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Chapter 1

Introduction

For an access to the repository, contact the author at l.gajdosech@gmail.com.
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Chapter 2

Motivation
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Chapter 3

Theoretical Overview

In this chapter, we briefly go over the theoretical definition of the problems we are
going to solve and the required methods and techniques.

3.1 Analytical solutions

The problems we solve using the tools of deep learning were by large part decided by the
availability of training data. Training of the network for the filtration of artefacts was
conditioned on the existence of an analytical solution, providing data for supervised
learning.

3.1.1 Artefact Filtering

During the process of scanning by a structured light scanner, several artefacts tend to
appear. These are usually caused by the reflectance of the material surface, or various
lightning conditions. We used an existing analytical solution developed by Skeletex 1.
This algorithm needs a sequence of scans of the object with rich overlaps, as it is build
upon this redundancy. In other words, if a given point appears at a certain location
only in a single scan out of several aligned scans, which have overlapping parts in this
region, it is probably just an artefact.

On the other hand, machine learning model developed in this work is able to perform
a filtration of a single-view scan. This ability is granted by the learning process, where
it captures the probability distribution of artefacts, given their feature characteristics.
This provides a huge advantage in special use-cases over the traditional approach. For
example, we are able to filter the frames from a continuous 3D camera in real-time.

1http://skeletex.xyz
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Figure 3.1: Exampled of a 3D point cloud, filtered by an analytical algorithm.

3.1.2 Localization and Segmentation

Localizing objects, marking their bounding boxes and drawing their pixel-wise seg-
mentation masks can be done manually. However, this is quite a laborous process and
we currently do not have an analytical algorithm, that could provide a robust ground
truth for these problems. Thus we choose a different approach here.

We have an access to BinGenerator utility, that simulates the work of a light-
structured scanner and produces synthetic scans of bins filled with CAD parts 2. Apart
from 3D organized point clouds (depth maps), it also outputs a point-wise class as-
signment. This can be used as an mask for different segmentation problems, such as
a binary segmentation between the parts and background (bin), or instance segmenta-
tion of the individual parts. We can derive axis aligned bounding boxes and begin by
learning this easier task. Our goal is to train models on these synthetic data-sets and
design them in such a way, that they are able to generalize to real-world scans. See
Figure 3.2 for an example of generated depth image and the expected ground truth
results. BinGenerator outputs even more data, such as a precise transformation for
every part in the bin. This opens the possibility to train models even for harder tasks,
such as for 6DOF localization in the future.

(a) depth map (b) bounding boxes (c) segmentation mask

Figure 3.2: Synthetic scan with GT for BB localization and binary segmentation.

2https://deep-geometry.github.io/abc-dataset/
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3.2 Machine Learning

At the core of this work lies convolutional neural networks, which belong to the class of
deep learning models. Additionally, deep learning as a whole is part of machine learn-
ing. In machine learning we are trying to make the computer learn specific functions
to perform some task and in deep learning we take this one step further by combining
various nonlinear transformations, stacking them on each other in form of layers and
thus producing algorithms with greater representational capacity [13]. However, this
also increases the variance in the hypothesis space and training of such algorithms is
often more complicated, time consuming and requires a lot of data [5].

In machine learning, we design an learning algorithm, which than tries to find
patterns that generalize to new data. This is essentially a form of applied statistics,
where we use the computer to statistically estimate complicated functions [7]. Usually,
we optimize the parameters of these parameters using gradient descent. But how to
define an algorithm that learns from data and what exactly is learning? Definition by
Mitchell [16] is commonly used:

“A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E.”

In this work, we use methods of supervised learning, where the experience E takes a
form of an example, which is usually just some vector of features. We define the task T
by providing ground truth data - i.e. the expected result and than the algorithm tries
to optimize itself to solve this task in a best way possible, according to a performance
measure P, which often takes a form of the loss function.

3.2.1 Supervised learning

Let x denote the input example, which can be just a single value or more often a vector
of features, or a whole multi-dimensional volume, as in the case of images. In super-
vised learning, we provide the ground truth value y, which is the target that we are
trying to predict. This can be something simple, such as a number denoting a class to
which the x belongs. The artefact cleaning problem is example of such binary classifi-
cation, which we can model as a prediction for every point x, whether it is an artefact
or true geometry. However, the target can be something more complicated, such as a
set of bounding box coordinates in the case of object detection in the whole image x [20].

