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Predhovor

Čo už treba vedieť
Táto prednáška voľne nadväzuje na bakalársku prednášku Úvod do fyziky materiálov a magisterské
prednášky Štruktúra a mechanické vlastnosti materiálov a Elektrické a optické vlastnosti materiálov.
Prednáška beží paralelne s prednáškou Magnetické vlastnosti tuhých látok a supravodivosť, ktorá sa ve-
nuje podobným fyzikálnym systémom, ale z iného zorného uhla. Z technického hľadiska nevyžadujeme
žiadne špeciálne poznatky, okrem znalosti formalizmu druhého kvantovania a metódy Hartreeho-Focka.

Čo sa možno naučíte
V týchto prednáškach sledujeme dvojaké ciele. Prvou úlohou je zasadiť už známe výsledky do všeobec-
nejšieho rámca, v ktorom kľúčovú úlohu hrajú pojmy narušenia symetrie a adiabatickej konti-
nuity. Druhou úlohou je demonštrovať použitie spomínaných pojmov pri štúdiu magnetizmu, supra-
tekutosti a supravodivosti.

Odkazy na iné texty
V prednáške sa odvolávam na nasledovné texty z iných úrovní:
“Úvod do fyziky tuhých látok”: prednáška číslo n citovaná ako I.n
“Elektrické a optické vlastnosti tuhých látok”: prednáška číslo n citovaná ako II.n
“Teória kondenzovaných látok”: prednáška číslo n citovaná ako IV.n

Poznámka o voľbe jednotiek a o konvenciách
1. V skriptách používame jednotky SI. Jedinou výnimkou je absolútna teplota, ktorú chápeme ako
veličinu s rozmerom energie.
2. Náboj elektrónu označujeme −e, t.j. predpokladáme, že e > 0.
3. Pod frekvenciou rozumieme kruhovú frekvenciu.

Podmienky na udelenie kreditov
Ak ide o výberový predmet:
séria 20 domácich úloh; za každú sériu možno získať maximálne 1 bod
Ak ide o povinne voliteľný predmet:
ústna skúška; maximálne 20 bodov
Hodnotenie:
A: ≥18 bodov
B: ≥16 bodov
C: ≥14 bodov
D: ≥12 bodov
E: ≥10 bodov
FX: <10 bodov
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4 1 EFEKTÍVNE MODELY

1 Efektívne modely

V tejto prednáške zavedieme pojem podstatných a nepodstatných stupňov voľnosti. Ukážeme tiež,
že eliminácia nepodstaných supňov voľnosti vo všeobecnosti mení tvar modelu pre podstatné stupne
voľnosti.

Podstatné a nepodstatné stupne voľnosti
Pri riešení konkrétnych fyzikálnych úloh vždy postupujeme tak, že vesmír rozdelíme na skúmaný systém
a na okolie. Predpokladáme pritom, že stupne voľnosti popisujúce okolie sú nepodstatné a preto ich
do našich úvah nezahŕňame. Podstatnými sú potom stupne voľnosti skúmaného systému.

Často sa však používa aj menej triviálna deľba stupňov voľnosti na podstatné a nepodstatné. Vo
fyzike tuhých látok napríklad obvykle neprihliadame na to, že jadrá pozostávajú z nukleónov a tie zase
z kvarkov. Vnútorné stupne voľnosti jadier pokladáme za irelevantné, pretože sa obvykle zaujímame
o procesy pri takých excitačných energiách (alebo teplotách), pri ktorých môžeme predpokladať, že
jadrové stupne voľnosti sú v ich základnom stave.1 Z toho istého dôvodu pri štúdiu elektrónových
vlastností obvykle môžeme zanedbať prítomnosť plne obsadených hlboko ležiacich a celkom prázdnych
vysoko ležiacich pásov.

Efektívny model
Vráťme sa na chvíľu k problému semiklasickej dynamiky elektrónov, ktorý sme skúmali v II.3. V
jednoelektrónovom priblížení máme riešiť Schrödingerovu rovnicu (SchR) s hamiltoniánom

H = − ~2

2m
4+ V (x) + U(x),

kde V (x) je periodický mriežkový potenciál a U(x) je slabé vonkajšie pole. V II.3 sme ukázali, že v
dostatočne slabých poliach sa možno obmedziť na pohyb vnútri jedného pásu a výsledkom eliminácie
ostatných pásov je možnosť popísať pohyb elektrónu novým (tzv. efektívnym) hamiltoniánom

Heff = εn(−i∇) + U(x),

kde εn(k) je disperzný zákon ponechaného pásu n. Všimnime si, že pri eliminácii nepodstatných stupňov
voľnosti (v našom príklade Wannierových orbitálov pre pásy m 6= n) došlo k zmene tvaru hamiltoniánu
pre ponechané stupne voľnosti (Wannierove orbitály pásu n).

K zmene tvaru modelu pri eliminácii stupňov voľnosti dochádza prakticky vždy. Ďalším nám už zná-
mym príkladom je napríklad eliminácia fonónových stupňov voľnosti vo zviazanom elektrón-fonónovom
probléme, ktorej výsledkom bola renormalizácia spektra elektrónov v blízkosti Fermiho plochy, pozri
II.16. Systematickou procedúrou na elimináciu nepodstatných stupňov voľnosti je tzv. renormalizačná
grupa, ktorej hlavnú ideu vyložíme v kapitole 16.

Efektívny model pre Mottov-Hubbardov izolant
Vo zvyšku tejto prednášky preskúmame konštrukciu efektívneho modelu v jednoduchej situácii, kedy
elimináciu nepodstaných stupňov voľnosti možno vykonať priamočiarou aplikáciou poruchovej teórie.

Skúmajme materiál s nedegenerovaným valenčným pásom popísaným Hubbardovým hamiltoniá-
nom

H = −t
∑
〈ij〉

∑
σ

(
c†iσcjσ + c†jσciσ

)
+ U

∑
i

ni↑ni↓, (1)

kde operátory c†iσ a ciσ kreujú a anihilujú elektróny vo Wannierovom orbitáli v bode i mriežky. Wan-
nierove orbitály v rôznych bodoch mriežky sú navzájom ortogonálne a tunelovaciu amplitúdu medzi
najbližšími bodmi mriežky 〈ij〉 sme označili t. Predpokladali sme tiež, že Coulombova interakcia je
extrémne tienená: konečné odpudzovanie U existuje iba pre elektróny na tom istom bode mriežky.

Predpokladajme naviac, že počet elektrónov N vo valenčnom páse je totožný s počtom N mriežko-
vých bodov, N = N , a že model sa nachádza v limite silnej väzby t� U . V takom prípade je prirodzené

1Tento argument neplatí pre jadrá s nenulovým spinom. V tomto prípade sú však rôzne natočenia jadrových spinov tiež
väčšinou irelevantné, okrem prípadov kedy skúmame napr. jadrovú magnetickú rezonanciu alebo jadrový magnetizmus.
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za neporušenú časť hamiltoniánu vziať operátor H0 = U
∑

i ni↑ni↓. Spektrum neporušeného problému
teda vyzerá nasledovne:

• E = 0: každý bod mriežky obsadený práve jedným elektrónom; táto degenerovaná hladina obsa-
huje 2N spinových konfigurácií |µ〉

• E = U : oproti E = 0 mriežka obsahuje jeden dvojnásobne obsadený bod (dublón) a jeden
prázdny bod (holón); degenerovaná hladina

• E = 2U : oproti E = U mriežka obsahuje ďalší holón-dublónový pár; degenerovaná hladina

• ...

Očakávame, že kinetická energia H ′ = −t
∑
〈ij〉
∑

σ

(
c†iσcjσ + c†jσciσ

)
sníme degenerácie jednotlivých

hladín, ale pre malé t základný stav zostane izolantom.

Poruchová teória v degenerovanom prípade
Nech |µ〉 sú vlastné stavy neporušeného hamiltoniánu H0 s energiou Eµ = 0 a nech |n〉 sú všetky
ostatné vlastné stavy H0 s energiami En > 0. Vlastné stavy |ψ〉 hamiltoniánu H, t.j. stavy spĺňajúce
SchR H|ψ〉 = E|ψ〉 s vlastnou energiou E rozviňme do úplného systému stavov

|ψ〉 =
∑
µ

cµ|µ〉+
∑
n

cn|n〉.

Dosadením tohto rozvoja do SchR dostaneme systém rovníc pre koeficienty cµ a cn:

(E − Eµ)cµ =
∑
µ′

H ′µµ′cµ′ +
∑
n

H ′µncn, (2)

(E − En)cn =
∑
µ′

H ′nµ′cµ′ +
∑
n′

H ′nn′cn′ , (3)

kde sme zaviedli označenie H ′µµ′ = 〈µ|H ′|µ′〉 a podobne pre ostatné kombinácie indexov.
Naším cieľom je nájsť korekcie k energii Eµ do druhého rádu v t. Budeme predpokladať, že ko-

eficienty cµ sú veľké, rádu t0, kým ostatné koeficienty cn sú nanajvýš rádu t1. O porušenej energii E
budeme predpokladať, že korekcia E − Eµ je nanajvýš rádu t1, a preto rozdiel E − En je veľký, rádu
t0. Podľa rovnice (3) preto koeficient cn do rádu t1 možno písať ako

cn ≈
1

E − En

∑
µ′

H ′nµ′cµ′ ≈
1

Eµ − En

∑
µ′

H ′nµ′cµ′ .

Dosadením tohto výsledku do rovnice (2) dostaneme rovnicu platnú do rádu t2:

(E − Eµ)cµ =
∑
µ′

[
H ′µµ′ +

∑
n

H ′µn
1

Eµ − En
H ′nµ′

]
cµ′ . (4)

Táto rovnica určuje, ako sa pod vplyvom poruchy zmenia energie degenerovaných základných stavov
|µ〉: rôzne lineárne kombinácie popísané koefientmi cµ budú mať rôzne energie. Všimnime si, že rov-
nicu (4) možno zapísať ako SchR v podpriestore základných stavov, [Eµ +Heff ] |ψ〉 = E|ψ〉, kde sme
zaviedli nasledovný efektívny hamiltonián, ktorý pôsobí v podpriestore základných stavov:

Heff = H ′ +
∑
n

H ′|n〉〈n|H ′

Eµ − En
,

kde sumácia beží cez všetky excitované stavy |n〉. Úloha o rozštiepení degenerovanej hladiny sa teda
redukuje na diagonalizáciu efektívneho Hamiltoniánu Heff v podpriestore základných stavov. Tento
podpriestor je obvykle podstatne menší ako celý Hilbertov priestor úlohy (pozri cvičenia).
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Poruchová teória pre Hubbardov model
V Hubbardovom modeli pre všetky dvojice stavov |µ〉, |µ′〉 zo základného podpriestoru platí 〈µ′|H ′|µ〉 =
0. Naviac, 〈n|H ′|µ〉 6= 0 platí iba pre stavy |n〉 s práve jedným holón-dublónovým párom, preto ener-
getický menovateľ v Heff je zakaždým En −Eµ = U . Pre maticové elementy efektívneho hamiltoniánu
preto dostávame

〈µ′|Heff |µ〉 = − 1

U

∑
n

〈µ′|H ′|n〉〈n|H ′|µ〉 = − 1

U
〈µ′|

(
H ′
)2 |µ〉,

kde v druhom kroku sme sumu cez |n〉 rozšírili na všetky stavy Hilbertovho priestoru (čím sme výsledok
nezmenili!) a následne sme využili ich úplnosť. Na tomto mieste je vhodné si všimnúť, že operátor H ′

presúva elektróny pozdĺž liniek 〈ij〉. Je však zrejmé, že maticový element 〈µ′| (H ′)2 |µ〉 bude nenulový,
len ak jeden z operátorov H ′ presunie elektróny povedzme z bodu i do bodu j, kým druhý z operátorov
H ′ ich vráti naspäť (spin elektrónov sa pritom môže preklopiť). Preto maticové elementy Heff možno
písať ako sumu operátorov na linkách 〈ij〉, t.j. 〈µ′|Heff |µ〉 =

∑
〈ij〉〈µ′|Xij |µ〉, kde sme zaviedli operátor

Xij = − t
2

U

∑
σ,σ′

(
c†iσcjσc

†
jσ′ciσ′ + c†jσciσc

†
iσ′cjσ′

)
.

Použitím komutačných vzťahov pre fermióny ďalej ľahko nahliadneme, že

−
∑
σ,σ′

(
c†iσcjσc

†
jσ′ciσ′ + c†jσ′ciσ′c

†
iσcjσ

)
= 2

∑
σ,σ′

c†iσc
†
jσ′cjσciσ′ −

∑
σ

(
c†iσciσ + c†jσcjσ

)
.

Všimnime si, že maticové elementy druhého člena na pravej strane medzi všetkými dvojicami stavov
|µ〉, |µ′〉 zo základného podpriestoru sú rovné −2, preto v tomto podpriestore možno písať

Xij =
2t2

U

∑
σ,σ′

c†iσc
†
jσ′cjσciσ′ −

2t2

U
.

Keďže stavy |µ〉 sú spinovými konfiguráciami, očakávame, že operátor Xij sa bude dať alternatívne
zapísať pomocou operátorov spinu Si = 1

2c
†
iασαβciβ .

2 Vhodnou voľbou sa zdá byť skalárny súčin
Si · Sj , pretože tento operátor nezávisí od voľby súradnicovej sústavy v spinovom priestore. Na jeho
vyhodnotenie použijeme tzv. Fierzovu identitu σαβ ·σγδ = 2δαδδβγ−δαβδγδ, pomocou ktorej dostaneme

4t2

U
Si · Sj =

t2

U

∑
α,β

(
2c†iαciβc

†
jβcjα − c

†
iαciαc

†
jβcjβ

)
→ 2t2

U

∑
α,β

c†iαc
†
jβcjαciβ −

t2

U
,

kde šípka znázorňuje rovnosť v podpriestore vlastných stavov. Porovnanie s výrazom pre Xij teda dáva

Xij = J

(
Si · Sj −

1

4

)
,

kde J = 4t2/U . Efektívnym modelom pre Mottov-Hubbardov izolant (až na nezaujímavý konštantný
posun energie) je teda antiferomagnetický Heisenbergov model

Heff = J
∑
〈ij〉

Si · Sj (5)

s výmennou konštantou J . Stojí za zmienku, že efektívny model (5) má celkom iný tvar ako pôvodný
model (1): novými stupňami voľnosti sú kvantové spiny 1/2, kým pôvodnými stupňami voľnosti boli
elektróny nesúce ako spin, tak aj náboj. Eliminované teda boli reálne nábojové fluktuácie a ponechali
sme (do druhého rádu poruchovej teórie) iba virtuálne nábojové fluktuácie, ktoré generujú výmennú
konštantu J .

2Pozri dodatok.
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Hamiltonián (5) definuje tzv. Heisenbergov model. Pre J > 0 treba očakávať, že susedné spiny
majú tendenciu usporiadať sa navzájom protibežne. V takomto prípade hovoríme o antiferomagnetic-
kom Heisenbergovom modeli (AFMH model).

Cvičenia
1. Ukážte, že operátory Si = 1

2
c†iασαβciβ spĺňajú komutačné vzťahy pre moment hybnosti.

2. Dokážte Fierzovu identitu.
3. Porovnajte vysokoteplotné entropie pre nasledujúce modely s N � 1 mriežkovými bodmi: (a) Heisenbergov model,
(b) Hubbardov model pri polovičnom zaplnení. Návod: použite Stirlingov vzorec.
4. Ukážte, že Lennardovu-Jonesovu interakciu možno chápať ako efektívnu interakciu medzi atómami inertných plynov.
Ktoré stupne voľnosti sme pritom zanedbali? Ako vyzerá pôvodný hamiltonián obsahujúci aj zanedbané stupne voľnosti?

2 Symetrie a zákony zachovania

V tejto prednáške vysvetlíme, čo rozumieme pod symetriou systému a popíšeme fyzikálne dôsledky
symetrií. Nakoniec preskúmame symetrie AFMH modelu.

Transformácia stavov systému
Stavy skúmaného systému označme |ψ〉. Pri manipulácii so systémom (napríklad pri otočení alebo
posunutí) sa stavy systému navzájom transformujú. V Zelenej učebnici (kapitola 13) sa táto zmena
interpretuje tak, že otočené alebo posunuté prístroje vyrábajú otočené alebo posunuté stavy. Zmena
stavov pri manipulácii nech je popísaná operátorom U , t.j. stav |ψ〉 nech sa transformuje na stav
|ψ′〉 = U |ψ〉. V našich úvahách sa obmedzíme na skúmanie tzv. globálnych manipulácií, ktoré nemenia
vzdialenosti medzi časticami. Nezaujímame sa teda napr. o permutácie identických častíc.

Pred manipuláciou bola pravdepodobnosť, že systém pripravený v stave |ψ〉 nájdeme v stave |φ〉,
daná štvorcom |〈φ|ψ〉|2 prekryvu týchto stavov. Po manipulácii sa táto pravdepodobnosť nemá zmeniť,
teda pre všetky dvojice stavov |ψ〉 a |φ〉 má platiť

|〈φ′|ψ′〉|2 = |〈φ|ψ〉|2.

Podľa Wignerovej vety existujú len 2 možnosti: alebo je operátor U unitárny a pri vhodnej voľbe fáz
platí 〈φ′|ψ′〉 = 〈φ|ψ〉, alebo je operátor U antiunitárny a pri vhodnej voľbe fáz platí 〈φ′|ψ′〉 = 〈ψ|φ〉.
V unitárnom prípade je U lineárny operátor a z podmienky 〈φ′|ψ′〉 = 〈φ|U †U |ψ〉 = 〈φ|ψ〉 vyplýva
U †U = UU † = 1.3 Antiunitárnemu prípadu sa budeme podrobnejšie venovať neskôr.

Ak manipulácia U parametricky závisí od jednej alebo viacerých spojitých premenných, potom
takúto manipuláciu nazývame spojitou. Na druhej strane, ak existuje nanajvýš spočítateľný počet
manipulácií U daného typu, takéto manipulácie nazveme diskrétnymi.

Množina manipulácií spolu s operáciou skladania vytvára grupu.4 Spojité manipulácie nutne ob-
sahujú identitu U = 1 ako limitný prípad. Ale operátor U = 1 je unitárny, preto pre všetky spojité
manipulácie musí byť operátor U unitárny. Antiunitárnymi operátormi U teda môžu byť popísané
iba diskrétne manipulácie. Najdôležitejším príkladom manipulácie s antiunitárnym U je tzv. inverzia
času, ktorej sa budeme venovať neskôr. Až do odvolania preto budeme predpokladať, že operátor U je
unitárny.

Nech maticové elementy operátora X pred manipuláciou sú 〈χ|X|ψ〉. Aby sa tieto maticové ele-
menty pri manipulácii nezmenili, musí platiť, že po manipulácii veličine X zodpovedá operátor X ′ =
UXU †. Naozaj, v takom prípade bude platiť

〈χ′|X ′|ψ′〉 = 〈χ|U †X ′U |ψ〉 = 〈χ|U †UXU †U |ψ〉 = 〈χ|X|ψ〉,

3Výsledok UU† = 1 vyplýva z pozorovania, že U† je ľavou inverznou maticou k U a zo známej skutočnosti, že pravá
a ľavá inverzná matica sú totožné.

4Striktne vzaté, treba rozlišovať medzi manipuláciami (s prvkami g) a operátormi U(g). Grupu vytvárajú manipulácie
g, kým operátory U(g) tvoria (vo všeobecnom prípade iba tzv. projektívnu) reprezentáciu tejto grupy, pozri Zelenú
učebnicu, str. 405.
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kde v poslednom kroku sme využili, že U je unitárny operátor.

Symetria fyzikálneho systému
Skúmaný systém vyhlásime za symetrický voči manipulácii U , ak sa jeho hamiltonián pri tejto mani-
pulácii nezmení, t.j. ak platí H ′ = UHU † = H, alebo ekvivalentne [U,H] = 0. Manipuláciu U , voči
ktorej je systém symetrický, nazývame symetriou systému.

Príklady: posunutie a otočenie systému
Teraz ukážeme, že akP je operátor celkovej hybnosti študovaného systému, potom operátor posunutia o
amožno vyjadriť v tvare T (a) = eia·P/~. Začnime prípadom jednej bezspinovej častice v x-reprezentácii.
Nech stav pred posunutím je popísaný vlnovou funkciou ψ(x) a stav po posunutí má vlnovú funkciu
ψ(x + a). Posunutú vlnovú funkciu možno dostať Taylorovým rozvojom pôvodnej vlnovej funkcie:

ψ(x + a) = ψ(x) + (a · ∇)ψ(x) +
1

2!
(a · ∇)2 ψ(x) + . . . = ea·∇ψ(x) = eia·P/~ψ(x),

pretože P = −i~∇. Dôkaz pre N -časticovú vlnovú funkciu ψ(x1, . . . ,xN ) beží analogicky:

ψ(x1 + a, . . . ,xN + a) = ea·
∑N
i=1∇iψ(x1, . . . ,xN ) = eia·P/~ψ(x1, . . . ,xN ),

pretože P = −i~
∑N

i=1∇i. Ak má byť študovaný systém symetrický voči všetkým posunutiam, musí
pre všetky a operátor posunutia komutovať s hamiltoniánom, [T (a), H] = 0. Napríklad voľbou infini-
tezimálne malých posunutí o a ľahko ukážeme, že potom musia všetky komponenty operátora hybnosti
komutovať s hamiltoniánom, [P, H] = 0. Stredné hodnoty operátorov, ktoré komutujú s hamiltoniá-
nom, sa však v čase nemenia. Teda v translačne invariantnom systéme je hybnosť zachovávajúcou
sa veličinou5 a vlastné stavy takýchto systémov možno zvoliť tak, že sú zároveň vlastnými stavmi
operátora celkovej hybnosti.

Analogickým postupom možno ukázať, že v systémoch s operátorom celkového momentu hybnosti
J je R(α) = eiα·J/~ operátorom otočenia o uhol α okolo osi v smere vektora α. Ak je študovaný
systém symetrický voči otočeniam, vzťah [R(α), H] = 0 musí platiť pre všetky α. Preto musí platiť
[J, H] = 0 pre všetky zložky J. Keďže (na rozdiel od hybnosti) zložky operátora momentu hybnosti
navzájom nekomutujú, v rotačne symetrickom systéme sa nemôžu súčasne zachovať všetky zložky J.
Vlastné stavy systému však možno charakterizovať veľkosťou momentu hybnosti J2 a jednou z jeho
zložiek, povedzme Jz, pretože platí [H,J2] = [H,Jz] = [Jz,J2] = 0.

Výsledky pre posunutie a otočenie možno zovšeobecniť: vo funkcionálnej analýze sa ukazuje, že
každý unitárny operátor U možno zapísať v tvare U = eiA, kde A je hermitovský operátor. Preto ak U
je symetriou systému, potom platí [A,H] = 0 a veličina popísaná operátorom A sa zachováva (je tzv.
integrálom pohybu).

Spektrálne dôsledky symetrie
Najprv dokážeme fyzikálne očividné tvrdenie, že ak sú dva vlastné stavy systému zviazané operáciou
symetrie, potom ich vlastné energie musia byť rovnaké. Naozaj, nech |ψ′〉 = U |ψ〉 a nech H|ψ〉 = E|ψ〉.
Počítajme energiu stavu |ψ′〉:

H|ψ′〉 = HU |ψ〉 = UH|ψ〉 = UE|ψ〉 = E|ψ′〉,

kde sme v druhom kroku využili, že [U,H] = 0. Teória reprezentácií nám (pre známu grupu symetrie)
naviac umožňuje povedať, aké sú možné degenerácie (t.j. násobnosti) energetických hladín. Možné de-
generácie sú pritom dané iba grupou symetrie systému a nezávisia od explicitného tvaru hamiltoniánu.

Druhý výsledok, ktorý dokážeme, možno použiť na redukciu numerickej náročnosti riešenia Sch-
rödingerovej rovnice pre systémy s integrálmi pohybu A. Ukážeme, že maticové elementy hamilto-
niánu medzi stavmi s rôznymi vlastnými hodnotami α 6= β operátora A (t.j. medzi stavmi “s rôz-
nymi symetriami”) sú nulové. Naozaj, nech A|ψ〉 = α|ψ〉 a A|φ〉 = β|φ〉. Počítajme maticový element

5Niekedy máme do činenia so systémami, ktoré sú symetrické pri posunutiach iba v niektorých smeroch. Zložky
hybnosti sa potom zachovávajú iba v symetrických smeroch.
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〈φ|[A,H]|ψ〉 = 〈φ|(AH − HA)|ψ〉. Pretože A je integrálom pohybu, výsledkom musí byť 0. Ak však
využijeme, že stavy |ψ〉, |φ〉 sú vlastnými stavmi A, z druhého vyjadrenia dostaneme

0 = (α− β)〈φ|H|ψ〉.

Ale keďže α 6= β, musí byť 〈φ|H|ψ〉 = 0, v zhode s naším očakávaním. Preto hamiltonián možno dia-
gonalizovať postupne v podpriestoroch s rôznymi symnetriami. Podobne ako pri diskusii o degenerácii
hladín, teória reprezentácií umožňuje podobné úvahy dotiahnuť oveľa ďalej.

Priestorová inverzia
Mnoho fyzikálnych úloh, napríklad tá o pohybe elektrónu v atóme vodíka, vykazujú tzv. symetriu voči
priestorovej inverzii. Ide o príklad diskrétnej symetrie popísanej unitárnym operátorom UP . Žiadame,
aby transformačné vlastnosti operátorov polohy, hybnosti a spinu častice i pri priestorovej symetrii
boli nasledovné:

r′i = UP riU
†
P = −ri, p′i = UPpiU

†
P = −pi, S′i = UPSiU

†
P = Si. (6)

Pôsobenie na operátory ri a pi je prirodzené: pri invertovaní zmenia znamienko všetky polohy (merané
od centra inverzie). Následne zmenia znamienko aj rýchlosti častíc. Pre moment hybnosti Li = ri×pi
preto musí platiť UPLiU

†
P = Li a transformačné vlastnosti spinu sú dôsledkom pozorovania, že spin je

vnútorný moment hybnosti. Vektory, ktoré pri inverzii menia znamienko, nazývame polárnymi, kým
vektory nemeniace znamienko nazývame axiálnymi.

Stojí za zmienku, že komutačné vzťahy medzi transformovanými polohami r′i a hybnosťami p′i sú
rovnaké ako vzťahy medzi ri a pi v neinvertovanom systéme, [r′i,p

′
j ] = [ri,pj ], ako aj má byť.

