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Abstrakt

V tejto bakalárskej práci skúmame neorientované jednoduché grafy. Graf nazývame

symetrický, ak existuje neidentická permutácia jeho vrcholov, ktorá ponechá graf in-

variantný, t.j. graf sa nazýva symetrický, ak grupa jeho automor�zmov nie je triviálna.

Graf, ktorý nie je symetrický, nazývame asymetrický. Stupe¬ asymetrie asymetrického

grafu meriame po£tom vrcholov, ktoré musíme odstráni´, aby sme získali graf symet-

rický. Neorientované jednoduché asymetrické grafy vytvárame pomocou programova-

cieho jazyka Kotlin a pre jednoduch²iu predstavu ich vykres©ujeme pomocou systému

vytvoreného pre výpo£tovú diskrétnu algebru - GAP. Z týchto asymetrických grafov

postupne, po jednom, odstra¬ujeme v²etky vrcholy a v²etky hrany. Pri tomto pos-

tupnom odstra¬ovaní vrcholov a hrán z týchto asymetrických grafov skúmame, ako sa

mení symetria týchto grafov oproti grafom pôvodným. Stupe¬ asymetrie asymetrick-

ého grafu potom môºeme vypo£íta´ pomocou po£tu vrcholov, ktoré musíme odstráni´,

aby sme získali graf symetrický.

K©ú£ové slová: graf, vrchol, hrana, asymetrický graf, stupe¬ asymetrie
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Abstract

In this bachelor thesis we study non-oriented simple graphs. A graph is called symmet-

ric if there is a non-identical permutation of its vertices that leaves the graph invariant,

i. a graph is called symmetric if its group of automorphisms is not trivial. A graph

that is not symmetric is called asymmetric. We measure the degree of asymmetry of

an asymmetric graph by the number of vertices which we have to delete to obtain a

symmetric graph. We create non-oriented simple asymmetric graphs using the Kotlin

programming language and we draw them for a better visualization using a system cre-

ated for computational discrete algebra - GAP. From these asymmetric graphs, one by

one, we remove all vertices and all edges. In this gradual deletion of vertices and edges

from these asymmetric graphs, we study how the symmetry of these graphs changes

from the original graphs. The degree of asymmetry of an asymmetric graph can be

measured by the number of vertices which we have to delete to obtain a symmetric

graph.

Keywords: graph, vertex, edge, asymmetric graph, degree of asymmetry



Contents

1 Preliminaries 1

1.1 Graph theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Graphs in Real Life . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Graphs basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Bipartite graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.4 Subgraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.5 Paths, circuits, and reachability in graphs . . . . . . . . . . . . 4

1.1.6 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.7 Spanning trees . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.8 Prim's and Kruskal's algorithm . . . . . . . . . . . . . . . . . . 6

1.2 Group theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Group isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Group automorphism . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Theory of symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Graph isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 Symmetric graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.3 Partial symmetries of graphs . . . . . . . . . . . . . . . . . . . . 10

1.3.4 Asymmetric graphs . . . . . . . . . . . . . . . . . . . . . . . . . 10

vi



List of Figures

1.1 Tram Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Constellation Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Examples of bipartitegraphs . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Examples of trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Kruskal's and Prim's algorithms . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Example group isomorphism . . . . . . . . . . . . . . . . . . . . . . . . 7

1.7 Example of symmetric and asymmetric graph . . . . . . . . . . . . . . 8

1.8 Petersen graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.9 The 18 minimal asymmetric graphs . . . . . . . . . . . . . . . . . . . . 11

vii



List of Tables

1.1 Example group isomorphism . . . . . . . . . . . . . . . . . . . . . . . . 8

viii



Chapter 1

Preliminaries

This chapter is devoted to necessary knowledge of graph theory, group theory and

theory of symmetries which will be used in this thesis.

1.1 Graph theory

This section contains basic de�nitions of graph theory and graphs in real life. It is di-

vided into several subsections, where each subsection describes graphs and terms which

are connected with this topic. We will use �gures and tables for better understanding

of graph theory.