A pair (x, y) is called a training example. We usually have a lot of these examples

5



in a form of training data-set {x(i), y(i) | i ∈ 0, . . . ,m}. Our goal is to train a function
h(x(i)), that predicts the corresponding value y(i) as good as possible. The trained
version of this function (often called a hypothesis) is the result of our endeavor. If
the space of targets y(i) is continuous, we denote the learning problem as regression
(ex. bounding box coordinates) [17]. If it takes just a fixed number of discrete values
(ex. artefact cleaning), we call it a classification problem. Let us now look at a simple
learning algorithm for classification, where we will see all the required components in
action. Note that we could try to solve the problem of artefact cleaning with this very
approach.

3.2.2 Logistic regression

Even though this method has the word regression in its name, it is actually used for
binary classification with two classes 0, 1, as it outputs values h(x) ∈ (0, 1). The first
step is to take the dot product between a set of trainable parameters θ and feature
vector x. Usually, additional feature x0 is added, so the parameter θ0 can function as
a bias term. With this modification the resulting dot product is calculated as (where
n is the number of features): θTx) = θ0x0 +

∑n
j=1 θjxj = θ0 +

∑n
j=1 θjxj [17].

To arrive at our hypothesis h(x), we additionally apply a nonlinear logistic function
g(z) over this dot product. This function is also known as the sigmoid function and
can be used as an activation function in neural networks, as we will see later [19]. The
definition of g(z) and its graph on interval z ∈ [−5, 5]:

g(z) =
1

1 + e−z

4 2 0 2 4
z

0.0

0.2

0.4

0.6

0.8

1.0

g(
z)
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Now we define our hypothesis hθ(x) as (with θ in the index we denote that the
result of this function depends on the parameters θ):

hθ(x) = g(θTx) =
1

1 + e−θT x

To derive the gradient descent rule used in training, we will also need the derivative
of the sigmoid function:

g ′(z) =
d

dz

1

1 + e−z

=
−1

(1 + e−z)2
· (−(e−z))

=
e−z

(1 + e−z)2

=
1

1 + e−z
· e−z

1 + e−z

=
1

1 + e−z
· 1 + e−z − 1

1 + e−z

=
1

1 + e−z
·
(
1 + e−z

1 + e−z
− 1

1 + e−z

)
=

1

1 + e−z
·
(
1− 1

1 + e−z

)
= g(z)(1− g(z))

3.2.3 Training

We interpret the output hθ(x) as the probability of example x belonging to class 1,
therefore the probability of the 0 class is 1− hθ(x). Formally, we can write this using
the conditional probability notation:

P (y = 1 | x; θ) = hθ(x), P (y = 0 | x; θ) = 1− hθ(x)

And more generally for any of the two values of y we can join this into a single
expression:

P (y | x; θ) = (hθ(x))
y(1− hθ(x))1−y

Our goal is to optimize the parameters θ in such a way, that this probability is max-
imized (i.e. equals 1 for every example). This is also called maximizing the likelihood
of the parameters. If we have m training examples, let L(θ) denote the probability of
all of them:

L(θ) =
m∏
i=1

P (y(i) | x(i); θ) =
m∏
i=1

(hθ(x
(i)))y

(i)

(1− hθ(x(i)))1−y
(i)
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To get rid of the multiplication, we usually transform this into log likelihood l(θ).
Note that now the maximum value is 0, since log(1) = 0:

l(θ) = logL(θ) =
m∑
i=1

y(i) log h(x(i)) + (1− y(i)) log(1− h(x(i)))

Generally, we optimize our machine learning algorithms with regards to a loss func-
tion 3, which we wish to minimize [12]. To be concise with this habit, we can easily
transform this maximization problem into minimization one, by taking the negative
of max log likelihood. With this step, we arrive at the widely used Binary Cross-
Entropy loss (BCE) function 4 (which we also use in the convolutional neural network
for artefact cleaning). There are several ways how to obtain this common loss function
(beginning at the term of entropy from information theory), but perceiving it as the
negative of maximum log likelihood is quite intuitive. Now the minimal value of this
loss is 0 and in the worst scenario it can possibly go to infinity. It is common to nor-
malize the loss value with the number of training examples, so it is consistent across
datasets of different sizes.