Keďže dve po sebe nasledujúce inverzie zodpovedajú identickej transformácii, žiadame, aby platilo
U2
P = 1, čiže U−1

P = UP . Ale z unitarity vyplýva, že U−1
P = U †P , teda UP = U †P a operátor UP je

hermitovský. Tento operátor preto zodpovedá fyzikálnej veličine - (priestorovej) parite.
Ak pre nejaký problém platí, že jeho hamiltoniánH zapísaný pomocou dynamických premenných ri,

pi a Si sa pri priestorovej inverzii (voči pevne zvolenému počiatku) nezmení, t.j. ak platí H = UPHU
†
P ,

potom o tomto probléme povieme, že je symetrický voči inverzii. Vlastné stavy takéhoto systému
možno charakterizovať vlastnou hodnotou P operátora UP , tzv. paritou stavu. Ľahko nahliadneme, že
prípustné sú iba dve hodnoty parity P = ±1. Naozaj, nech UP |ψ〉 = P |ψ〉. Potom U2

P |ψ〉 = P 2|ψ〉, ale
keďže U2

P = 1, musí platiť P 2 = 1.
Nakoniec prepíšeme vzťahy (6) v jazyku druhého kvantovania pre elektróny. Za bázu jednočastico-

vých stavov vezmemeWannierove orbitály v mriežkových bodochR a obmedzíme sa na stavy z jediného
pásu. Nech pre jednoduchosť je parita Wannierových orbitálov (tzv. vnútorná parita) P = +1. Potom
vzťahy (6) možno zapísať ako transformačné vzťahy pre kreačné a anihilačné operátory pre elektróny
v orbitáli R a s priemetom spinu σ = ±1:(

c†Rσ

)′
= UP c

†
RσU

†
P = c†−Rσ, (cRσ)′ = UP cRσU

†
P = c−Rσ. (7)

Ak naviac uvážime, že fyzikálne vákuum má paritu 1, t.j. UP |0〉 = |0〉, vzťahy (7) nám povedia nielen
ako sa transformujú operátory, ale aj stavy systému.

Obrátenie času
Ďalšou často študovanou diskrétnou manipuláciou je operácia otočenia času T . Pri tejto manipulácii
žiadame, aby platili nasledovné transformačné vzťahy pre operátory polohy, hybnosti a spinu častice i:

r′i = T riT † = ri, p′i = T piT † = −pi, S′i = T SiT † = −Si. (8)

Pri otočení času v nejakom okamihu sa totiž v tomto okamihu nezmenia polohy častíc, ale iba ich
rýchlosti. Následne zmenia znamienko aj momenty hybnosti Li = ri × pi, a preto žiadame aj zmenu
znamienka spinu.

Je tu však problém: skúmajme napríklad operátorovú identitu [x, p] = i~ pre jednu z častíc. Po
obrátení času sa operátor [x, p] transformuje nasledovne: T [x, p]T † = [T xT †, T pT †] = [x,−p] = −i~.
Na druhej strane, ak by operátor T bol unitárny, potom by sa c-číslo i~ pri obrátení času nezmenilo,
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T i~T † = i~. Teda po obrátení času by sa rovnosť operátorov [x, p] a i~ narušila. Uvidíme, že tento
problém možno odstrániť, ak budeme predpokladať, že operátor T je antiunitárny.

Antilineárne operátory
Operátor A pôsobiaci v Hilbertovom priestore nazveme antilineárnym, ak pre všetky dvojice stavov
|φ〉, |χ〉 z Hilbertovho priestoru a pre všetky dvojice komplexných čísel α, β platí

A(α|φ〉+ β|χ〉) = α∗A|φ〉+ β∗A|χ〉 = α∗|Aφ〉+ β∗|Aχ〉,

kde sme stavy A|φ〉 (kde operátor A pôsobí doprava) označili skrátene |Aφ〉. V tomto texte budeme
zakaždým predpokladať, že antilineárny operátor pôsobí doprava.6

V Hilbertovom priestore zvoľme ľubovoľnú úplnú ortonormálnu bázu s prvkami |n〉, |m〉, . . .. V
tejto báze môžeme písať A|n〉 =

∑
mAmn|m〉, kde c-čísla Amn sú maticové elementy Amn = 〈m|An〉.

Pôsobenie antilineárneho operátora A na všeobecný stav |φ〉 =
∑

n cn|n〉 je potom dané vzťahom
A|φ〉 =

∑
m,n c

∗
nAmn|m〉.

Antilineárny operátor A† hermitovsky združený k operátoru A definujeme jeho pôsobením na
bázové vektory, A†|n〉 =

∑
mAnm|m〉. Všimnime si, že táto definícia sa líši od definície operátora

hermitovsky združeného k lineárnemu operátoru. Pôsobenie antilineárneho operátora A† na všeobecný
stav |ψ〉 =

∑
n dn|n〉 je potom dané vzťahom A†|ψ〉 =

∑
m,n d

∗
nAnm|m〉. Odtiaľto ľahko nahliadneme,

že platí
〈φ|A†ψ〉 = 〈ψ|Aφ〉. (9)

Antiunitárne operátory
Antilineárny operátor U , pre ktorý platí UU† = 1, nazývame antiunitárnym operátorom. Pre každý stav
|ψ〉 =

∑
n dn|n〉 má teda platiť, že U|U†ψ〉 = |ψ〉. Rozvojom oboch strán tejto rovnosti do bázových

stavov ľahko nahliadneme, že matica koeficientov Umn musí byť unitárna,
∑

m UkmU∗nm = δkn. Na
druhej strane, z ekvivalentnej formulácie unitarity matice

∑
m UmkU∗mn = δkn explicitným výpočtom

ľahko ukážeme, že pre všetky vektory |φ〉 platí U†|Uφ〉 = |φ〉, čiže zároveň platí U†U = 1.
V ďalšom výklade využijeme dve vlastnosti antiunitárnych operátorov U :

(i) ak c je obyčajné c-číslo, potom platí UcU† = c∗UU† = c∗;
(ii) z rovnice (9) vyplýva, že pre skalárne súčiny platí 〈Uχ|Uψ〉 = 〈ψ|U†Uχ〉 = 〈ψ|χ〉.

Operátor obrátenia času
Nech T je antiunitárny operátor, ktorý spĺňa vzťahy (8). Ukážeme, že tento operátor realizuje obrátenie
času. Naozaj, nech pri tejto manipulácii stavy |ψ〉 prejdú na stavy |ψ′〉 = |T ψ〉. Pre skalárne súčiny
potom platí 〈φ′|ψ′〉 = 〈T φ|T ψ〉 = 〈ψ|φ〉, čiže štvorce prekryvov |〈ψ|φ〉|2 zostávajú nezmenené, ako aj
má byť.

Podobne operátorová identita [x, p] = i~ nie je pri obrátení času narušená. Naozaj, pri obrátení
času sa operátor [x, p] transformuje nasledovne: T [x, p]T † = [T xT †, T pT †] = [x,−p] = −i~. Na druhej
strane, keďže operátor T je antiunitárny, c-číslo i~ sa transformuje ako T i~T † = −i~. Preto rovnosť
operátorov [x, p] a i~ nie je pri obrátení času narušená.

Dvakrát po sebe aplikovaná operácia obrátenia času T 2 vracia systém do pôvodného stavu a musí
byť rovná konštante. Dá sa ukázať (pozri cvičenie), že táto konštanta je rovná ±1, t.j. T 2 = ±1.

Nakoniec opäť prepíšeme vzťahy (8) v jazyku druhého kvantovania pre elektróny v tej istej báze
ako pri priestorovej inverzii:(

c†Rσ

)′
= T c†RσT

† = σc†R−σ, (cRσ)′ = T cRσT † = σcR−σ, const′ = T constT † = const∗. (10)

Predpokladali sme pritom, že Wannierove orbitály sa pri časovej inverzii nezmenia. Ak naviac uvážime,
že pre fyzikálne vákuum platí T |0〉 = |0〉, vzťahy (10) nám opäť povedia nielen ako sa pri obrátení času

6Ľahko overíme, že súčinAB dvoch antilineárnych operátorovA, B je lineárny operátor. Potom pri výpočte maticového
elementu 〈ψ|AB|φ〉 môžeme operátor AB nechať pôsobiť doľava aj doprava a dostaneme rovnaký výsledok. Ak by sme
tento maticový element chceli interpretovať pomocou pôsobenia B doprava s výsledkom |Bφ〉 a pôsobenia A doľava s
výsledkom 〈ψA|, museli by sme žiadať, aby platil vzťah 〈ψ|AB|φ〉 = [〈ψA|Bφ〉]∗, pretože ak |φ〉 =

∑
n cn|n〉, potom v

rozvoji 〈ψ|AB|φ〉 figurujú koeficienty cn, kým v rozvoji |Bφ〉 figurujú koeficienty c∗n. Ľahko overíme, že tento vťah bude
splnený, ak pôsobenie doľava definujeme vzťahom 〈ψA|χ〉 ≡ [〈ψ|Aχ〉]∗
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transformujú operátory, ale aj stavy systému. Ľahko tiež možno overiť, že v systéme s N elektrónmi
platí T 2 = (−1)N (pozri cvičenia).

Symetrie AFMH modelu
Pomocou vzťahov (6,8) ľahko nahliadneme, že AFMH model je symetrický voči priestorovej symetrii
aj voči obráteniu času. Naviac, ak model formulujeme na konečnej mriežke s periodickými okrajovými
podmienkami, potom AFMH model je symetrický voči posunutiam Ta, kde a je ľubovoľný mriež-
kový vektor. Dá sa ukázať, že v takom prípade možno vlastné stavy modelu charakterizovať pomocou
kvázihybnosti (pozri cvičenia).

Nakoniec preskúmajme symetriu AFMH modelu voči otočeniam v spinovom priestore. Definujme
operátor celkového spinu mriežky Stot =

∑
i Si. Ľahko sa nahliadne, že tento operátor spĺňa komu-

tačné vzťahy pre spin (pozri cvičenia). V tomto odstavci ukážeme, že AFMH hamiltonián komutuje so
všetkými zložkami operátora Stot, ako aj s operátorom S2

tot = (Sxtot)
2 + (Sytot)

2 + (Sztot)
2:

[H,Stot] = 0, [H,S2
tot] = 0. (11)

Keďže operátory spinu na rôznych mriežkových bodoch komutujú, prvý zo vzťahov (11) bude platiť,
ak [Si ·Sj , Ski +Skj ] = 0 pre ľubovoľnú kartézsku zložku k spinu. Ak skalárny súčin zapíšeme po zložkách
a použijeme Einsteinovu sumačnú konvenciu, dostaneme

[SliS
l
j , S

k
i + Skj ] = [Sli, S

k
i ]Slj + Sli[S

l
j , S

k
j ] = iεlkm(Smi S

l
j + SliS

m
j ) = 0,

kde v druhej rovnosti sme využili komutačný vzťah [Sli, S
k
i ] = iεlkmS

m
i pre operátory spinu, kde

εlkm je úplne antisymetrický tenzor. V poslednej rovnosti sme využili, že tenzor εlkm je pri zámene
indexov m a l antisymetrický, kým výraz Smi S

l
j + SliS

m
j je pri tejto operácii symetrický. Tým je prvý

zo vzťahov (11) dokázaný. Zo vzťahu [H,Sktot] = 0 naviac triviálne vyplýva [H, (Sktot)
2] = 0, pretože

[H, (Sktot)
2] = H(Sktot)

2−(Sktot)
2H = SktotHS

k
tot−SktotHS

k
tot. Teda druhý zo vzťahov (11) je jednoduchým

dôsledkom prvého vzťahu. Tým je dôkaz komutačných vzťahov (11) je hotový.
Dôsledkom výsledku (11) a komutačného vzťahu [S2

tot, S
k
tot] = 0 je, že vlastné stavy AFMH modelu

možno zvoliť ako vlastné stavy operátorov celkového spinu S2
tot a jeho priemetu na zvolenú os, napr.

Sztot.

Cvičenia
1. Ukážte, že ak štvorec antiunitárneho operátora je rovný konštante, potom táto konštanta je rovná +1 alebo -1. Po-
mocou vzťahov (10) ukážte, že pre ľubovoľný bázový stav |ψ〉 systému s N elektrónmi platí T 2|ψ〉 = (−1)N |ψ〉, a preto
T 2 = (−1)N .
2. Kramersova degenerácia. Ukážte, že v systéme s nepárnym počtom elektrónov, pre ktorý platí [T , H] = 0, ku každému
vlastnému stavu |ψ〉 systému existuje k nemu ortogonálny stav |ψ′〉 s tou istou vlastnou hodnotou energie.
3. Diskrétna translačná symetria AFMH modelu. Posunutie o mriežkový vektor a definujme vzťahom TaSRT

†
a = SR+a.

Ukážte, že posunutie Ta je symetriou AFMH modelu s periodickými okrajovými podmienkami. Presvedčte sa, že prvky
grupy posunutí navzájom komutujú. (Grupa posunutí je abelovská.) Podľa teórie reprezentácií možno pre abelovskú
grupu zvoliť sadu bázových stavov |k, λ〉 kde ~k je tzv. kvázihybnosť a λ sú všetky ostatné kvantové čísla stavu (ako
napr. Stot a Sztot), pričom platí Ta|k, λ〉 = eik·a|k, λ〉. Ukážte, že kvázihybnosť ~k je definovaná modulo vektory reciproč-
nej mriežky.
4. Dokážte, že operátor Stot spĺňa komutačné pravidlá pre spin. Aké hodnoty Sztot pripadajú do úvahy na mriežke s
párnym počtom N bodov?

3 Heisenbergov model: exaktné výsledky

V tejto a v dvoch nasledujúcich prednáškach budeme skúmať AFMH model (5) na mriežke, ktorá
pozostáva z 2 podmriežok A a B s rovnakým počtom N/2 spinov, pričom interagujú iba spiny z
opačných podmriežok. Takúto mriežku budeme nazývať bipartitnou a jej koordinačné číslo označíme
z. Okrem toho budeme predpokladať, že v uzloch mriežky sú spiny o veľkosti S. V predošlej prednáške
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sme ukázali, že v efektívnom modeli pre jednopásový Hubbardov model sa realizuje S = 1
2 , ale dá sa

čakať, že v komplikovanejších situáciách sa môžu vyskytnúť aj modely s vyšším spinom S.
Najprv ukážeme, že základný stav (kvantového) AFMH modelu nie je totožný s klasickým základ-

ným stavom. Potom sformulujeme niekoľko presných výsledkov pre skutočný základný stav modelu.
Hlavným výsledkom je, že celkový spin základného stavu AFMH modelu na bipartitnej mriežke je
nulový.

Explicitný tvar AFMH modelu
V ďalšom výklade bude často užitočné explicitne rozpísať skalárny súčin v definícii AFMH modelu (5).
Tak dostaneme rozklad AFMH hamiltoniánu

H = J
∑
〈ij〉

[
Szi S

z
j +

1

2
(S+
i S
−
j + S−i S

+
j )

]
= Hz +H⊥, (12)

kde Hz je hamiltonián tzv. Isingovho modelu a člen H⊥, ktorý pochádza zo zložiek x,y skalárneho
súčinu, je zapísaný pomocou tzv. zvyšovacích a znižovacích operátorov spinu, pozri dodatok.

Dvojspinový model
V tomto odstavci preskúmame základný stav dvojspinového modelu s hamiltoniánom H = JS1 · S2.
Využijúc tvar hamiltoniánu (12) ľahko overíme, že ak spiny majú veľkosť S, potom energia klasického
(Néelovho) základného stavu |N〉 = |+ S,−S〉 je 〈N |H|N〉 = −JS2. Na druhej strane, presné riešenie
dvojspinového modelu dostaneme nasledovným prepisom hamiltoniánu: H = J

2

(
S2

tot − S2
1 − S2

2

)
, kde

sme zaviedli operátor celkového spinu Stot = S1 + S2. Je zrejmé, že v základnom stave nadobúda cel-
kový spin minimálnu možnú hodnotu, Stot = 0. Keďže S2

1 = S2
2 = S(S+ 1), presná energia základného

stavu je E0 = −JS(S + 1). Ukázali sme teda, že Néelov stav nie je základným stavom dvojspinového
AFMH modelu.

Model na mriežke
V tomto odstavci ukážeme, že Néelov stav |N〉 (t.j. stav so spinmi s priemetom +S na podmriežke
A a spinmi s priemetom −S na podmriežke B) nie je vlastným stavom AFMH hamiltoniánu, čiže ne-
môže byť ani základným stavom. Našou úlohou bude ukázať, že stav H|N〉 nie je c-číselným násobkom
stavu |N〉. Ľahko nahliadneme, že Hz|N〉 = −1

2N zJS
2|N〉, teda klasický stav |N〉 je vlastným stavom

z-ovej časti Heisenbergovho modelu. Avšak pôsobenie operátora H⊥ na stav |N〉 vyrába konfigurácie
s priemetom spinu S − 1 na podmriežke A a s priemetom spinu −S + 1 na niektorom zo susedných
bodov v podmriežke B, ktoré sú ortgonálne k |N〉. Preto |N〉 zjavne nie je vlastným stavom operátora
H⊥. Presný základný stav AFMH modelu je známy iba pre lineárnu retiazku spinov, pre viacrozmerné
systémy však základný stav nie je známy.

Nerovnosti pre energiu základného stavu
Teraz ukážeme, že napriek tomu, že vlnovú funkciu základného stavu AFMH modelu nepoznáme,
jeho energiu E0 vieme odhadnúť pomerne dobre. Horný odhad energie základného stavu dostaneme
porovnaním s vhodným variačným stavom - napr. s energiou Néelovho stavu 〈N |H|N〉, pre ktorú podľa
predošlého odstavca platí 〈N |H|N〉 = 〈N |Hz|N〉 = −1

2N zJS
2.

Dolný odhad E0 dostaneme nasledovne. Pre každý mriežkový bod j definujme operátor Hj ako tú
časť Heisenbergovho modelu, do ktorej vstupuje spin Sj . Hamiltonián potom možno písať ako súčet
príspevkov Hj od jednotlivých mriežkových bodov j, H = 1

2

∑
j Hj , kde faktor 1

2 zohľadňuje, že v
takomto rozklade je každá väzba započítaná dvakrát. Ak teraz energiu základného stavu hamiltoniánu
Hj označíme ε, potom pre energiu základného stavu musí platiť E0 ≥ 1

2N ε.
7

Teraz zostáva explicitne vypočítať ε. Ak definujeme operátor Lj =
∑

τ̂ Sj+τ̂ , kde suma prebieha
cez z spinov susediacich s bodom j, potom hamiltonián Hj môžeme vyjadriť v tvare

Hj = JSj · Lj = J
2

[
(Sj + Lj)

2 − S(S + 1)− L2
j

]
.

7Ak totiž pre ľubovoľný stav celej mriežky |ψ〉 použijeme rozvoj |ψ〉 =
∑
nk cnk|ψ

n
j 〉|φk〉, kde |ψnj 〉 sú vlastné stavy

operátora Hj a |φk〉 je ľubovoľná ortonormálna báza pre mriežku s vylúčením bodu j a jeho najbližších susedov, potom
ľahko nahliadneme, že platí 〈ψ|Hj |ψ〉 ≥ 〈ψ0

j |Hj |ψ0
j 〉 = ε, kde |ψ0

j 〉 je základný stav operátora Hj . Odtiaľto vyplýva
〈ψ|H|ψ〉 = 1

2

∑
j〈ψ|Hj |ψ〉 ≥

N
2
ε.
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Nech veľkosť spinu Lj v základnom stave jem. Potom veľkosť spinu Sj+Lj musí byť aspoň l = |m−S|.
Energiu základného stavu dostaneme minimalizáciou ε = J

2 minm [l(l + 1)− S(S + 1)−m(m+ 1)].
Ľahko nahliadneme (pozri cvičenia), že minimum sa realizuje pre maximálne možné m = zS a energia
v mimime je ε = −JS(zS + 1).

Kombináciou horného a dolného odhadu dostávame nasledovný exaktný výsledok pre energiu zá-
kladného stavu:

−N z
2
JS2(1 +

1

zS
) ≤ E0 ≤ −

N z
2
JS2. (13)

Relatívne korekcie energie oproti klasickému hornému odhadu teda môžu byť nanajvýš rádu 1
zS . Tieto

korekcie budú malé na mriežkach s vysokým koordinačným číslom z a pre veľké spiny S. Najväčšie
kvantové korekcie možno naopak očakávať pre spiny S = 1

2 na lineárnej retiazke, kde z = 2.

Vlnové funkcie v báze spinových konfigurácií
Odteraz budeme predpokladať, že Heisenbergov model popisuje spiny S = 1

2 . Budeme skúmať rozklady
vlnových funkcií vlastných stavov do spinových konfigurácií |ψ〉 =

∑
µ aµ|µ〉.

Začnime štúdiom maticových elementov Hµµ′ = 〈µ|H|µ′〉 Heisenbergovho hamiltoniánu v tejto
báze. Keďže hamiltonián Heisenbergovho modelu môžeme zapísať v tvare H = Hz + H⊥, pozri rov-
nicu (12), stačí separátne preskúmať maticové elementy Hz a H⊥. Operátor Hz je zjavne diagonálny,
keďže nepreklápa spiny: 〈µ′|Hz|µ〉 = Ezµδµ′µ s reálnou hodnotou energie Ezµ. Výsledkom pôsobenia
operátora H⊥ na stav |µ〉 je lineárna superpozícia stavov |µ′〉, z ktorých každý vznikne preklopením
dvojice spinov v rôznych podmriežkach. Maticové elementy 〈µ′|H⊥|µ〉 teda nadobúdajú iba dve možné
hodnoty: J

2 , ak |µ
′〉 môže vzniknúť takýmto preklopením, alebo 0, ak takéto preklopenie neexistuje.

Naviac zjavne platí 〈µ′|H⊥|µ〉 = 〈µ|H⊥|µ′〉. To znamená, že matica Hµµ′ je reálna a symetrická a
všetky jej nediagonálne prvky sú nezáporné.

SchR pre vlnovú funkciu vlastného stavu H|ψ〉 = E|ψ〉 možno v báze spinových konfigurácií písať
ako maticovú rovnicu

Hµµ′aµ′ = Eaµ (14)

s reálnou vlastnou hodnotou E. Ak teraz rovnicu (14) sčítame (alebo odčítame a výsledok vydelíme
imaginárnou jednotkou) s rovnicou k nej komplexne združenou, dostaneme nové vlastné vektory aµ+a∗µ
a 1
i (aµ − a

∗
µ) s tou istou vlastnou energiou, ktoré sú explicitne reálne. To znamená, že vlastné stavy v

báze spinových konfigurácií možno voliť ako čisto reálne.

Marshallovo znamienkové pravidlo
Nech (normalizovaná) vlnová funkcia základného stavu AFMH modelu má tvar |ψ〉 =

∑
µ aµ|µ〉. Pre

strednú hodnotu energie základného stavu potom dostávame

〈ψ|H|ψ〉 =
∑
µ

|aµ|2Ezµ +
J

2

∑
µ

aµ
∑
µ′(µ)

aµ′ , (15)

kde do sumy µ′(µ) prispievajú iba tie konfigurácie |µ′〉, ktoré môžu vzniknúť preklopením dvojice spinov
v konfigurácii |µ〉. Pýtajme sa teraz, aká voľba znamienok optimalizuje energiu 〈ψ|H|ψ〉 pri daných
veľkostiach koeficientov |aµ|. Odpoveď dáva tzv. Marshallovo znamienkové pravidlo:

aµ = (−1)P (µ) × |aµ|, (16)

kde P (µ) je počet spinov ↑ na podmriežke A. Naozaj: keďže každé preklopenie spinov na bipartit-
nej mriežke mení počet spinov v podmriežke A, pri takejto voľbe znamienok vo výraze (15) platí
aµaµ′ = −|aµ||aµ′ |, čo (pre J > 0) zjavne minimalizuje strednú hodnotu 〈ψ|H|ψ〉.

Základné stavy v sektoroch s fixovaným Sztot

Skúmajme normovaný základný stav v sektore s fixovanou hodnotou celkového spinu Sztot. V rozvoji
takéhoto stavu do spinových konfigurácií môžu samozrejme vystupovať iba tie konfigurácie |µ〉, ktoré
majú predpísanú hodnotu Sztot. V tomto odstavci ukážeme, že žiaden z koeficientov aµ pre prípustné
konfigurácie nesmie byť nulový. Dôkaz urobíme sporom a pobeží v dvoch krokoch.
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V prvom kroku predpokladajme, že pre niektorú z prípustných konfigurácií |µ〉 platí aµ = 0.
Ukážeme, že potom aj pre všetky konfigurácie |µ′〉, do ktorých sa z |µ〉 dá dostať preklopením dvojice
spinov, musí platiť aµ′ = 0. Toto pozorovanie plynie z rovnice (14), pretože na pravej strane dostaneme
nulu a na ľavej strane dostaneme súčet koeficientov aµ′ , pričom všetky z nich podľa Marshallovho
pravidla musia mať rovnaké znamienka - teda musia byť nulové.

V druhom kroku si stačí uvedomiť, že z ľubovoľnej konfigurácie |µ〉 sa dá dostať sériou preklopení
dvojice spinov do ľubovoľnej inej konfigurácie |µ′〉 v tom istom sektore Sztot, pozri cvičenia. Preto po-
stupné aplikovanie kroku 1 vedie k záveru, že ak pre jednu z konfigurácií platí aµ = 0, potom všetky
ostatné amplitúdy aµ′ v danom sektore musia byť tiež nulové. To však znamená, že pôvodný stav nebol
normovaný. Dostali sme spor.

Model H∞
Skúmajme pomocný (nefyzikálny) model pre spiny S = 1

2 na bipartitnej mriežke s N bodmi s hamil-
toniánom

H∞ = J
∑
i∈A

∑
j∈B

Si · Sj ,

v ktorom všetky spiny z podmriežky A interagujú so všetkými spinmi z podmriežky B. Model teda
obsahuje interakcie aj medzi nekonečne vzdialenými bodmi, odtiaľ jeho označenie H∞.

Ak zavedieme celkové spiny podmriežok SA, SB a celkový spin celej mriežky Stot = SA+SB, ľahko
nahliadneme, že podobne ako v dvojspinovom modeli platí

H∞ = JSA · SB =
J

2

[
S2

tot − S2
A − S2

B

]
.

