Processing of 3D Scans using Machine Learning

Lukd Gajdosech

06.07.2020 - 20.07.2020

1/12

PointCleanNet
©00000

Removing Outliers - their data

(a) original (b) processed

PointCleanNet
0e0000

Idea

amount of outliers and noise. We assume the following point cloud
formation model:

P = {pi} = {pi+n}per U {oj}o,e0, (1)

where P’ is the observed noisy point cloud, P are perfect surface
samples (i.e., p; € S lying on the scanned surface S), n; is addi-
tive noise, and O is the set of outlier points. We do not make any
assumptions about the noise model n or the outlier model 0. The
goal of our work is to take the low-quality point cloud P as input,
and output a higher quality point cloud closer to P, that is better
suited for further processing. We refer to this process as cleaning.
We split the cleaning into two steps: first we remove outliers, fol-
lowed by an esimation of per-point displacement vectors that de-
noise the remaining points:

B={pl+di}pyerna @

where P is the output point cloud, d are the displacement vectors
and O the outliers estimated by our method. We first discuss our
design choices regarding the desirable properties of the resulting
point cloud and then how we achieve them.

(a) formulation

added noise and outliers. We then proceed in two stages: first, we
train a non-linear function g that removes outliers:

- "

0; = g(Pi),
where 4; is the estimated probability that point p} is an outlier. We
add a point to the set of estimated outiers O if &; > 0.5. After
removing the outliers, we obtain the point cloud P = P’ \O. We
proceed by defining a function jf that estimates displacements for
these remaining points to move them closer to the unknown surface:

di = f(By).

The final denoised points are obtained by adding the estimated dis-
placements to the remaining noisy points: jp; = p; +d;. Both f and
2 are modeled as deep neural networks with a PCPNet-based ar-

(b) stages

3/12

PointCleanNet
00000

Architecture

OUTLIER DETECTOR

npolnts A z u(p;)
A m
Hp
LA —=(7))
P | k451225610

& Hper—palm

feature vector

64 64128)

C perpoint
feature vector h
feature vector

DENOISER

k45124256 +no

Ce4a C per-point 64 64+ 128+)

perpoint per-patch
feature vector Iy Saturavector 1Lk| 1 feanira vector Pi

4/12

PointCleanNet
[e]e]e] le]e]

Paper Results | - https://wang-ps.github.io/denoising.html

input jet (medium) bilateral PointCleanNet ground truth

o
=3
2

face distance 2

Q
2 sur

5/12

PointCleanNet
0000e0

Paper Results Il - https://www.blensor.org/

input jet (medium) bilateral ours ground truth

=4 b4 k4
o R\)
Eul

Figure 17: Qualitative comparison with state-of-the-art methods on the Velodyne dataset. We display the normalized distance 1o the ground
truth surface. The two top rows are evaluated on a dataset with only distance bias as noise and the wo bottom rows with added per-ray
noise. The simulated scanner noise has a high spatial correlation along the horizontal scan-lines, and lower correlation vertically across
scan-lines. In this setting, jet fitting introduces significant error in detailed surface regions, while bilateral denoising has high residual error
in the examples that have both noise types. POINTCLEANNET successfully lears the noise model, resulting in lower residual error: 6/12

distance bias

per-ray noise + distance bias

PointCleanNet
00000e

Denoising - our data

(a) original (b) processed

7/12

Input Data
0

COGS Converter

COGS file Converter

8/12

Input Data
oe

COGS Python

m Implement a Python wrapper for our C++ COGS library.

m Allows us to make an end-to-end system, taking a .cogs PC as input and directly
returning its processed version.

9/12

AutoEncoder architecture

224%224

10/12

Input Data Simple Pipeline

(o] lo}

11/12

Simple Pipeline
ooe

Benchmark

H GPU API backend train time inference time H

RTX470 OpenCL Plaid-ML ? ?
RTX470 OpenCL TF (ROCm) ? 7
Vega64 OpenCL Plaid-ML ? 3.2s
Vega64 OpenCL TF (ROCm) ? 10.4s

RTX 2060 OpenCL Plaid-ML ? ?

RTX 2060 CUDA TensorFlow ? ?

RTX 2080 OpenCL Plaid-ML ? ?

RTX 2080 CUDA TensorFlow ? ?

12/12

	PointCleanNet
	Input Data
	Simple Pipeline

