
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Asymmetric graphs

Bachelor Thesis

2022

Simona Dubeková

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Asymmetric graphs

Bachelor Thesis

Study Programme: Computer Science

Field of Study: Computer Science

Department: Department of Computer Science

Supervisor: doc. RNDr. Tatiana Jajcayová, PhD.

Consultant: Mgr. Dominika Mihálová

Bratislava, 2022

Simona Dubeková

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Simona Dubeková
Study programme: Applied Computer Science (Single degree study, bachelor I.

deg., full time form)
Field of Study: Computer Science
Type of Thesis: Bachelor´s thesis
Language of Thesis: English
Secondary language: Slovak

Title: Asymmetric graphs

Annotation: We study non-oriented simple graphs. We call a graph symmetric, if there exists
a non-identical permutation of its vertices, which leaves the graph invariant,
i.e. a graph is called symmetric if the group of its automorphisms is not
trivial. A graph which is not symmetric will be called asymmetric. The degree
of symmetry of a symmetric graph is measured by the size of its group of
automorphisms. We will measure the degree of asymmetry of an asymmetric
graph by the number of vertices which we have to delete to obtain a symmetric
graph.

Supervisor: doc. RNDr. Tatiana Jajcayová, PhD.
Department: FMFI.KAI - Department of Applied Informatics
Head of
department:

prof. Ing. Igor Farkaš, Dr.

Assigned: 01.10.2021

Approved: 06.10.2021 doc. RNDr. Damas Gruska, PhD.
Guarantor of Study Programme

Student Supervisor

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Simona Dubeková
Študijný program: aplikovaná informatika (Jednoodborové štúdium, bakalársky

I. st., denná forma)
Študijný odbor: informatika
Typ záverečnej práce: bakalárska
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Asymmetric graphs
Asymetrické grafy

Anotácia:

Vedúci: doc. RNDr. Tatiana Jajcayová, PhD.
Katedra: FMFI.KAI - Katedra aplikovanej informatiky
Vedúci katedry: prof. Ing. Igor Farkaš, Dr.

Dátum zadania: 01.10.2021

Dátum schválenia: 06.10.2021 doc. RNDr. Damas Gruska, PhD.
garant študijného programu

študent vedúci práce

iii

Acknowledgements: I would like to thank my supervisor doc. RNDr. Tatiana

Jajcayová, PhD. for her great patience and support throughout the creation of the

bachelor's thesis. I would also like to thank my consultant Mgr. Dominika Mihálová

for her detailed explanation of system for computational discrete algebra.

iv

Abstrakt

V tejto bakalárskej práci skúmame neorientované jednoduché grafy. Graf nazývame

symetrický, ak existuje neidentická permutácia jeho vrcholov, ktorá ponechá graf in-

variantný, t.j. graf sa nazýva symetrický, ak grupa jeho automor�zmov nie je triviálna.

Graf, ktorý nie je symetrický, nazývame asymetrický. Stupe¬ asymetrie asymetrického

grafu meriame po£tom vrcholov, ktoré musíme odstráni´, aby sme získali graf symet-

rický. Neorientované jednoduché asymetrické grafy vytvárame pomocou programova-

cieho jazyka Kotlin a pre jednoduch²iu predstavu ich vykres©ujeme pomocou systému

vytvoreného pre výpo£tovú diskrétnu algebru - GAP. Z týchto asymetrických grafov

postupne, po jednom, odstra¬ujeme v²etky vrcholy a v²etky hrany. Pri tomto pos-

tupnom odstra¬ovaní vrcholov a hrán z týchto asymetrických grafov skúmame, ako sa

mení symetria týchto grafov oproti grafom pôvodným. Stupe¬ asymetrie asymetrick-

ého grafu potom môºeme vypo£íta´ pomocou po£tu vrcholov, ktoré musíme odstráni´,

aby sme získali graf symetrický.

K©ú£ové slová: graf, vrchol, hrana, asymetrický graf, stupe¬ asymetrie

v

Abstract

In this bachelor thesis we study non-oriented simple graphs. A graph is called sym-

metric if there is a non-identical permutation of its vertices that leaves the graph

invariant, i.e. a graph is called symmetric if its group of automorphisms is not triv-

ial. A graph that is not symmetric is called asymmetric. We measure the degree of

asymmetry of an asymmetric graph by the number of vertices which we have to delete

to obtain a symmetric graph. We create non-oriented simple asymmetric graphs using

the Kotlin programming language and we draw them for a better visualization using

a system created for computational discrete algebra - GAP. From these asymmetric

graphs, we remove all vertices and all edges one by one. In this gradual deletion of

vertices and edges from these asymmetric graphs, we study how the symmetry of these

graphs changes from the original graphs. The degree of asymmetry of an asymmetric

graph can be measured by the number of vertices which we have to delete to obtain a

symmetric graph.