Pre náš ďalší výklad je dôležité pozorovanie, že v sektore Sztot = M je energia ďalekodosahového modelu
H∞ minimalizovaná maximalizáciou SA = SB = N/4 a minimalizáciou celkového spinu, Stot = M .

Ľahko sa nahliadne, že SchR pre H∞ má opäť tvar (14) a jediný rozdiel oproti AFMH modelu je,
že matica (H∞)µµ′ obsahuje viac nediagonálnych prvkov. Preto pre základný stav |ψ∞〉 =

∑
µ bµ|µ〉

modelu H∞ opäť platí Marshallovo znamienkové pravidlo a všetky koeficienty bµ sú nenulové.

Spin základného stavu
Keďže pre AFMH model ako aj pre H∞ platí Marshallovo znamienkové pravidlo, ich základné stavy
vo fixovanom sektore Sztot = M , t.j. |ψ〉 =

∑
µ aµ|µ〉 a |ψ∞〉 =

∑
µ bµ|µ〉, nemôžu byť navzájom kolmé.

Naozaj, pri rovnakej znamienkovej konvencii bude platiť

〈ψ∞|ψ〉 =
∑
µ

b∗µaµ =
∑
µ

|bµ||aµ| > 0,

pretože všetky koeficienty |aµ| aj |bµ| musia byť nenulové.
Na druhej strane, vďaka rotačnej invariancii hamiltoniánov H a H∞ musia mať stavy |ψ〉 a |ψ∞〉 os-

tré hodnoty celkového spinu. Tieto hodnoty označme Stot a S∞tot, pričom vieme, že S∞tot = M . Skúmajme
veličinu 〈ψ∞|S2

tot|ψ〉. Ak operátor S2
tot necháme pôsobiť doprava, dostaneme Stot(Stot + 1)〈ψ∞|ψ〉. Pri

pôsobení doľava však ten istý výraz dá hodnotu M(M + 1)〈ψ∞|ψ〉. Keďže 〈ψ∞|ψ〉 6= 0, aby sa oba
výrazy rovnali, musí zjavne platiť Stot = M . Teda základný stav Heisenbergovho modelu v sektore
Sztot = M nesie celkový spin Stot = M , t.j. minimálnu možnú hodnotu v danom sektore. Ľahko sa
naviac ukáže, že v sektore Sztot = M existuje jediný stav, ktorý minimalizuje energiu. Dva rôzne dege-
nerované základné stavy by totiž museli spĺňať Marshallovo pravidlo, a preto by nemohli byť navzájom
ortogonálne.

Ostáva už len zistiť, ktorý sektor Sztot = M dáva absolútne najnižšiu energiu AFMH modelu. Túto
otázku možno jednoducho zodpovedať, ak si uvedomíme, že (vďaka rotačnej invariantnosti) energia
nemôže závisieť od priemetu celkového spinu Sztot, ale iba od jeho veľkosti Stot. Ukázali sme totiž, že v
sektore Sztot = M , v ktorom sa nachádzajú stavy s celkovým spinom Stot ≥M , je jediným optimálnym
stavom stav Stot = M . To však znamená, že energia základného stavu ako funkcia Stot spĺňa nerovnosť

E0(Stot) < E0(S′tot), ak Stot < S′tot.



15

Teda energia AFMH modelu je (ostro) rastúcou funkciou Stot a základný stav AFMH modelu na bi-
partitnej mriežke je singlet, tj. stav s celkovým spinom Stot = 0.

Cvičenia
1. Nech |N〉 je Néelov stav. Lineárnou kombináciou koľkých spinových konfigurácií je stav H|N〉?
2. Nech m je násobkom S, ktorý nadobúda hodnoty od 0 po zS a nech l = |m− S|. Nájdite minimálnu možnú hodnotu
energie ε = J

2
minm [l(l + 1)− S(S + 1)−m(m+ 1)].

3. Na štvorcovej mriežke dokážte, že z ľubovoľnej konfigurácie |µ〉 sa dá dostať sériou preklopení dvojice susedných spinov
do ľubovoľnej inej konfigurácie |µ′〉 v tom istom sektore Sztot.
4. Vypočítajte veľkosť podpriestoru Sztot = M pre systém N spinov S = 1

2
. Pre aké M je podpriestor najväčší? Porov-

najte veľkosť tohto podpriestoru s veľkosťou celého Hilbertovho priestoru.

4 Heisenbergov model: spinové vlny

Verí sa,8 že základný stav AFMH modelu na hyperkubických 2D a 3D mriežkach možno popísať pomo-
cou poruchovej teórie, vychádzajúc z neporušeného hamiltoniánu Hz s klasickým základným stavom
(Néelov stav), ak H⊥ vezmeme ako poruchu. V tejto prednáške skonštruujeme takúto poruchovú teóriu
pre spiny veľkosti S. Otázke o hlbšom význame takto skonštruovaného základného stavu, napr. jeho
symetriách, sa budeme venovať v nasledujúcej prednáške.

Bozónová reprezentácia spinov
Hilbertov priestor pre spin S v mriežkovom bode i pozostáva z 2S + 1 stavov s rôznymi priemetmi na
fixovanú os, v našom prípade os z: Szi = S, S− 1, . . . ,−S+ 1,−S. Nech v klasickom Néelovom stave je
priemet spinu v danom mieste povedzme Szi = S. Po zapnutí poruchy H⊥ budú v danom mieste okrem
stavu Szi = S s nenulovou (avšak menšou) pravdepodobnosťou prítomné aj ostatné priemety spinu.

Naším cieľom v tomto odstavci bude interpretovať 2S + 1 spinových stavov ako bozónové stavy
s ni = 0, 1, . . . , 2S bozónmi. Priradenie urobíme tak, že najpravdepodobnejšej hodnote spinu prira-
díme stav s 0 bozónmi. Počet bozónov potom bude popisovať odchýlku od klasického stavu v danom
mriežkovom bode. Predpokladajme teda, že na podmriežke A platí Szi ≈ S, kým na podmriežke B je
Szi ≈ −S. Spinové operátory budeme reprezentovať pomocou bozónových operátorov podľa Holsteina
a Primakoffa, pričom explicitný tvar tejto reprezentácie závisí od podmriežky:

Bozónová reprezentácia spinu v bode i na podmriežke A
Namiesto trojice operátorov spinu Szi , S

±
i zavedieme kreačné a anihilačné operátory a†i , ai, ktoré spĺňajú

kánonické komutačné vzťahy pre bozóny. Pomocou týchto operátorov vyjadríme spinové operátory
nasledovne:

Szi = S − a†iai, S+
i =

√
2S

√
1−

a†iai
2S

ai, S−i =
√

2Sa†i

√
1−

a†iai
2S

. (17)

V týchto vyjadreniach treba výrazy
√

1 + x rozumieť ako Taylorov rozvoj, t.j.
√

1 + x = 1+ x
2−

x2

8 +. . ..
Priamym dosadením sa ľahko nahliadne, že ak operátory a†i , ai spĺňajú bozónové komutačné vzťahy,
potom operátory (17) spĺňajú komutačné vzťahy pre operátory spinu (pozri cvičenia).

Z vyjadrenia pre operátor Szi vyplýva, že 2S + 1 stavov Szi = S, S − 1, . . . ,−S + 1,−S je reprezen-
tovaných stavmi s ni = 0, 1, . . . , 2S a-bozónmi (znižovačmi spinu). V Hilbertovom priestore bozónov
ale existujú aj (nefyzikálne) stavy s väčším počtom častíc, t.j. s menšou hodnotou Szi . Všimnime si
však, že podľa (17) aplikácia znižovača S−i na stav s priemetom Szi = −S dá nulu! Preto tieto stavy
nie sú dosiahnuteľné a teória je konzistentná.

Bozónová reprezentácia spinu v bode j na podmriežke B
Namiesto trojice operátorov spinu Szi , S

±
i zavedieme tentokrát bozónové kreačné a anihilačné operátory

8Okrem iného na základe numerických simulácií a difrakčných experimentov.
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b†i , bi. Pomocou týchto operátorov vyjadríme spinové operátory nasledovne:

Szj = −S + b†jbj , S+
j =

√
2Sb†j

√
1−

b†jbj

2S
, S−j =

√
2S

√
1−

b†jbj

2S
bj . (18)

Opäť sa ľahko nahliadne, že ak operátory b†i , bi spĺňajú bozónové komutačné vzťahy, potom operá-
tory (18) spĺňajú komutačné vzťahy pre operátory spinu.

Z vyjadrenia pre operátor Szi vyplýva, že stavmi s ni = 0, 1, . . . , 2S b-bozónmi (zvyšovačmi spinu)
je v tomto prípade reprezentovaných 2S+1 stavov Szi = −S,−S+1, . . . , S−1, S. Z rovnakého dôvodu
ako na podmriežke A nie sú stavy s väčším počtom bozónov dosiahnuteľné.

Heisenbergov model v bozónovej reprezentácii
Priblíženie spinových vĺn
Ak zavedieme z vektorov τ̂ spájajúcich zvolený mriežkový bod s jeho najbližšími susedmi, potom
Heisenbergov model na mriežke s podmriežkami A a B možno zapísať v tvare

H = J
∑
i∈A

z∑
τ̂=1

Si · Si+τ̂ ,

kde suma beží cez N/2 bodov i v podmriežke A a body i + τ̂ ležia v podmriežke B. Všimnime si, že
každá dvojica najbližších susedov je takto započítaná práve raz.

Naším cieľom bude popísať základný stav AFMH modelu a jeho excitácie s malými energiami.
Budeme preto predpokladať, že iba málo spinov je excitovaných. Hamiltonián prepíšeme pomocou re-
prezentácie Holsteina-Primakoffa (17, 18) a výsledok rozvinieme do kvadratických členov v operátoroch
a, b. Takéto priblíženie nazývame priblížením spinových vĺn. Pôvod tohto názvu sa ozrejmí neskôr. Ak
využijeme vzťahy

Szi S
z
j ≈ −S2 + S(a†iai + b†jbj),

1

2
S+
i S
−
j ≈ Saibj ,

1

2
S−i S

+
j ≈ Sa

†
ib
†
j ,

dostaneme nasledovný kvadratický hamiltonián v operátoroch a, b:

H ≈ −N z
2
JS2 + JSz

∑
i∈A

a†iai +
∑
j∈B

b†jbj

+ JS
∑
i∈A

z∑
τ̂=1

(
a†ib
†
i+τ̂ + aibi+τ̂

)
. (19)

Prvý člen v hamiltoniáne (19) popisuje energiu klasického Néelovho stavu. Tretí člen popisuje kvantové
korekcie spôsobené spinovými fluktuáciami H⊥. Druhý člen zohľadňuje, že spinové fluktuácie zvyšujú
Isingovu energiu Hz.

Obr. 1: Heisenbergov model na štvorcovej mriežke. Vľavo: reálny priestor. Vpravo: recipročný priestor.

Translačná invariantnosť
Pre konkrétnosť majme na chvíľu na mysli 2D hyperkubickú (t.j. štvorcovú) mriežku. Hoci AFMH
model je invariantný voči posunutiam o ľubovoľné násobky vektorov (a, 0) a (0, a), klasický Néelov
stav sa zreprodukuje iba pri posunutiach o násobky vektorov a1 = (a, a) a a2 = (a,−a), t.j. iba pri
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tých posunutiach, ktoré prevádzajú podmriežku A do podmriežky A (a nie do B). Teda translačná
symetria Néelovho stavu je nižšia než symetria AFMH modelu. Naviac, elementárna bunka Néelovho
stavu s elementárnymi vektormi a1 a a2 obsahuje 2 body pôvodnej mriežky (po jednom z podmriežok
A a B) a je oproti nej zrotovaná o 45◦.

Vďaka translačnej invariantnosti AFMH modelu je výhodné definovať nasledovné Fourierove trans-
formácie bozónových operátorov na podmriežkach A a B s N/2 bodmi:

a†i =

√
2

N
∑
k

e−ik·Ria†k, b†j =

√
2

N
∑
k

e−ik·Rjb†k.

Vlnový vektor k v týchto výrazoch leží v recipročnom priestore podmriežky A, t.j. v tzv. magnetickej
zóne, ktorá je zrotovaná o 45◦ a má polovičný objem oproti Brillouinovej zóne pôvodnej mriežky. V
magnetickej zóne sa nachádza N/2 dovolených k-bodov a operátory ak a bk spĺňajú také isté bozónové
komutačné vzťahy, ako operátory ai a bi (pozri cvičenia).

Po Fourierovej transformácii nadobudne hamiltonián v spinovo-vlnovom priblížení tvar9

H = −N z
2
JS2 + JSz

∑
k

[
a†kak + b†−kb−k + γk(a†kb

†
−k + akb−k)

]
, (20)

kde sme zaviedli označenie γk = 1
z

∑
τ̂ e

ik·τ̂ . Porovnanie výsledkov (19) a (20) ukazuje, že Fourierova
transformácia odstránila podstatný problém hamiltoniánu (19), ktorým bolo vzájomné previazanie
všetkých bozónových operátorov, a v hamiltoniáne (20) sú už zviazané iba módy ak a b†−k.

Diagonalizácia spinovo-vlnového hamiltoniánu
Naším konečným cieľom bude zapísať hamiltonián (20) ako súčet voľných bozónových módov (alebo
harmonických oscilátorov), podobne ako sa nám to podarilo pri skúmaní kmitov mriežky v harmo-
nickom priblížení. Ak zavedieme stĺpcový vektor bozónových operátorov xk a c-číselnú maticu Mk

pomocou vzťahov

xk =

(
ak
b†−k

)
, Mk =

(
1 γk
γk 1

)
,

potom hamiltonián (20) môžeme formálne zapísať v maticovom tvare

H = −N z
2
JS(S + 1) + JSz

∑
k

x†kMkxk. (21)

Tu si treba všimnúť, že kvôli prehodeniu poradia operátorov b†−k a b−k oproti hamiltoniánu (20) sa
zmenil aj prvý (c-číselný) člen v hamiltoniáne (21).

Ako uvidíme o chvíľu, ak chceme hamiltonián (21) zapísať ako súčet voľných bozónových módov,
potrebujeme od módov xk prejsť k novým módom ξk, a to tak, aby hamiltonián zapísaný pomocou
ξk bol diagonálny. V našom prípade diagonalizáciu zrealizujeme transformáciou ξk = Ukxk k dvojici
nových bozónových operátorov α, β, vytvárajúcej nový stĺpcový vektor

ξk =

(
αk

β†−k

)
,

kde za transformačnú maticu vezmeme

Uk =

(
uk vk
vk uk

)
.

Ľahko nahliadneme (pozri cvičenia), že transformácia od xk ku ξk je kánonická (t.j. od bozónov k
bozónom), ak pre reálne prvky matice Uk platí

u2
k − v2

k = 1. (22)
9S hamiltoniánmi podobného tvaru sa stretneme aj pri skúmaní supratekutosti a supravodivosti, zakaždým v priblížení

stredného poľa.
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Inverzná transformácia má tvar xk = Vkξk s transformačnou maticou

Vk = (Uk)−1 =

(
uk −vk
−vk uk

)
.

V operátoroch α, β tak hamiltonián (21) nadobudne tvar

H = −N z
2
JS(S + 1) + JSz

∑
k

ξ†kV
†
kMkVkξk.

Doteraz sme nešpecifikovali tvar matíc Uk a Vk. V ďalšom kroku zvolíme Vk tak, aby matica V †kMkVk
bola diagonálna. Explicitný výpočet ukazuje, že diagonálne prvky matice V †kMkVk musia byť rovnaké.
Žiadame preto, aby platil vzťah

JSzV †kMkVk = εk1, (23)

kde 1 je jednotková matica.10 Tak dostaneme

H = −N z
2
JS(S + 1) +

∑
k

εkξ
†
kξk = −N z

2
JS(S + 1) +

∑
k

εk

(
α†kαk + β−kβ

†
−k

)
.

Doteraz neznáme bezrozmerné koeficienty uk, vk a energie εk nájdeme riešením systému rovníc (22,23).
Tak dostaneme (pozri cvičenia)

εk = JSz
√

1− γ2
k, u2

k =
1

2

 1√
1− γ2

k

+ 1

 , v2
k =

1

2

 1√
1− γ2

k

− 1

 , (24)

kde volíme uk > 0 a vk > 0. Vďaka párnosti funkcie γk = γ−k zároveň platia vzťahy εk = ε−k,
uk = u−k a vk = v−k. Po elementárnej úprave nakoniec dostaneme výsledný hamiltonián v spinovo-
vlnovom priblížení:

H = E0 +
∑
k

εk

(
α†kαk + β†kβk

)
. (25)

Hamiltonián (25) popisuje systém voľných bozónov typu α a β. Základným stavom hamiltoniánu (25)
je vákuum oboch typov bozónov, pričom energia základného stavu má hodnotu

E0 = −N z
2
JS(S + δ), δ =

2

N
∑
k

(
1−

√
1− γ2

k

)
. (26)

Excitovanými stavmi hamiltoniánu (25) sú stavy s konečnými počtami bozónov, pričom energia εk
oboch typov bozónov je rovnaká a závisí od vlnového vektora k. V nasledujúcej prednáške uvidíme, že
tieto bozóny možno interpretovať ako excitácie typu spinových vĺn.

Všimnime si, že vďaka faktoru δ vo výraze (26) kvantové fluktuácie znižujú energiu základného
stavu oproti jej hodnote v klasickom Néelovom stave. Ak výraz (26) porovnáme s exaktným výsled-
kom pre energiu základného stavu (13), dostaneme podmienku 0 ≤ δ ≤ 1/z. Spinovo-vlnová teória
je konzistentná s touto podmienkou, pretože numerickým výpočtom δ ľahko overíme, že v 3D máme
δ = 0.097 < 0.167 = 1/6, v 2D máme δ = 0.158 < 0.25 = 1/4 a v 1D je δ = 0.363 < 0.5 = 1/2 (pozri
cvičenia). Stojí tiež za povšimnutie, že so znižovaním koordinačného čísla z kvantová korekcia δ rastie.

Spinovo-vlnový model ako efektívny model
Zrekapitulujme si výklad v tejto prednáške. Vychádzali sme z predstavy o tom, že skutočný základný
stav možno dostať poruchovým rozvojom okolo klasického Néelovho stavu. Pre základný stav a jeho
excitácie s nízkou energiou sme potom dostali výsledok (25), ktorý možno interpretovať ako ďalší

10Stojí za zmienku, že prechod od maticeMk k diagonálnej matici εk1 nie je obyčajnou diagonalizáciou matice, známou
z algebry. To sa okrem iného prejaví tak, že εk nie sú vlastnými číslami matice Mk. Matematické aspekty diagonalizácie
hamiltoniánu (21) sú hlbšie skúmané v práci J.L. Hemmen, Z. Phys. B 38, 271 (1980).
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netriviálny príklad efektívneho hamiltoniánu: v AFMH modeli pre spiny S majú elementárne excitácie
bozónovú štatistiku, bez ohľadu na veľkosť spinu S.

Ak sa teda vrátime k Hubbardovmu modelu v limite U � t pri polovičnom zaplnení, pozorujeme
v ňom zaujímavú sekvenciu efektívnych modelov pri postupnom znižovaní energie Λ: pri vysokých
energiách ide o model pre elektróny so spinom S = 1/2 a nábojom −e, pri energiách J � Λ � U
je efektívnym modelom AFMH model pre (fermiónové) spiny S = 1/2 ktoré nenesú náboj, kým pri
nízkych energiách Λ� J sú efektívnym stupňom voľnosti bozónové spinové vlny.

Cvičenia
1. Ukážte, že operátory (17) spĺňajú komutačné vzťahy pre operátory spinu. Návod: využite vzťahy [a†a, a] = −a a
podobne [a†a, a†] = +a†.
2. Dokážte, že Fourierova transformácia nemení komutačné vzťahy.
3. Dokážte, že ak platí podmienka (22), potom transformácia ξk = Ukxk je kánonická.
4. Ukážte, že výsledky (24) sú riešením rovníc (22,23).
5. Numericky vypočítajte koeficient δ vystupujúci v energii základného stavu (26).

5 Heisenbergov model: spontánne narušenie symetrie

V tejto prednáške si najprv uvedomíme, že základný stav v spinovo-vlnovej teórii je stavom so spon-
tánne narušenou (spojitou) symetriou a ukážeme, že v takejto situácii bude excitačné spektrum obsa-
hovať tzv. Goldstoneove módy. Zavedieme tiež pojem parametra usporiadania a demonštrujeme vplyv
kvantových a tepelných fluktuácií na jeho veľkosť. Napokon ozrejmíme, ako môže dôjsť k spontánnemu
narušeniu symetrie v systéme s nezachovávajúcim sa parametrom usporiadania.

Spontánne narušenie symetrie v spinovo-vlnovej teórii
Vďaka prítomnosti skalárnych súčinov v AFMH hamiltoniáne tvar tohto hamiltoniánu nezávisí od
voľby súradníc v spinovom priestore. Na druhej strane, Néelov stav |N 〉 očividne od tejto voľby závisí:
spiny sú v tomto stave v závislosti od podmriežky orientované buď rovnobežne alebo protibežne s
vopred zvolenou osou v spinovom priestore. Základný stav spinovo-vlnovej teórie |0〉, t.j. vákuum pre
bozóny typov α, β, túto vlastnosť zdedí. Teda symetria stavu |0〉 je nižšia, než symetria hamiltoniánu.
V takejto situácii hovoríme, že stav |0〉 je stavom so spontánne narušenou symetriou.

Vo všeobecnosti symetriu systému U vyhlásime za spontánne narušenú, ak základný stav systému
|0〉 nie je invariantný voči tejto symetrii, t.j. ak výsledkom pôsobenia U na stav |0〉 nie je ten istý
stav (až na fázu): U |0〉 6= eiθ|0〉. Takýto základný stav je potom nevyhnutne degenerovaný, pričom
degenerované vlnové funkcie základného stavu možno navzájom transformovať operáciami symetrie U .
V takomto prípade budú infinitezimálne externé polia schopné vybrať jeden konkrétny stav spomedzi
degenerovaných stavov.

Skúmajme teraz ten istý systém pri vysokých teplotách, T →∞. V tejto limite očakávame, že ter-
modynamický stav systému11 bude symetrický voči U . Potom však musí existovať teplota Tc (kritická
teplota), nad ktorou je termodynamický stav systému symetrický a pod ktorou je symetria hamilto-
niánu spontánne narušená.

Goldstoneove módy
Podľa spinovo-vlnovej teórie pozostáva excitačné spektrum AFMH modelu z 2 typov voľných častíc α
a β. Obidva typy častíc sú bozóny, ktoré nesú kvázihybnosť k a rovnakú energiu εk, teda ich spektrá
sú exaktne degenerované. Pri skúmaní fyzikálnej povahy častíc α a β je užitočné vyjadriť ich kreačné

11Ktorý je popísaný maticou hustoty systému, pozri IV.1.
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operátory pomocou pôvodných operátorov spinu:

α†k =

√
2

N

uk∑
i∈A

eik·Ria†i + vk
∑
j∈B

eik·Rjbj

 ≈√ 1

NS

uk∑
i∈A

eik·RiS−i + vk
∑
j∈B

eik·RjS−j

 ,
β†k =

√
2

N

vk∑
i∈A

eik·Riai + uk
∑
j∈B

eik·Rjb†j

 ≈√ 1

NS

vk∑
i∈A

eik·RiS+
i + uk

∑
j∈B

eik·RjS+
j

 ,
kde sme najprv operátory ξk vyjadrili cez pôvodné Holsteinove-Primakoffove operátory xk a následne
sme použili inverznú Fourierovu transformáciu. Využili sme tiež symetrie uk = u−k a vk = v−k. V
približných rovnostiach sme využili najnižšie členy rozvoja Holsteinovej-Primakoffovej transformácie

a†i ≈
1√
2S
S−i , ai ≈ 1√

2S
S+
i , b†j ≈

1√
2S
S+
j , bj ≈ 1√

2S
S−j .

Z približných rovností vidno, že častice α znižujú projekciu spinu na jednotlivých bodoch mriežky
Szi o 1. Keďže u2

k = 1+v2
k, amplitúda tohto znižovania je väčšia na podmriežke A než na podmriežke B,

teda toto znižovanie zároveň zmenšuje parameter usporiadania. Podobne, častice β zvyšujú projekciu
spinu na jednotlivých bodoch mriežky Szi o 1 (tentokrát dominantne na podmriežke B). Porovnanie
s klasickým výpočtom (pozri cvičenia) ukazuje, že častice α a β možno interpretovať ako kvantá
klasických tzv. spinových vĺn, t.j. precesného pohybu spinov okolo základného stavu, a nazývame ich
magnónmi. Vzťah medzi magnónmi a spinovými vlnami je pritom podobný vzťahu medzi fonónmi a
klasickými kmitmi mriežky.

Všimnime si, že na mriežke s mriežkovou konštantou a v dlhovlnnej limite k → 0 platí√
1− γ2

k ≈
√

2
zka, εk ≈ JS

√
2zka, uk ≈ vk ∝

√
1
ka .

Bozónový disperzný zákon má teda ten istý tvar ako pre dlhovlnné akustické fonóny. Obidva módy α
a β majú pre k → 0 nulovú energiu a takéto módy nazývame Goldstoneovými bozónmi.

Ukážeme, že existencia Goldstoneových bozónov je nevyhnutným dôsledkom spontánneho narušenia
spojitej symetrie. Naozaj, hamiltonián (20) možno zapísať ako súčet príspevkov jednotlivých módov v
tvare H = −N z2 JS(S + 1) +

∑
kHk, kde

Hk/(JSz) =
1

2

(
a†kak + aka

†
k

)
+

1

2

(
b†−kb−k + b−kb

†
−k

)
+ γk

(
a†kb
†
−k + akb−k

)
.

Ak využijeme, že a†k=0 ≈ S−A/
√
NS a b†k=0 ≈ S+

B/
√
NS, potom príspevok (tzv. anomálnych) módov

k = 0 možno zapísať v tvare

Hk=0 =
Jz

2N
[
S+

totS
−
tot + S−totS

+
tot

]
=
Jz

N
[
(Sxtot)

2 + (Sytot)
2
]
. (27)

Ak uvážime, že L2/(2I) je energia rotačného pohybu telesa s momentom hybnosti L a s momentom
zotrvačnosti I, potom Hk=0 popisuje energiu rotácie (v spinovom priestore) celej mriežky spinov okolo
osí x a y s momentom zotrvačnosti I = N~2

2Jz . V termodynamickej limite N →∞ však I →∞, a preto
energia anomálnych módov k = 0 musí byť nulová. Ak má byť disperzný zákon spinových vĺn spojitý,
v dlhovlnnej limite preto musí byť εk → 0.