Binary Cross-Entropy loss = BCE(θ)

= − 1

m
l(θ) =

= − 1

m

m∑
i=1

y(i) log h(x(i)) + (1− y(i)) log(1− h(x(i)))

One common way to minimize this loss is simply attractively moving in the opposite
way of its gradient ∇θBCE(θ). We do this by finding the partial derivative according
to individual parameters θj. We skip the derivation and write directly the result, as it
is widely known and can be looked up for example in [17]. :

∂

∂θj
BCE(θ) = − 1

m

m∑
i=1

(y(i) − hθ(x(i))) · x(i)j

Note: Sigmoid function is at the core of logistic regression and has a nice derivative,
which allowed us to obtain this elegant update rule. As mentioned, it can also be used as
an activation function in more complicated methods such as neural networks. However,
this is not recommended nowadays, as it has been shown that it has several drawbacks
in the context of neural nets (saturation kills gradients, non zero-centered, expensive
to compute etc. [3] ).

3https://keras.io/api/losses/
4https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-

explanation-a3ac6025181a
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Finally we can write the rule of our gradient descent rule:

θj = θj − α ·
∂

∂θj
BCE(θ)

= θj + α · 1
m

m∑
i=1

(y(i) − hθ(x(i))) · x(i)j (for every j)

Here α is an adjustable hyperparameter called learning-rate. This can be fixed,
but often times it dynamically changes during the training, to increase the success of
convergence [22]. We repeat this rule for every parameter θj. This method always look
at every example in the training set on every step. To make training faster and more
memory efficient (we usually cannot fit the whole training set of training images into a
GPU memory), this rule is often modified into minibatch gradient descent or even
stochastic gradient descent [17].

Inminibatch gradient descent we divide them training examples into b batches.
Every batch will by identified by a start and end index of training example in the whole
set. We can then update the parameters with respect only to the gradient over the
examples of a single batch:

Repeat un t i l convergence :
f o r k=1 to b :

θj = θj + α ·
1

m/b
·

batch
(k)
end∑

i=batch
(k)
start

(y(i) − hθ(x(i))) · x(i)j (for every j)

In an extreme case when every batch is of size 1, we get stochastic gradient
descent. Here we update the parameters with regards to a loss on just a single
training examples. Our training examples are not ordered in any particular order and
therefore they basically come in a random order, stochastically affecting the values of
parameters θ. This is much faster than the full gradient descent. However, it may
never converge to the global minimum, even in the case of a convex loss function. More
often than not, it will oscillate around this minimum.

Repeat un t i l convergence :
f o r i=1 to m:

θj = θj + α · (y(i) − hθ(x(i))) · x(i)j (for every j)

The act of going over a whole training set during training, using any of the ap-
proaches above, is usually called a single training epoch. Epochs can consist of variable
amount of steps, depending on the size of the dataset and chosen training scheme.

9



3.3 Convolutional Neural Networks

In general, convolution is an operation defined on two real-valued functions f(x) and
w(x), where x can for example denote time or position in space. In convolutional neural
networks, f(x) is the input into convolution operation and w(x) (often called a kernel)
defines some sort of a average weighting over certain parts of f(x). In this work, we
will assume the definition of discrete convolution, taking an discrete input (ex. image)
and a discrete kernel, which convolves over the input producing activation maps [7].

Compared to traditional neural networks with fully connected layers, convolutional
layers which are the central building blocks of this work provide several benefits. First
off, we are mostly working with outputs from a structured light scanner, which comes
in a form of an organized point cloud. This can be viewed as an range image with
additional information for each point apart from its location. We can perceived the
individual features as the channels of the image, which together define the depth of
our input volume.

For example, let us assume that the input scan is of size 1000× 1000. The x and y
coordinates of each point (in the camera space) is expressed implicitly by the location
of point in the grid. For the z coordinate however, we need an individual channel of
values, forming a depth map. Additionally, we may take the normals of each point
represented by 3 values and a map of intensities, forming yet another channel.

In this case, our input volume has size 1000× 1000× 5. If we were to build a fully
connected layer of this input, each neuron would have 1000∗1000∗5 = 5000000 param-
eters. And that is just for a single neuron! High numbers of parameters would quickly
lead to over-fitting and would also contribute to increased inference time, training time
and memory consumption [3]. Moreover, lot of parameters does not always lead to
a better performance [9]. Our goal in the future is to run the ML models derived
here directly on the structured light scanner, which often contains some light-weight
processor, such as Nvidia Tegra, which has similar performance as mobile devices [24]
[6].

3.3.1 Convolutional Layer

Intuitively, in our processing tasks such as artefact cleaning, we never really need a
neuron to see the whole spatial extent of an incoming volume. This is where the notion
of local connectivity comes to play. Here we connect the neuron only to a local region
from the input.