Keywords: graph, vertex, edge, asymmetric graph, degree of asymmetry

Contents

Introduction 1

1 Preliminaries 2

1.1 Graph theory . 2

1.1.1 Examples of graphs . 2

1.1.2 Graphs basics . 3

1.1.3 Bipartite graphs . 4

1.1.4 Subgraphs . 5

1.1.5 Paths, circuits, and reachability in graphs 6

1.1.6 Connectivity of graphs . 6

1.1.7 Trees . 7

1.1.8 Algorithms . 8

1.2 Group theory . 9

1.2.1 Group isomorphism . 10

1.2.2 Group automorphism . 10

1.3 Theory of symmetries . 11

1.3.1 Graph isomorphism . 11

1.3.2 Graph automorphism . 12

1.3.3 Automorphism group of graphs 12

1.3.4 Symmetric graphs . 12

1.3.5 Partial symmetries of graphs . 13

1.3.6 Asymmetric graphs . 13

1.4 Motivation to study assymetric graphs 14

2 Implementation 16

2.1 Kotlin . 17

2.2 GAP . 17

2.3 Algorithms . 17

2.3.1 Prim's Algorithm . 18

2.4 Classes and Functions . 18

2.4.1 Class Vertex . 19

vi

CONTENTS vii

2.4.2 Class Edge . 19

2.4.3 Class Graph . 20

2.4.4 Class Graphs . 20

2.4.5 Class MinimalAsymmetricGraphs 21

2.4.6 Class Main . 21

2.4.7 File path.txt . 22

3 Results 24

3.0.1 Minimal asymmetric graphs without one vertex 24

3.0.2 Minimal asymmetric graphs without iteratively removed vertices 25

3.0.3 Minimal asymmetric graphs without one edge 27

3.0.4 Minimal asymmetric graphs without iteratively removed edges . 28

3.0.5 Minimal asymmetric graphs with one added edge 28

3.0.6 Minimal asymmetric graphs with more added edges 29

Summary 31

Appendix A 34

Appendix B 35

3.1 Minimal asymmetric graphs . 36

3.2 Minimal asymmetric graphs without one vertex 36

3.2.1 Graphs with an automorphism group of size 2 37

3.2.2 Graphs with an automorphism group of size 4 38

3.3 Minimal asymmetric graphs without two vertices 38

3.3.1 Graphs with an automorphism group of size 2 39

3.3.2 Graphs with an automorphism group of size 4 39

3.3.3 Graphs with an automorphism group of size 6 40

3.3.4 Graphs with an automorphism group of size 8 40

3.3.5 Graphs with an automorphism group of size 12 41

3.3.6 Graphs with an automorphism group of size 16 41

3.4 Minimal asymmetric graphs without three vertices 41

3.4.1 Graphs with an automorphism group of size 2 42

3.4.2 Graphs with an automorphism group of size 4 42

3.4.3 Graphs with an automorphism group of size 6 43

3.4.4 Graphs with an automorphism group of size 8 43

3.4.5 Graphs with an automorphism group of size 12 43

3.4.6 Graphs with an automorphism group of size 24 44

3.5 Minimal asymmetric graphs without four vertices 44

3.5.1 Graphs with an automorphism group of size 2 44

CONTENTS viii

3.5.2 Graphs with an automorphism group of size 4 45

3.5.3 Graphs with an automorphism group of size 6 45

3.5.4 Graphs with an automorphism group of size 24 45

3.6 Minimal asymmetric graphs without �ve vertices 46

3.6.1 Graphs with an automorphism group of size 2 46

3.6.2 Graphs with an automorphism group of size 6 46

3.7 Minimal asymmetric graphs without six vertices 47

3.7.1 Graphs with an automorphism group of size 2 47

List of Figures

1.1 Tram Lines . 2

1.2 Constellations . 3

1.3 Example of bipartite graph . 4

1.4 Example of induced subgraphs . 5

1.5 Examples of trees . 8

1.6 Kruskal's and Prim's algorithms . 9

1.7 Example group isomorphism . 10

1.8 Isomorphic graph . 11

1.9 Example of symmetric and asymmetric graph 12

1.10 The 18 minimal asymmetric graphs . 14

2.1 Time comparison between Python and Kotlin programming language . 16

2.2 Class Diagram . 19

2.3 De�nition of the class Vertex . 19

2.4 De�nition of the class Edge . 19

2.5 Minimal asymmetric graphs written in GAP format 20

2.6 Main menu . 22

2.7 Loading �le path.txt in GAP . 23

3.1 One of the minimal asymmetric graphs and the examples of the graphs

without one vertex . 24

3.2 Examples of the minimal asymmetric graph without three vertices . . . 25

3.3 The minimal asymmetric graph without six vertices 26

3.4 One of the minimal asymmetric graphs with iteratively removed vertices 26

3.5 One of the minimal asymmetric graphs without one edge 27

3.6 One of the minimal asymmetric graphs without one edge 27

3.7 The minimal asymmetric graphs without three edges 28

3.8 List of the minimal asymmetric graphs with one added edge 29

3.9 List of the minimal asymmetric graphs with two added edges 29

3.10 Complete graph with 6 vertices . 30

3.11 List of minimal asymmetric graphs . 36

ix

LIST OF FIGURES x

3.12 List of minimal asymmetric graphs without one vertex with an auto-

morphism group of size 2 . 37

3.13 List of minimal asymmetric graphs without one vertex with an auto-

morphism group of size 4 . 38

3.14 List of minimal asymmetric graphs without two vertices with an auto-

morphism group of size 2 . 39

3.15 List of minimal asymmetric graphs without two vertices with an auto-

morphism group of size 4 . 39

3.16 List of minimal asymmetric graphs without two vertices with an auto-

morphism group of size 6 . 40

3.17 List of minimal asymmetric graphs without two vertices with an auto-

morphism group of size 8 . 40

3.18 Minimal asymmetric graph without two vertices with an automorphism

group of size 12 . 41

3.19 Minimal asymmetric graph without two vertices with an automorphism

group of size 16 . 41

3.20 List of minimal asymmetric graphs without three vertices with an auto-

morphism group of size 2 . 42

3.21 List of minimal asymmetric graphs without three vertices with an auto-

morphism group of size 4 . 42

3.22 List of minimal asymmetric graphs without three vertices with an auto-

morphism group of size 6 . 43

3.23 Minimal asymmetric graph without three vertices with an automorphism

group of size 8 . 43

3.24 Minimal asymmetric graph without three vertices with an automorphism

group of size 12 . 43

3.25 List of minimal asymmetric graphs without three vertices with an auto-

morphism group of size 24 . 44

3.26 List of minimal asymmetric graphs without four vertices with an auto-

morphism group of size 2 . 44

3.27 Minimal asymmetric graph without four vertices with an automorphism

group of size 4 . 45

3.28 List of minimal asymmetric graphs without four vertices with an auto-

morphism group of size 6 . 45

3.29 Minimal asymmetric graph without four vertices with an automorphism

group of size 24 . 45

3.30 List of minimal asymmetric graphs without �ve vertices with an auto-

morphism group of size 2 . 46

LIST OF FIGURES xi

3.31 Minimal asymmetric graph without �ve vertices with an automorphism

group of size 6 . 46

3.32 Minimal asymmetric graph without six vertices with an automorphism

group of size 2 . 47

List of Tables

1.1 Example group isomorphism . 11

xii

Introduction

Graphs are a well-known and widely used structures with many applications in math-

ematics and computer science. However, this structure is not only usable in the theory

of graphs, but also all around us, whether in constellations or only in ordinary relation-

ships between people. The most common example is undoubtedly the road network.

In this bachelor thesis we look at graphs from the informatics point of view and apply

the theory of mathematics in practice.

In this thesis, we study non-oriented simple graphs. A graph is called symmetric if

there exists a non-identical permutation of its vertices, which leaves the graph invariant,

i.e. a graph is called symmetric if the group of its automorphisms is not trivial. A

graph which is not symmetric is called asymmetric. The degree of symmetry of a

symmetric graph is measured by the size of its group of automorphisms. We measure

the degree of asymmetry of an asymmetric graph by the number of vertices which we

have to delete to obtain a symmetric graph.

In the �rst chapter of this thesis we deal with basic terminology and concepts related

to this topic. It is necessary for our work. In the second chapter, we will take a closer

look at how the implementation process was formed, what existing software already

exists for examining graphs, and what made it easier for us to examine asymmetric

graphs. In the Results chapter, we describe the results we obtained using the software

we programmed. We analyse in detail the data we have obtained by commands to

our program. After examining the asymmetric graphs, we summarized the results in

a catalogue. We will talk about what could be addressed on this topic in the future.

What else could be programmed for our existing program.

Finally, we found that even by removing a few vertices we can obtain a relatively

high order of the automorphism group. We con�rmed that when removing vertices from

minimal asymmetric graphs, we get graphs with non-trivial groups of automorphisms.

By removing edges from minimal asymmetric graphs, both symmetric and asymmetric

graphs can be created. We found, that these asymmetric graphs may not be only

minimal.

1

Chapter 1

Preliminaries

This chapter is devoted to concepts of graph theory, group theory and theory of sym-

metries which will be used in this thesis. We start with graph theory and continue

with groups and its symmetries.

1.1 Graph theory

This section contains basic de�nitions of graph theory and examples. It is divided

into several subsections, where each subsection describes graphs and terms which are

connected to our topic. We include pictures and graphs to better illustrate studied

concepts.

1.1.1 Examples of graphs

Many people think of graphs just as a series of connected or unconnected dots, but they

do not realize all the possibilities which graph theory o�ers. One of the most common

examples of graph in real life is road network. Individual cities represent vertices and

the roads represent the edges of the graph. Here is an example of a graph, which shows

the tram network in Bratislava in Figure 1.1.

Figure 1.1: Tram Lines

2

CHAPTER 1. PRELIMINARIES 3

Another example could be constellations, which are not immediately thought of

as an easy example of a graph. Constellations consist of stars and their imaginary

connections. To make a graph, we can consider stars as vertices and their imaginary

connections as edges. Among other uses of graphs belong cardiovascular system, friends

on social media or the internet itself. Graphs can be used for quite di�erent things and

they are e�ective tools because they present information quickly and easily.

Figure 1.2: Constellations

1.1.2 Graphs basics

Now we can de�ne graphs in mathematics. We found most of the de�nitions in the book

Discrete Structures with Contemporary Applications written by Alexander Stanoye-

vitch in 2011. [7]

De�nition. A general graph is a triple G = (V,E, φ), where V is a non-empty set of

vertices (or nodes) of G, and E is set of edges of G, and φ, called the edgemap, is a

function φ : E → P (V), where |φ(e)| = 1 or 2, for each e ∈ E. The vertices in φ (e) are

called endpoints of the edge e. An edge e having only one endpoint (i.e., |φ (e)| = 1) is

called a self-loop. Two edges, e1, e2 that have the same endpoints (i.e., φ (e1) = φ (e2))

CHAPTER 1. PRELIMINARIES 4

are called parallel edges or multiedges. [7]

In this work, we will concentrate on simple graphs where φ can be omitted.

De�nition. A non-oriented simple graph is an ordered pair of sets G = (V,E), where V

is a non-empty set of vertices (or nodes) of G, and E, the set of edges of G is a set of

two-element pairs (2-combinations) of vertices. Thus, each edge of G can be expressed

as {u, v}, where u an v are distinct vertices, i.e., u, v ∈ V , u 6= v. The vertices u and

v determining an edge {u, v} are called the endpoints of the edge. The edge {u, v} is
said to join u and v, and the edge is said to be incident to either of its endpoints. Any

two vertices in G that are joined by an edge are said to be adjacent and are called

neighbours. A vertex with no neighbours is called isolated. [7]

Basically, a graph with no loops and no parallel edges is called a simple graph. The

maximum number of edges possible in a single graph with n vertices is n(n−1)
2

and the

number of simple graphs possible with n vertices is 2
n·(n−1)

2 .