Parameter usporiadania
Nech M̂ je operátorom intenzívnej fyzikálnej veličiny, ktorá sa pri aspoň jednej zo symetrií systému
nezachováva, [U, M̂ ] 6= 0, vďaka čomu vo vysokoteplotnej fáze 〈M̂〉 ≡ 1

Z

∑
n〈n|M̂ |n〉 = 0, t.j. stredná

hodnota 〈M̂〉 je nulová. Nech však zároveň v nízkoteplotnej fáze platí 〈M̂〉 6= 0. Takúto veličinu M̂
nazveme parametrom usporiadania. Bohužiaľ neexistuje všeobecný predpis na konštrukciu parametrov
usporiadania a ich identifikácia je často najťažšou úlohou pri štúdiu nových fáz. Prípad, kedy platí
[M̂,H] = 0, nazývame prípadom so zachovávajúcim sa parametrom usporiadania. Na druhej strane,
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ak platí [M̂,H] 6= 0, potom hovoríme o nezachovávajúcom sa parametri usporiadania. Obidva prípady
sa môžu vyskytnúť, častejší je však prípad s nezachovávajúcim sa parametrom usporiadania.12

V prípade antiferomagnetu je rozumnou voľbou parametra usporiadania M̂ operátor rozdielu mag-
netizácie oboch podmriežok,

M̂ =
1

N

∑
i∈A

Si −
∑
j∈B

Sj

 . (28)

Ide o vektorový parameter usporiadania, pretože spiny môžu v stave so spontánnym narušením symet-
rie zamrznúť ľubovoľným smerom.

Parameter usporiadania v spinovo-vlnovej teórii
V Néelovom stave polarizovanom v smere osi z očakávame, že nenulovú hodnotu má iba zložka 〈M z〉.
V tomto odstavci preto preskúmame predpoveď spinovo-vlnovej teórie pre veľkosť parametra usporia-
dania 〈M z〉. Podľa definičných vzťahov reprezentácie Holsteina-Primakoffa (17, 18) platí

〈M z〉 =
1

N

〈∑
i∈A

Szi −
∑
j∈B

Szj

〉
= S − 1

N
∑
k

〈a†kak + b†−kb−k〉 = S − δS, (29)

kde sme využili, že
∑

i∈A a
†
iai =

∑
k a
†
kak a

∑
j∈B b

†
jbj =

∑
k b
†
−kb−k. Stojí za povšimnutie, že v

spinovo-vlnovej teórii je parameter usporiadania 〈M z〉 zmenšený oproti hodnote S v Néelovom stave
o korekciu δS. Stredné hodnoty operátorov a, b je najjednoduchšie počítať prechodom od a, b k operá-
torom α, β. Tak dostaneme:

〈a†kak〉 = 〈(ukα†k − vkβ−k)(ukαk − vkβ†−k)〉 = u2
k〈α
†
kαk〉+ v2

k

[
1 + 〈β†−kβ−k〉

]
,

〈b†−kb−k〉 = 〈(−vkαk + ukβ
†
−k)(−vkα†k + ukβ−k)〉 = v2

k

[
1 + 〈α†kαk〉

]
+ u2

k〈β
†
−kβ−k〉.

Tieto vzťahy platia tak v základnom stave, t.j. pri teplote T = 0, ako aj pri konečnej teplote, pričom
〈α†kαk〉 = 〈β†−kβ−k〉 = n(εk), kde n(ε) je Boseho-Einsteinova rozdeľovacia funkcia. Po dosadení do
vzťahu (29) pre korekciu k 〈M z〉 dostaneme

δS =
2

N
∑
k

[
v2
k + nk(u2

k + v2
k)
]

=
1

N
∑
k

 1 + 2nk√
1− γ2

k

− 1

 , (30)

kde sme pre jednoduchosť zápisu zaviedli označenie nk = n(εk).
Skúmajme najprv korekciu δS pri nulovej teplote, kedy nk = 0. Numerickou integráciou výrazu (30)

dostaneme (pozri cvičenia) δS = 0.078 pre 3D mriežky a δS = 0.197 pre 2D mriežky. Pre 1D mriežky
však dostaneme δS →∞. To znamená, že v 1D teória nie je konzistentná a kvantové fluktuácie v 1D
usporiadanie kompletne rozrušia.13

Kvantová dolná kritická dimenzia (T = 0)
Podľa výsledku (30) je korekcia parametra usporiadania δS súčtom príspevkov od jednotlivých spino-
vých vĺn. Divergencia korekcie δS v 1D mriežkach má pôvod v príspevku od dlhovlnných módov k → 0,
kedy máme do činenia so sumou 1

N
∑

k 1/k. Zámenou sumy za integrál a prechodom do sférických sú-
radníc ľahko nahliadneme, že výsledok je úmerný výrazu I(D,L) =

∫Kmax

Kmin
dkkD−2, kde Kmin ∼ 1/L

je minimálny vlnový vektor na mriežke s lineárnym rozmerom L a Kmax ∼ 1/a je hraničná hodnota
vlnového vektora, nad ktorou nemožno použiť dlhovlnnú limitu.

V systémoch s dimenziou D > 1 dostaneme I(D,L) = (KD−1
max −KD−1

min )/(D − 1) a tento výsledok
zostane konečným aj v termodynamickej limite L→∞, kedy I(D,∞) = KD−1

max . To však znamená, že
pre D > 1 bude korekcia δS konečná a poruchová teória môže fungovať.

12Príkladom systému so zachovávajúcim sa parametrom usporiadania je feromagnetický Heisenbergov model, pozri
dodatok.

13Tento výsledok je v zhode s presným riešením 1D modelu pomocou tzv. Betheho ansatzu.
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V systéme s dimenziou D = 1 však dostaneme I(1, L) = ln(Kmax/Kmin) ∼ ln(L/a), čo je v
termodynamickej limite divergentná korekcia. Kvantovou dolnou kritickou dimenziou DLQ nazývame
poslednú (najväčšiu) dimenziu, pri ktorej nemôže dôjsť k narušeniu symetrie v základnom stave v
dôsledku kvantových fluktuácií. Podľa spinovo-vlnovej teórie pre AFMH model platí DLQ = 1.

Hohenbergova-Merminova-Wagnerova veta
Výsledok (30) možno použiť aj na odhad korekcie δS pri konečnej (ale nízkej) teplote T . Opäť očaká-
vame, že potenciálne singulárne príspevky pochádzajú z dlhovlnnej limity, kedy nk ∝ T/k, odkiaľ pre
príspevok tepelných fluktuácií vyplýva δST ∝ T

N
∑

k 1/k2. Prechodom od sumy k integrálu dostaneme
δST ∝ T

∫Kmax

Kmin
dkkD−3, kde Kmin ∼ 1/L je opäť minimálny vlnový vektor na mriežke, ale maximálny

vlnový vektor je tentokrát obmedzený Boseho-Einsteinovým rozdelením a Kmax ∝ T .
V systémoch s dimenziou D > 2 potom v termodynamickej limite dostaneme δST ∝ TD−2, teda

rastúca teplota spôsobuje pokles parametra usporiadania v súlade s očakávaniami. Avšak pre D =
2 dostaneme δST ∝ T ln(KmaxL), teda pri konečnej teplote tepelné fluktuácie v termodynamickej
limite rozrušia usporiadaný stav. Tento výsledok sa nazýva Hohenbergova-Merminova-Wagnerova veta.
Okrem tu načrtnutého argumentu vo formalizme teórie spinových vĺn existuje aj rigorózny dôkaz tohto
tvrdenia pre Heisenbergov model a podobné modely.

Poslednú (najväčšiu) dimenziu, pri ktorej nemôže dôjsť k narušeniu symetrie pri konečnej teplote v
dôsledku tepelných fluktuácií, nazývame dolnou kritickou dimenziou DL. Pre AFMH model a mnoho
ďalších systémov s lineárnym disperzným zákonom pre Goldstoneove módy je DL = 2.

Celkový spin stavu so spontánnym narušením symetrie
Definujme operátor celkového spinu podmriežky A, SA =

∑
i∈A Si, a obdobne aj operátor celkového

spinu podmriežky B, SB =
∑

j∈B Sj . Pre operátor celkového spinu potom zjavne platí Stot = SA+SB,
kým operátor magnetizácie (28) je daný vzťahom M̂ = (SA − SB)/N . Podľa vety o základnom stave
antiferomagnetického Heisenbergovho modelu je celkový spin základného stavu nulový. Teraz ukážeme,
že potom aj spiny podmriežok musia byť nulové, 〈SA〉 = 〈SB〉 = 0.

Náš dôkaz bude využívať pojem vektorového operátora. Pod vektorovým operátorom V rozumieme
operátor, pre ktorého kartézske zložky platia komutačné vzťahy

[Sktot, V
l] = iεklmV

m, (31)

kde εklm je úplne antisymetrický tenzor. Ak teraz vzťah (31) zľava aj sprava obložíme základným
stavom Heisenbergovho modelu |ψ〉 a využijeme, že Sktot|ψ〉 = 0, ľahko nahliadneme, že 〈ψ|V|ψ〉 = 0,
teda stredná hodnota všetkých vektorových operátorov v singletnom stave musí byť nulová.

Ale SA aj SB sú očividne vektorové operátory, preto musí platiť 〈SA〉 = 〈SB〉 = 0. Ukázali sme teda,
že v exaktnom základnom stave AFMH modelu musí byť parameter usporiadania nulový, 〈M̂〉 = 0.
Znamená to, že symetria AFMH modelu nemôže byť spontánne narušená?

Spontánne narušenie translačnej symetrie v kryštáli
Analogická situácia ako v AFMH modeli nastáva pri vzniku kryštálu: vlastný stav kryštálu by mal
mať dobre definovanú celkovú hybnosť ptot, a preto jeho poloha by musela mať nekonečnú neurčitosť.
Inými slovami, kryštál na prvý pohľad nemôže spontánne narušiť translačnú invariantnosť pohybových
rovníc pre elektróny a jadrá.

Ak však vytvoríme vlnový balík s neurčitosťou celkovej hybnosti kryštálu ∆p, potom môžeme kryš-
tál lokalizovať s presnosťou polohy ∆x ∼ ~/∆p. Nárast energie kryštálu v dôsledku lokalizácie je pritom
∆E ∼ (∆p)2

2M , kdeM je hmotnosť kryštálu ako celku. Avšak keďžeM∝ N , energia ∆E je zanedbateľne
malá (pozri cvičenia) a spontánne narušenie (translačnej) symetrie je možné.

Andersonova veža stavov
Posunutie kryštálu ako celku popisujú anomálne akustické módy s k = 0. Preskúmajme preto príspevok
anomálnych módov k = 0 k AFMH hamiltoniánu. Výsledok (27) možno prepísať v tvare

Hk=0 =
Jz

N
[
S2

tot − (Sztot)
2
]
≈ Jz

N
S2

tot.
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V druhej (približnej) rovnosti sme uvážili, že priemet celkového spinu do smerov x a y, ktorý je úmerný
S+

tot ≈
√
NS(ak=0 + b†k=0) a S−tot ≈

√
NS(a†k=0 + bk=0), je omnoho väčší než priemet do smeru z,

Sztot ≈ b
†
k=0bk=0 − a†k=0ak=0.

Všimnime si, že výraz JzS2
tot
N , ktorý popisuje rotáciu kryštálu spinov ako celku, má podobný tvar aj

fyzikálny význam ako operátor kinetickej energie kryštálu p2

2M . Vďaka jeho prítomnosti preto v spektre
antiferomagnetického Heisenbergovho modelu existuje okrem základného stavu s celkovým spinom
Stot = 0 tzv. Andersonova veža stavov s celkovými spinmi Stot = 1, 2, . . . a energiami JzStot(Stot+1)/N
zanedbateľne vyššími (v limite veľkých N ) ako energia základného stavu.14 Z týchto stavov potom
možno vytvoriť vlnový balík vytvárajúci Néelov stav, ktorý narúša rotačnú symetriu. Energia tohto
balíka je pritom prakticky rovnaká ako energia exaktného základného stavu, podobne ako tomu bolo
v prípade narušenia symetrie v kryštáli.

Stojí za zmienku, že limita N → ∞ je teda nevyhnutnou podmienkou spontánneho narušenia sy-
metrie. V nasledujúcej prednáške spoznáme alternatívny pohľad na tento fakt.

Cvičenia
1. Vypočítajte disperzný zákon pre antiferomagnetické spinové vlny v klasickom AFMH modeli. Návod: použite analo-
gický postup ako v prednáške I.25, kde boli skúmané feromagnetické spinové vlny.
2. Numerickou integráciou výrazu (30) pre štvorcovú a kubickú mriežku overte výsledky pre δS uvádzané v prednáške.
3. Odhadnite veľkosť kryštálu, ktorý možno pri izbovej teplote lokalizovať s presnosťou rozmeru jadra.
4. V limite nízkych teplôt vypočítajte merné teplo AFMH modelu na kubickej mriežke.

6 Magnetická anizotropia a Isingov model

V tejto prednáške najprv ukážeme, že v dôsledku konečnej spinovo-orbitálnej interakcie môže mať efek-
tívny spinový model nižšiu symetriu ako AFMH model. Zavedieme Isingov model a pomocou pojmu
narušenia ergodicity ukážeme, že aj v systémoch s diskrétnou symetriou (ako napr. Isingov model) sú
fázové prechody (striktne vzaté) možné iba v nekonečných systémoch.

Spinovo-orbitálna väzba
Pohybová rovnica pre častice so spinom, tzv. Pauliho rovnica, nie je fundamentálnou rovnicou kvan-
tovej mechaniky, ale iba najnižším členom v nerelativistickom rozvoji Diracovej rovnice pre elektrón
vo vonkajšom elektromagnetickom poli. Systematický nerelativistický rozvoj získaný pomocou tzv.
Foldyho-Wouthuysenovej transformácie vedie k ďalším korekciám:

H = mc2 +
(p + eA)2

2m
− eϕ+

e~
m

S ·B

+
e~

2m2c2
S · (E× p) + i

e~2

4m2c2
S · (∇×E)− p4

8m3c2
+

e~2

8m2c2
∇ ·E, (32)

kde operátor spinu S je normalizovaný tak, že vlastné hodnoty jeho priemetu na zvolenú os sú ±1
2 .

Prvý člen je pokojová energia elektrónu, kým druhý, tretí a štvrtý člen tvoria Pauliho hamiltonián.
Zvyšné štyri členy v druhom riadku popisujú tzv. relativistické korekcie. Nás však zaujíma iba prvý z
nich (popisujúci tzv. spinovo-orbitálnu väzbu), pretože druhý z nich vypadne, ak sa elektromagnetické
pole v čase nemení. Posledné dva členy zas nepôsobia na spinové stupne voľnosti. Stojí za zmienku,
že (32) je ďalším príkladom efektívneho hamiltoniánu.

Ak elektrické pole vzniká ako dôsledok stredovo symetrickej potenciálnej energie elektrónu V (r),
potom E = 1

er
∂V
∂r r. Preto spinovo-orbitálnu väzbu možno v tomto prípade písať v tvare

Hs.o. = ζ(r)S · L, ζ(r) =
~2

2m2c2

1

r

∂V

∂r
, (33)

14Mohla by vzniknúť otázka, či existencia Andersonovej veže stavov nie je dôsledkom zanedbania interakcií medzi
sektorom k = 0 a ostatnými sektormi AFMH hamiltoniánu. Numerické simulácie antiferomagnetického Heisenbergovho
modelu však potvrdzujú prítomnosť Andersonovej veže stavov, pozri napr. výsledky pre trojuholníkovú mriežku, Bernu
et al, Phys. Rev. B 50, 10048 (1994).
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kde L = r× p/~ je (opäť bezrozmerný) operátor orbitálneho momentu hybnosti elektrónu. Fyzikálnu
interpretáciu spinovo-orbitálnej väzby podáva napríklad Zelená učebnica.

Magnetický hamiltonián pre ión s nezaplnenou vrstvou 3d
Nositeľom magnetického momentu sú často ióny s nezaplnenou atomárnou vrstvou 3d. Hamiltonián
popisujúci elektróny v takýchto iónoch možno schematicky zapísať v tvare

Hion = HHF + (Hee − VHF) +Hc.f. +Hs.o.,

kde HHF je jednoelektrónový hamiltonián iónu v priblížení Hartreeho-Focka a Hee − VHF je rozdiel
medzi presnou energiou coulombovského odpudzovania elektrónov Hee a jej približným popisom po-
mocou Hartreeho-Fockovej potenciálnej energie VHF. Člen Hc.f. popisuje tzv. kryštálové pole, t.j. zmenu
potenciálnej energie elektrónov v dôsledku prítomnosti nenulových nábojov okolo študovaného atómu,
kým člen Hs.o. popisuje spinovo-orbitálnu interakciu. Jednotlivé príspevky na pravej strane výrazu pre
Hion sú usporiadané podľa ich typickej veľkosti, pričom člen HHF je obvykle najväčší a člen Hs.o. zas
najmenší.15

Pri konštrukcii efektívneho hamiltoniánu pre ión budeme relevantné stupne voľnosti identifikovať
tak, že začneme s najpodstatnejším členom v hamiltoniáne a postupne budeme zohľadňovať menej
podstatné príspevky.

V priblížení Hartreeho-Focka je základným stavom iónu Slaterov determinant vodíku podobných
jednočasticových stavov. Tieto jednočasticové stavy možno (vďaka približnej rotačnej symetrii16 ha-
miltoniánu HHF) charakterizovať kvantovými číslami l a m, rovnako ako v atóme vodíka. Podľa pred-
pokladu vrstva 3d iónu je obsadená iba čiastočne, t.j. obsahuje N (s hodnotou od 1 do 9) elektrónov.

Počet takýchto Slaterových determinantov je zjavne daný kombinačným číslom
(

10
N

)
. Napríklad pre

ión Cr3+ s N = 3 elektrónmi v 3d vrstve tak dostaneme 120 degenerovaných mnohočasticových stavov.
Vplyv člena Hee−VHF popisujú prvé dve Hundove pravidlá. Podľa prvého pravidla bude v základ-

nom stave iónu celkový elektrónový spin Satom nadobúdať maximálnu možnú hodnotu, kým podľa dru-
hého pravidla bude celkový elektrónový orbitálny moment Latom taktiež maximalizovaný (pri hodnote
Satom predpísanej prvým pravidlom), pozri cvičenia. Degenerácia základného stavu teda po zohľad-
není coulombovských interakcií medzi elektrónmi bude (2Satom + 1)× (2Latom + 1) a prípustné vlnové
funkcie základného stavu |Latom,ML, Satom,MS〉 sú charakterizované priemetmi ML, MS . V prípade
iónu Cr3+ dostaneme celkový spin Satom = 3

2 , celkový orbitálny moment Latom = 3 a degeneráciu
základného stavu 28, výrazne menej ako pôvodnú degeneráciu 120.

V poradí ďalším členom podľa veľkosti v hamiltoniáne Hion sú tzv. efekty kryštálového poľa Hc.f..
Pre konkrétnosť predpokladajme, že okolie iónu Cr3+ má tetragonálnu symetriu. Pomocou teórie grúp
sa dá ukázať, že v takomto prípade sa 7 orbitálnych stavov s Latom = 3 rozštiepi na tri nedegenerované
hladiny a dve 2× degenerované hladiny, pozri cvičenia. Pre jednoduchosť predpokladajme, že základný
stav |Γ〉 je jeden z orbitálne nedegenerovaných stavov. Po zohľadnení spinovej degenerácie sú vlnové
funkcie základného stavu súčinom orbitálnej a spinovej časti,17 |Γ,MS〉 = |Γ〉 ⊗ |S,MS〉, a degenerácia
základného stavu je 4. Zvyšných 6 × 4 = 24 excitovaných stavov označme |X,MS〉, pričom opäť
|X,MS〉 = |X〉 ⊗ |S,MS〉.

V poradí ďalším členom podľa veľkosti v hamiltoniáne pre ión Cr3+ je spinovo-orbitálna väzba
Hs.o. =

∑3
i=1 ζ(ri)Si ·Li, kde suma beží cez všetky 3 elektróny v orbitáloch typu 3d. Podľa Wignerovej-

Eckartovej vety v báze stavov |Latom,ML, Satom,MS〉 - a teda aj v báze ich lineárnych kombinácií
|Γ,MS〉, |X,MS〉 - sú maticové elementy operátora Hs.o. rovnaké ako maticové elementy operátora

H ′ = λSatom · Latom,

15V iónoch s nezaplnenou vrstvou 4f naopak obvykle platí |Hee − VHF| � |Hs.o.| � |Hc.f.|.
16Dá sa ukázať, že Hartreeho-Fockov hamiltonián HHF v atómoch s plnými vrstvami je rotačne symetrický. Keďže

počet elektrónov v nezaplnenej vrstve je obvykle malým zlomkom celkového počtu elektrónov, HHF zostane približne
rotačne symetrickým aj v atómoch s čiastočne zaplnenými vrstvami. Stojí tiež za zmienku, že - na rozdiel od atómu
vodíka - vlastné energie hamiltoniánu HHF závisia od kvantových čísel n aj l.

17Vo všeobecnom prípade sa vlnové funkcie viac ako dvojelektrónových systémov nedajú písať ako jednoduchý súčin
orbitálnej a spinovej časti. V našom príklade s Satom = 3

2
je však spinová vlnová funkcia plne symetrická voči zámene

častíc, preto celkovú vlnovú funkciu možno písať ako súčin tejto funkcie a plne antisymetrickej orbitálnej vlnovej funkcie.
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kde λ je (pre všetky uvažované stavy rovnaká) energia spinovo-orbitálnej väzby, pozri cvičenia.
Teraz preskúmame, ako spinovo-orbitálna väzba H ′ zmení energie štyroch degenerovaných stavov

|Γ,MS〉. Efektívny hamiltonián budeme opäť konštruovať do druhého rádu poruchovej teórie podľa H ′,
podobne ako v (4). Najprv si všimnime, že platí 〈Γ|Latom|Γ〉 = 0, pretože vlnovú funkciu |Γ〉 musí byť
možné zvoliť ako čisto reálnu.18 Odtiaľ vyplýva, že prvý rád poruchovej teórie podľa H ′ neprispieva k
zmene energie. V priestore stavov |Γ,MS〉 má preto efektívny hamiltonián tvar

Hatom =
∑
α,β

ΛαβSαatomS
β
atom, Λαβ = λ2

∑
X

〈Γ|Lαatom|X〉〈X|L
β
atom|Γ〉

EΓ − EX
,

ktorý explicitne ukazuje, že vďaka väzbe medzi spinmi a mriežkou nie sú vo všeobecnosti všetky smery
v spinovom priestore ekvivalentné. Hamiltonián Hatom popisuje tzv. magnetickú anizotropiu mriežko-
vého bodu (single ion anisotropy).

Isingov model
Symetria tenzora Λαβ je diktovaná symetriou mriežky. Napríklad pre tetragonálnu mriežku očakávame
Λxx = Λyy 6= Λzz. Pre konkrétnosť budeme predpokladať, že iba zložka Λzz je nenulová, pričom platí
Λzz = −Λ, kde Λ je kladná energia, pozri cvičenia. Heisenbergov model pre mriežku atomárnych spinov
Si = 3

2 s magnetickou anizotropiou má potom tvar

H = J
∑
〈ij〉

Si · Sj − Λ
∑
i

(Szi )2. (34)

V limite Λ� J budú mať nízku energiu iba tie konfigurácie, kde vo všetkých mriežkových bodoch
bude priemet spinu na os z rovný ±3

2 . Pôsobenie člena H⊥ z rozkladu (12) nás z tohto podpriestoru
spinových konfigurácií zaručene vyvedie von, a preto ho v prvom priblížení môžeme ignorovať. V
takom prípade efektívnym modelom pre (34) bude H = J

∑
〈ij〉 S

z
i S

z
j − Λ

∑
i(S

z
i )2, kde sú povolené

iba konfigurácie Szi = ±3
2 . Ak teraz spinový stav Szi = 3

2 popíšeme pomocou efektívneho spinu S̃i = 1
2

a podobne stav Szi = −3
2 pomocou S̃i = −1

2 , efektívny hamiltonián môžeme prepísať ako tzv. Isingov
model

HIsing = J̃
∑
〈ij〉

S̃iS̃j , (35)

kde J̃ = 9J . Konštantnú energiu −9
4NΛ sme pritom ignorovali ako nepodstatnú.

Medzi Isingovým a Heisenbergovým modelom existujú dva podstatné rozdiely. Z hľadiska symetrie
má Heisenbergov model spojitú symetriu (a následne aj Goldstoneove módy), kým symetria Isingovho
modelu je iba diskrétna: hamiltonián (35) je invariantný pri súčasnej zmene znamienka S̃i → −S̃i
vo všetkých bodoch mriežky (ktorú možno interpretovať napr. ako symetriu voči obráteniu času).
Z hľadiska kvantovej mechaniky je Isingov model triviálny, pretože je diagonálny v priestore spino-
vých konfigurácií. Dôsledkom tejto vlastnosti napr. je, že základný stav Isingovho modelu je známy.
V literatúre sa Isingov model študuje s obidvomi znamienkami interakcie J̃ . Pre J̃ < 0 hovoríme o
feromagnetickom modeli, kým pre J̃ > 0 hovoríme o antiferomagnetickom modeli.

Narušenie ergodicity
Spontánne narušenie symetrie súvisí s ďalším dôležitým pojmom narušenia ergodicity. Skúmajme pre
konkrétnosť povedzme feromagnetický Isingov model. Pri nízkych teplotách prichádzajú do úvahy
dva stavy: v jednom je väčšina spinov ↑, v druhom je väčšina spinov ↓. Ku každej konfigurácii existuje
zrkadlová konfigurácia s tou istou energiou. Ak by teda študovaný systém mohol tepelnými fluktuáciami
navštíviť všetky rovnako pravdepodobné konfigurácie, potom by v ňom nemohlo dôjsť k spontánnemu
narušeniu symetrie. Musíme teda predpokladať, že systém pripravený s väčšinou spinov ↑ termálnymi
fluktuáciami nemôže prejsť do stavu s väčšinou spinov ↓. Takéto vymedzenie dostupného podpriestoru
v celom kánonickom priestore nazývame narušením ergodicity.

