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Convolution I

(a) basic (b) padded
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Convolution II
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Convolution II
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Convolution Math I

Figure: CNN Formula, ∗ is the convolution operator, φi is a non-linearity, Ki for i ∈ {1, . . . , n}
are convolutional kernels and x is the input.

Figure: Single ∗ operation.
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Convolution Math II

Figure: Convolution as matrix multiplication.
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Convolution Math III

Figure: With padded zeros.
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Dilated Convolution

(a) idea (b) parameter
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Pooling and Upsampling
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Dropout I

Traditional Neural Network
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Dropout II
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Dropout III

Dropout in CNN, ri ∈ {0, 1} are random variables.
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Classification I

13 / 34



Operations Tasks Architectures Optimization Evaluation

Classification II
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Segmentation I
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Segmentation II

(a) input (b) output
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FCN I
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FCN II
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FCN III
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Deconvolution

(a) convolution (b) transposed
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SegNet
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U-Net I
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U-Net II
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Comparison
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BCE I

BCE = − 1

N

N∑
i=1

yi · log(p(yi )) + (1− yi ) · log(1− p(yi ))

(ground truth) yi = 1⇔ true geometry, yi = 0⇔ artefact

(prediction) p(yi ) ∈ 〈0, 1〉 ⇔ returned by ML system
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BCE II

27 / 34



Operations Tasks Architectures Optimization Evaluation

BCE III
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BCE Math

ENTROPY = H(q) = −
C∑

c=1

q(c) · log(q(c))

BCE = Hp(q) = −
C∑

c=1

q(c) · log(p(c))

Hp(q)− H(q) ≥ 0
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Class Imbalane
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Confusion Matrix

Prediction
True Artefact

CM = Actual
True 18508 (TP) 53 (FN)
Artefact 112 (FP) 166 (TN)

Accuracy(CM) =
TP + TN

TP + TN + FP + FN
∼ 0.991

TPR(CM) (Recall) =
TP

TP + FN
∼ 0.997 | PPV (CM) (Precision) =

TP

TP + FP
∼ 0.994

Balanced Accuracy(CM) =
TPR + TNR

2
∼ 0.80

F1 = 2 · PPV · TPR
(PPV + TPR)

∼ 0.995 | FOR(CM) =
FN

FN + TN
∼ 0.24
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IoU

IOU = J(A,B) =
|A ∩ B|
|A ∪ B|

=
|A ∩ B|

|A|+ |B| − |A ∩ B|

IOU =

(
TP

TP + FP + FN
+

TN

TN + FP + FN

)
/2 =

(
18508

18508 + 112 + 53
+

166

166 + 112 + 53

)
/2 ∼ (0.991 + 0.502)/2 ∼ 0.746
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