For completeness, we will use simple non-oriented graphs, where the edges of the

graph G are an unordered pair of vertices (u, v).

1.1.3 Bipartite graphs

An important term in graph theory is a bipartite graph. Bipartite graphs have many

applications in informatics. They are often used to represent binary relations between

two types of objects.

Figure 1.3: Example of bipartite graph

De�nition. A graph G is bipartite if the vertex set V can be partitioned into two

subsets: V = U ∪W , such that each edge of G has one endpoint in U and one endpoint

W . The pair U,W is called a (vertex) bipartition of G. [7]

CHAPTER 1. PRELIMINARIES 5

In other words, the bipartite graph or bigraph is a graph whose set of vertices

can be divided into two disjoint sets so that no two vertices from the same set are

connected by an edge. For better visualization there is an example of bipartite graph

in 1.3. There are two sets of vertices, but no edge joins two vertices in the same set.

Therefore, this graph is bipartite.

1.1.4 Subgraphs

We start with a de�nition of a subgraph.

De�nition. If G = (V,E) is a graph (directed or undirected), then G1 = (V1, E1) is

called a subgraph of G if ∅ 6= V1 ⊆ V and E1 ⊆ E, where each edge in E1 is incident

with vertices in V1. [2]

This is the de�nition of a general subgraph. In our thesis, we will work with more

speci�c types of subgraphs. For example, we will use an induced subgraph.

De�nition. Let G = (V,E) be a graph (directed or undirected). If ∅ 6= U ⊆ V , the

subgraph of G induced by U is the subgraph whose vertex set is U and which contains

all edges (from G) of either the form (a) (x, y), for x, y ∈ U (when G is directed),

or (b) (x, y), for x, y ∈ U (when G is undirected). We denote this subgraph by 〈U〉.
A subgraph G

′
of a graph G = (V,E) is called an induced subgraph if there exists

∅ 6= U ⊆ V , where G
′
= 〈U〉. [2]

To better understand the di�erence between a subgraph and an induced subgraph,

here we have a picture 1.4.

Figure 1.4: a) an example of a graph, b) induced subgraph of the �rst graph, c)

subgraph of the �rst graph, that is not induced

In the picture 1.4 we can see two subgraphs of graph a). Although the �rst subgraph

is an induced subgraph, the second is not because it lacks the edge {3, 4} to become

an induced subgraph.

CHAPTER 1. PRELIMINARIES 6

In our work we also work with spanning subgraph.

De�nition. Given a (directed or undirected) graph G = (V,E), let G1 = (V1, E1) be a

a subgraph of G. If V1 = V , then G1 is called a spanning subgraph of G. [2]

Another types of subgraphs are G− v subgraph and G− e subgraph.

De�nition. Let v be a vertex in directed or an undirected graph G = (V,E). The

subgraph of G denoted by G − v has the vertex set V1 = V − {v} and the edge set

E1 ⊆ E where E1 contains all the edges in E except for those that are incident with

the vertex v. (Hence G − v is the subgraph of G induced by V1.) In similar way, if e

is an edge of a directed or an undirected graph G = (V,E), we obtain the subgraph

G − e = (V1, E1) of G, where the set of edges E1 = E − {e}, and the vertex set is

unchanged (that is V1 = V). [2]

1.1.5 Paths, circuits, and reachability in graphs

De�nition. Suppose that G = (V,E) is a graph, and v, w ∈ V are pair of vertices. A

path in G from v to w is an alternating sequence of vertices and edges:

P = 〈v = v0, e1, v1, e2, v2, ..., vk−1, ek, vk = w〉 , (1.1)

such that the endpoints of edge ei are vertices {vi−1, vi}, for 1 ≤ i ≤ k, v0 = v, and

vk = w. We say the path P passes through the vertices v0, v1, v2, ..., vk−1, vk, and

traverses the edges e1, e2, ..., ek, and that the path has length k, since it traverses k

edges. If such a path exists, we say that the vertex w is reachable from the vertex v in

G. A path having positive length (k > 0) from any vertex to itself is called a circuit.

A path (or circuit) is called simple if it never traverses the same edge twice. A simple

circuit that does not pass through the same vertex twice (except for the initial and

�nal vertex) is called a cycle. [7]

Observe that in the case of a simple graph, the above path can be speci�ed by the

sequence of vertices 〈v0, v1, v2, ..., vk−1, vk〉, since the corresponding edges are uniquely

determined. Also note, that any vertex is reachable from itself by the path 〈v0〉 of
length zero. [7]

1.1.6 Connectivity of graphs

Connectivity is one of the basic concepts of graph theory used in mathematics and

computer science. Thanks to connectivity, it is possible to traverse a graph from one

vertex to another vertex.

De�nition. Let G = (V,E) be an undirected graph. We call G connected if there is a

path between any two distinct vertices of G. A graph that is not connected is called

disconnected. [2]

CHAPTER 1. PRELIMINARIES 7

De�nition. For any graph G = (V,E), the number of components of G is denoted by

κ (G). [2]

De�nition. Let G = (V,E) be a connected undirected graph. An articulation point of

G is a vertex whose removal disconects G. A bridge of G is an edge whose removal

disconnects G. A biconnected component of G is a maximal set of edges such that any

two edges in the set lie on a common simple cycle. [8]

1.1.7 Trees

De�nition. A forest is a simple graph that contains no cycles. A tree is a connected

forest. [7]

If T is a simple graph of n vertices, then the following statements are logically

equivalent:

1. T is a tree.

2. T is connected and has n− 1 edges.

3. T has no cycles and has n− 1 edges.

4. Any two vertices of T are joined by a unique simple path in T .

5. T is connected, and every edge is a bridge (i.e., deleting an edge renders the

graph disconnected).

6. T has no cycles and if we add any new edge to T (between two of its vertices)

the resulting simple graph will have a unique cycle. [7]

Trees are very important graphs, and they have been used in numerous applications.

The most familiar example is a family tree. Almost everyone has drawn a family

tree already in playschool. The folder structure in any computer operating system or

network has also the structure of a tree. Trees are the basis for some of the most

e�cient search and sorting algorithms. For these reasons trees are the most important

graphs in computer science.

As we can see in �gure 1.5 b), a vertex of a tree is called a leaf if it has degree 1,

otherwise it is called an internal vertex. [7]

De�nition. A spanning tree is a subgraph of an undirected connected graph, which

includes all the vertices of the graph with a minimum possible number of edges.

In our work we need to de�ne a spanning tree, because it is used by the Prim's

and Kruskal's algorithm. We used one of these algorithms in the work, because when

we were removing vertices from the graph we needed to �nd out if the graph is still

connected. Prim's and Kruskal's algorithm helped us �nd out.

CHAPTER 1. PRELIMINARIES 8

Figure 1.5: Trees: a) examples of non-isomorphic trees of 5 vertices, b) a tree with a

root, four inner vertices and six leaves

1.1.8 Algorithms

In computer science, algorithmic e�ciency is a property of an algorithm which relates

to the amount of computational resources used by the algorithm. We know two types

of e�ciency - space and time e�ciency. Space e�ciency is measured based on the

memory required by it for the computation. Time e�ciency is measured based on the

time required by it for the computation. Without going to technical details, big O

notation, which will be mentioned later, is a mathematical notation that describes the

limiting behaviour of a function when the argument tends towards a particular value

or in�nity.

This section describes two minimum-spanning-tree algorithms with a detailed elab-

oration of the general method. The di�erence between Prim's and Kruskal's algorithm

is, that they each use a speci�c rule to determine a safe edge. As we can see in the

picture 1.6, in Kruskal's algorithm, the set A is a forest whose vertices are all those of

the given graph. The safe edge added to A is always the least-weight edge in the graph

that connects two distinct components. In Prim's algorithm, the set A forms a single

tree. The safe edge added to A is always the least-weight edge connecting the tree to

a vertex not in the tree. [8]

In Kruskal's algorithm, the set A is a forest whose vertices are all those of the

given graph. The safe edge added to A is always a least-weight edge in the graph that

connects two distinct components. In Prim's algorithm, the set A forms a single tree.