18Ide totiž o vlastný stav reálneho hamiltoniánu, pozri prednášku 3. Na druhej strane, operátor momentu hybnosti
Latom = −i~

∑
i ri × ∇i je rýdzo imaginárny, preto maticový element 〈Γ|Latom|Γ〉 musí byť imaginárny. Avšak stredná

hodnota hermitovského operátora musí byť reálna, preto 〈Γ|Latom|Γ〉 = 0. Nulová veľkosť strednej hodnoty orbitálneho
momentu hybnosti sa v literatúre nazýva vymrznutím orbitálneho momentu hybnosti.
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Kedy sa môže realizovať narušenie ergodicity? Skúmajme povedzme proces premagnetizovania 3D
systému s N×N×N spinmi zo stavu s väčšinou spinov ↑ na stav s väčšinou spinov ↓. Takýto proces sa
môže realizovať ako rast bubliny spinov ↓ v majoritnom prostredí so spinmi ↑. Aby sa premagnetizoval
celý systém, musí bublina nadobudnúť rozmery porovnateľné s rozmermi celého systému. Ale pretože
povrchová energia bubliny vtedy bude Ebubble ∼ JN2, pravdepodobnosť takejto fluktuácie pri teplote
T bude e−Ebubble/T . Keďže pri konečnej teplote v konečnom systéme táto pravdepodobnosť nikdy nie
je nulová, k narušeniu ergodicity v takomto systéme, striktne vzaté, nemôže dôjsť. V termodynamickej
limite N →∞ je však narušenie ergodicity možné.19

Narušenie ergodicity je uvedeným argumentom zaručené aj v 2D systémoch, pretože vtedy povr-
chová energia bubliny bude Ebubble ∼ JN , ktorá tiež diverguje (i keď slabšie ako v 3D) pre N → ∞.
V 1D systémoch však spomínaný argument nefunguje, pretože povrch bubliny pozostáva z dvoch bo-
dov a energia bubliny je konečná. Preto v 1D systémoch obvykle nemôžu existovať fázové prechody pri
konečnej teplote. Inými slovami, dolná kritická dimenzia v systémoch s diskrétnou symetriou jeDL = 1.

Cvičenia
1. Dva elektróny v atomárnej vrstve 2p vytvárajú 15 degenerovaných mnohočasticových stavov hamiltoniánu HHF.
Ukážte, že v prvom ráde poruchovej teórie podľa Hee sa tieto stavy rozštiepia a základný stav spĺňa Hundove pravidlá.
Návod:
a) Definujte operátory celkového spinu S a celkového momentu hybnosti L a ukážte, že platí [Hee,S] = [Hee, S

z] =

[Hee,L] = [Hee, L
z] = 0. Keďže zároveň platí [Sα, Lβ ] = 0, vlastné stavy hamiltoniánu Hee možno voliť ako stavy s

ostrou hodnotou vlastných hodnôt operátorov S2, Sz,L2, Lz.
b) Ukážte, že v priestore 15 mnohočasticových stavov možno zvoliť nasledovnú bázu: deväť stavov s kvantovými číslami
S = 1 a L = 1, päť stavov s kvantovými číslami S = 0 a L = 2, a jeden stav s kvantovými číslami S = 0 a L = 0.
c) Ukážte, že v prvom ráde poruchovej teórie podľa Hee sa 15× degenerovaná hladina rozštiepi na jednu 9× degenerovanú
hladinu, jednu 5× degenerovanú hladinu a jednu nedegenerovanú hladinu.
d∗) Ukážte, že energie stavov z bodu c) spĺňajú Hundove pravidlá.
2. Ukážte, že pri znížení symetrie systému vo všeobecnosti dochádza k zníženiu degenerácie jeho hladín.
3. Nech V je vektorový operátor vzhľadom na Latom, t.j. nech pre komponenty V l platí [Lkatom, V

l] = iεklmV
m. Podľa

Wignerovej-Eckartovej vety sú v podpriestore s fixovanou hodnotou Latom maticové elementy operátora V úmerné ma-
ticovým elementom operátora Latom, t.j. 〈Latom,ML|V|Latom,M

′
L〉 = const × 〈Latom,ML|Latom|Latom,M

′
L〉. Ukážte, že

ζ(ri)Li je vektorový operátor. Následne ukážte, že maticové elementy operátora Hs.o. sú rovnaké ako maticové elementy
operátora H ′ = λSatom · Latom.
4. Ukážte, že maticové elementy Λαβ spĺňajú podmienku Λαα ≤ 0.
5. Kvalitatívne zdôvodnite, prečo je dolná kritická dimenzia DIsing

L Isingovho modelu nižšia než DHeisenberg
L Heisenber-

govho modelu.

7 Model XY a kvantová kvapalina spinov

V tejto prednáške zavedieme model XY ako príklad spinového modelu so spojitou, ale nižšou symetriou
ako Heisenbergov model. Tento model je v jednorozmernom prípade exaktne riešiteľný. Ukážeme, že
kvantová dolná kritická dimenzia modelu XY je DLQ = 1 a popíšeme tzv. kvantovú kvapalinu spinov,
t.j. stav bez spontánneho narušenia symetrie.

Model XY
Na Isingov model sa dá pozrieť ako na Heisenbergov model so symetriou zredukovanou zo spojitej
grupy trojrozmerných rotácií na diskrétnu symetriu. Z hľadiska symetrie pripadá do úvahy ešte jedna
možnosť, ktorá sa nachádza medzi spomínanými extrémami: definujme model, ktorý bude invariantný
pri otočeniach okolo (jedinej) fixovanej osi, povedzme osi z. Takýto model má očividne nasledovný tvar

HXY = J
∑
〈ij〉

(Sxi S
x
j + Syi S

y
j ) =

J

2

∑
〈ij〉

(S+
i S
−
j + S−i S

+
j ) (36)

19V skutočnosti nepotrebujeme striktne nekonečné N . Stačí, ak doba, počas ktorej je systém uväznený v jednom
podsystéme, je dostatočne dlhá v porovnaní s dobou pozorovania.
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a nazýva sa modelom XY. Zjavne platí [Sztot, HXY] = 0, teda vlastné stavy HXY možno voliť tak, že
majú zároveň ostrú hodnotu priemetu celkového spinu Sztot. Model XY (podobne ako AFMH) možno
študovať pre spiny rôznej veľkosti S na mriežkach s rôznou dimenziou D a pre obe znamienka J .

Klasický základný stav modelu XY s J > 0 je Néelov stav polarizovaný v rovine xy. Ľahko sa však
nahliadne, že tento stav nie je vlastným stavom hamiltoniánu (36). Na počudovanie, pre model s J < 0
nie je základným stavom ani feromagnetický stav plne polarizovaný v rovine xy (pozri cvičenia). V
základnom stave preto očakávame prítomnosť kvantových fluktuácií a na základe analógie s Heisenber-
govým modelom očakávame, že v 1D nemôže dôjsť k spontánnemu narušeniu symetrie. Inými slovami,
očakávame, že spiny v 1D nemôžu “zmrznúť” v kryštalickom usporiadaní, ale zostávajú “kvapalné”. V
nasledujúcom odstavci toto očakávanie potvrdíme presným riešením modelu (36).

Presné riešenie modelu XY v 1D
Skúmajme (kvantový) feromagnetický model XY pre retiazku N spinov S = 1

2 s periodickou okrajovou
podmienkou SN+1 = S1. Hamiltonián problému má explicitný tvar

HXY = −J
2

N−1∑
i=1

(S+
i S
−
i+1 + S−i S

+
i+1)− J

2
(S+
NS
−
1 + S−NS

+
1 ).

Ukážeme, že vo všetkých sektoroch Sztot je tento model ekvivalentný so systémom voľných fermiónov.
Ďalej ukážeme, že najnižšia energia sa realizuje v sektore Sztot = 0 a základný stav v tomto sektore nie
je magnetický, t.j. pre všetky mriežkové body platí 〈Si〉 = 0.

Zmiešaná reprezentácia operátorov spinu
Úlohu budeme riešiť v troch krokoch. V prvom kroku budeme operátory spinu reprezentovať pomocou
nových operátorov:

S+
i = a†i , S−i = ai, Szi = a†iai −

1

2
.

Ľahko nahliadneme, že komutačné vzťahy pre nové operátory a, a† na jednom bode mriežky musia byť
fermiónové, t.j. {ai, a†i} = 1 a {ai, ai} = {a†i , a

†
i} = 0. Žiadúcou vlastnosťou tejto reprezentácie je, že

Hilbertov priestor na danom mriežkovom bode je dvojrozmerný (dovolené počty častíc a sú 0 a 1), v
zhode s dvomi hodnotami priemetu spinu ±1

2 . Avšak bohužiaľ komutačné vzťahy pre nové operátory
a, a† na rôznych bodoch mriežky musia byť bozónové: [ai, a

†
j ] = [ai, aj ] = [a†i , a

†
j ] = 0, teda operátory

a, a† nepopisujú ani bozóny, ani fermióny (pozri cvičenia). V tejto reprezentácii má hamiltonián tvar

HXY = −J
2

N−1∑
i=1

(a†iai+1 + a†i+1ai)−
J

2
(a†Na1 + a†1aN ).

Jordanova-Wignerova transformácia
V druhom kroku prejdeme od operátorov a, a† k fermiónovým operátorom c, c† pomocou nasledovnej
(tzv. Jordanovej-Wignerovej) transformácie pre i ≥ 2

c†i = a†iU1U2 . . . Ui−1, ci = Ui−1 . . . U2U1ai, Ui = (−1)a
†
iai ,

pričom naviac c†1 = a†1 a c1 = a1. Všimnime si, že platí U2
i = 1, a preto c†ici = a†iai. Vďaka tejto

identite môžeme podľa potreby v Ui zamieňať operátor a†iai za c
†
ici. Ľahko overíme, že operátory c, c†

spĺňajú fermiónové komutačné vzťahy {ci, c†j} = δij a {ci, cj} = {c†i , c
†
j} = 0. Pomocou operátorov c, c†

možno po zavedení operátora celkového počtu fermiónov Q =
∑N

i=1 c
†
ici hamiltonián pre XY retiazku

prepísať na fermionizovaný tvar (pozri cvičenia)

HXY = −J
2

N−1∑
i=1

(c†ici+1 + c†i+1ci)− (−1)Q+1J

2
(c†N c1 + c†1cN ).

Keďže platí Q = Sztot + N/2, v sektore s fixovanou hodnotou priemetu spinu Sztot možno namiesto
operátora počtu fermiónov Q písať c-číslo.
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Fourierova transformácia
V treťom kroku diagonalizujeme fermionizovaný hamiltonián pomocou Fourierovej transformácie cj =

1√
N
∑

k cke
ikja,20 kde a je mriežková konštanta. Ak vlnové vektory k zvolíme tak, aby platila podmienka

cN+1 = (−1)Q+1c1, potom diagonalizovaný hamiltonián nadobudne tvar

HXY =
∑
k

εkc
†
kck, εk = −J cos ka,

ktorý popisuje voľné fermióny s disperzným zákonom εk. Dovolené hodnoty k treba voliť ako riešenia
rovnice eikNa = eiπ(Q+1). Pre párny počet fermiónov Q tak dostávame k = (2n + 1)π/(Na), kým
pre nepárne počty fermiónov k = 2nπ/(Na). Pre konkrétnosť budeme odteraz predpokladať, že počet
mriežkových bodov N je párny, ale nedeliteľný 4.

Obr. 2: Dovolené hodnoty vlnových vektorov k na mriežke N = 6. Vľavo: párny počet fermiónov Q. Vpravo: nepárny
počet fermiónov Q. V oboch prípadoch je dovolených N hodnôt k.

Základný stav
V každom sektore s predpísaným Sztot, t.j. fixovaným počtom fermiónov Q = Sztot +N/2, je základným
stavom Fermiho more, v ktorom sú obsadené stavy s hybnosťami k ∈ (−kF , kF ). Absolútne najnižšiu
energiu dosiahneme v sektore Q = N/2, čo je podľa predpokladu nepárne celé číslo. V tomto prípade
totiž Fermiho more obsahuje všetky stavy so zápornou energiou a neobsadené zostávajú všetky stavy
s kladnou energiou.21 Ľahko nahliadneme, že základný stav systému je nemagnetický:

〈Szi 〉 = 〈a†iai〉 −
1

2
= 〈c†ici〉 −

1

2
=

1

N
∑
k

〈c†kck〉 −
1

2
= 0, 〈S+

i 〉 = 〈S−i 〉 = 0.

V termodynamickej limite N → ∞, v ktorej budeme odteraz pracovať, máme kF = π
2a . Energia zá-

kladného stavu je E0 =
∑
|k|<kF εk = − 1

πNJ , teda kvantové fluktuácie znižujú energiu oproti klasickej
hodnote E0 = −1

4NJ .

Excitované stavy v sektore Sztot = 0
Excitované stavy retiazky XY možno rozdeliť do dvoch skupín. V prvej skupine sú stavy zo sektora
Q = N/2 s celkovým priemetom spinu Sztot = 0. Tieto excitácie vzniknú presunom jedného alebo via-
cerých fermiónov z Fermiho mora do neobsadených stavov, pričom sa vytvoria tzv. časticovo-dierové
páry. V tejto skupine dostaneme excitačnú energiu ∆E → 0 iba ak častice aj diery sú blízko Fermiho
“plochy”. Celková hybnosť takýchto stavov, t.j. stredná hodnota operátora Ptot =

∑
k ~kc

†
kck, je buď

Ptot ≈ 0 alebo Ptot ≈ ±2~kF .

Excitované stavy v sektore Sztot 6= 0
Druhou skupinou sú excitované stavy s počtom fermiónov Q 6= N/2, a teda s celkovým priemetom
spinu Sztot 6= 0. Analýza týchto stavov je zložitejšia. Napr. po pridaní (alebo odobraní) jedného fermiónu
k základnému stavu dostaneme Q = N/2±1, teda stav s párnym počtom fermiónov.22 Preto dovolené

20Používame nedôsledné označenie, ktoré je však v literatúre bežné. Operátor cj anihiluje fermión v mieste j, kým
operátor ck anihiluje fermión v stave rovinnej vlny s vlnovým vektorom k. Ide teda o dva rôzne operátory. O ktorý z
nich ide by malo byť zrejmé z kontextu a aj z používaných indexov: i a j označujú body mriežky, k vlnový vektor.

21Dá sa ukázať, že optimálny stav s párnym počtom častíc má pre každé konečné N vyššiu energiu, pozri cvičenia.
22Pripomíname, že N je párne a nedeliteľné 4.
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vlnové vektory fermiónov sa oproti ich hodnotám v základnom stave zmenia a budú k = (2n+1)π/(Na),
pozri obrázok 2. Základný stav v sektore s Q = N/2 ± 1 má teda zjavne celkovú hybnosť Ptot = 0.
Excitované stavy s malými energiami v tomto sektore sú tvorené časticovo-dierovými pármi. Celková
hybnosť takýchto stavov je opäť buď Ptot ≈ 0 alebo Ptot ≈ ±2~kF .

Po pridaní (alebo odobraní) dvoch fermiónov k základnému stavu dostaneme Q = N/2 ± 2, teda
stav s nepárnym počtom fermiónov, podobne ako základný stav modelu. Celková hybnosť takýchto
stavov, pokiaľ ich energie sú malé, je opäť buď Ptot ≈ 0 alebo Ptot ≈ ±2~kF .

Kvantová kvapalina spinov
V jednorozmerných systémoch vo všeobecnosti očakávame, že spojitá symetria nemôže byť spontánne
narušená ani v základnom stave, t.j. pri teplote T = 0. Narušeniu symetrie totiž zabránia kvantové fluk-
tuácie. Výnimkou sú systémy, ktorých parameter usporiadania M̂ sa zachováva, [M̂,H] = 0, napríklad
feromagnetická Heisenbergova retiazka spinov.

Systém spinov pri T = 0 bez spontánne narušenej symetrie sa nazýva kvantovou kvapalinou spi-
nov. Špeciálny prípad kvantovej kvapaliny, ktorý sa realizuje v 1D modeli XY, sa nazýva algebraickou
kvantovou kvapalinou. Táto kvapalina má (v termodynamickej limite N →∞) nulovú medzeru v exci-
tačnom spektre a dá sa ukázať, že korelačné funkcie medzi spinmi preto klesajú s mocninou vzdialenosti
medzi nimi.

Cvičenia
1a) Ukážte, že základný stav modelu XY s J > 0 nie je Néelov stav.
1b) Ukážte, že základný stav modelu XY s J < 0 nie je plne polarizovaný feromagnet.
2. Dokážte komutačné vzťahy pre operátory ai, a†j .
3. Dokážte, že Jordanove-Wignerove operátory ci, c†j spĺňajú komutačné vzťahy pre fermióny a overte vyjadrenie HXY

pomocou týchto operátorov. Pomôcka: pomocou pôsobenia na bázové stavy ukážte, že a†iUi = a†i a Uia†i = −a†i .
4. Ukážte, že na mriežke s N = 4l + 2 bodmi má v sektore s nepárnym Q najnižšiu energiu stav s Q = N/2 a energiou
E = −J/ sin π

Na . Ďalej ukážte, že všetky stavy s párnymi počtami fermiónov Q majú vyššiu energiu.
5. Ukážte, že voľná energia 1D modelu XY je daná vzťahom

F = −NT

[
ln 2 +

2

π

∫ π/2

0

dx ln

(
cosh

J cosx

2T

)]
.

Návod: vypočítajte štatistickú sumu Z pre systém voľných fermiónov c predpokladajúc, že všetky počty fermiónov od 0
do N sú možné. Nájdite entropiu v limite nízkych a vysokých teplôt.

8 Zovšeobecnená tuhosť

V tejto prednáške zavedieme pojem zovšeobecnenej tuhosti κ ako ďalšej charakteristiky systémov so
spontánne narušenou spojitou symetriou. Na príklade klasického modelu XY predvedieme, ako možno
tuhosť κ počítať. Napokon model XY vyriešime v tzv. priblížení stredného poľa.

Zovšeobecnená tuhosť
Tuhé látky sú stavy hmoty so spontánne narušenou translačnou a rotačnou symetriou. S narušením
týchto spojitých symetrií je asociovaná mechanická tuhosť, ktorú môžeme zjednodušene definovať na-
sledovne. Skúmajme povedzme tyč dĺžky L z tuhej látky. Jeden koniec tyče nech je pevne ukotvený.
Druhý koniec tyče skrúťme o uhol α okolo osi tyče. Očakávame (pozri napr. I.9), že hustota voľnej
energie tyče f(α) pri takejto deformácii narastie oproti hustote voľnej energie nedeformovanej tyče f(0)
nasledovne: f(α) = f(0) + 1

2κsolid(α/L)2. Konštantu κ nazývame mechanickou tuhosťou. Na druhej
strane, skrútenie koncov stĺpca toho istého materiálu v kvapalnom stave nevyvoláva nárast hustoty
voľnej energie tohto stĺpca, teda κliquid = 0. Existencia tuhosti teda nie je vlastnosťou pohybových
rovníc pre atómy, ale termodynamického stavu. Anderson zdôrazňuje: “We are so accustomed to the
rigidity property (of solids) that we don’t accept its almost miraculous nature, that it is an emergent
property not contained in the simple laws of physics, although it is a consequence of them.”

Dôsledkom existencie konečnej mechanickej tuhosti tuhých látok je stálosť ich tvaru.23 Ak spo-
23Na rozumne dlhých časových škálach, pozri napr. I.1. Vďaka nenulovosti κ môžeme dokonca hovoriť o ideálne tuhých

telesách, v ktorých berieme κ→∞.
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mínanú tyč krútime len na jednom konci a pokiaľ bude jej druhý koniec voľný, bude sa tento krútiť
rovnako ako koniec, na ktorý pôsobíme. Druhý koniec bude môcť silovo pôsobiť na iné telesá. Anderson
hovorí o “bezdisipatívnom transporte sily v tuhých telesách”.

Pojem mechanickej tuhosti možno zovšeobecniť na prípad ľubovoľného systému so spontánne naru-
šenou spojitou symetriou. Existencia zovšeobecnenej tuhosti je dôsledkom prirodzeného, ale netriviál-
neho predpokladu, že (voľná) energia systému s narušenou symetriou je minimalizovaná, keď symetria
je narušená rovnakým spôsobom v celej vzorke. Citlivosť hustoty voľnej energie na vhodne zvolenú
okrajovú podmienku nazveme zovšeobecnenou tuhosťou.

Tuhosť klasického modelu XY
V tomto odstavci ukážeme, ako možno počítať tuhosť klasického feromagnetického modelu XY v 3D.24

Skúmajme vzorku tvaru kocky s N = N3 bodmi. Nech R = (k, l,m), kde k = 1, . . . , N atď., čísluje
mriežkové body a nech θR je uhol natočenia spinu v mriežkovom bode R voči zvolenému smeru v
(spinovej) rovine XY. Hamiltonián HXY zväzuje skúmaných N3 spinov navzájom, ako aj so spinmi
mimo vzorky. Pre spiny na krajoch vzorky preto potrebujeme vedieť hodnoty θR vo fiktívnych bodoch
mimo vzorky, ktoré s nimi susedia. Pre body mimo našej mriežky v smeroch y a z tieto hodnoty
predpíšeme pomocou periodických okrajových podmienok a v smere x predpíšeme okrajovú podmienku,
ktorá je analógom skrútenia tyče o uhol α v príklade so železnou tyčou:

θk+N,l,m = θk,l,m + α, θk,l+N,m = θk,l,m, θk,l,m+N = θk,l,m.

Ak prejdeme od poľa θR k poľu φR tak, že platí θR = φR + q ·R pričom q = (q, 0, 0) a q = α/N ,
potom pole φR spĺňa obvyklé periodické okrajové podmienky vo všetkých smeroch. Všimnime si, že v
tomto odstavci považujeme za bezrozmerné ako polohy R, tak aj vlnové vektory q. Hamiltonián H(q)
deformovaného systému má tvar

H(q) = −J
∑
〈RR′〉

cos
[
φR − φR′ + q · (R−R′)

]
a k nemu príslušná voľná energia F (q) = −T lnZ(q) je definovaná štatistickou sumou

Z(q) =

∫
Dφe−H(q)/T ,

∫
Dφ ≡

∏
R

∫ 2π

0
dφR.

Naším cieľom je nájsť rozvoj voľnej energie deformovaného systému F (q) podľa mocnín q do
druhého rádu včítane. Očakávame, že dostaneme výraz

F (q) = F0 +
1

2
κq2N , (37)

kde F0 je voľná energia nedeformovaného systému a člen úmerný prvej mocnine q v rozvoji absentuje.
Koeficient κ (s rozmerom energia) budeme interpretovať ako zovšeobecnenú tuhosť modelu XY.

Začneme rozvojom hamiltoniánu podľa mocnín q do druhého rádu, H(q) = H0 +H1 +H2, kde

H0 = −J
∑
〈RR′〉

cos [φR − φR′ ] , H1 = Jq
∑
R

sin [φR − φR−x̂] , H2 =
Jq2

2

∑
R

cos [φR − φR−x̂] .

Všimnime si, že H0 popisuje nedeformovaný systém a obsahuje sumy cez všetky linky mriežky, kým
korekčné členy prvého a druhého rádu H1 a H2 obsahujú iba príspevky liniek v smere deformácie.

Zaveďme ďalej štatistickú sumu a stredovanie pre nedeformovaný systém s hamiltoniánom H0:

Z0 =

∫
Dφe−H0/T , 〈X(φ)〉0 =

1

Z0

∫
Dφe−H0/TX(φ).

24Spinové modely možno odvodiť ako efektívne modely pre systémy elektrónov. Výsledkom tohto odvodenia sú kvantové
modely, t.j. jednotlivé komponenty operátorov Si navzájom nekomutujú. V literatúre sa však často uvažujú aj tzv. klasické
spinové modely, v ktorých Si chápeme ako klasické vektory.
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Potom štatistickú sumu deformovaného systému môžeme do druhého rádu podľa q písať nasledovne:

Z(q) =

∫
Dφe−H0/T e−H1/T e−H2/T = Z0〈e−H1/T e−H2/T 〉0 ≈ Z0

〈
1− H1

T
+
H2

1

2T 2
− H2

T

〉
0

.

Štatistickú sumu deformovaného systému sme teda vyjadrili pomocou stredných hodnôt v nedefor-
movanom systéme s hamiltoniánom H0. V takomto systéme je však energia konfigurácie s rozdielmi
fáz φR − φR′ = ARR′ v susedných bodoch R a R′ rovnaká ako energia konfigurácie s rozdielmi fáz
φR − φR′ = −ARR′ . Preto takáto dvojica konfigurácií je rovnako pravdepodobná. Odtiaľto potom
vyplýva, že lineárny člen v rozvoji štatistickej sumy Z(q) vypadne, 〈H1〉0 = 0. Pre voľnú energiu F (q)
preto dostávame nasledovný rozvoj do druhého rádu podľa q:

F (q) = −T lnZ0 − T ln

〈
1 +

H2
1

2T 2
− H2

T

〉
0

= F0 + 〈H2〉0 −
1

2T
〈H2

1 〉0.

Tento výsledok má očakávaný tvar (37), t.j. neobsahuje člen úmerný q. Pre zovšeobecnenú tuhosť κ
naviac dostávame explicitný výraz:

κ =
J

N

〈∑
R

cos (φR − φR−x̂)

〉
0

− J2

TN

〈[∑
R

sin (φR − φR−x̂)

]2〉
0

. (38)

Vzťah (38) demonštruje, že tuhosť κ (ktorá popisuje, nakoľko sa systém bráni zmene okrajových
podmienok a možno ju chápať ako tzv. funkciu odozvy) možno určiť štúdiom štatistických vlastností
neporušeného systému s hamiltoniánom H0. Tento výsledok má všeobecnú platnosť: aj v kvantových
systémoch možno funkcie odozvy určiť štúdiom rovnovážnych korelácií, pozri IV.3.

Štúdium teplotnej závislosti κ začnime pozorovaním, že prvý člen vo výraze (38) možno na D-
rozmernej hyperkubickej mriežke zapísať pomocou (teplotne závislej) strednej hodnoty energie E(T )
modelu XY ako− 1

DNE(T ). V limite nízkych teplôt, kedy polia φR vykonávajú malé tepelné kmity okolo
spontánne polarizovaného stavu, možno hamiltonián modelu XY aproximovať nasledovným klasickým
harmonickým modelom,

Hharm = J
∑
〈RR′〉

[
−1 +

1

2
(φR − φR′)2

]
.