Figure 1.1: Tram Lines

1.1.1 Graphs in Real Life

Many people think of graphs just as a series of connected or unconnected dots, but they

do not realize all the possibilities which graph theory o�ers. One of the most common

example of graph in real life is road network. Individual cities represent vertices and

the roads represent the edges of the graph. It is the best example of a graph, such

as tram network in Figure 1.1. Another example could be constellations, which are

not immediately thought of as an easy example of a graph. As seen in Figure 1.2,

constellations consist of stars, which are the vertices, and their imaginary connections

1
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- edges. Among other uses of graphs belong cardiovascular system, friends of social

media or the internet itself. Graphs can be used for quite di�erent things and they are

e�ective visual tools because they present information quickly and easily.

Figure 1.2: Constellation

1.1.2 Graphs basics

De�nition. A general graph is a triple G = (V,E, φ), where V is a nonempty set of

vertices (or nodes) of G, and E is set of edges of G, and φ, called the edgemap, is a

function φ : E → P (V ), where |φ(e)| = 1 or 2, for each e ∈ E. The vertices in φ (e) are

called endpoints of the edge e. An edge e having only one endpoint (i.e., |φ (e)| = 1) is

called a self-loop. Two edges, e1, e2 that have the same endpoints (i.e., φ (e1) = φ (e2))

are called parallel edges or multiedges. [4]

In fact, we don't need all the graphs for this work. All we need are non-oriented

simple graphs, because they are all we need for the purposes of analysing asymmetry.

De�nition. A simple graph is an ordered pair of sets G = (V,E), where V is a nonempty

set of vertices (or nodes) of G, and E is set of edges of G is a set of two-element pairs

(2-combinations) of vertices. Thus, each edge of G can be expressed as /e, v/ are called

the endpoints of the of the edge. The edge {u, v} is said to join u and v, and the edge
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is said to be incident to either of its endpoints. Any two vertices in in G that are

joined by an edge are said to be adjacent, and are called neighbors. A vertex with no

neighbors is called isolated. [4]

Basically, a graph with no loops and no parallel edges is called a simple graph. The

maximum number of edges possible in a single graph with n vertices is n(n− 1)/2 and

the number of simple graphs possible with n vertices is

2
n·(n−1)

2 (1.1)

1.1.3 Bipartite graphs

Figure 1.3: Bipartite Graphs: a) bipartite graph G, b) reconstructed graph of G, c)

consistent colouring of G, b) proper colouring of G

An important class of graphs are those in which all vertices can be painted "black"

or "red" in such a way, that adjacent vertices will never have the same colour. For

example, if we consider the graph whose vertices are the men and women at the ball,
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and whose edges link each man to the women whom he danced with during the evening,

then this graph will ful�ll this property if we paint the man vertices "black" and the

women vertices "red".

De�nition. A graph G is bipartite if the vertex set V can be partitioned into two

subsets: V = U ∪W , such that each edge of G has one endpoint in U and one endpoint

W . The pair U,W is called a (vertex) bipartition of G. [4]

In other words, the graph is a bipartite when the vertex set of can be partitioned

into two disjoint and independent sets and all the edges from the edge set have one

endpoint vertex from the set and another endpoint vertex from the set.

1.1.4 Subgraphs

For example, as there is a subset in set theory, there is a subgraph in graph theory.

De�nition. Suppose that G = (V,E) is a graph. Another graph H =
(
V
′
, E
′
)
is said

to be a subgraph of G, if V
′ ⊆ V and E

′ ⊆ E. More generally, we use this terminology,

or simply say G contains copy of H if the vertices of H can be relabelled with some of

G's vertex labels in such a way that all of the edges of H are edges of G. [4]

Simpli�ed, subgraph is only part of the graph.

1.1.5 Paths, circuits, and reachability in graphs

De�nition. Suppose that G = (V,E) is a graph, and v, w ∈ V are pair of vertices. A

path in G from v to w is an alternating sequence of vertices and edges:

P = 〈v0, e1, v1, e2, v2, ..., vk−1, ek, vk〉 , (1.2)

such that the endpoints of edge ei are vertices {vi−1, vi}, for 1 ≤ i ≤ k, v0 = v, and

vk = w. We say the path P passes through the vertices v0, v1, v2, ..., vk−1, vk, and

traverses the edges e1, e2, ..., ek, and that the path has length k, since it traverses k

edges. If such a path exists, we say that the vertex w is reachable from the vertex v in

G. A path having positive length (k > 0) from any vertex to itself is called a circuit.

A path (or circuit) is called simple if it never traverses the same edge twice. A simple

circuit that does not pass through the same vertex twice (except for the initial and

�nal vertex) is called a cycle. [4]

Observe that in the case of a simple graph, the above path can be speci�ed by the

sequence of vertices 〈v0, v1, v2, ..., vk−1, vk〉, since the corresponding edges are uniquely

determined. Also note, that any vertex is reachable from itself by the path 〈v0〉 of
length zero. [4]
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1.1.6 Trees

A connected simple graph with no cycles is called a tree.