The safe edge added to A is always a least-weight edge connecting the tree to a vertex

not in the tree. [8]

The time complexity of Kruskal's algorithm is in the worst case O (E logE), this

is because we need to sort the edges. Prim's algorithm's time complexity in the worst

CHAPTER 1. PRELIMINARIES 9

Figure 1.6: Kruskal's and Prim's algorithms

case is O (E log V) with priority queue or even better, O (E + V log V) with Fibonacci

Heap. We should use Kruskal's algorithm when the graph has small number of edges,

like E = O (V), when the edges are already sorted or if we can sort them in linear

time. On the other hand, we should use Prim's algorithm when the graph's number of

edges is high, like E = O (V 2).

1.2 Group theory

This section contains basic de�nitions of group theory, more precisely de�nitions of

group, group isomorphism and group automorphism.

De�nition. If G is non-empty group and ◦ is a binary operation on G, then (G, ◦) is

called a group if the following conditions are satis�ed.

1. For all a, b ∈ G, a ◦ b ∈ G. (Closure of G under ◦)

2. For all a, b, c ∈ G, a ◦ (b ◦ c) = (a ◦ b) ◦ c. (The Associate Property)

3. There exists e ∈ G with a ◦ e = e ◦ a = a, for all a ∈ G. (The Existence of an

Identity)

4. For each a ∈ G there is an element b ∈ G such that a ◦ b = b ◦ a = e. (Existence

of Inverses)

Furthermore, if a ◦ b = b ◦ a for all a, b ∈ G, then G is called a commutative, or abelian

group. [2]

In other words, a group is a pair, where the �rst item is a �nite or in�nite set of

elements and the second item is a binary operation. This binary operation is a function,

which combines two elements (not necessarily distinct) from the set, forming a third

one, which also has to be in that speci�c set. This is a fundamental property of groups

CHAPTER 1. PRELIMINARIES 10

and it is called closure. Groups also have other properties, which distinguish them

from other types of structures. The other three properties that a group has to satisfy

are associativity, existence of identity and existence of inverse. If a group also satis�es

a condition called commutativity, it is referred to as an abelian or commutative group.

De�nition. For every group G the number of elements in G is called the order of G

and this is denoted by | G |. If G is group and a ∈ G, the order of a, denoted ord (a),

is | 〈a〉 |. [2]

1.2.1 Group isomorphism

An isomorphism φ from a group G to a group G is one-to-one mapping (or function)

from G onto G that preserves the group operation. That is,

φ(ab) = φ(a)φ(b) (1.2)

for all a, b in G. If there is an isomorphism from G onto G, we say that G and G are

isomorphic and write G ≈ G.

The visualization of this de�nition is shown in Figure 1.7. The pairs of dashed

arrows represent the group operations.

Figure 1.7: Group isomorphism

It is implicit in the de�nition of isomorphism that isomorphic groups have the same

order. It is also implicit in the de�nition of isomorphism that the operation on the left

side of the equal sign is that of G, whereas the operation on the right side is that of

G. The four cases involving · and + are shown in Table 1.1.

[1]

1.2.2 Group automorphism

An isomorphism from a group G onto itself is called an automorphism of G. [1]

CHAPTER 1. PRELIMINARIES 11

Table 1.1: Group isomorphism

G Operation G Operation Operation Preservation

· · φ(a · b) = φ(a) · φ(b)

· + φ(a · b) = φ(a) + φ(b)

+ · φ(a+ b) = φ(a) · φ(b)

+ + φ(a+ b) = φ(a) + φ(b)

1.3 Theory of symmetries

Most people think of symmetry as beauty of form arising from balanced proportions. In

mathematics it means the property of being symmetrical, especially in correspondence

in size, shape, and relative position of parts on opposite sides of a dividing line or

median plane or about a centre or axis.

Figure 1.8: Two isomorphic representations of one of the minimal asymmetric graph

1.3.1 Graph isomorphism

De�nition. Suppose that G = (V,E) and G
′

=
(
V
′
, E
′
)
are simple graphs, that f :

V → V
′
is one-to-one (vertex) function, i.e. permutation of vertices.

(a) The function f is said to preserve adjacency if for any pair of vertices u, v ∈ V , we
have {u, v} ∈ E ⇒ {f(u), f(v)} ∈ E ′ . In other words, if u and v are neighbours

in G, then their images f(u) and f(v) must be neighbours in G
′
.

(b) The function f is said to preserve non-adjacency if for any pair of vertices u, v ∈
V , we have {u, v} /∈ E ⇒ {f(u), f(v)} /∈ E ′ . In other words, if u and v are not

neighbours in G, then their images f(u) and f(v) must not be neighbours in G
′
.

CHAPTER 1. PRELIMINARIES 12

(c) The function f is said to be a graph isomorphism from G to G
′
if it is bijective,

and preserves both adjacency and non-adjacency. In this case we say, that the

graphs G to G
′
are isomorphic, and write this as G ∼= G

′
. If no such isomorphism

exists, we say that G and G
′
are not isomorphic and write G 6∼= G

′
. [7]

1.3.2 Graph automorphism

An isomorphism from a graph G onto itself is called an automorphism of G.

1.3.3 Automorphism group of graphs

All automorphisms of a graph G together on an operation of composition of functions

form a group. This group is called an automorphism group of graph G and notation is

Aut (G). In graph theory automorphism groups are classical tools to study structures

and symmetries of graphs. In particular, asymmetric graphs are exactly graphs with

trivial automorphism groups.

1.3.4 Symmetric graphs

The concept of symmetry can be de�ned as a transformation of a mathematical struc-

ture of a speci�ed kind, that leaves speci�ed properties of the structure unchanged.

There are di�erent types of symmetries, such as rotation and re�ection. Graph

symmetries are directly related to graph automorphisms because the structure of a

graph remains the same. Identity, as it is a trivial automorphism, is also a form of a

symmetry. Identity can be referred to as a 0° rotation or a 360° rotation.

The automorphism groups of a graph characterize its symmetries.

Figure 1.9: Graphs: a) example of symmetric graph, b) example of asymmetric graph

CHAPTER 1. PRELIMINARIES 13

1.3.5 Partial symmetries of graphs

The large number of graphs, whether symmetric or asymmetric, contain subgraphs

that have symmetries. Such graphs are known as partially symmetric.

De�nition. A monoid S is said to be an inverse monoid if for every s ∈ S there exists a

unique element s−1 ∈ S called the inverse of s such that ss−1s = s and s−1ss−1 = s−1

hold. Note that the unary operation of taking inverse has the properties (s−1)
−1

= s

and (st)−1 = t−1s−1 for any s, t ∈ S. [5]

De�nition. Given two maps ϕ1 : Y1 → Z1 and ϕ2 : Y2 → Z2, one obtains their

composition ϕ2ϕ1 by composing them on the largest subset of X where it 'makes

sense' to do so, that is, on dom ϕ2ϕ1 = ϕ−1 (Z1 ∩ Y2), where by de�nition (ϕ2ϕ1) (x) =

ϕ2 (ϕ1 (x)) for any x. The range of ϕ2ϕ1 is ranϕ2ϕ1 = ϕ2 (Z1 ∩ Y2). It may happen

that Z1 ∩ Y2 = ∅, in which case ϕ2ϕ1 is an empty map. [5]

Partial automorphism is very important for us, because when removing a vertex or

an edge we get its subgraphs from the graph and we can study this partial automor-

phism on them.

De�nition. A partial automorphism is an isomorphism between two vertex-induced

subgraphs of Γ, that is, a bijection ϕ : V1 → V2 between two sets of vertices V1, V2 ⊆
V (Γ) such that any pair of vertices u, v ∈ V1 satis�es the condition (u, v) ∈ E if and

only if (ϕ(u), ϕ(v)) ∈ E. The set of all partial automorphisms of Γ together with the

operation of the usual composition of partial maps form an inverse monoid, which we

denote by PAut(Γ). [5]

1.3.6 Asymmetric graphs

A graph is asymmetric if it has no non-trivial automorphism. In this thesis we are

interested primarly in asymmetric graphs. Speci�cally, we are interested in such asym-

metric graphs, that are as small as possible - minimal. An undirected graph G on at

least two vertices is minimal asymmetric if G is asymmetric and no proper induced

subgraph G on at least two vertices is asymmetric. [6]

There are exactly 18 �nite minimal asymmetric undirected graphs up to isomor-

phism. These 18 graphs are depicted in 1.10. [6]

In 1988, Ne²et°il conjectured at an Oberwolfach Seminar that there exists only a

�nite number of �nite minimal asymmetric graphs. Since then, Ne²et°il and Sabidussi

identi�ed 18 minimal asymmetric graphs in total. [4] This conjecture was not con-

�rmed until 2016 by Pascal Schweitzer and Patrick Schweitzer in an article Minimal

Asymmetric Graphs [6]. This article is very important to us, because in this work we

use these graphs and investigate them further.