10



The spatial size of this connectivity is often called receptive field of the given neuron,
practically this is the size of the filter. It is important to note that the filter has always
the same depth as the input volume, so connections are local in width and height, but
always full along the depth axis. For example, if we had the same input volume of
size 1000 × 1000 × 5 and filter of size 7 × 7, single neuron would have 7 ∗ 7 ∗ 5 = 245

weights plus a single bias, resulting in 246 parameters. In a scenario of a simple con-
volutional layer without additional extensions (zero-padding, stride ...) 5, one side of
the output volume will in this case have size 1000 − 7 + 1 = 994, so a single activa-
tion map would be of size 994×994 where every pixel is an output of a single neuron [3].

Apart from local connections, another technique to reduce the number of parame-
ters and promote in-variance of features across different spatial locations is the scheme
of parameter sharing. In the example above, we have 994 ∗ 994 = 988036 neurons,
each with 246 parameters. However, in convolutional layers we make a reasonable as-
sumption, that if some local feature is useful at some location (x1, y1), it is probably
useful to compute the same feature at a different location (x2, y2) with the same filter.
Therefore we are going to constrain all the 994 × 994 neurons (sometimes also called
a single depth slice) producing a single activation map to use the same set of learned
weights. Suddenly, the whole convolutional layer has only 246 parameters.

Receptive field is one hyper parameter, convolutional layers have also a depth param-
eter, which denotes the number of filters we would like to train [25]. So for example,
if we were to apply a convolutional layer with filter size = 7 × 7 and depth = 32

over our 1000 × 1000 × 5 input volume, the resulting volume would have spatial size
994 × 994 × 32, where each of the 32 activation maps is produced by single 7 × 7 × 5

filter. This layer has 246 ∗ 32 = 7872 learnable parameters [3].

After the description of fundamental characteristic of a convolutional layers, we
arrive back at the notion of convolution from the beginning of this chapter. Since all
the neurons in the same depth slice are using identical set of weights, we compute the
forward pass of a single depth slice as a convolution of the filter with the input volume.
Mathematically, this is like taking an element-wise dot product between the sub-region
of input volume and the filter. In even simpler maths, we can implement this as a dot
product between the weights of filter unrolled into a single column vector and a matrix,
where each row is formed by unrolled values of a sub-region from the input volume.
For example, let us consider a 3× 3× 1 input X and 2× 2× 1 filter K, the convolution

5https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
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operation is often denoted with ∗:

X∗K =


x1 x2 x3

x4 x5 x6

x7 x8 x9

 ∗
k1 k2

k3 k4

 =



x1 x2 x4 x5

x2 x3 x5 x6

x4 x5 x7 x8

x5 x6 x8 x9


∗



k1

k2

k3

k4



These types of layers are also called 2D convolutions. This can be confusing at first,
since the input is in fact a 3D volume, but the output is a single value and the filter
slides only in two dimensions, always having the same depth as input, as mentioned
above. In Figure 3.3, we present an illustration of a convolutional layer with depth =
1 and receptive field = 3, over a 2-channel (depth, intensity) example input image.
Note that in reality, each pixel would be represented by a single neuron, here we scale
them up for the sake of clarity.

Figure 3.3: Example of a convolution layer operation over an input volume of size
4×4×2, where depth = 1 and filter size = 2×2. Notice, how the filter extents the full
depth of input and produces a single value. After sliding the filter over whole image,
we got a single activation map.

3.3.2 Zero-padding

As we saw above, the convolution operation with a filter of size F × F scales down
the both the input’s width and height by F − 1, in case of an odd F (we rarely use
a filter of even dimensions). To prevent this, we can pad the input with bF/2c zeros
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from all four sides. This is yet another hyperparameter of the convolutional layer, used
to control the spatial size of the output.

3.3.3 Nonlinearity

The activation of each neuron after taking the dot product is often run thru a non-
linear function. This increases the hypothesis space of our model, giving it greater
representational capacity. Without these non-linearities, we would be just stacking
linear transformations (dot products), which is often not enough. These functions are
also called activation functions. In the past, one of the widely used activation was the
sigmoid function f(x) = 1

1+e−x , which takes the output of the neuron x and squashes
into the [0, 1] interval. However, the training time with gradient descent is consis-
tently faster when using a simple Rectified Linear Unit (ReLU) activation function
f(x) = max(0, x) [13]. This function is therefore widely used in practice, but it is al-
ways best to experiment with different activation functions for every problem, therefore
treating it as an adjustable hyperparameter.