Energia základného stavu na D-rozmernej hyperkubickej mriežke je E = −DNJ . Keďže model
Hharm obsahuje N klasických harmonických stupňov voľnosti, podľa ekvipartičnej vety jeho ener-
gia pri konečnej teplote bude E(T ) = −DNJ + 1

2NT . Príspevok prvého člena vo výraze (38) teda
bude J − 1

2DT . Čo sa týka druhého člena vo výraze (38), v harmonickom priblížení môžeme písať∑
R sin (φR − φR−x̂) =

∑
R (φR − φR−x̂) = 0, pričom posledná rovnosť je dôsledkom periodických

okrajových podmienok. V limite nízkych teplôt teda očakávame, že tuhosť s rastom teploty klesá
podľa vzťahu

κ(T ) = J − 1

2D
T. (39)

Numerické simulácie trojrozmerného modelu XY ukazujú,25 že pri ďalšom raste teploty sa pokles tu-
hosti zrýchľuje, až napokon pri kritickej teplote Tc ≈ 2.2J tuhosť spojito vymizne. Pri kritickej teplote
teda má funkcia κ(T ) singularitu: pre všetky teploty T > Tc je tuhosť striktne nulová v súlade s oča-
kávaniami pre kvapalinu spinov, kým pre T < Tc je naopak tuhosť konečná.

Klasický model XY v priblížení stredného poľa
V tomto odstavci skonštruujeme najjednoduchšiu približnú teóriu pre klasický D-rozmerný model XY
pri konečnej teplote. Budeme predpokladať, že pravdepodobnosti natočenia uhlov v rôznych bodoch
mriežky sú navzájom nezávislé a pravdepodobnosť konfigurácie {φR} je teda súčinom pravdepodobností
P (φR) v jednotlivých bodoch mriežky, P({φR}) =

∏
R P (φR). Optimálnu funkciu P (φ) nájdeme

minimalizáciou voľnej energie
F = 〈H〉 − T 〈S〉,

25Pozri napr. Y.H. Li and S. Teitel, Phys. Rev. B 40, 9122 (1989).
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kde prvý člen predstavuje strednú hodnotu energie počítanej pre rozdelenie spinov P({φR}),

〈H〉 = −NDJ
∫ π

−π
dφ1

∫ π

−π
dφ2P (φ1)P (φ2) cos(φ1 − φ2).

Druhý člen predstavuje entropiu rozdelenia spinov P({φR}),

〈S〉 = −N
∫ π

−π
dφP (φ) lnP (φ).

Dá sa ukázať,26 že presná voľná energia modelu XY spĺňa nerovnosť Fexact ≤ F , čiže máme do činenia
s variačnou úlohou so zatiaľ neznámou variačnou funkciou P (φ).

Minimalizácia voľnej energie F podľa P (χ) pri zohľadnení väzby
∫ π
−π dφP (φ) = 1 popísanej Lag-

rangeovým multiplikátorom λ dáva nasledovnú rovnicu pre funkciu P (χ):

−2DJ

∫ π

−π
dφP (φ) cos(χ− φ) + T lnP (χ) + T − λ = 0. (40)

V ďalšom výklade budeme predpokladať, že vo fáze s narušenou symetriou sú spiny natočené v smere
φ = 0. Preto je prirodzené očakávať, že platí P (φ) = P (−φ). O chvíľu uvidíme, že takúto symetriu má
aj systém v stave bez narušenej symetrie. Parameter usporiadania pri konečnej teplote, t.j. priemerné
natočenie spinov do smeru φ = 0, je očividne popísaný vzťahom

m =

∫ π

−π
dφP (φ) cosφ. (41)

Po zohľadnení symetrie funkcie P (φ) ľahko nahliadneme, že rovnica (40) má nasledovné riešenie

P (χ) = const× ea cosχ, a = 2DJm
T , (42)

kde konštantu možno ľahko dopočítať z normalizačnej podmienky pre P (χ). Dosadením výsledku (42)
do výrazu (41) napokon dostaneme tzv. self-konzistentnú rovnicu pre parameter usporiadania m,

m =
I1(a)

I0(a)
, (43)

kde In(a) = 1
2π

∫ π
−π dφ cos(nφ)ea cosφ sú tzv. modifikované Besselove funkcie.

V limite vysokých teplôt je bezrozmerný parameter a malý a pre modifikované Besselove funkcie
platia vzťahy I0(a) = 1 +

(
a
2

)2
+ . . . a I1(a) =

(
a
2

)
+ 1

2

(
a
2

)3
+ . . .. Rovnica (43) sa vtedy zredukuje

na tvar m = DJm/T . Pre teploty T > DJ je jediným riešením tejto rovnice m = 0, t.j. riešenie bez
narušenia symetrie. Pod teplotou Tc = DJ má rovnica (43) aj riešenia s nenulovou hodnotou parametra
usporiadania m. Dá sa ukázať (pozri cvičenia), že voľná energia týchto riešení je nižšia než pre m = 0.
Preto Tc je kritickou teplotou modelu XY.

Priblíženie, ktoré sme použili pri riešení modelu XY, sa nazýva priblížením stredného poľa. Rozde-
lenie pravdepodobností (42) pre natočenie spinu totiž dostaneme, ak na spin pôsobí magnetické pole,
ktoré je orientované v smere φ = 0 a jeho veľkosť je úmerná m. Toto pole je v našom prípade sprieme-
rovaným výsledkom pôsobení okolitých spinov, odtiaľ názov stredné pole. Čím silnejšie stredné pole
pôsobí, tým bude priemerné natočenie spinov do smeru φ = 0 (t.j. m) väčšie. Rovnica (43) nastavuje
hodnotu m tak, aby veľkosť stredného poľa bola konzistentná s priemerným natočením spinov.

Cvičenia
1. Riešením rovnice (43) ukážte, že pri teplotách T tesne pod kritickou teplotou Tc platí a2 = 8(Tc − T )/Tc, čiže
m ∝ (Tc − T )1/2. Takáto teplotná závislosť parametra usporiadania je charakteristická pre teóriu stredného poľa.
2. Ukážte, že voľná energia na bod mriežky f = F/N pre rozdelenie (42) má tvar

f(a) = −Tc
[
I1(a)

I0(a)

]2

− T
[
ln (2πI0(a))− aI1(a)

I0(a)

]
.

26Pozri IV.5.
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Presvedčte sa, že minimalizácia f(a) podľa a vedie k self-konzistentnej rovnici (43). Ďalej ukážte, že tesne pod kritickou
teplotou Tc, kedy treba očakávať, že parameter a je malý, Taylorovým rozvojom f(a) dostaneme tzv. Landauov rozvoj

fL(a) = −T ln(2π) +
T − Tc

4
a2 +

Tc
64
a4.

3. Ukážte, že pre T < Tc funkcia fL(a) nadobúda minimum pre hodnotu a uvedenú v cvičení 1, kým v bode a = 0
(nemagnetické riešenie) funkcia fL(a) nadobúda lokálne maximum. Ukážte, že (v priblížení stredného poľa) voľná energia
modelu XY pre T > Tc je f = −T ln(2π), kým pre teploty tesne pod kritickou teplotou platí f = −T ln(2π)−(Tc−T )2/Tc.
Na základe týchto výsledkov nájdite predpovede teórie stredného poľa pre teplotnú závislosť entropie, merného tepla a
vnútornej energie.
4. Numerickým riešením rovnice (43) nájdite teplotnú závislosť parametra usporiadania m.
5.∗ V priblížení stredného poľa nájdite teplotnú závislosť tuhosti fázy. Návod: počítajte voľnú energiu deformovaného
systému F (q) a ukážte, že κ = Jm2. Ukážte, že naivný výpočet podľa (38) dá nefyzikálny výsledok.
6.∗ Pri teplote T = 0 vypočítajte tuhosť κ (kvantovej) retiazky spinov S = 1/2 s feromagnetickým Heisenbergovým
hamiltoniánomH = −J

∑
n Sn·Sn+1. Návod: skúmajte homogénne deformovaný stav |ψ〉 =

[∏
n e

inδSx
n

]
| ↑1, ↑2, . . . , ↑N 〉.

Predpokladajte, že δ � 1 a vypočítajte energiu do rádu δ2: 1
N 〈ψ|H|ψ〉 = −J

4
+ 1

2
κδ2. Použite tiež

〈↑n, ↑n+1 |eiδS
x
nSn · Sn+1e

−iδSx
n | ↑n, ↑n+1〉 ≈ 〈↑n, ↑n+1 |(1 + iδSxn − δ2/8)Sn · Sn+1(1− iδSxn − δ2/8)| ↑n, ↑n+1〉.

9 Prechod Kosterlitza-Thoulessa

V tejto prednáške ukážeme na príklade 2D verzie klasického modelu XY, že zovšeobecnená tuhosť môže
byť nenulová aj v systémoch bez spontánneho narušenia symetrie. V tomto prípade je nízkoteplotná
fáza s konečnou tuhosťou oddelená od vysokoteplotnej fázy s nulovou tuhosťou novým typom fázového
prechodu, tzv. Kosterlitzovým-Thoulessovým prechodom.

Tuhosť fázy dvojrozmerného modelu XY
Model XY má spojitú symetriu a dá sa ukázať, že aj preň platí Hohenbergova-Merminova-Wagnerova
veta. To však znamená, že magnetizácia dvojrozmerného modelu XY musí byť pri konečnej teplote
nulová. Mohlo by sa zdať, že aj zovšeobecnená tuhosť potom musí byť nulová.

Na prekvapenie sa však ukazuje, že tuhosť dvojrozmerného modelu XY je pri dostatočne nízkych
teplotách konečná, napriek tomu, že spiny nie sú zamrznuté. Zdôvodnenie je nasledovné. V prednáške 5
sme videli, že spontánne narušenie symetrie je znemožnené divergenciou počtu dlhovlnných excitácií s
nízkou energiou. Takéto excitácie však takmer nemenia relatívny uhol medzi susednými spinmi, preto
sa dá očakávať, že výraz (38) pre tuhosť možno vyhodnotiť v rámci harmonického modelu Hharm.
Numerické simulácie naozaj potvrdzujú, že tuhosť modelu XY je pri dostatočne nízkych teplotách
konečná a dobre popísaná aproximatívnym vzťahom (39) s D = 2.

Na druhej strane, v limite vysokých teplôt by tuhosť κ mala byť identicky nulová, keďže aj v troj-
rozmerných systémoch je tomu tak. To však znamená, že opäť musí existovať teplota Tc, pri ktorej má
funkcia κ(T ) singularitu. Na rozdiel od trojrozmerného modelu, táto singularita však nemôže súvisieť
so spontánnym narušením symetrie pod teplotou Tc, preto fázový prechod musí mať inú podstatu. Vo
zvyšku tejto prednášky kvalitatívne popíšeme tento nový typ fázového prechodu, tzv. Kosterlitzov-
Thoulessov prechod.

Víry a antivíry
Podstatnú úlohu pri Kosterlitzovom-Thoulessovom prechode zohrávajú tzv. víry a antivíry, pozri obrá-
zok 3. Ide o konfigurácie spinov s jednou singulárnou elementárnou bunkou. Pozdĺž ľubovoľnej uzavretej
čiary C obopínajúcej túto bunku bude platiť

∑
C ∆θ = 2πq, kde q = ±1 a ∆θ = θi − θj je prírastok

fázy na elementárnej linke medzi bodmi i a j.27 V princípe by prichádzali do úvahy aj iné celočí-
selné hodnoty q, dá sa však ukázať (pozri cvičenia), že takéto excitácie nie sú v modeli XY stabilné
a rozpadnú sa na víry alebo antivíry s |q| = 1. V prednáške 20 ukážeme, že (anti)víry sú špeciálnym
prípadom tzv. topologických defektov. Ich energiu odhadneme aproximovaním harmonického modelu

27Prírastok fázy je potrebné ohraničiť na pevne zvolený interval dĺžky 2π. Prípustná je napr. voľba −π ≤ ∆θ < π.
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Hharm spojitým modelom

H =
J

2

∫
d2r(∇θ)2. (44)

Stojí pritom za zmienku, že mriežková konštanta a do výrazu (44) nevstúpi. V polárnych súradniciach
so stredom v strede (anti)víru platí |∇θ| = q/r, preto pre jeho energiu dostávame odhad

Ev ≈ πJq2

∫ R

a

dr

r
= πJ ln

R

a
,

kde R je lineárny rozmer mriežky. Mohlo by sa zdať, že vďaka divergentnosti energie Ev v limite
R→∞ sú víry a antivíry neprípustnými konfiguráciami. Avšak existuje zhruba R2/a2 možných polôh
stredov (anti)vírov, čiže entropia (anti)vírových konfigurácií je Sv = ln(R2/a2). Preto pri teplote T
bude prírastok voľnej energie po pridaní (anti)víru δFv = Ev − TSv. To znamená, že pri dostatočne
vysokej teplote bude δFv < 0 a systém bude spontánne generovať voľné víry a antivíry. Kritickú teplotu
Tc možno zhruba odhadnúť z podmienky δFv = 0, odkiaľ dostaneme Tc ≈ π

2J .
Ako uvidíme o chvíľu, aj pri nízkych teplotách budú v systéme prítomné víry a antivíry, budú však

viazané do vír-antivírových párov. Väzobná energia takýchto párov s rastom teploty klesá a v bode
prechodu, t.j. pri T = Tc, sa vynuluje.

Obr. 3: Vľavo: príklad vírovej konfigurácie. Vpravo: príklad antivírovej konfigurácie. (J. Imriška, bakalárska práca,
FMFI UK 2009).

Nábojová analógia
V spojitom modeli (44) je energia (anti)víru určovaná gradientom ∇θ = (∂xθ, ∂yθ, 0). Ak teraz pre
(anti)vír s “nábojom” q zavedieme “potenciál” ϕ(r) = −q ln(|r|/a) s gradientom ∇ϕ = −qr/r2, ľahko
nahliadneme, že vektory ∇ϕ a ∇θ sú rovnako dlhé a navzájom kolmé:

∇ϕ = ẑ ×∇θ,

kde ẑ = (0, 0, 1) je jednotkový vektor kolmý na rovinu XY. V ďalšom výklade využijeme, že platí

4ϕ(r) = −2πqδ(r), (45)

kde δ(r) = δ(x)δ(y) je dvojrozmerná delta funkcia. Inými slovami, 2πqδ(r) hrá rolu nábojovej hustoty
a rovnica (45) je dvojrozmernou Laplaceovou rovnicou pre potenciál ϕ(r).28 Systém vírov a antivírov
teda možno modelovať ako sadu nábojov. To nám umožní jednoducho vypočítať energiu systému.

Skúmajme vzorku s (anti)vírmi s nábojmi qi v miestach ri. Budeme žiadať splnenie periodických
okrajových podmienok. Dá sa ukázať (pozri cvičenia), že v takomto prípade vzorka musí obsahovať
rovnaký počet vírov a antivírov, t.j.

∑
i qi = 0. Celkový potenciál takejto konfigurácie je ϕ(r) =

−
∑

i qi ln(|r− ri|/a) a jej energia je

H =
J

2

∫
d2r(∇θ)2 =

J

2

∫
d2r∇ϕ · ∇ϕ =

J

2

∮
Σ
dS · ϕ∇ϕ− J

2

∫
d2rϕ4ϕ,

28Naozaj: explicitným výpočtom ľahko overíme, že ak r 6= 0, potom pre funkciu ϕ(r) platí 4ϕ(r) = 0. Zostáva teda
iba overiť správanie funkcie 4ϕ(r) v okolí bodu r = 0. Za tým účelom skúmajme povrchový integrál

∮
C
dS · ∇ϕ po

kruhovej dráhe C so stredom v bode r = 0, kde element dS je orientovaný v smere vonkajšej normály k C. Na jednej
strane, dosadením explicitného výrazu pre ∇ϕ dostaneme

∮
C
dS · ∇ϕ = −2πq. Na druhej strane, použitím Gaussovej

vety môžeme písať
∮
C
dS ·∇ϕ =

∫
d2r4ϕ, čo vďaka rovnici (45) reprodukuje priamy výpočet. Tým je dôkaz rovnice (45)

ukončený.
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kde sme v prvom kroku využili, že (∇θ)2 = (∇ϕ)2. V druhom kroku sme využili identitu ∇ϕ · ∇ϕ =
∇· (ϕ∇ϕ)−ϕ4ϕ a prvý člen sme integrovali pomocou (dvojrozmernej) Gaussovej vety, pričom povrch
vzorky sme označili Σ a element dS je orientovaný v smere vonkajšej normály k Σ. Tento člen možno na
veľkých mriežkach zanedbať, pozri cvičenia. Na druhej strane, zovšeobecnením rovnice (45) na prípad
rozloženia nábojov dostaneme 4ϕ(r) = −2π

∑
i qiδ(r− ri), preto

H = πJ
∑
i

ϕiqi = −πJ
∑
ij

qiqj ln
|rij |
a

=
1

2

∑
i 6=j

Vijqiqj + µ
∑
i

q2
i , (46)

kde rij = ri − rj a Vij = 2πJ ln(a/|rij |). V poslednom kroku sme energiu nábojov prepísali ako súčet
interakčnej energie medzi dvojicami nábojov (prvý člen, i 6= j) a energie jednotlivých vírov (druhý
člen, i = j). Stojí tiež za zmienku, že príspevky i = j síce formálne divergujú, ale skutočná energia µ
musí byť konečná aj na nekonečnej mriežke (pozri cvičenia).

V nábojovej analógii teda možno systém vírov a antivírov popísať ako plyn nábojov q = ±1
interagujúcich prostredníctvom tzv. 2D coulombovského potenciálu Vij . Sila Fij , ktorou pôsobí náboj
j na náboj i, je

Fij = −qiqj
∂Vij
∂ri

= 2πJqiqj
rij
r2
ij

. (47)

Opačné náboje sa teda priťahujú a rovnaké náboje sa odpudzujú. Energia jednotlivých nábojov je µ a
celkový náboj je nulový,

∑
i qi = 0.

Fázový prechod v nábojovej analógii
Keďže energia (46) nábojových konfigurácií je konečná, pri akejkoľvek konečnej teplote bude v systéme
prítomná konečná hustota vírov a antivírov. Pri nízkych teplotách však budú dominantne zastúpené iba
konfigurácie s dipólmi - dvojicami opačných nábojov ležiacich blízko seba. Takéto konfigurácie pripomí-
najú rozdelenie náboja, ktoré očakávame v dielektrikách pri konečných teplotách, a preto nízkoteplotnú
fázu nazývame aj dielektrickou fázou.

S rastom teploty koncentrácia tepelne excitovaných dipólov rastie. Interakcia medzi nábojmi i
a j vo vzdialenosti rij však potom nemá jednoduchý coulombovský tvar Vij , ale musí byť slabšia,
pretože ostatné excitované dipóly ju budú čiastočne tieniť. Slabšia interakcia však znamená ďalší
nárast koncentrácie dipólov, ktorý zas spôsobí dodatočný rast tienenia. Úlohu o tepelných vlastnostiach
problému (46) je teda potrebné riešiť self-konzistentne.

Jedným z dôsledkov zvyšovania teploty je, že náboje tvoriace dipól sa môžu nachádzať v čoraz väč-
šej relatívnej vzdialenosti. Dá sa ukázať, že pri teplote Tc táto vzdialenosť diverguje, teda páry q = 1
a q = −1 prestanú byť viazané a začnú sa voľne pohybovať cez systém. Inými slovami, dielektrická
fáza sa stane nestabilnou voči kovovej fáze. Fyzika tohto prechodu je podobná Mottovmu prechodu
kov-izolant v dopovanom polovodiči, ktorý sme skúmali v II.14 a ktorý sme v II.18 interpretovali ako
polarizačnú katastrofu.

Tuhosť fázy a Kosterlitzov-Thoulessov prechod
Silu (47), ktorou pôsobí náboj j na náboj i, možno zapísať v tvare Fij = −2πJqi∇ϕj , kde ϕj je
potenciál budený nábojom j v mieste i. Pripomíname, že platí ∇ϕj = ẑ × ∇θj , kde ∇θj je gradient
fázy v mieste i generovaný vírom j. Preto Fij = J∇θj ×Qi, kde vír v mieste i sme popísali vektorom
Qi = (0, 0, 2πqi). Silu Fij teda možno interpretovať ako interakciu (anti)víru i s gradientom fázy ∇θj .
Avšak táto sila by nemala závisieť od zdroja gradientu fázy. Silu F pôsobiacu na (anti)vír s nábojom
q = ±1 popísaný vektorom Q = (0, 0, 2πq) preto musí byť možné zapísať (aspoň pre malé ∇θ) vo
všeobecnejšom tvare

F = J∇θ ×Q, (48)

∇θ je gradient fázy v mieste víru generovaný aj inými zdrojmi ako študovaný (anti)vír.
Pre náš ďalší výklad je dôležité pozorovanie, že v prítomnosti (anti)vírov obsahuje pole uhlov θ(r)

singulárne čiary, pozdĺž ktorých sa fáza mení o ∆θ = ±2π, pozri obrázok 4. V konfiguráciách s nulovým
celkovým nábojom

∑
i qi = 0 singulárne čiary začínajú vo víroch a končia v antivíroch.

Pri výpočte tuhosti fázy na vzorku zvonku aplikujeme (malý) konštantný gradient fázy ∇θ a
skúmame ním spôsobenú zmenu voľnej energie vzorky δF . Predpokladajme, že vo vzorke je prítomná
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Obr. 4: Ak pole uhlov obmedzíme na interval −π ≤ θ < π, potom v konfiguráciách s (anti)vírmi existujú singulárne
čiary, naprieč ktorými je rozdiel susedných uhlov ∆θ = ±2π. Vľavo: vír. V strede: antivír. Vpravo: pár vír-antivír.

jedna dvojica vír-antivír, pozri obrázok 5. Pozdĺž dráh C1 a C2, ktoré nepretínajú spojnicu víru a
antivíru, je rozdiel fáz medzi ľavým a pravým koncom vzorky rovnaký,

∫
C1
dr ·∇θ =

∫
C1
dr ·∇θ = ∆θ,

kým pre dráhu C na obrázku 5, ktorá túto spojnicu pretína, platí
∫
C dr · ∇θ = ∆θ − 2π, pretože pre

dráhu obopínajúcu vír musí platiť
∫
C2
dr · ∇θ −

∫
C dr · ∇θ = 2π.

V kovovej fáze sú (anti)víry voľne pohyblivé. Gradient ∇θ v smere osi x preto vytláča vír na dolný
okraj vzorky a antivír na horný okraj. V závislosti od okrajových podmienok v smere osi y ostanú
(anti)víry uväznené na kraji vzorky, alebo z nej dokonca budú úplne vytlačené. Výsledným efektom
tohto procesu je, že pozdĺž všetkých dráh vo vzorke sa aplikovaný rozdiel fáz na koncoch vzorky zníži
o 2π. Podobné procesy (tzv. prešmyknutia fázy o 2π) pobežia dovtedy, kým sa aplikovaný rozdiel fáz
efektívne nevynuluje. Preto je zrejmé, že v kovovej fáze δF = 0 a tuhosť je nulová.

Obr. 5: Vľavo: vzorka s párom vír-antivír so zvonku aplikovaným gradientom fázy ∇θ, ktorý v smere osi x vytvára
rozdiel fáz ∆θ medzi koncami vzorky. Sily (48) vytláčajú vír aj antivír k okrajom vzorky. Vpravo: dráhy C1, C2 a C
popisované v texte.

Na druhej strane, v dielektrickej fáze na každý dipól pôsobí dvojica síl F a −F, ktorá môže dipól
iba natočiť a/alebo deformovať, nie však roztrhnúť. V tomto prípade k efektívnemu vynulovaniu δF
neprichádza a tuhosť zostane konečnou aj po zohľadnení vírových excitácií. Neočakávaným výsledkom
je, že v bode prechodu Tc sa tuhosť mení skokom z konečnej hodnoty κc = 2

πTc v dielektrickej fáze na
nulovú hodnotu v kovovej fáze.

Cvičenia
1. Ukážte, že pre čiaru C obopínajúcu systém (anti)vírov s nábojmi qi platí

∑
C ∆θ = 2π

∑
i qi.

2. Ukážte, že v systéme s periodickými okrajovými podmienkami platí
∑

Σ ∆θ = 0, kde Σ je povrch vzorky. Podľa
cvičenia 1 v takomto systéme teda platí

∑
i qi = 0.

3. Ukážte, že pre konfiguráciu nábojov s celkovým nábojom
∑
i qi = 0, ktoré sa naviac nachádzajú ďaleko od povrchu

vzorky, v limite R→∞ platí
∮

Σ
dS · ϕ∇ϕ→ 0.

4. Ukážte, že energia páru vír-antivír je konečná aj na nekonečnej mriežke.
5. Pomocou nábojovej analógie (46) ukážte, že víry s q = 2 sú nestabilné. Návod: porovnajte energiu stavu s (anti)vírmi
s nábojmi +2,-1,-1 s energiou stavu s (anti)vírmi +1,+1,-1,-1. Predpokladajte, že všetky dvojice rôznych vírov sú vo
vzdialenosti ∼ R. Možno (46) použiť na porovnanie energie stavu s vírom q = 2 a dvojice vírov s nábojmi +1? Ako
zmení úvahy o stabilite vírov zahrnutie entropie?
6. Podľa (47) medzi vírom a antivírom existuje príťažlivá interakcia. Zdôvodnite tento výsledok priamo v spinovom
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jazyku, t.j. bez použitia nábojovej analógie.

10 Supratekuté hélium

V tejto prednáške najprv stručne popíšeme experimentálne fakty o supratekutosti hélia. Budeme argu-
mentovať, že supratekutosť súvisí s existenciou kondenzátu, t.j. makroskopicky obsadeného jednočasti-
cového stavu. Napokon ukážeme, že v systémoch s kondenzátom je spontánne narušená tzv. (globálna)
kalibračná symetria.

Experimentálne fakty
Pri tlakoch menších ako zhruba 2.5×106 Pa zostáva hélium kvapalné až do najnižších skúmaných teplôt.
Absencia tuhej fázy je spôsobená súčasnou prítomnosťou dvoch faktorov: 1. slabosťou interakcií medzi
atómami, 2. malou hmotnosťou m atómov He. V dôsledku súhry týchto faktorov atómy vykonávajú
kvantové kmity s veľkou amplitúdou, ktoré hrajú rolu analogickú role tepelných kmitov a rozrušia
kryštalické usporiadanie.

Obr. 6: Vľavo: Fázový diagram pre 4He. Vpravo: teplotná závislosť podielu supratekutej zložky ρs/ρ.