CHAPTER 1. PRELIMINARIES 14

Figure 1.10: These are also the minimal involution-free graphs. For each graph the

triple (n, m, co-G), describes the number of vertices, edges and the name of the com-

plement graph, respectively. The graphs are ordered �rst by number of vertices and

second by number of edges [6]

1.4 Motivation to study assymetric graphs

In this section we give the reason why it is interesting to abbreviate the topic of the

asymmetric graphs that interest us.

Graphs are generally a very needed structure. As we mentioned above in the text,

graphs occur all around us and therefore it is good to know as much as possible about

them. In addition to the need for graphs, they are also very nice. They also have a

visual appearance, so it is easier for them to understand. Graphs are relatively di�cult

to explore and di�cult to navigate. Nevertheless, we tried to simplify and examine

them as much as possible. Speci�cally, we examined asymmetric graphs. Asymmetric

graphs are di�cult to explore because they are not symmetric.

In this bachelor thesis, we decided to iteratively remove vertices from asymmetric

graphs. By removing the vertices from the graphs, we obtain their induced subgraphs.

The article Inverse monoids of partial automorphisms of graphs [5] is also interested

in partially symmetric induced subgraphs. Partial automorphism is very important for

CHAPTER 1. PRELIMINARIES 15

us, because when removing a vertex or an edge we get its subgraphs from the graph

and we can study this partial automorphism on them. Among other things, this article

solves the problem of determining a group of automorphisms for a speci�c combinatorial

structure, which is also of interest to us.

We examine the graphs using similar algorithms as Tatiana B. Jajcayová and Martin

Masár before attending the scienti�c conference [3].

Chapter 2

Implementation

In this chapter, we describe the process of creating a program that examines asymmetric

graphs. The program also examines the order of an automorphism group of each of

the graphs that we obtain from minimal asymmetric graphs when iteratively removing

vertices or edges. We take a closer look at the GAP program and its Grape and

JupyterViz packages. GAP is a system for computational discrete algebra. GAP

provides a library of thousands of functions implementing algebraic algorithms written

in the GAP language. GAP includes Grape and JupyterViz packages. We need the

Grape package in our work for creating graphs and JupyterViz for their subsequent

drawing. More about GAP is written later in the work.

Figure 2.1: Time comparison between Python and Kotlin programming language com-

puting Kruskal's algorithm measured in milliseconds

16

CHAPTER 2. IMPLEMENTATION 17

At the beginning we programmed in Python programming language. It was a clear

�rst choice, as it was the �rst language we learned at school. However, we later found

that it is too slow for so much data that we needed to go through. We can see the

speed comparison of Python and Kotlin programming language in the picture 2.1. This

is the reason why we started programming in Kotlin programming language.

2.1 Kotlin

Kotlin is a modern programming language that is designed to work fully with Java,

but its type of inference allows its syntax to be more concise and simpler.

Kotlin is a very convenient choice even if the application could be extended in the

future, because since the release of Android Studio 3.0 in October 2017, Kotlin has

been included as an alternative to the standard Java compiler. In May 2019, Google

announced that the Kotlin programming language is now its preferred language for

Android application developers.

The part of the software program for this bachelor thesis, which was programmed

in the Kotlin programming language, was coded in JetBrains IntelliJ Idea framework.

We use the Kotlin plugin to provide language support in IntelliJ IDEA.

2.2 GAP

Some functions, such as �nding automorphism groups, are quite lengthy and di�cult

to compile. Therefore, we use the GAP system to determine whether the graph is

isomorphic to other graphs created by removing the same number of vertices or edges.

We also use it to list the symmetry group of the graphs. GAP is a system for computa-

tional discrete algebra that has these functions easily available in its GRAPE package,

which is designed to work with graphs. We can therefore use the results that the GAP

system provided in our work.

In general, it is not easy to draw graphs. However, it is easier with the JupyterViz

package, which is also available in the GAP system. Unfortunately, GAP is a console

application and it is very di�cult to make a user interface in it, but it is suitable for

rendering and �nding symmetry groups. Therefore, we decided to combine the program

in the programming language Kotlin and its cooperation with the GAP system.

2.3 Algorithms

We used several algorithms in this thesis. Firstly, we used an algorithm to �nd the

power set of graphs of given sizes. This algorithm has time complexity O (n2n) and

CHAPTER 2. IMPLEMENTATION 18

space complexity O (1). This is used in our work to help remove vertices from the graph.

Its based on the fact that the power set of vertices contains all the combinations and

all possible numbers of vertices that the graph can contain after removing the vertices.

Then we use Prim's or Kruskal's algorithm. These algorithms �nd a spanning tree

for a weighted undirected graph. We use these algorithms to determine if the graph is

connected or disconnected.

2.3.1 Prim's Algorithm

In our work, we used Prim's algorithm, speci�cally in this form.

Algorithm 2.1: Prim's algorithm

for (count in 0 un t i l ad jVe r t i c e s . s i z e = 1) {

va l u = minKey(key , mstSet)

i f (u == =1)

return IntArray (0)

mstSet [u] = true

for (v in 0 un t i l ad jVe r t i c e s . s i z e)

i f (ad jVe r t i c e s [Vertex (u . t oS t r i ng ())] ? . conta in s (Vertex (

v . t oS t r i ng ())) == true && mstSet [v] == fa l se) {

parent [v] = u

key [v] = 1

}

}

Our implementation of Prim's algorithm looks for whether the graph is connected

and if it �nds that the graph is not connected, it returns an array of size zero. The

time complexity of the Prim's algorithm is O (ElogV).

2.4 Classes and Functions

In this section we will describe the classes and functions of the program that we have

programmed. The program is mostly written in Kotlin programming language and

therefore all these classes and functions are written in Kotlin programming language.

The relationships between them can be well seen in the class diagram 2.2. The smallest

classes, but the most important for the de�nition of the graph, are the Vertex class

and the Edge class.

In addition to the classes de�ned in Kotlin, we also use GAP functions. The func-

tions we use are written in the path.txt �le for better manipulation. This �le and

functions are very important and are mentioned at the end of this chapter.

CHAPTER 2. IMPLEMENTATION 19

Figure 2.2: Class diagram

2.4.1 Class Vertex

The Vertex data class is used to de�ne the vertex. The vertex is de�ned by its unique

name.

Figure 2.3: De�nition of the class Vertex

2.4.2 Class Edge

The Edge data class to de�ne the edge. We have de�ned the edge as a pair of two

vertices.

Figure 2.4: De�nition of the class Edge

CHAPTER 2. IMPLEMENTATION 20

2.4.3 Class Graph

In our program, a graph is de�ned as a mutable map of vertices and their mutable list

of vertices. In other words, we can assign each vertex in the graph a list of vertices to

which it is connected. This way we can easily �nd out the edges of the graph.

In the class Graph, we can use the function getVertices to �nd the vertices and

the function getEdges to �nd the edges of a given graph. After entering a vertex, the

function getAdjVertices can �nd out which vertices the given vertex is connected to.

Using the addVertex function, we can add vertices and by the addEdge function, we

can add edges to a speci�c graph. On the other hand, using the removeVertex and

removeEdge functions we can remove the vertices and edges of the speci�c graph.

The writeGraphToFile function can write a graph in a format that the GAP system

can easily read and, if necessary, create a graph from it. In this format, the graph is

written using edges separated by two spaces. The edge is written as two vertices

separated by one space. This format can be seen in 2.5. This feature is very important

for future work with the GAP system.

Figure 2.5: Minimal asymmetric graphs written in GAP format

The isBipartite function, as the name implies, can determine whether a graph is

bipartite or not by dividing the vertices into two groups.

To determine the connectivity of the graph, the isConnected function, we used

Prim's algorithm 2.1 to �nd a minimum spanning tree of the graph. If the algorithm

does not �nd this minimum spanning tree, the graph is not connected.