De�nition. If T is a simple graph on n vertices, then the following statements are

logically equivalent:

1. T is a tree.

2. T is connected and has n− 1 edges.

3. T has no cycles and has n− 1 edges.

4. Any two vertices of T are joined by a unique simple path in T .

5. T is connected, and every edge is a bridge (i.e., deleting an edge renders the

graph disconnected).

6. T has no cycles and if we add any new edge to T (between two of its vertices)

the resulting simple graph will have a unique cycle. [4]

Trees are very important graphs, and they have been used in numerous applications.

The most familiar example is a family tree. Almost everyone has drawn a family

tree already in playschool. The folder structure in any computer operating system or

network has also the structure of a tree. Trees are the basis for some of the most

e�cient search and sorting algorithms. For these resons trees are the most important

graphs in computer science and that is why we chose them in this thesis.

Figure 1.4: Trees: a) examples of non-isomorphic trees, b) a tree with a root and six

leaves
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1.1.7 Spanning trees

A spanning tree is the maximum possible tree in a graph, such that adding an edge

would create a cycle. It is de�ned as: A spanning tree of a graph on n vertices is a

subset of n − 1 edges that form a tree. A tree consists of leaves, that only have 1

adjacent vertex, and inner vertices.

1.1.8 Prim's and Kruskal's algorithm

The algorithms of Kruskal and Prim are both minimum spanning tree algorithms. The

di�erence between Prim's and Kruskal's algorithm is in speci�c rule that talks about

how to determine a safe edge.

Figure 1.5: Kruskal's and Prim's algorithms

In Kruskal's algorithm, the set A is a forest whose vertices are all those of the given

graph. The safe edge added to A is always a least-weight edge in the graph that

connects two distinct components. In Prim's algorithm, the set A forms a single tree.

The safe edge added to A is always a least-weight edge connecting the tree to a vertex

not in the tree. [5] Kruskal's algorithm's time complexity in worst case is O (E logE),

this is because we need to sort the edges. Prim's algorithm's time complexity in worst

case is O (E log V ) with priority queue or even better, O (E + V log V ) with Fibonacci

Heap. We should use Kruskal's algorithm when the graph has small number of edges,

like E = O (V ), when the edges are already sorted or if we can sort them in linear time.

In other hand, we should use Prim's algorithm when the graph's number of edges is

high, like E = O (V 2).

1.2 Group theory

Group is This section contains basic de�nitions of group theory, more precisely de�-

nitions of group isomorphism and group automorphism. A group is a pair, where the
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�rst item is a �nite or in�nite set of elements and the second item is a binary operation.

This binary operation is a function, which combines two elements (not necessarily dis-

tinct) from the set, forming a third one, which also has to be in that speci�c set. This

is a fundamental property of groups and it is called closure. Groups also have other

properties, which distinguish them from other types of structures in graph theory. The

other three properties that a group has to satisfy are associativity, existence of identity

and existence of inverse. If a group also satis�es a condition called commutativity, it

is referred to as an abelian group, but sometimes it is referred to as a commutative

group.

1.2.1 Group isomorphism

An isomorphism φ from a group G to a group G is one-to-one mapping (or function)

from G onto G that preserves the group operation. That is,

φ(ab) = φ(a)φ(b) (1.3)

for all a, b in G. If there is an isomorphism from G onto G, we say that G and G are

isomorphic and write G ≈ G.

This de�nition can be visualized as shown in Figure 1.6. The pairs of dashed arrows

represent the group operations.

Figure 1.6: Group Isomorphism

It is implicit in the de�nition of isomorphism that isomorphic groups have the same

order. It is also implicit in the de�nition of isomorphism that the operation on the left

side of the equal sign is that of G, whereas the operation on the right side is that of

G. The four cases involving · and + are shown in Table 1.1.

[1]

1.2.2 Group automorphism

An isomorphism from a group G onto itself is called an automorphism of G. [1]
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Table 1.1: Group Isomorphism

G Operation G Operation Operation Preservation

· · φ(a · b) = φ(a) · φ(b)

· + φ(a · b) = φ(a) + φ(b)

+ · φ(a+ b) = φ(a) · φ(b)

+ + φ(a+ b) = φ(a) + φ(b)

1.3 Theory of symmetries

Most people think of symmetry as beauty of form arising from balanced proportions.