Podľa 3. vety termodynamickej musí entropia v limite T → 0 klesať do nuly. Ako je to však
možné v kvapaline, v ktorej existuje nenulová tzv. konfiguračná entropia? Príroda tento problém rieši
prechodom z obyčajnej kvapalnej fázy do novej nízkoteplotnej kvapalnej fázy, tzv. fázy He II. Fázový
prechod je spojitý, bez skupenského tepla, a realizuje sa pri teplote Tc(p), ktorá závisí od tlaku p. Pri
tlaku nasýtených pár (t.j. na čiare koexistencie kvapalina-plyn) je Tc = 2.19 K. Merné teplo pri nízkych
teplotách vykazuje Debyeovu teplotnú závislosť, cV ∝ T 3.

Supratekutá fáza s Tc ∼ 1 K sa realizuje iba pre izotop 4He. Izotop 3He sa supratekutým stáva iba
pri Tc ∼ 1 mK, t.j. o tri rády nižších teplotách. Keďže chemické vlastnosti oboch izotopov sú iden-
tické a ich hmotnosti sú porovnateľné, hlavným kvalitatívnym rozdielom medzi nimi sú ich štatistické
vlastnosti: izotop 4He je bozón, keďže pozostáva z párneho počtu fermiónov (2 protóny, 2 neutróny,
2 elektróny), kým izotop 3He je fermión (2 protóny, 1 neutrón, 2 elektróny). Spin základného stavu
atómu je S = 0 pre 4He a S = 1/2 pre 3He.

Dvojkvapalinový model
Merania viskozity He II vykazujú nasledovný paradox:
A: v experimentoch, v ktorých hélium tečie cez potrubie (ktoré je v pokoji), je viskozita hélia nulová:
kvapalina tečie cez potrubie aj pri nulovom rozdiele tlakov na koncoch potrubia.
B: v experimentoch, v ktorých sú do hélia (ktoré je v pokoji) zavedené pohyblivé objekty, je pohyb
týchto objektov tlmený ako v obyčajnej viskóznej kvapaline. Tlmenie klesá do nuly iba v limite T → 0.

Tento paradox rieši tzv. dvojkvapalinový model, podľa ktorého hélium vo fáze He II pozostáva z
dvoch zložiek, z normálnej zložky s hustotou ρn a s konečnou viskozitou a zo supratekutej zložky s
hustotou ρs a s nulovou viskozitou, pričom celková hustota hélia ρ = ρn + ρs. V experimentoch typu A
totiž ostáva normálna zložka v pokoji vzhľadom na steny potrubia a bezdisipatívny transport hmoty
je zabezpečený supratekutou zložkou. V experimentoch typu B pohyblivé objekty so sebou strhávajú
normálnu zložku a nastáva disipácia. Pri teplotách T > Tc je ρn = ρ, t.j. celá kvapalina je v normálnom
stave. Pri schladení pod Tc sa objaví nenulová hustota supratekutej zložky, pričom ρs so znižovaním
teploty rastie a v limite T = 0 je celá kvapalina supratekutá, ρs = ρ.
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Fontánový jav
Tzv. fontánový jav sa realizuje medzi dvomi nádobami A a B, ktoré si môžu vymieňať iba supratekutú
zložku. Takúto situáciu možno zabezpečiť prepojením nádob tenučkými kapilárami, cez ktoré nor-
málna zložka v dôsledku konečnej viskozity nemôže tiecť. Experimentálne pozorovanie je nasledovné:
ak zahrejeme nádobu B na teplotu TB vyššiu ako TA, potom supratekutá zložka potečie z A do B.

Tento jav možno chápať ako supratekutý analóg osmózy. Každá nádoba je totiž roztokom suprate-
kutej zložky v normálnej zložke. Teplejšia nádoba B predstavuje redší roztok, keďže je v nej relatívne
menej supratekutej zložky, kým chladnejšia nádoba A predstavuje hustejší roztok. Tečenie suprateku-
tej zložky z A do B teda predstavuje difúzny tok vedúci k vyrovnávaniu koncentrácií. Podľa 2. vety
termodynamickej však teplo nemôže tiecť z chladnejšieho telesa na teplejšie, t.j. z A do B. Preto do-
chádzame k záveru, že supratekutá zložka nesie nulovú entropiu. Keďže pri nulovej teplote existuje len
supratekutá zložka, tento záver je naviac v zhode s 3. vetou termodynamickou.

Perzistentné prúdenie
Naplňme rúrku stočenú do prstenca héliom, vyhrejme ju nad Tc a prstenec roztočme. Prstenec strháva
hélium so sebou a po čase rotuje ako tuhé teleso. Teraz prstenec schlaďme pod Tc a zastavme ho. Sup-
ratekutá zložka pritom môže zotrvať v rotačnom pohybe s priemernou rýchlosťou prúdenia v. Systém
prstenec + hélium potom nesie moment hybnosti úmerný ρsv a správa sa ako vĺčik. Tento moment
hybnosti možno merať štúdiom precesnej frekvencie vĺčika v gravitačnom poli. Je pozoruhodné, že pri
zmene teploty sa mení koncentrácia ρs(T ), ale rýchlosť prúdenia v od teploty nezávisí. Supratekutá
zložka teda má fixované pole rýchlostí.

Druhý zvuk
Teplo sa v He II nešíri difúzou, ale ako vlna teploty a entropie, tzv. druhý zvuk. Vďaka takémuto me-
chanizmu vedenia tepla je He II dobrým vodičom tepla.29 V rámci dvojkvapalinového modelu si druhý
zvuk možno predstaviť ako kolektívny mód, pri ktorom je celková hustota hélia konštantná. Normálna
a supravodivá zložka kmitajú oproti sebe, čo spôsobuje moduláciu teploty a entropie.

Boseho-Einsteinova kondenzácia
Fontánový jav demonštruje, že supravodivá zložka nesie nulovú entropiu. Perzistentné prúdenie zas
ukazuje, že pole rýchlostí je fixované. Naviac, izotop 3He sa supratekutým stáva iba pri veľmi nízkych
teplotách. Všetky tieto experimentálne skutočnosti prirodzene vysvetľuje predpoklad, že kondenzát
je tvorený atómami obsadzujúcimi jeden a ten istý jednočasticový stav. Najjednoduchším modelom
supratekutosti He II je preto systém nezávislých bozónov.

Skúmajme systém nezávislých bozónov so spinmi S = 0 v kockovej škatuli s objemom V a s
periodickými okrajovými podmienkami. Celkový počet častíc v systéme s chemickým potenciálom µ a
teplotou T je určený Boseho-Einsteinovým rozdelením

N =
∑
k

1

e(εk−µ)/T − 1
,

kde εk = ~2k2

2m . V systéme s predpísaným počtom častíc je táto rovnica definičnou rovnicou pre chemický
potenciál. Po štandardnej zámene sumy za integrál, integrácii vo sférických súradniciach a prechode k
bezrozmerným premenným možno túto rovnicu prepísať ako nasledovnú rovnicu pre hustotu častíc

ρ =
N

V
=

1

(2π)2λ3

∫ ∞
0

dz
√
z

ez−µ/T − 1
,

kde λ = ~/
√

2mT je tzv. termálna dĺžka.

29Keď chladíme tekuté hélium pozdĺž krivky nasýtených pár odsávaním pár, hélium sa zbavuje energie vyparovaním
najteplejších atómov. Normálna kvapalina pritom prechádza varom, t.j. lokálne fluktuácie teploty nad teplotu vyparova-
nia vytvárajú v objeme kvapaliny bublinky, ktoré (v gravitačnom poli Zeme) stúpajú na povrch kvapaliny. Supratekutá
kvapalina však pri chladení nevrie, pretože vysoká tepelná vodivosť neumožňuje lokálne prehriatie kvapaliny. K vyparo-
vaniu dochádza výlučne z povrchu supratekutiny, ktorá vyzerá ako “veľmi suché Martini”.
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Chemický potenciál musí spĺňať nerovnosť µ ≤ 0, inak by sme podľa Boseho-Einsteinovej štatistiky
dostávali záporné počty častíc. Preto integrál vo výraze pre ρ je zhora ohraničený konečným integrálom∫∞

0
dz
√
z

ez−1 ≈ 2.32. Pri nízkych teplotách však termálna dĺžka λ diverguje, a preto pravá strana rovnice
pre ρ pri dostatočne nízkych teplotách určite nemôže nadobúdať predpísanú hodnotu ρ. Minimálna
teplota TBE , pri ktorej možno uvedený postup použiť, je daná podmienkou ρ ≈ 0.059/λ3, odkiaľ po
úprave dostávame30

TBE ≈ 3.31
~2ρ2/3

m
.

Pri teplotách T < TBE má chemický potenciál hodnotu µ = 0 a podľa integrálnej formuly pre
počet častíc máme v systéme iba N(T/TBE)3/2 častíc. Ľahko sa však dovtípime, že častice, ktoré
podľa integrálnej formuly zdanlivo chýbajú, v skutočnosti obsadzujú jednočasticový stav s hybnosťou
k = 0 a energiou ε = 0. Koniec koncov, pri teplote T = 0 budú všetky častice obsadzovať iba tento
stav. Súbor častíc obsadzujúcich stav k = 0 nazývame kondenzátom a stotožňujeme ho so supratekutou
zložkou.31 Na druhej strane, súbor častíc, ktoré sú termálne excitované von z kondenzátu, stotožňujeme
s normálnou zložkou. Pre počet častíc v kondenzáte teda dostávame výraz

N0

N
= 1−

(
T

TBE

)3/2

.

Pri teplote TBE teda v systéme neinteragujúcich bozónov existuje fázový prechod, ktorý oddeľuje dve
fázy, vysokoteplotnú normálnu fázu a nízkoteplotnú fázu s dvomi zložkami: normálnou a supratekutou.

Makroskopická koherencia a ODLRO (off-diagonal long range order)
Hoci ani excitačné spektrum, ani termodynamické veličiny ako napr. merné teplo pri nízkych teplotách
alebo typ prechodu pri Tc nie sú v BE modeli uspokojivo popísané (pozri cvičenia), kľúčové mak-
roskopické vlastnosti supratekutín, t.j. existenciu perzistentných bezdisipatívnych prúdov, možno na
základe tohto modelu vysvetliť.

Najprv identifikujme parameter usporiadania pre BE kondenzát. Pre jednoduchosť modelujme
supratekutinu ako systém častíc, ktoré môžu obsadzovať iba orbitály v bodoch i na mriežke. Častice sa
môžu cez mriežku hýbať preskokmi medzi mriežkovými bodmi, podobne ako elektróny v modeli tesnej
väzby. Jednočasticový stav s hybnosťou ~k je kreovaný operátorom

a†k =
1√
N

∑
i

ψ†i e
ik·Ri , ψ†i =

1√
N

∑
k

a†ke
−ik·Ri ,

kde N je počet mriežkových bodov a operátor ψ†i vkladá časticu do bodu i s polohovým vektorom Ri.
Skúmajme neinteragujúci systém N0 častíc v základnom stave, kedy všetky častice vytvárajú kon-

denzát v stave k = 0 s najnižšou energiou. Predpokladajme naviac, že N0 a N sú čísla toho istého
rádu. Lomenými zátvorkami 〈X〉 budeme označovať strednú hodnotu veličiny X v základnom stave.
Pre maticové elementy 〈ψ†iψj〉 potom dostaneme výsledok

〈ψ†iψj〉 =
1

N
∑
k,k′

e−ik·Ri+ik
′·Rj 〈a†kak′〉 =

N0

N
.

Je dôležité si uvedomiť, že tento výsledok platí aj pre vzdialené bunky i a j, pre ktoré |Ri−Rj | → ∞.
Inými slovami, v systéme s kondenzátom musí existovať koherencia medzi vzdialenými bunkami i a j. Na
druhej strane však vzdialené body nemôžu byť korelované, čiže strednú hodnotu 〈ψ†iψj〉musí byť možné
faktorizovať, t.j. 〈ψ†iψj〉 ≈ 〈ψ

†
i 〉 × 〈ψj〉. Preto sme nútení postulovať existenciu tzv. nediagonálneho

usporiadania na dlhé vzdialenosti (ODLRO, off-diagonal long range order):

〈ψi〉 =

√
N0

N
eiθ, 〈a0〉 =

√
N0e

iθ. (49)

30Teplota TBE síce rádovo súhlasí s experimentálnymi hodnotami pre kritickú teplotu Tc, ale tento súlad netreba
preceňovať. Napríklad závislosť od hustoty je opačná ako v experimente: pri tlaku nasýtených pár (nižšia hustota) je
Tc ≈ 2.19 K, kým pri teplote tuhnutia (vyššia hustota) je Tc ≈ 1.76 K.

31Neskôr uvidíme, že koncentrácia častíc v kondenzáte interagujúcich systémov nie je totožná s hustotou supratekutej
zložky ρs.
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Tento typ usporiadania ako prví postulovali O. Penrose a L. Onsager. Všimnime si, že kondenzát je
charakterizovaný nielen počtom častíc N0, ale aj fázou θ, ktorá môže byť zvolená pre referenčný bod
i ľubovoľne, ale musí byť homogénna v celom systéme. Inými slovami, kondenzát je charakterizovaný
komplexným číslom 〈a0〉 = z =

√
N0e

iθ.
Ľahko nahliadneme, že veličina 〈ψi〉 je parametrom usporiadania pre supratekutinu, keďže v nor-

málnom stave 〈ψi〉 = 0. Pýtajme sa ďalej, aká symetria je narušená v supratekutom stave. Za tým
účelom si najprv všimnime, že v druhom kvantovaní sú jednočasticové operátory dané kvadratickými
funkciami kreačných a anihilačných operátorov, s jedným kreačným a jedným anihilačným operátorom.
Podobne dvojčasticové členy sú dané kvartickými funkciami s dvomi kreačnými a dvomi anihilačnými
operátormi. Preto mnohočasticové systémy sú invariantné voči nasledovnej (globálnej, t.j. pre všetky
body rovnakej) kalibračnej transformácii:

ψ†i → ψ†i e
−iϕ, ψi → ψie

iϕ. (50)

Parameter usporiadania supratekutiny 〈ψi〉 nie je invariantný pri takejto kalibračnej transformácii, a
preto supratekutina je fázou so spontánne narušenou globálnou kalibračnou symetriou.

Cvičenia
1. Odhadnite konfiguračnú entropiu kvapaliny. Návod: kvapalinu modelujte ako sadu N atómov, ktoré môžu obsadzovať
N > N mriežkových polôh, pričom na každej mriežkovej polohe môže byť najviac jeden atóm. Atómy považujte za
nerozlíšiteľné. Ako možno odhadnúť koncentráciu c = N/N obsadených bodov?
2. V limite nízkych teplôt vypočítajte energiu, merné teplo, entropiu, voľnú energiu a tlak v dvoch systémoch: a) pre
model nezávislých bozónov s fixovaným počtom, b) pre plyn zvukových vĺn. Výsledky porovnajte s experimentálnym
výsledkom cV ∝ T 3 pre merné teplo hélia.
3. K fontánovému javu: nájdite rozdiel tlakov δp = pB − pA medzi nádobami A a B, ak príslušný rozdiel teplôt je
δT = TB−TA. Návod: žiadajte rovnosť chemických potenciálov pre hélium v oboch nádobách a entropiu hélia odhadnite
v modeli plynu zvukových vĺn. Možno fontánový jav vysvetliť v modeli nezávislých bozónov s fixovaným počtom?
4. Vypočítajte frekvenciu precesie vĺčika vytvoreného zo supratekutého prstenca.
5. Ukážte, že globálna kalibračná transformácia (50) je kánonická. Je napr. Hubbardov model invariantný voči tzv. lo-
kálnym kalibračným transformáciám, pre ktoré fázový faktor ϕi závisí od polohy?

11 Josephsonove rovnice

V tejto prednáške najprv explicitne skonštruujeme stavy s ostrou hodnotou fázy kondenzátu. Pomocou
nich ukážeme, že existencia kondenzátu vysvetľuje supratekutosť.

Koherentné stavy
V tomto odstavci skonštruujeme vlastný stav |θ〉 anihilačného operátora, a0|θ〉 = z|θ〉. Stav |θ〉 nazý-
vame tzv. koherentným stavom. Budeme predpokladať, že vlnová funkcia |θ〉 je normovaná, preto pre
koherentný stav platí 〈θ|a0|θ〉 = z. V súlade s predošlou prednáškou preto za vlastnú hodnotu vezmeme
z =
√
N0e

iθ, kde θ je fáza kondenzátu.
Nech |n〉 = 1√

n!

(
a†0

)n
|0〉 je stav s n časticami. Ľahko nahliadneme, že vlnová funkcia |θ〉 musí

byť lineárnou kombináciou stavov s rôznymi počtami častíc, |θ〉 =
∑∞

n=0 cn|n〉. Toto je všeobecná
vlastnosť stavov s narušenou symetriou, ako sme podrobne diskutovali v kapitole 5. Ak využijeme vzťah
a0|n〉 =

√
n|n− 1〉 (pozri cvičenia), porovnaním rozvojov pre stavy a0|θ〉 a z|θ〉 dostaneme rekurzívne

vzťahy pre koeficienty, cn+1 = z√
n+1

cn. Riešením týchto vzťahov je cn = 1√
n!
znc0. Koeficient c0 možno

určiť z normalizačnej podmienky
∑∞

n=0 |cn|2 = 1, odkiaľ vyplýva |c0| = e−N0/2. Po vyjadrení čísla z
pomocou amplitúdy a fázy pre koherentný stav dostaneme explicitný výsledok (pozri cvičenia)

|θ〉 =

∞∑
n=0

cn|n〉 =

∞∑
n=0

|cn|einθ|n〉, (51)

|cn| =

(
e−N0Nn

0

n!

)1/2

≈ 1

(2πN0)1/4
e
− (n−N0)2

4N0 . (52)
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Koherentný stav |θ〉 je teda zhruba gaussovskou superpozíciou stavov s rôznymi počtami častíc n,
pričom stredná hodnota n je N0. Štandardná odchýlka n od strednej hodnoty je

√
N0, čo je (pre veľké

počty častíc v kondenzáte) zanedbateľne malá hodnota oproti N0.
Pre úplnosť dodajme, že koherentný stav možno zapísať aj kompaktnejšie v elegantnom tvare

|θ〉 = e−N0/2eza
†
0 |0〉, (53)

pričom exponenciálnu funkciu operátora treba opäť rozumieť ako Taylorov rozvoj eza† =
∑∞

n=0
zn

n!

(
a†
)n.

θ-reprezentácia
Stavy s presne definovaným počtom častíc dostaneme zo stavov |θ〉 nasledovnou projekciou:

|n〉 =
1

|cn|

∫ 2π

0

dθ

2π
e−inθ|θ〉.

Tento výsledok možno zapísať v tvare |n〉 =
∫ 2π

0 dθψn(θ)|θ〉, kde ψn(θ) = 1
2π|cn|e

−inθ možno interpre-
tovať ako vlnovú funkciu stavu |n〉 v θ-reprezentácii. Teda systém v stave |n〉 sa s amplitúdou pravde-
podobnosti ψn(θ) nachádza v koherentnom stave |θ〉 a prechod od bázy |θ〉 k báze |n〉 je podobný ako
prechod od p-reprezentácie k x-reprezentácii pre jednu časticu.

Všimnime si, že operátor počtu častíc v θ-reprezentácii možno zapísať v tvare

n̂ = i
∂

∂θ
.

Naozaj, pri takejto definícii dostaneme n̂ψn(θ) = nψn(θ) v súlade s faktom, že vlnová funkcia ψn(θ)
popisuje stav s n časticami. Ak teraz naviac uvážime, že v θ-reprezentácii je operátor θ̂ totožný s
násobením c-číslom θ, dostaneme nasledovný komutačný vzťah pre operátory počtu častíc a fázy,

[n̂, θ̂] = i. (54)

teda počet častíc a fáza sú kánonicky združené veličiny. Totožným postupom ako pri výklade Heisen-
bergovho princípu neurčitosti možno ukázať, že z tohto komutačného vzťahu potom vyplýva vzťah
neurčitosti pre počet častíc a fázu, ∆n ·∆θ ≥ 1

2 .

n-reprezentácia
Pre veľké počty častíc možno n chápať ako spojitú premennú. Rozvoj (51) sa potom dá zapísať v tvare
|θ〉 =

∫
dnψθ(n)|n〉, čo možno interpretovať ako zápis stavu |θ〉 v n-reprezentácii s vlnovou funkciou

ψθ(n) = |cn|einθ. Pre operátor fázy v n-reprezentácii potom dostaneme

θ̂ = −i ∂
∂n
,

pretože pôsobenie derivácie na |cn| možno pre |n − N0| � N0 zanedbať. Keďže v n-reprezentácii je
operátor n̂ obyčajným násobením číslom n, opäť samozrejme dostávame komutačný vzťah (54).

Josephsonove rovnice
Vyčleňme v supratekutine malý, ale makroskopický objem ∆V. Počet častíc v tomto objeme môže
vďaka pohybu častíc dnu a von fluktuovať. Predpokladajme, že hamiltonián zvoleného elementu závisí
od fázy a k nej kánonicky združeného počtu častíc: H = H(n̂, θ̂). Potom Heisenbergova pohybová
rovnica pre operátor θ̂ má tvar

˙̂
θ =

1

i~
[θ̂, H] = −1

~
∂H

∂n
,

pričom druhá rovnosť je zapísaná v n-reprezentácii. Pohybová rovnica pre n̂ je podobná:

˙̂n =
1

i~
[n̂,H] =

1

~
∂H

∂θ
,

pričom druhá rovnosť je tentoraz zapísaná v θ-reprezentácii.
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Ak je stredný počet častíc N0 v objeme veľký, potom Heisenbergove vzťahy neurčitosti možno
splniť v stavoch s malými relatívnymi fluktuáciami fázy ∆θ � 1 aj počtu častíc ∆n/N0 � 1. Pre
takéto objemové elementy možno fázu θ aj počet častíc n považovať za klasické veličiny a namiesto
operátora H = H(n̂, θ̂) možno písať klasickú energiu E = E(n, θ). Ak naviac uvážime, že pre chemický
potenciál µ platí ∂E/∂n = µ, pohybové rovnice nadobudnú tvar tzv. Josephsonových rovníc,

~θ̇ = −∂E
∂n

= −µ, ~ṅ =
∂E

∂θ
. (55)

Najprv preskúmajme dôsledky Josephsonových rovníc pre izolovaný kondenzát. Z rovnice pre fázu
vyplýva, že θ(t) = θ0 − µt/~, t.j. fáza supratekutiny sa vyvíja v čase, ako keby išlo o obyčajnú vlnovú
funkciu s energiou µ, eiθ = eiθ0e−iµt/~. Keďže pre izolovaný kondenzát musí platiť ṅ = 0, z rovnice pre
n vyplýva ∂E/∂θ = 0, t.j. energia supratekutiny nezávisí od fázy. To bolo samozrejme treba očakávať.

Teraz preskúmajme dva susediace kondenzáty 1 a 2 s fázami θ1 a θ2, spojené tenkou kapilárou
umožňujúcou výmenu častíc. Energia systému opäť nemôže závisieť od absolútnych hodnôt θ1 a θ2, ale
môže byť funkciou ich rozdielu, E = E(θ1 − θ2). Rovnice pre počty častíc n1 a n2 možno písať v tvare

I = ṅ1 =
1

~
∂E

∂θ1
= −1

~
∂E

∂θ2
= −ṅ2

Ukázali sme teda, že pokiaľ energia E nie je konštantnou funkciou rozdielu fáz θ = θ1 − θ2,
potom cez spoj potečie prúd častíc. V limite slabej väzby medzi kondenzátmi očakávame, že funkcia
E(θ) musí byť periodická s periódou 2π. Naviac, pokiaľ ide o systém invariantný voči obráteniu času,
E(θ) bude párna funkcia, pretože pri obrátení času sa vlnové funkcie zmenia na komplexne združené.
Najjednoduchšou funkciou tohto typu je E(θ) = −EJ cos θ, kde EJ je tzv. Josephsonova energia spoja.
Pomocou mikroskopickej teórie možno ukázať, že funkcia E(θ) má tento jednoduchý tvar napr. pre
tzv. tunelové spoje, t.j. pre dva kondenzáty oddelené síce vysokou, ale tenkou potenciálovou bariérou.
Obvykle pritom platí EJ > 0, t.j. energia spoja sa minimalizuje pre nulový rozdiel fáz θ. Cez tunelový
spoj teda pre θ 6= 0, π tečie konečný rovnovážny prúd častíc

I(θ) =
EJ
~

sin θ.

Josephson tento jav teoreticky predpovedal pre supravodiče. Experimenty následne potvrdili existenciu
Josephsonovho javu v supravodičoch aj v supratekutinách.

Ak ďalej budeme predpokladať, že medzi chemickými potenciálmi oboch kondenzátov je zvonka
udržiavaný konštantný rozdiel δµ = µ1 − µ2, potom z rovnice (55) pre fázu vyplýva, že rozdiel fáz
kondenzátov θ = θ1 − θ2 sa vyvíja v čase, ~θ̇ = −δµ. Teda rozdiel fáz sa v čase mení podľa θ(t) =
θ0 − ωJ t, kde ωJ = δµ

~ je tzv. Josephsonova frekvencia. Spojením rovníc pre prúd a fázu dostaneme
tzv. striedavý Josephsonov jav, pri ktorom prúd

I(t) =
EJ
~

sin (θ0 − ωJ t)

periodicky osciluje v čase. V supravodičoch možno rozdiel chemických potenciálov vytvoriť prilože-
ním napätia V , pričom δµ = 2eV .32 Presné merania napätia V a Josephsonej frekvencie ωJ potom
umožňujú veľmi presne zmerať tzv. Josephsonovu konštantu KJ = 2e

~ , ktorá je kombináciou funda-
mentálnych konštánt.

Josephsonove rovnice v spojitom prípade
Josephsonove výsledky teraz zovšeobecníme na prípad nehomogénnej supratekutiny pri konečnej tep-
lote. Nech v supratekutine existuje fázové pole θ(r). Budeme predpokladať, že voľná energia suprate-
kutiny je minimálna pre konštantné pole θ(r) a jej prírastok pre nehomogénne polia bude

δF = EJ
∑
R

[(1− cos(θR+x̂ − θR)) + (1− cos(θR+ŷ − θR)) + (1− cos(θR+ẑ − θR))] ,

32Ako uvidíme neskôr, kondenzát v supravodiči je totiž tvorený Cooperovými pármi s nábojom −2e.
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kde sme reprezentovali nehomogénnu supratekutinu ako sadu malých, ale makroskopických kockových
elementov s objemami ∆V = d3 zviazaných Josephsonovou energiou EJ . Pre hladké polia θ(r) môžeme
funkcie cos(θR+τ̂ − θR) rozvinúť do Taylorovho radu a dostaneme

δF =
κd3

2

∑
R

[(
θR+x̂ − θR

d

)2

+

(
θR+ŷ − θR

d

)2

+

(
θR+ẑ − θR

d

)2
]
≈ κ

2

∫
(∇θ)2d3r,

kde sme zaviedli tuhosť fázy κ = EJ/d. V poslednej rovnici sme výraz pre δF interpretovali ako
Riemannovu sumu pre integrál. Porovnaním výsledného výrazu pre δF s výkladom v kapitole 8 vidíme,
že efektívnym modelom pre kondenzát je model XY so zovšeobecnenou tuhosťou κ.