2.4.4 Class Graphs

After entering the number of vertices, the Graphs class forms all graphs that can be

created for a given number of vertices.

The makeVerticesAndEdges function creates all possible edges in the graph with

the speci�ed number of vertices. This function is used by the makeGraphs function,

which creates all graphs with a given number of vertices.

CHAPTER 2. IMPLEMENTATION 21

2.4.5 Class MinimalAsymmetricGraphs

The MinimalAsymmetricGraphs class implements the Graphs class. This class uses

the makeMinimalAsymmetricGraphs function to create minimal asymmetric graphs.

If we want to create only one minimal asymmetric graph, we use the private group

minimalAsymmetricGraph, whose parameter is a number that determines which graph

we want to create.

The makeGraphsWithRemovedEdge function removes the speci�ed number of edges

from the minimal asymmetric graphs. This function cooperates with the combina-

tionOfEdges function, which creates all combinations of all edges that can arise from the

edges that the graph originally contained. ThemakeGraphsWithRemovedEdge function

checks whether the graph is still connected after removing an edge, and whether such

a graph has been created before, when removing other edges. It writes these graphs

to a �le in a format suitable for reading graphs in GAP program. This format is the

same as in 2.5. The function prints how many connected graphs have been created

after removing the speci�ed number of edges.

The makeGraphsWithRemovedVertex function removes the speci�ed number of ver-

tices from the minimal asymmetric graphs. This function cooperates with the combi-

nationOfVertices function, which creates all combinations of all vertices that can arise

from the vertices that the graph originally contained. The makeGraphsWithRemoved-

Vertex function checks whether the graph is still connected after removing a vertex,

and whether such a graph has been created before, when removing other vertices. It

writes the connected graphs to a �le in a format suitable for reading graphs by the

GAP program. The function prints how many connected graphs have been created

after removing the speci�ed number of vertices.

The makeGraphsWithAddedEdge function adds the speci�ed number of edges to

the minimal asymmetric graphs. This function, like the makeGraphsWithRemoved-

Edge function, cooperate with the combinationOfEdges function. The makeGraph-

sWithAddedEdge function checks, if such a graph has already been created. Graphs

that have not yet been created are written to a �le in a format suitable for reading

graphs by the GAP program. The function prints how many connected graphs have

been created after adding the speci�ed number of edges.

2.4.6 Class Main

The Main class runs the whole program. When we run the program, main runs the run

function, which prints the help and print functions or calls the exit function. The exit

function can be called by user when he wants to quit the program. The program uses

the print function to list several options 2.6, from which the user chooses which option

they want to use, or exit, by pressing the E key, the program. To better understand

CHAPTER 2. IMPLEMENTATION 22

how the program works, the help function prints what to do when the program starts.

The handle function is determined by what the program does when the key is pressed.

Figure 2.6: Main menu

2.4.7 File path.txt

When we run the GAP program, for the simplicity of the program, we load the text

�le path.txt 2.7, in which we have written all the commands that we would otherwise

write to the console. We load the packages we will need when working with graphs

and its visualization. From the �le we created in Kotlin, we load the graphs we created

CHAPTER 2. IMPLEMENTATION 23

after removing the vertices from the minimal asymmetric graphs. We test these graphs

to see if they are isomorphic. In general, it is a very di�cult (NP complete) problem

to decide whether two graphs are isomorphic, or more generally, whether one graph

is a subgraph of another graph. [7] This problem is solved by the classical Weisfeiler-

Lehman algorithm, a graph-isomorphism test based on colour re�nement.

We also determine the group of automorphism and its order by the graph. The prob-

lem of determining a group of automorphisms for a particular combinatorial structure

or class of combinatorial structures is a notoriously complex computational task, the

exact complexity of which is the subject of intensive research e�orts. [5] Finally, we

draw the resulting graphs.

Figure 2.7: Loading �le path.txt in GAP

Chapter 3

Results

In this chapter, we will analyse the results obtained by our program. We will answer a

few questions and evaluate in detail what results we have obtained and whether such

conclusion was expected or rather surprising.

3.0.1 Minimal asymmetric graphs without one vertex

Firstly, we evaluate the graphs that were created after removing one vertex from the

minimal asymmetric graphs. As we mentioned earlier, our program is used to remove

and add vertices and edges to minimal asymmetric graphs.

Figure 3.1: One of the minimal asymmetric graph and the examples of the graphs,

which were created after removing one vertex from that minimal asymmetric graph

After removing one vertex, we did not just remove the vertex itself. With its

24

CHAPTER 3. RESULTS 25

removal, the edges with which it was connected also disappeared. After removing one

vertex, a total of forty-four non-isomorphic connected graphs were generated. The

resulting graphs are no longer asymmetric. The reason is because vertices have been

removed from the minimal asymmetric graphs.

Minimal asymmetric graphs are minimal precisely because when we take even one

vertex from them, they will no longer be asymmetric. We con�rmed this statement as

we really got only graphs with non-trivial symmetries, with groups of automorphism

of orders 2 or 4. Most of them were made with group of automorphism of orders 2,

which could be assumed. In the picture 3.1 we have an example of one of the minimal

asymmetric graphs and the graphs, which were created after removing one vertex from

that minimal asymmetric graph. First graph has the group of automorphism of order

2 and the second of order 4.

3.0.2 Minimal asymmetric graphs without iteratively removed

vertices

As a next step, we tried to remove two vertices from the minimal asymmetric graphs.

After this removal, we obtained thirty-one non-isomorphic graphs. These graphs are

not asymmetric, which con�rms that the original minimal asymmetric graphs are re-

ally minimal. After removing two vertices from the minimal asymmetric graphs, we

obtained more di�erent groups of automorphism than by removing only one vertex.

These graphs already contain automorphism groups of orders 2, 4, 6, 8, 12, and even

16.

Figure 3.2: Example of the minimal asymmetric graph without three vertices

After removing three vertices from the minimal asymmetric graphs, we obtained

nineteen non-isomorphic connected graphs. These graphs are not asymmetric, and have

automorphism groups of orders 2, 4, 6, 8, 12, and even 24. By removing more vertices

from the minimal asymmetric graphs, we get a higher order of the automorphism group.

The �gure 3.2 shows six graphs created by removing exactly three vertices from their

respective minimal asymmetric graphs. Each of these graphs has a di�erent group

of automorphism. The size of the automorphism group increases from left to right,

CHAPTER 3. RESULTS 26

starting at 2, gradually continuing 4, 6, 8, 12 and ending at 24. As we can see in

the �gure 3.2, graphs with a higher group of automorphism are more symmetric than

graphs with a lower group. It looks like the graphs will have a progressively higher

group of automorphism after removing more vertices. It is very interesting that we

only need to remove a few vertices from a graph that does not have symmetry, and

suddenly the group of automorphism is so large. Therefore, we iteratively removed

additional vertices from the minimal asymmetric graphs.

After removing four vertices from the minimal asymmetric graphs, we obtained

eight non-isomorphic connected graphs. These graphs have automorphism groups of

orders 2, 4, 6, and 24. We have already achieved these sizes of automorphism groups.

After removing �ve vertices from the minimal asymmetric graphs, we obtained three

non-isomorphic connected graphs. These graphs have automorphism groups of orders

2 and 6. We have already reached the largest group of automorphism by removing

three vertices from the minimal asymmetric graphs.

Figure 3.3: The minimal asymmetric graph without six vertices and with an automor-

phism group of order 2

After removing six vertices from the minimal asymmetric graphs, we get only one

non-isomorphic connected graph 3.3 with an automorphism group of order 2, and

removing the other vertices would lead to graph with + 1 vertex.

Figure 3.4: One of the minimal asymmetric graphs with an example of iteratively

removed vertices

In the image 3.4 we can see one of the minimal asymmetric graphs, from which we

iteratively removed the vertices. It is interesting to see how a graph that was initially

asymmetric, without symmetry, with only one vertex removed, became symmetric with

an automorphism group of order 4 and by removing four vertices the graph became

symmetric with an automorphism group of order 24.

By removing two vertices the graph reached an automorphism group of order 16.

After removing three vertices, we obtain a graph with a group of automorphism of

CHAPTER 3. RESULTS 27

order 12. After removing �ve vertices, a graph with a group of automorphism of order

6 and after removing six vertices, a graph with a group of automorphisms of order 2.