3.3.4 Pooling Layer

It is common to insert pooling layers after convolutional layers, which reduce the spatial
size of the volume. It is used to reduce the number of parameters, control overfitting
and filtering noisy activations, by taking only a single value from a receptive field. Other
beneficial effects are contributed to this operation, for example granting the network an
invariance to small translations and granting the model a more global, aggregated fea-
tures [15]. This operation works independently on every depth slice (activation map),
commonly with a receptive field of size F = 2×2 applied to every other pixel (denoted
as a stride hyperparameter with a value of 2). This effectively halves the width and
height of the volume. It is important to note that since the pooling works indepen-
dently on the individual depth slices, it does not reduce the depth of the volume (for
that exists another technique described below [23]). We can downscale the regions
of size F with some common aggregating function, for example taking the average of
those values, resulting in an average-pooling operation. However, the most common
operation is to take the maximal value, i. e. doing max-pooling [3]. It is widely adopted
that by taking the maximal value, we are left only with the most representative value
from the subregion, as it is the value of the pixel with a highest neural response [18].

But there are also downsides to pooling, especially in the context of tasks that
require precise localization, such as segmentation. In the process of pooling, we lost
the spatial information within the receptive field and by downsampling the volume,
we practically cannot output a segmentation mask with the same size as the input.
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Therefore we often try to do a reverse operation in a later layers of the network. The
most simple operation is unpooling, which is often connected with usage of the switch
variables. In this approach we remember the location of chosen activations during the
pooling operation and then we place them back into their original locations during
upscaling, while filling the other locations with zero, or some other value, see Figure
3.4. There are also more complicated techniques, which tries to mimic the inverse
function of pooling, we will describe those in the next chapter along the architectures
where they are used [18]. Do note that pooling is not the only way to change size of
the activation maps in the network. We can always use some common techniques from
image processing, or just do a convolution with a stride > 1, which basically skips
some pixels while sliding the filter over input volume, resulting in a similar decrease of
the spatial size.

Figure 3.4: Illustration of pooling and unpooling operations taken from [18].
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3.3.5 Fully convolutional network (FCN)

Neurons at the first levels of a convolutional network contain information for small
region of images, since their receptive field is just few pixels. As we add more lay-
ers, image size keeps decreasing and the number of channels usually increase and even
though the filter sizes are still kept small, higher levels inherently see much larger
portion of the original image. It is generally understood that the initial layers learn
simple, low level concepts, such as and edges and colors and the later levels exploit this
features to learn higher level concepts, such as different objects [25].

Image classification task (assigning single class to an input) made the neural net-
works popular. Here we are interested in obtaining a fixed length vector at the end,
denoting probabilities of discrete classes defined before training. To do this, we flatten
the spatial tensor from a last convolutional layer and map it to our result vector using
a fully connected layer. This process destroy all the spatial information 6.

For all the tasks in this work (filtration, segmentation, detection), we need to retain
the spatial information, so no fully connected layers are ever used. Apart from keeping
spatial information, this approach has another benefit.

When we use a fully connected layer, there need to be a fixed amount of neurons,
each being connected to every neuron from the previous layer by a separate trainable
parameter. Therefore the output volume of the last convolutional layer must have a
fixed dimensions as well. This effectively forces us to determine a spatial size of the
input feature images when modeling the network. On the other hand, fully convolu-
tional networks naturally operates on an input of arbitrary size [15]. The number of
parameters of a learnable filter is fixed, but we can slide it over volume of any size.
These types of networks are also translation invariant by their nature, since they op-
erate on local regions, they are able to detect a certain object at any place, or filter an
artefact anywhere in the input.

The only limitation of a fully convolutional network is a minimal size of the input.
Since we are downsampling in the process (usually by factor of 2) and applying con-
volutions afterwards, the volume can never reach a spatial size that is smaller than
dimensions of the filter to be applied. In fact, fully connected layers can also be viewed
as convolutions with kernels that cover the entire input volume. This means we can
convert any network with a fully connected layers to a convolutional network and the

6https://divamgupta.com/image-segmentation/2019/06/06/deep-learning-semantic-segmentation-
keras
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fixed input size of the original network now becomes the minimal size of the resulting
convolutional network. Moreover for inputs of greater size, this network produces a
spatial output map, sometimes called a heat map. The last convolutional layer with a
big receptive field does the final assignment in a tiled fashion [15].