But in mathematics it means the property of being symmetrical, especially in corre-

spondence in size, shape, and relative position of parts on opposite sides of a dividing

line or median plane or about a centre or axis.

Figure 1.7: Graphs: a) example of symmetric graph, b) example of asymmetric graph

1.3.1 Graph isomorphism

De�nition. Suppose that G = (V,E) and G
′

=
(
V
′
, E
′
)
are simple graphs, that f :

V → V
′
is one-to-one (vertex) function.

(a) The function f is said to be preserve adjacency if for any pair of vertices u, v ∈ V ,
we have {u, v} ∈ E ⇒ {f(u), f(v)} ∈ E

′
. In other words, if u and v are

neighbours in G, then their images f(u) and f(v) must be neighbours in G
′
.
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(b) The function f is said to be preserve non-adjacency if for any pair of vertices

u, v ∈ V , we have {u, v} /∈ E ⇒ {f(u), f(v)} /∈ E ′ . In other words, if u and v are

not neighbours in G, then their images f(u) and f(v) must not be neighbours in

G
′
.

(c) The function f is said to be a graph isomorphism from G to G
′
if it is bijective,

and preserves both adjacency and non-adjacency. In this case we that the graphs

G to G
′
are isomorphic, and write this as G ∼= G

′
. If no such isomorphism exists,

we say that G and G
′
are not isomorphic and write G 6∼= G

′
. [4]

Figure 1.8: Two isomorphic representations of the Petersen graph

1.3.2 Symmetric graphs

The concept of symmetry can be de�ned as a transformation of a mathematical struc-

ture, of a speci�ed kind, that leaves speci�ed properties of the structure unchanged.

There are di�erent types of symmetries, such as rotation and re�ection. Graph sym-

metries are directly related to graph automorphisms, since the structure of a graph

remains the same. Identity, as it is a trivial automorphism, is also a form of a symme-

try. Identity can be referred to as a 0° rotation or a 360° rotation. The automorphism

groups of a graph characterize its symmetries. Firstly, it is clearly visible that the struc-

ture of a graph remained the same. Although the position of vertices has changed, if

the graph on the left would rotate around the centre of the graph by 60° clockwise,

the result of that rotation would be the original automorphism. In Figure 1.8, another

type of symmetry is shown. It is a re�ection around the vertical axis, where all vertices

and edges from the left side had been projected to the right side and vice versa. As a
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property related to automorphism groups, composition of two symmetric translations

creates another graph with the same structure, for example combining rotation and

re�ection. These examples showed the coherence between graph automorphism and

graph symmetries. This means that graph automorphism can be helpful in the study

of graphs symmetries.

1.3.3 Partial symmetries of graphs

A large number of graphs, whether symmetric or asymmetric, contain subgraphs that

have symmetries. Such graphs are known partially symmetric.

De�nition. A partial automorphism of an edge-colored digraph Γ (as well as of a digraph

or a graph) is an isomorphism between two vertex-induced subgraphs of Γ, that is, a

bijection ϕ : V1 ⇒ V2 between two sets of vertices V1, V2 ⊆ V (Γ) such that any pair

of vertices u, v ∈ V1 satis�es the condition (u, v) ∈ Ec if and only if (ϕ(u), ϕ(v)) ∈ Ec

for any color c. The set of all partial automorphisms of Γ together with the operation

of the usual composition of partial maps form an inverse monoid, which we denote by

PAut(Γ). [2]

1.3.4 Asymmetric graphs

A graph is asymmetric if it does not have a nontrivial automorphism. In this thesis,

we are interested in asymmetric graphs that are as small as possible. An undirected

graph G on at least two vertices is minimal asymmetric if G is asymmetric and no

proper induced subgraph of G on at least two vertices is asymmetric.

There are exactly 18 �nite minimal asymmetric undirected graphs up to isomor-

phism. These are the 18 graphs depicted in 1.9. [3]
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Figure 1.9: These are also the minimal involution-free graphs. For each graph the triple

(n, m, co-G), describes the number of vertices, edges and the name of the complement

graph, respectively. The graphs are ordered �rst by number of vertices and second by

number of edges.
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