Removing multiple vertices lead to graph with 1 vertex. The complete catalogue

with all graphs that were created by iteratively removing vertices from minimal asym-

metric graphs can be found in the appendix of this bachelor thesis.

3.0.3 Minimal asymmetric graphs without one edge

Similarly, we tried to remove the edges from the minimal asymmetric graphs. After

removing exactly one edge, we get 144 non-isomorphic connected graphs. These graphs

have automorphism groups of the order 1, 2, 4, and 6.

Figure 3.5: One of the minimal asymmetric graphs and all the graphs, that are created

by removing one edge from that minimal asymmetric graph

In the �gure 3.5 we can see one of the minimal asymmetric graphs and the graphs

that were created from it after removing just one edge. As we can see, removing an

edge can also remove a vertex if no other edge led from that vertex, only the one we

removed from the graph.

Figure 3.6: One of the minimal asymmetric graphs and one of the graphs, that is

created by removing one edge from that minimal asymmetric graph

CHAPTER 3. RESULTS 28

By removing the edge from the minimal asymmetric graphs several options may

occurs. The resulting graph may be: symmetric, asymmetric but not minimal or

minimal asymmetric. The �gure 3.5 shows one minimal asymmetric graph (second from

the left) and �ve symmetric graphs created by removing one edge from one minimal

asymmetric graph (the one on the left side of an arrow). These graphs have groups of

automorphism, sequentially from the left, of orders 2, 1, 6, 2, 2, and 2. The �gure 3.6

shows one of the graphs created by removing one edge from another one of the minimal

asymmetric graphs. This graph is asymmetric, but not minimal with an automorphism

group of order 1.

3.0.4 Minimal asymmetric graphs without iteratively removed

edges

After removing two edges from the minimal asymmetric graphs, we obtained 507 non-

isomorphic connected graphs. These graphs have automorphism groups of orders 1, 2,

4, 6, 8, 10, and 12. After removing three edges from the minimal asymmetric graphs,

we obtained 1303 non-isomorphic connected graphs. These graphs have automorphism

groups of orders 1, 2, 4, 6, 8, 10, 12 and 16.

Figure 3.7: The minimal asymmetric graphs without three edges and with an auto-

morphism group of order 16

By removing edges from minimal asymmetric graphs, we have obtained a huge

number of graphs, whether symmetric or asymmetric. In the picture 3.7 we can see

graphs with the largest automorphism group of order 16.

3.0.5 Minimal asymmetric graphs with one added edge

After adding exactly one edge to the minimal asymmetric graphs, we obtained 159

non-isomorphic graphs. These graphs have automorphism groups of order 1, 2, 4, and

6. The automorphism group of order 1 means that these graphs are asymmetric. Thus,

CHAPTER 3. RESULTS 29

adding edges to minimal asymmetric graphs can create symmetric, asymmetric but not

minimal or minimal asymmetric graphs.

Figure 3.8: List of the minimal asymmetric graphs with one added edge and with an

automorphism group of order 6

In the image 3.8 we can see all the graphs with a group of automorphism of order 6,

which were created from minimal asymmetric graphs by adding exactly one edge. These

graphs are the most interesting for us, because such graphs with an automorphism

group of order 6 were created from graphs that had no symmetry.

3.0.6 Minimal asymmetric graphs with more added edges

After adding two edges to the minimal asymmetric graphs, we get 548 non-isomorphic

graphs. These graphs have automorphism groups of orders 1, 2, 4, 6, and even 8, 12,

or 16.

Figure 3.9: List of the minimal asymmetric graphs with two added edges and with an

automorphism group of order 16

In the �gure 3.9 we can see all graphs with a group of automorphisms of order 16,

which were created from minimal asymmetric graphs by adding just two edges.

By adding more edges to the minimal asymmetric graphs, we obtain more and more

groups of automorphism until we obtain a complete graph that contains all the edges

it can contain.

CHAPTER 3. RESULTS 30

Figure 3.10: Complete graph with 6 vertices

In the picture 3.10 we can see a complete simple non-oriented graph with an auto-

morphism group of order 720. We obtained this graph by adding six edges to one of

the minimal asymmetric graph.

Summary

This work was focused on the study of non-oriented simple graphs. We measured the

degree of asymmetry of an asymmetric graph by the number of vertices which we have

to delete to obtain a symmetric graph.

To examine the minimal asymmetric graphs, we created a console application in

the Kotlin programming language. We iteratively removed vertices and later edges

from these graphs. Finally, we added edges to see how these minimal asymmetric

graphs behave when adding or removing edges and vertices. By adding and removing

edges and vertices from the minimal asymmetric graphs, we got connected graphs.

The graphs we generated in this application were written to a �le in a format that is

suitable for creating graphs by the GAP program. We read these graphs in the GAP

program and selected only non-isomorphic graphs using the GRAPE package. Finding

non-isomorphic graphs is a relatively complex process with great complexity. We used

the JupyterViz package to plot these graphs.

By iteratively removing the vertices from the minimal asymmetric graphs, we found

that even by removing a few vertices we can obtain a relatively high order of the auto-

morphism group. We con�rmed that when removing vertices from minimal asymmetric

graphs, we get graphs with non-trivial groups of automorphisms. We described these

groups.

Iterative removal of edges from minimal asymmetric graphs creates a huge number

of connected non-isomorphic graphs. However, we also learned the interesting fact that

by removing edges from minimal asymmetric graphs, both symmetric and asymmetric

graphs can be created. These asymmetric graphs may not be minimal, which was quite

an interesting �nding.

By iteratively adding edges to the minimal asymmetric graphs, we obtained sym-

metric, asymmetric but not minimal or minimal asymmetric graphs. Adding edges to

a graph without adding another vertices is limited, and when we added the maximum

number of edges to the graph, we got symmetric non-oriented simple graphs with very

large automorphism groups.

In this bachelor thesis we work with a console application. In the future, we could

come up with a user-friendly GUI or a mobile application. The application is written in

the Kotlin language, which is currently used for the development of mobile applications

31

Summary 32

and therefore is a good foundation for possible completion as a mobile application.

The application can be extended with the possibility of exploring all graphs and

not just minimal asymmetric graphs. One of the challenges for the future work would

be to solve a memory space problem. Our analysis of minimal asymmetric graphs and

complete catalogue of induced subgraphs and supergraphs is a good starting point to

the study the general asymmetric graphs.

Bibliography

[1] Joseph A. Gallian. Contemporary Abstract Algebra. Brooks/Cole Publishing Co.,

2010.

[2] Ralph P. Grimaldi. Discrete and combinatorial mathematics. Pearson Education,

Inc., 2004.

[3] Tatiana B. Jajcayová and Martin Masár. Computer assisted search for graphs with

prescribed degrees and cycle structure. In APLIMAT : 16th Conference on Applied

Mathematics, pages 694�703. STU, 2017.

[4] Jaroslav Ne²et°il and Gert Sabidussi. Minimal asymmetric graphs of induced length

4. Graphs and Combinatorics, 8(4):343�359, 1992.

[5] Nóra Szakács Robert Jajcay, Tatiana Jajcayová and Mária B. Szendrei. Inverse

monoids of partial graph automorphisms. Journal of Algebraic Combinatorics,

53(3):829�849, 2021.

[6] Pascal Schweitzer and Patrick Schweitzer. Minimal asymmetric graphs. Jour-

nal of Combinatorial Theory, Series B, 127(4):215�227, 2016. [Citované 2021-

11-29] Dostupné z https://www.researchgate.net/publication/301896061_

Minimal_Asymmetric_Graphs.

[7] Alexander Stanoyevitch. Discrete Structures with Contemporary Applications. Tay-

lor & Francis Books, 2011.

[8] Ronald L. Rivest Cli�ord Thomas H. Cormen, Charles E. Leiserson and Stein.

Introduction to Algorithms. Massachusetts Institute of Technology, 2009.

33

https://www.researchgate.net/publication/301896061_Minimal_Asymmetric_Graphs
https://www.researchgate.net/publication/301896061_Minimal_Asymmetric_Graphs

Appendix A: The content of the

electronic attachment

The source code can be found in the electronic appendix to the thesis program and

experiment results �les. The source code is also published on my student website, or I

can send it to those who contact me.

34

Appendix B: Catalogue of minimal

asymmetric graphs with iteratively

removed vertices

The aim of this bachelor thesis is to measure the degree of asymmetry of an asymmetric

graph by the number of vertices which we have to delete to obtain a symmetric graph.