Let us examine this on a concrete example 3.5. Suppose we have a network for
classification into 3 classes with a very basic architecture. The last 17× 17× 4 volume
is flattened into one-dimensional vector, effectively creating a fully connected layer with
1156 units, that is connected to a last output layer with 3 neurons, each connected to
every previous neuron by 1156 weights.

Convolution Max Pooling Flatten

Figure 3.5: Example of a very basic network used to classify the input image of fixed
size into 3 classes.

We can very easily transform this into a fully convolutional layer with the following
layers, written here with all hyperparameters :

conv_layer(kernel = 3× 3, f ilters = 4, zero_padding = true)
↓

max_pool(kernel = 2× 2, stride = 2)
↓

conv_layer(kernel = 17× 17, f ilters = 3, zero_padding = false)

Applying this network on an image of original fixed size 34 × 34 × 1 produces 3
activation maps at the end (see Figure 3.6), each consisting of just a one pixel, or more
generally a 1 × 1 × k volume, with k = 3 in this example. We can interpret the pixel
value of each activation map as a probability of belonging to the given task.
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Convolution Max Pooling Convolution

Figure 3.6: Original network from 3.5 reworked into a FCN. The last filter contain
17 ∗ 17 ∗ 4 = 1156 weights, just as the fully connected neurons in the original net.

Now we are able to run inference on image of arbitrary bigger spatial size with
this network. For example, by giving it an image of size 256 × 256 × 1, we obtain a
112×112×3 volume, these are basically three heat maps, each for a given classification
class from the original problem. This is the same effect as if we were to tile the
256 × 256 × 1 pixel by pixel into windows of size 34 × 34 × 1. This would result in
112 ∗ 112 = 12544 such windows and we could ran the original network from 3.5 on
every single one of them, obtaining the same result.

Convolution Max Pooling Convolution

Figure 3.7: Caption

Not only this is more flexible, but as described in [15], performance of this approach
is higher, due to a high amortization over the overlapping regions. Figure 3.8 provides
an illustration of this transformation on a particular image. These are numerous tech-
niques how to convert these coarse output heat maps and use them for pixel-wise
segmentation of the original image, or use them for precise object localization, as we
will describe in later chapters.
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Figure 3.8: By transforming fully connected layers to convolution layers, we can use
classification network to output spatial heat maps [15].

3.3.6 1× 1 convolutional layers

Even convolutions with a filters of spatial size 1 × 1 makes a perfect sense. Since the
kernel always goes through a whole depth of the input volume, these types of convo-
lutions effectively act as taking a dot product over the single spatial location over all
depth slices. We can use this in a role of other fully connected layers in the examples
above, as we can apply these on the 1× 1× n volumes [3].

1 × 1 convolutions are also used just as a simple means of dimension reduction.
After doing a standard convolution, it is possible that some of the activation maps
share common information and we can aggregate these into fewer depth slices. This
works as a form of a compression, where we apply these convolutions to reduce the
number of channels before applying a more expensive convolutional layers with larger
filters [23].
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Chapter 4

Related Work

4.1 CNN Origins

4.1.1 LeNet

4.1.2 AlexNet

4.1.3 ResNet

4.2 Semantic Segmentation

4.2.1 FCNN

4.2.2 Deconvolution

4.2.3 U-Net

4.2.4 LU-Net

4.3 Object Localization

4.3.1 You Only Look Once

4.3.2 RetinaNet
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Software Specification
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Chapter 6

Pipeline Proposal
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Chapter 7

Research

7.1 Data-set

7.2 Architecture

7.3 Results

7.3.1 Artefact Filtration

Here we evaluate our filtration CNN on set of data-sets, unseen during the training.

Dataset # scans Analytic (s) FCNN (s) (min, max, avg) IoU

Flexaret 19 4.32 (4.35, 45.46) (0.4313, 0.942, 0.768)

Table 7.1: Quantitative comparasion between the results of analytic filtration (ground-
truth) and our CNN solution. We are using IoU metric for evaluation.
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(a) unfiltered

(b) ground truth

(c) prediction

Figure 7.1: Qualitative comparison of point clouds (each scan has different color)
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(a) raw (intensity map)

(b) ground truth

(c) prediction

Figure 7.2: Qualitative comparison of filtration masks.

24



(a) mesh reconstruction without filtration

(b) mesh from ground-truth analytical filtration

(c) mesh from proposed FCNN filtration

Figure 7.3: Qualitative comparison of resulting meshes
(obtained using Poisson surface reconstruction).
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7.3.2 Object Localization

Figure 7.4: Bounding box detection on a real scan.
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Implementation Details
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Conclusion
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