used to change values. An action is represented by

a simple JavaScript object that describes what happened. The action must

contain an attribute type. An attribute de�nes the type of action which is

executed. Thanks to this, we know exactly what happened in the application

and how it changed. In addition, we can de�ne additional parameters to the

action which serve as additional arguments (they are optional).

3.3 Backend

In this section, I will describe the backend part of the application before the

changes, followed by an analysis and stages which were proceeded.

CHAPTER 3. EXISTING COURSE SYSTEM 19

3.4 Frontend and Backend communication

Figure 3.1: Communication between database, backend and frontend.

3.4.1 RTK Query

3.5 Functionality of existing application

Chapter 4

Analysis of issue

4.1 Existing issues

4.2 Required funcionality

20

Chapter 5

Design

This chapter is dedicated to the design of the new backend application. The

current backend of the application will be replaced entirely with the new

backend, as the former functionality is no longer needed after implementa-

tion. A di�erent approach to data and its modi�cation is used, with uni�ed

logic for the frontend part of the application.

5.1 Replacement of REST API to GraphQL

GraphQL uses a di�erent approach to data as a REST API. When we fetch

the data using the RESP API as a response, we will get the requested object

with all its attributes except those representing another object. In this case,

we must use join notation or send two requests (if we have two objects)

to the server. This approach takes more computer resources and is more

complex for a developer to implement. Also, we constantly receive the whole

object and �elds that we don't even need. This approach makes the responses

through the network heavier. On the other hand, GRAPHQL uses a di�erent

approach and allows us to get in the response data that we need without

21

CHAPTER 5. DESIGN 22

returning the whole object. Also, it supports getting the referenced objects

as attributes without the need to do an explicit join or send two requests to

the server. In this case, it is always treated as one request, and we get just

one response. In the example, you can see how we can retrieve the user and

their team using GRAPHQL and also the REST API.

GET /data/ user /MnOaN&?_join=memberOf == depth one

== memberOf = TeamInstance

GET /data/team/X&aEnO == depth two

==from TeamInstance we get Team i d e n t i f i e r

==and then we can get the name o f the Team

Listing 5.1: REST API call and join

query getInfoUserTeam{

courses_User {

courses_memberOf{ ==type TeamInstace

courses_approved ==depth one

courses_Team{

courses_name ==name o f the team = depth two

}

}

}

}

Listing 5.2: GraphQL abstract with depth data �ltering

The additional advantage is that we can hide �elds in the schema. If the

�eld is not provided in the schema, it cannot be shown by GraphQL. With

this, we can hide private data, like passwords, and not include them in the

schema. To exclude them from the schema, we mark these �elds as hidden,

CHAPTER 5. DESIGN 23

and there will not be included.

5.2 Courses system schema

The schema of the Course system represents an ontology for this system.

The schema was never fully described in RDF data, but in the backend part

of the application, it is written in JS form (JS object). We need a complete

RDF schema for UltraGraphQL to work with our DB. Otherwise, we are

only able to query some of the required �elds. Therefore, we create a script

that must transfer the JS form into the RDF schema.

5.3 Script for creating a schema

The script must provide the complete RDF schema for our Course system

ontology. In addition, each JS object must be mapped to RDF triples. For

each JS object, there might be multiple triples provided. Therefore, a map-

ping must be made. Each model represents an instance of rdfs:Class which

is saved in attribute type. The inheritance is allowed to be used; therefore,

there exists an additional attribute subclassOf. This attribute references the

parent model. Multiple subclasses are possible. Thus we can make multiple

triples reference to the speci�c classes.

5.4 UPDATE of the existing �elds

UltraGraphQL, by default, provides INSERT and DELETE actions. IN-

SERT action is used to insert a new triple about existing or new IRI. In case

we insert some attribute for the existing IRI, a new triple is made, and in

the end, there are multiple queries with the same subject. In the sense of

CHAPTER 5. DESIGN 24

data type, this is just adding a new element to an existing one. Therefore,

its type is a collection (also called a list). When we call INSERT action, it

will always add a new attribute without changing the existing one. The same

also applies to the DELETE action. If we delete the identi�er, it will delete

all of its related triples. However, we can also delete just one speci�c triple,

and if we have more triples with the same subject and predicate, it will just

pop the speci�c one from the list. However, we would like to perform an

action that will update the existing triple by replacing the value. Update

action in SPARQL can be achieved by executing INSERT and DELETE

queries. So there is no possibility of editing the existing one. However, if we

INSERT and DELETE the query separately as two mutations, it would be

run as two queries and two di�erent transactions. We want to prevent that,

and therefore an UPDATE action was created. Its purpose is to update the

existing triple, with the logic of SPARQL, that the INSERT and DELETE

script is called within one transaction. For that purpose, an additional action

called UPDATE is added to the UltraGraphQL. Same as for the INSERT and

DELETE actions, this action will also need access to the schema created for

this action. After that, a speci�c query must be made that will perform

delete and insert as one transaction - for the SPARQL, this is achieved by:

WITH <graphName> DELETE { . . . } INSERT { . . . } WHERE { . . . }

Listing 5.3: UPDATE performed through SPARQL as one transaction

We will remove all triples where the subject and predicate are the same.

It means that if there was an array of triples, the whole collection would be

removed, and a new single value would be added.

Chapter 6

Implementation

In this chapter, I will describe the process of implementing the adjusments

to UltraGraphQL and the refactoring which was proceed before the adjust-

ments.

6.1 Create Script

In this section, I will describe the process of implementing the create script.