This catalogue shows all minimal asymmetric graphs 3.11 and graphs, from which

we iteratively remove vertices to make them symmetric. We obtained these graphs

using the GAP program and their visual display using the JupyterViz package. Since

the original asymmetric graphs are minimal, each new graph obtained after gradual

deletion of vertices has an automorphism group of at least two. All symmetric graphs

obtained by removing the same number of vertices from the minimal asymmetric graphs

are non-isomorphic to each other. Non-isomorphic graphs may appear in di�erent

groups after removing a di�erent number of vertices, which is consistent with our

proposal. This helps the program to render better and has a visually better system.

Using the GAP program and its GRAPE package, we obtained the automorphism

group for each symmetric graph.

35

Appendix B 36

3.1 Minimal asymmetric graphs

Figure 3.11: Final list of 18 minimal asymmetric graphs. [6]

3.2 Minimal asymmetric graphs without one vertex

Minimal asymmetric graphs without one vertex have an automorphism group mostly

of size 2. Using our program, we found forty-four di�erent graphs, which we obtained

by deleting one vertex from minimal asymmetric graphs. Of these, nine graphs have

an automorphism group of size 4. The other ones have an automorphism group of size

2.

Appendix B 37

3.2.1 Graphs with an automorphism group of size 2

Figure 3.12: List of minimal asymmetric graphs without one vertex with an automor-

phism group of size 2

Appendix B 38

3.2.2 Graphs with an automorphism group of size 4

Figure 3.13: List of minimal asymmetric graphs without one vertex with an automor-

phism group of size 4

3.3 Minimal asymmetric graphs without two vertices

There are thirty-one connected graphs, that we can obtain from minimal asymmetric

graphs, when we delete three vertices from all of them. They have an automorphism

group size of 2, 4, 6, 8, 12, or 16.

Appendix B 39

3.3.1 Graphs with an automorphism group of size 2

Figure 3.14: List of minimal asymmetric graphs without two vertices with an auto-

morphism group of size 2

3.3.2 Graphs with an automorphism group of size 4

Figure 3.15: List of minimal asymmetric graphs without two vertices with an auto-

morphism group of size 4

Appendix B 40

3.3.3 Graphs with an automorphism group of size 6

Figure 3.16: List of minimal asymmetric graphs without two vertices with an auto-

morphism group of size 6

3.3.4 Graphs with an automorphism group of size 8

Figure 3.17: List of minimal asymmetric graphs without two vertices with an auto-

morphism group of size 8

Appendix B 41

3.3.5 Graphs with an automorphism group of size 12

Figure 3.18: Minimal asymmetric graph without two vertices with an automorphism

group of size 12

3.3.6 Graphs with an automorphism group of size 16

Figure 3.19: Minimal asymmetric graph without two vertices with an automorphism

group of size 16

3.4 Minimal asymmetric graphs without three ver-

tices

There are nineteen connected graphs, that can be obtained from minimal asymmetric

graphs, when we delete three vertices from all of them. They have an automorphism

group size of 2, 4, 6, 8, 12, or 24.

Appendix B 42

3.4.1 Graphs with an automorphism group of size 2

Figure 3.20: List of minimal asymmetric graphs without three vertices with an auto-

morphism group of size 2

3.4.2 Graphs with an automorphism group of size 4

Figure 3.21: List of minimal asymmetric graphs without three vertices with an auto-

morphism group of size 4

Appendix B 43

3.4.3 Graphs with an automorphism group of size 6

Figure 3.22: List of minimal asymmetric graphs without three vertices with an auto-

morphism group of size 6

3.4.4 Graphs with an automorphism group of size 8

Figure 3.23: Minimal asymmetric graph without three vertices with an automorphism

group of size 8

3.4.5 Graphs with an automorphism group of size 12

Figure 3.24: Minimal asymmetric graph without three vertices with an automorphism

group of size 12

Appendix B 44

3.4.6 Graphs with an automorphism group of size 24

Figure 3.25: List of minimal asymmetric graphs without three vertices with an auto-

morphism group of size 24

3.5 Minimal asymmetric graphs without four vertices

There are eight connected graphs, that we can obtain from minimal asymmetric graphs,

when we delete four vertices from all of them. They have an automorphism group size

of 2, 4, 6, or 24.

3.5.1 Graphs with an automorphism group of size 2

Figure 3.26: List of minimal asymmetric graphs without four vertices with an auto-

morphism group of size 2

Appendix B 45

3.5.2 Graphs with an automorphism group of size 4

Figure 3.27: Minimal asymmetric graph without four vertices with an automorphism

group of size 4

3.5.3 Graphs with an automorphism group of size 6

Figure 3.28: List of minimal asymmetric graphs without four vertices with an auto-

morphism group of size 6

3.5.4 Graphs with an automorphism group of size 24

Figure 3.29: Minimal asymmetric graph without four vertices with an automorphism

group of size 24

Appendix B 46

3.6 Minimal asymmetric graphs without �ve vertices

There are three connected graphs, that can be obtained from minimal asymmetric

graphs, when we delete �ve vertices from all of them. Two of these graphs has an

automorphism group of size 2 and one has an automorphism group of size 6.

3.6.1 Graphs with an automorphism group of size 2

Figure 3.30: List of minimal asymmetric graphs without �ve vertices with an automor-

phism group of size 2

3.6.2 Graphs with an automorphism group of size 6

Figure 3.31: Minimal asymmetric graph without �ve vertices with an automorphism

group of size 6

Appendix B 47

3.7 Minimal asymmetric graphs without six vertices

There is only one connected graph, that can be obtained from minimal asymmetric

graphs, when we delete six vertices from all of them. That is caused by the num-

ber of vertices, that have minimal asymmetric graphs originally. This graph has an

automorphism group of size 2.

3.7.1 Graphs with an automorphism group of size 2

Figure 3.32: Minimal asymmetric graph without six vertices with an automorphism

group of size 2

Deleting more vertices, based on the text above, would lead to a graph with 1

vertex.

	Introduction
	Preliminaries
	Graph theory
	Examples of graphs
	Graphs basics
	Bipartite graphs
	Subgraphs
	Paths, circuits, and reachability in graphs
	Connectivity of graphs
	Trees
	Algorithms

	Group theory
	Group isomorphism
	Group automorphism

	Theory of symmetries
	Graph isomorphism
	Graph automorphism
	Automorphism group of graphs
	Symmetric graphs
	Partial symmetries of graphs
	Asymmetric graphs

	Motivation to study assymetric graphs

	Implementation
	Kotlin
	GAP
	Algorithms
	Prim's Algorithm

	Classes and Functions
	Class Vertex
	Class Edge
	Class Graph
	Class Graphs
	Class MinimalAsymmetricGraphs
	Class Main
	File path.txt

	Results
	Minimal asymmetric graphs without one vertex
	Minimal asymmetric graphs without iteratively removed vertices
	Minimal asymmetric graphs without one edge
	Minimal asymmetric graphs without iteratively removed edges
	Minimal asymmetric graphs with one added edge
	Minimal asymmetric graphs with more added edges

	Summary
	Appendix A
	Appendix B
	Minimal asymmetric graphs
	Minimal asymmetric graphs without one vertex
	Graphs with an automorphism group of size 2
	Graphs with an automorphism group of size 4

	Minimal asymmetric graphs without two vertices
	Graphs with an automorphism group of size 2
	Graphs with an automorphism group of size 4
	Graphs with an automorphism group of size 6
	Graphs with an automorphism group of size 8
	Graphs with an automorphism group of size 12
	Graphs with an automorphism group of size 16

	Minimal asymmetric graphs without three vertices
	Graphs with an automorphism group of size 2
	Graphs with an automorphism group of size 4
	Graphs with an automorphism group of size 6
	Graphs with an automorphism group of size 8
	Graphs with an automorphism group of size 12
	Graphs with an automorphism group of size 24

	Minimal asymmetric graphs without four vertices
	Graphs with an automorphism group of size 2
	Graphs with an automorphism group of size 4
	Graphs with an automorphism group of size 6
	Graphs with an automorphism group of size 24

	Minimal asymmetric graphs without five vertices
	Graphs with an automorphism group of size 2
	Graphs with an automorphism group of size 6

	Minimal asymmetric graphs without six vertices
	Graphs with an automorphism group of size 2