25

CHAPTER 6. IMPLEMENTATION 26

6.1.1 Design purpose

6.1.2 Implementation

6.2 Refactoring

6.2.1 Frontend issues �xes

6.3 UltraGraphQL adjustments

6.3.1 Initial state

6.3.2 Adjustments

6.3.3 New features

Chapter 7

Authorization

In this chapter, I will describe the process of implementing and structure the

authorisation rules.

7.1 User authorization

7.2 Sensitive �elds

27

Conclusion

28

Bibliography

[AtRda22] Dan Abramov and the Redux documentation authors. Re-

dux. https://developer.mozilla.org/en-US/docs/Web/

JavaScript/, 2022. Accessed: 2022-04-12.

[BGM14] Dan Brickley, R.V. Guha, and Brian McBride. Rdf schema 1.1.

https://www.w3.org/TR/rdf-schema/, 2014. Accessed: 2022-

07-12.

[BHBL11] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data

- the story so far. In Semantic Services, Interoperability and Web

Applications: Emerging Concepts, pages 205 � 227. IGI Global,

2011.

[CDG+14] Richard Cyganiak, DERI, NUI Galway, David Wood, 3 Round

Stones, Markus Lanthaler, and Graz University of Technology.

Rdf 1.1 concepts and abstract syntax. https://www.w3.org/TR/

2014/REC-rdf11-concepts-20140225/, 2014. Accessed: 2022-

04-02.

[Cif20] Milan Cifra. Semantic data model for a course management sys-

tem. Master's thesis, Comenius university in BratislavaFMFI

FMFI.KAI, Bratislava, July 2020.

29

https://developer.mozilla.org/en-US/docs/Web/JavaScript/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

BIBLIOGRAPHY 30

[con22a] MDN contributors. Express/node introduction. https:

//developer.mozilla.org/en-US/docs/Learn/Server-side/

Express_Nodejs/Introduction/, 2022. Accessed: 2022-20-11.

[con22b] MDN contributors. Javascript. https://redux.js.org/, 2022.

Accessed: 2022-20-11.

[Fda21] The GraphQL Foundation and GraphQL documentation authors.

Graphql. https://graphql.org/, 2021. Accessed: 2021-13-12.

[HKP+12] Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-

Schneider, and Sebastian Rudolph. Owl 2 web ontology lan-

guage primer. https://www.w3.org/TR/owl2-primer/, 2012.

Accessed: 2022-08-12.

[MP22] Inc. Meta Platforms. React. https://reactjs.org/, 2022. Ac-

cessed: 2022-04-12.

[PS08] Eric Prud'hommeaux and Andy Seaborne. Sparql query lan-

guage for rdf. https://www.w3.org/TR/rdf-sparql-query/,

2008. Accessed: 2022-07-12.

[SARB14] Guus Schreiber, VU University Amsterdam, Yves Raimond, and

BBC. Rdf 1.1 primer. https://www.w3.org/TR/rdf11-primer/,

2014. Accessed: 2022-27-01.

[Sof20] OpenLink Software. Openlink virtuoso universal server documen-

tation. https://docs.openlinksw.com/virtuoso/, 2020. Ac-

cessed: 2022-07-12.

[tc21] UltraGraphQL team and contributors. Ultragraphql. https:

https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/Introduction/
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/Introduction/
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/Introduction/
https://redux.js.org/
https://graphql.org/
https://www.w3.org/TR/owl2-primer/
https://reactjs.org/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf11-primer/
https://docs.openlinksw.com/virtuoso/
https://git.rwth-aachen.de/i5/ultragraphql/

BIBLIOGRAPHY 31

//git.rwth-aachen.de/i5/ultragraphql/, 2021. Accessed:

2022-20-02.

[Wik21] the free encyclopedia. Wikipedia. Linked data. https:

//upload.wikimedia.org/wikipedia/commons/5/5d/

Screenshot_from_2021-05-17_12-26-27.png, 2021. Accessed:

2022-04-12.

https://git.rwth-aachen.de/i5/ultragraphql/
https://git.rwth-aachen.de/i5/ultragraphql/
https://upload.wikimedia.org/wikipedia/commons/5/5d/Screenshot_from_2021-05-17_12-26-27.png
https://upload.wikimedia.org/wikipedia/commons/5/5d/Screenshot_from_2021-05-17_12-26-27.png
https://upload.wikimedia.org/wikipedia/commons/5/5d/Screenshot_from_2021-05-17_12-26-27.png

List of Figures

1.1 Links between datasets represented as graph nodes from [Wik21] 4

1.2 An example of entities with relations and attributes. 7

1.3 Common used notations in RDF schema. 10

3.1 Communication between database, backend and frontend. . . . 19

32

	Introduction
	Semantic Data Model
	Linked Data
	Graph representation
	Resource Description Framework (RDF)
	Structure of triple
	Turtle Syntax

	Data-modelling vocabulary
	RDF schema
	OWL

	Representation in JSON-LD
	SPARQL
	Virtuoso

	GraphQL
	GraphQL interface
	HyperGraphQL
	UltraGraphQL

	Existing Course System
	Base technologies
	Frontend
	React
	Redux

	Backend
	Frontend and Backend communication
	RTK Query

	Functionality of existing application

	Analysis of issue
	Existing issues
	Required funcionality

	Design
	Replacement of REST API to GraphQL
	Courses system schema
	Script for creating a schema
	UPDATE of the existing fields

	Implementation
	Create Script
	Design purpose
	Implementation

	Refactoring
	Frontend issues fixes

	UltraGraphQL adjustments
	Initial state
	Adjustments
	New features

	Authorization
	User authorization
	Sensitive fields

	Conclusion