Keď teraz použijeme Josephsonovu rovnicu (55) pre počet častíc v elemente R, dostaneme

ṅR =
1

~
∂F

∂θR
= −κd

~
[(θR+x̂ + θR−x̂ − 2θR) + (θR+ŷ + θR−ŷ − 2θR) + (θR+ẑ + θR−ẑ − 2θR)] .

Počet častíc v elemente R sa teda mení v dôsledku tečenia prúdu medzi R a šiestimi susednými
elementmi, ktoré ležia v smeroch ±x̂, ±ŷ a ±ẑ. Napríklad prúd tečúci z elementu R do elementu R+ x̂
je κd

~ (θR+x̂ − θR), preto zodpovedajúca prúdová hustota je jxR = κd
~d2 (θR+x̂ − θR) ≈ κ

~
∂θR
∂x . Pre vektor

prúdovej hustoty tak dostávame
j =

κ

~
∇θ.

Teda v stave s nehomogénnym rozdelením fáz tečie rovnovážny bezdisipatívny prúd! Analogickým
javom v prípade kryštálov je bezdisipatívny transport sily pri mechanickej deformácii kryštálu, spomí-
naný v kapitole 8.

Ak naviac predpokladáme, že v elemente R je chemický potenciál µR, potom z Josephsonovej
rovnice pre fázu dostávame ~θ̇R = −µR. Preto ~ d

dt(θR+x̂− θR) = −(µR+x̂−µR), čo opäť možno písať
vo vektorovom tvare

d

dt
(~∇θ) = −∇µ.

Ak v práve odvodených Josephsonových rovniciach pre kontinuum budeme veličinu ~∇θ interpre-
tovať ako hybnosť mvs častice s rýchlosťou vs a ak gradient chemického potenciálu prepíšeme ako silu
F = −∇µ pôsobiacu na časticu, dostaneme pre ne alternatívne vyjadrenie

j =
mκ

~2
vs,

d

dt
mvs = F.

Porovnaním prvej rovnice s predpoveďou dvojkvapalinového modelu j = ρsvs dostaneme výraz pre
tuhosť fázy κ = ~2ρs

m . Teda konečná hustota kondenzátu implikuje konečnú tuhosť fázy, ako sme aj
mali čakať. Druhá Josephsonova rovnica sa nazýva akceleračnou, pretože ukazuje, že pri pôsobení von-
kajších síl sa tok kondenzátu zrýchľuje (bez trenia!).

Makroskopická vlnová funkcia a kvantovanie cirkulácie
Teraz ukážeme, že makroskopické vlastnosti supratekutiny možno alternatívne popísať na základe
pojmu makroskopickej vlnovej funkcie ψ = |ψ|eiθ, ktorá je riešením efektívnej Schrödingerovej rovnice
i~∂ψ∂t = Hψ s hamiltoniánom

H =
p2

2m
+ µ(r),

kde p = −i~∇. Naozaj, prúdová hustota a pohybová rovnica pre hybnosť sú v tomto modeli dané
vzťahmi

j = − i~
2m

(ψ∗∇ψ − ψ∇ψ∗) =
~|ψ|2

m
∇θ, d

dt
p =

1

i~
[p, H] = −∇µ,

ktoré sú v zhode s predpoveďami na základe Josephsonových rovníc, ak za amplitúdu makroskopickej
vlnovej funkcie vezmeme |ψ|2 = ρs. Vlnová funkcia ψ(r) teda efektívne popisuje koherentný stav, ktorý
má (kváziklasicky) v danom mieste zároveň ostrú hodnotu amplitúdy aj fázy.
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Popis pomocou makroskopickej vlnovej funkcie umožňuje jednoducho analyzovať priestorovo závislé
úlohy. Napríklad v uzavretom prstenci pre ľubovoľnú uzavretú dráhu C obopínajúcu otvor prstenca z
požiadavky jednoznačnosti vlnovej funkcie vyplýva podmienka

∮
C ∇θ · dr = 2πn, kde n je celé číslo.

Ak teraz využijeme vzťah ~∇θ = mvs, dostaneme tzv. kvantovanie cirkulácie∮
C
vs · dr =

2π~n
m

.

Tento výsledok možno použiť na vysvetlenie experimentov o perzistentnom tečení: celé číslo n a teda
aj rýchlostné pole je totiž raz a navždy fixované v procese chladenia cez Tc a pri zmenách teploty pod
Tc sa ďalej nemení. Rýchlosť supratekutého prúdenia totiž nemôže ubúdať spojite, ale len prostredníc-
tvom kvantových skokov. Takéto skoky však vyžadujú zmenu okrajovej podmienky pre vlnovú funkciu.
Zmena okrajovej podmienky je však možná iba rozrušením supratekutosti v makroskopicky veľkom
objeme, čo je spojené s prekonaním (obvykle veľkej) energetickej bariéry.

Cvičenia
1. Druhé kvantovanie pre bozóny. a) Indukciou dokážte

[a,
(
a†
)n

] = n
(
a†
)n−1

. (56)

b) Indukciou dokážte, že nasledovný n-časticový stav je normalizovaný, t.j. 〈n|n〉 = 1:

|n〉 =
1√
n!

(
a†
)n
|0〉. (57)

c) Pomocou vzťahov (56) a (57) ukážte, že a†|n〉 =
√
n+ 1|n+ 1〉 a a|n〉 =

√
n|n− 1〉.

d) Nech f(a†) je ľubovoľná funkcia kreačného operátora, definovaná svojím Taylorovým rozvojom. Pomocou (56) ukážte,
že

[a, f(a†)] =
df

da†
. (58)

2. Koherentné stavy.
a) Presvedčte sa, že neexistujú vlastné stavy kreačného operátora.
b) Pomocou (58) ukážte, že |z〉 = e−|z|

2/2eza
†
|0〉 je koherentný stav.

c) Ukážte, že pre skalárny súčin dvoch koherentných stavov platí 〈u|z〉 = e−(|u|2+|z|2−2u∗z)/2. Teda koherentné stavy sú
síce normované, 〈z|z〉 = 1, ale nie sú navzájom ortogonálne.
d) Ukážte, že systém koherentných stavov je úplný:

∫
d2z
π
|z〉〈z| = 1. Pomôcka: použite rozvoj |z〉 do stavov |n〉 a podľa

z integrujte v polárnych súradniciach.
3. Dokážte formulu (52). Pomôcka: zaveďte odchýlku od stredného počtu častíc m = n−N0, použite Stirlingovu formulu
(pozri dodatok) a využite úpravu (Taylorov rozvoj pre m� N0)

ln

[
en−N0

(
N0

n

)n]
≈ − m2

2N0
.

4. Ukážte, že platí 〈θ|a†0|θ〉 = z∗. Preto pri pôsobení na koherentný stav možno operátory a0, a
†
0 nahradiť komplexne

združenými c-číslami, a0 → z a a†0 → z∗. V stave |θ〉 ďalej explicitne vypočítajte strednú hodnotu počtu častíc a jej
strednú kvadratickú odchýlku.

12 Teória Bogoľubova

V tejto prednáške zohľadníme prítomnosť nenulových interakcií medzi časticami tvoriacimi kondenzát.
V rámci teórie Bogoľubova33 pritom budeme predpokladať, že interakcie sú slabé a skonštruujeme
poruchovú teóriu supratekutín. Takýto prístup samozrejme nemožno použiť na kvantitatívne štúdium
excitačných spektier He II. Súvisom medzi teóriou Bogoľubova a fyzikou hélia sa budeme zaoberať v
nasledujúcej prednáške.

Teoretický model
Skúmajme systém N častíc so spinom S = 0, s energiami εk = ~2k2

2m a so slabými párovými interakciami
s potenciálom V (r). Predpokladajme, že teplota T = 0. Nech častice sa hýbu v škatuli s objemom V

33V anglickej literatúre sa používa transkripcia Bogoliubov aj Bogolyubov. My budeme používať slovenskú verziu.
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a nech pre ne platia periodické okrajové podmienky. Ak zavedieme kreačné a anihilačné operátory
a†k a ak pre jednočasticové stavy (rovinné vlny indexované vlnovým vektorom k), potom hamiltonián
systému možno zapísať v nasledovnom tvare (pozri napr. II.11):

H =
∑
k

εka
†
kak +

1

2V
∑
k,k′,q

Vqa
†
k+qa

†
k′−qak′ak, (59)

kde Vq =
∫
d3rV (r)e−iq·r je Fourierova transformácia interakčného potenciálu. Budeme predpokladať,

že V (r) = V (−r), preto Vq = V−q a Vq je reálne číslo. Pre konkrétnosť budeme mať na mysli nasledovný
modelový potenciál s amplitúdou U a dosahom a:

V (r) =
U

(2π)3/2
e−

r2

2a2

s Fourierovými komponentami Vq = Ua3e−
a2q2

2 (pozri cvičenia). Naviac budeme predpokladať, že
U > 0, t.j. že interakcie sú odpudivé. Je preto zrejmé, že táto teória nemôže vysvetliť existenciu kva-
palného stavu, ktorý je samoviazaný (“má stály objem”). 50 rokov po sformulovaní teórie sa však objavili
systémy, ktoré možno kvantitatívne popísať (modifikovanou) Bogoľubovovou teóriou: ide o suprateku-
tosť plynov, v literatúre skôr známu ako Boseho-Einsteinovu kondenzáciu v plynoch. Na plyny v limite
T → 0 totiž možno aplikovať tie isté úvahy ako na kvapaliny: entropia plynu musí vymiznúť. Príroda
tento problém rieši vznikom kondenzátu. Keďže podľa BE teórie TBE ∝ n2/3 kde n = N/V je hustota
častíc, kritické teploty pre vznik kondenzátu v plynoch budú rádovo nižšie než v kvapalinách. Hlavnou
prekážkou pozorovania supratekutosti plynov bolo dosiahnutie dostatočne nízkych teplôt. Táto úloha
bola experimentálne vyriešená len pomerne nedávno.

Hamiltonián pre častice mimo kondenzátu
Očakávame, že v slabo interagujúcom systéme bude opäť existovať kondenzát, t.j. makroskopicky obsa-
dený stav s k = 0. Videli sme, že v prítomnosti kondenzátu môžeme operátory a0, a

†
0 nahradiť c-číslami

a0 = z =
√
N0e

iθ a a†0 = z∗, kde N0 je počet častíc v kondenzáte (t.j. makroskopicky veľké číslo) a θ je
fáza kondenzátu. Interakčný člen hamiltoniánu (59) potom možno rozvinúť podľa mocnín

√
N0, podľa

toho, koľkokrát sa v ňom vyskytujú operátory a†0, a0:

∑
k,k′,q

Vqa
†
k+qa

†
k′−qak′ak ≈ V0N

2
0 +2N0V0

′∑
k

a†kak+2N0

′∑
k

Vka
†
kak+N0

′∑
k

Vk(e2iθa†ka
†
−k+e−2iθa−kak).

V rozvoji sme ponechali členy, ktoré sú aspoň rádu N0, a ostatné členy sme zanedbali. Čiarky nad
sumami znamenajú, že sumy bežia iba cez stavy mimo kondenzátu, t.j. vylučujeme z nich stav k = 0.

Zohľadnením kondenzátu sa hamiltonián pre ostatné častice mimo kondenzátu zmenil: počet častíc
mimo kondenzátu N ′ =

∑′
k a
†
kak už nie je zachovávajúcou sa veličinou, pretože páry častíc s hybnos-

ťami k a −k môžu vchádzať do kondenzátu, alebo naopak z neho vychádzať. Neustále však musí platiť
podmienka N = N0 +N ′ fixujúca celkový počet častíc v systéme.34

Ak v interakčnom člene hamiltoniánu (59) ponecháme iba členy aspoň rádu N0 a okrajovú pod-
mienku fixujúcu celkový počet častíc opíšeme Lagrangeovým multiplikátorom µ, potom tú časť hamil-
toniánu (59), ktorá popisuje častice mimo kondenzátu, môžeme prepísať ako

H(µ,N0) =
1

2

′∑
k

(a†k, a−k)

(
ε̃k ∆k

∆∗k ε̃k

)(
ak
a†−k

)
+

1

2V
N2

0V0 −
1

2

′∑
k

ε̃k + µ(N −N0), (60)

kde sme zaviedli intenzívne veličiny s rozmerom energie

∆k = n0Vke
2iθ, ε̃k = εk − µ+ |∆k|+ |∆0|,

pričom n0 = N0
V je hustota častíc v kondenzáte.

34Zároveň pritom platí, že ani počet častíc v kondenzáte sa nezachováva. To nám dáva ďalší argument v prospech
popisu kondenzátu pomocou koherentného stavu.
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Všimnime si, že hamiltonián H(µ,N0) parametricky závisí od počtu častíc v kondenzáte N0 a
od Lagrangeovho multiplikátora µ. Keďže platí µ = ∂H/∂µ, Lagrangeov multiplikátor má význam
chemického potenciálu častíc. Hodnoty parametrov N0 a µ určíme po diagonalizácii problému (60)
minimalizáciou energie základného stavu.

Diagonalizácia hamiltoniánu (60)
Hamiltonián (60) budeme diagonalizovať prechodom od bozónových operátorov a†k, ak, t.j. od operá-
torov spĺňajúcich kánonické komutačné vzťahy [ak, a

†
k′ ] = δk,k′ a [ak, ak′ ] = [a†k, a

†
k′ ] = 0, k novým

operátorom α†k, αk, podobne ako v prednáške 4:(
αk

α†−k

)
=

(
u∗k v∗k
vk uk

)(
ak
a†−k

)
. (61)

Aby dolný riadok bol konzistentný s horným riadkom tejto maticovej rovnosti, musíme predpokladať,
že platí u−k = uk a v−k = vk. Naviac žiadame, aby |uk|2 − |vk|2 = 1. Pri splnení týchto podmienok
spĺňajú aj nové operátory bozónové komutačné vzťahy [αk, α

†
k′ ] = δk,k′ a [αk, αk′ ] = [α†k, α

†
k′ ] = 0,

pozri cvičenia. Pre úplnosť uvádzame aj inverznú transformáciu:(
ak
a†−k

)
=

(
uk −v∗k
−vk u∗k

)(
αk

α†−k

)
.

Transformačnú maticu zvolíme tak, aby transformovaný problém bol diagonálny, t.j. žiadame(
u∗k −v∗k
−vk uk

)(
ε̃k ∆k

∆∗k ε̃k

)(
uk −v∗k
−vk u∗k

)
=

(
Ek 0
0 Ek

)
.

Treba si všimnúť, že tu nejde o obvyklú diagonalizáciu pomocou ortogonálnych matíc. Tri neznáme
Ek, uk a vk teda majú spĺňať nasledovný systém troch rovníc

∆∗ku
2
k + ∆kv

2
k = 2ε̃kukvk, ε̃k(|uk|2 + |vk|2)−∆ku

∗
kvk −∆∗kukv

∗
k = Ek, |uk|2 − |vk|2 = 1,

kde sme pre úplnosť pridali aj poslednú rovnicu. Ľahko overíme (pozri cvičenia), že riešením je

Ek =
√
ε̃2
k − |∆k|2, |uk|2 =

ε̃k + Ek

2Ek
, |vk|2 =

ε̃k − Ek

2Ek
, ukv

∗
k =

∆k

2Ek
.

Posledná rovnica definuje relatívnu fázu koeficientov uk a vk. Obvykle volíme reálne a kladné uk.
Potom platí vk = |vk|e−2iθ. Iná voľba by znamenala inú relatívnu fázu medzi operátormi ak a αk. A
posteriori ľahko nahliadneme, že všetky voľby vedú k takým istým výsledkom pre merateľné veličiny.

Teda hamiltonián (60) sme transformáciou k novým operátorom previedli na hamiltonián nezávis-
lých bozónov so spektrom Ek:

H =
′∑
k

Ekα
†
kαk + EGS(µ,N0), (62)

EGS(µ,N0) =
1

2

′∑
k

(Ek − ε̃k) +
1

2V
N2

0V0 + µ(N −N0), (63)

kde EGS(µ,N0) je energia základného stavu.

Voľba µ a N0

Na skompletizovanie riešenia potrebujeme ešte určiť parametre µ a N0. Vedľajšiu podmienku N =
N0 + N ′ zreprodukujeme, ak budeme žiadať splnenie rovnice ∂EGS/∂µ = 0. Pri derivovaní energie
EGS(µ,N0) podľa µ si pritom treba uvedomiť, že ε̃k aj Ek závisia od µ. Takto dostaneme explicitný
výraz pre počet častíc mimo kondenzátu N ′:

N ′ = −1

2

′∑
k

(
1 +

∂Ek

∂µ

)
=

1

2

′∑
k

(
ε̃k
Ek
− 1

)
. (64)



47

Všimnime si, že derivovaním podľa µ sme našli počet častíc v kondenzáte N0 = N −N ′.
Podobne pri minimalizovaní energie EGS(µ,N0) podľa N0 si treba uvedomiť, že ε̃k aj Ek závisia

od N0 cez ∆k. Z rovnice ∂EGS/∂N0 = 0 takto dostaneme výraz pre chemický potenciál

µ = |∆0|+
1

2

∂

∂N0

′∑
k

(Ek − ε̃k) .

Dá sa ukázať, že druhý člen na pravej strane možno zanedbať.35 Ak potom dosadíme hodnotu µ = |∆0|
do výrazu pre ε̃k, dostaneme ε̃k = εk + |∆k|. Preto pre energiu kvázičastíc dostávame výsledok

Ek =
√
εk(εk + 2|∆k|). (65)

Podľa teórie Bogoľubova teda excitačné spektrum supratekutiny pozostáva z plynu nezávislých bo-
zónových častíc s energiami (65). Pomocou hamiltoniánu (63) možno jednoducho počítať akékoľvek
fyzikálne vlastnosti supratekutiny pri T = 0.

Základný stav v teórii Bogoľubova
Základný stav hamiltoniánu (63) označme |Ψ0〉. Počítajme najprv strednú hodnotu počtu častíc mimo
kondenzátu N ′. Ak operátory ak, a

†
k vyjadríme pomocou αk, α

†
k, dostaneme

N ′ =

′∑
k

〈Ψ0|a†kak|Ψ0〉 =

′∑
k

〈Ψ0|(−vkα−k + u∗kα
†
k)(ukαk − v∗kα

†
−k)|Ψ0〉 =

′∑
k

|vk|2,

kde v poslednom kroku sme využili, že stav |Ψ0〉 je vákuom pre nové častice αk, t.j. pre všetky k platí
αk|Ψ0〉 = 0. Ak teraz využijeme explicitný tvar koeficientu |vk|2, zreprodukujeme výsledok (64), ktorý
sme dostali z termodynamických úvah.

Teraz explicitne skonštruujme vlnovú funkciu základného stavu supratekutiny. Vieme už, že obsa-
denie stavu s k = 0 je popísané koherentným stavom |θ〉 = e−

N0
2 eza

†
0 |0〉, kde |0〉 je vákuum, t.j. stav

bez holých častíc. Otázka je, ako vyzerá zvyšok vlnovej funkcie popisujúci obsadenie stavov s k 6= 0.
Ukážeme, že normalizovanú vlnovú funkciu základného stavu možno písať v tvare

|Ψ0〉 = e−
N0
2 eza

†
0

∏
k>0

[
1

|uk|
e
− v
∗
k
u∗
k
a†ka
†
−k

]
|0〉, (66)

kde symbol k > 0 znamená, že každá dvojica k, −k je v súčine zastúpená iba raz.
Najprv ukážeme, že vlnová funkcia |Ψ0〉 je vákuom pre všetky operátory αk. Pri výpočte αk|Ψ0〉

si stačí uvedomiť, že αk nekomutuje iba s jediným zo súčiniteľov, a využiť operátorovú identitu36

αke
− v
∗
k
u∗
k
a†ka
†
−k = (u∗kak + v∗ka

†
−k)e

− v
∗
k
u∗
k
a†ka
†
−k = e

− v
∗
k
u∗
k
a†ka
†
−ku∗kak.

Ľahko nahliadneme, že skutočne platí αk|Ψ0〉 = 0, pretože stav |0〉 je vákuom pre operátory ak.
Pri výpočte normy vlnovej funkcie |Ψ0〉 je užitočné použiť rozvoj do Taylorovho radu

e
− v
∗
k
u∗
k
a†ka
†
−k |0〉 =

∞∑
n=0

1

n!

(
−v∗k
u∗k

)n
(a†ka

†
−k)n|0〉 =

∞∑
n=0

(
−v∗k
u∗k

)n
|n〉k|n〉−k,

35V nasledujúcej prednáške totiž ukážeme, že počet častíc mimo kondenzátu N ′ je rádu U3/2. Všetky výpočty, ktoré
budeme prezentovať, platia iba do tohto rádu. Napríklad vo výraze pre ∆k budeme zanedbávať rozdiel medzi n a n0,
pretože to spôsobuje nepresnosť rádu U5/2. Podobne energia

∑′
k (Ek − ε̃k) je rádu U2, pozri cvičenia k nasledujúcej

prednáške, preto korekciu k µ v konzistentnom rozvoji do daného rádu treba ignorovať. Z rovnosti µ = |∆0| okrem iného
vyplýva, že Ek → 0, keď k → 0. Existuje však krajší argument (pochádzajúci od Hohenberga a Martina) vyložený
napríklad v Rickayzenovej knihe, ktorý zaručí vymiznutie energie Ek v dlhovlnnej limite.

36Pri zámene poradia operátorov αk a exponenty e
−

v∗k
u∗
k
a
†
k
a
†
−k treba využiť, že operátor a†−k komutuje s exponentou.

Komutátor operátora ak s exponentou možno počítať pomocou vzťahu (58).
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kde |n〉k je normovaný stav s n časticami v stave k. Keďže koherentný stav |θ〉 je normovaný, odtiaľto
priamo plynie normovanosť stavu |Ψ0〉:

〈Ψ0|Ψ0〉 =
∏
k>0

[
1

|uk|2
∞∑
n=0

(
|vk|2

|uk|2

)n]
=
∏
k>0

 1

|uk|2(1− |vk|
2

|uk|2
)

 = 1.

Všimnime si, že vlnová funkcia (66) pozostáva z koherentnej superpozície stavov s rôznymi počtami
párov častíc v stavoch k a −k. To je prirodzený výsledok: ak by sme vlnovú funkciu |Ψ0〉 hľadali
pomocou poruchovej teórie podľa Vk, neporušeným základným stavom by bol stav

|N〉 =
1√
N !

(a†0)N |0〉.

Pôsobením nediagonálnych členov v (60) postupne pridávame k tejto vlnovej funkcii páry častíc k,−k.
Treba si však uvedomiť, že vlnovú funkciu |Ψ0〉 nedostaneme z neporušeného základného stavu |N〉 v
konečnom ráde poruchovej teórie a napríklad prekryv medzi stavmi |Ψ0〉 a |N〉 je nulový. Naozaj:

〈N |Ψ0〉 = e−N0/2〈N |eza
†
0 |0〉

∏
k>0

1

|uk|
= eiNθ

(
NN

0 e
−N0

N !

∏
k>0

2Ek

Ek + ε̃k

)1/2

a v termodynamickej limite, kedy sa počet súčiniteľov k blíži do nekonečna, sa prekryv blíži k nule,
pretože je súčinom nekonečného počtu súčiniteľov, z ktorých každý je menší než 1 (keďže Ek < ε̃k).

Cvičenia
1. Vychádzajúc z modelu pre potenciál V (r), odvoďte výraz pre Vq.
2. Ukážte, že transformácia od operátorov ak, a†k k operátorom αk, α

†
k je kánonická, t.j. zachováva komutačné vzťahy.

3. Overte výsledky pre Ek, uk a vk uvedené v texte.
4. Vypočítajte strednú hodnotu 〈Ψ0|a−kak|Ψ0〉 pre k 6= 0.
5. Vlnovú funkciu excitovaného stavu α†q|Ψ0〉 reprezentujte pomocou operátorov a†k a ak. Explicitným výpočtom sa
presvedčte, že ide o normovanú vlnovú funkciu.
6.∗ Metódou Bogoľubova nájdite excitačné spektrum pohybujúceho sa kondenzátu. Predpokladajte, že makroskopicky
je obsadený jednočasticový stav s hybnosťou 2~q.

13 Teória Bogoľubova a supratekuté hélium

V tejto prednáške najprv preskúmame excitačné spektrum v rámci teórie Bogoľubova a oblasť plat-
nosti tejto teórie. V druhej časti prednášky sa budeme zaoberať súvisom medzi teóriou Bogoľubova a
fyzikou skutočného hélia.

Excitačné spektrum v teórii Bogoľubova
Disperzný zákon (65) pre elementárne excitácie supratekutiny so slabými interakciami budeme skúmať
v limitných prípadoch pomeru energií εk a |∆k|. Všimnime si najprv, že εk rastie s vlnovým vektorom
k, kým |∆k| v našom modeli s vlnovým vektorom k klesá. Preto prípad εk � |∆k| sa realizuje v
dlhovlnnej limite, kým εk � |∆k| nastáva v krátkovlnnej limite.

V dlhovlnnej limite dostávame Ek ≈ ~vk, teda disperzný zákon je kvalitatívne zmenený oproti
spektru voľných častíc: energia Ek rastie s k lineárne s rýchlosťou

v =

√
|∆0|
m

=

√
Un0a3

m
,

kde n0 je hustota častíc v kondenzáte. Všimnime si, že energia excitácií Ek sa pre k → 0 blíži k
nule. Ide o ďalší príklad Goldstoneovho módu, v supratekutine je totiž spontánne narušená (spojitá)
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globálna kalibračná symetria (50). Pretože v dlhovlnnej limite platí u2
k ≈ v2

k ≈
|∆0|
2~vk , kreačný operátor

pre elementárne excitácie má tvar

α†k ≈
√
|∆0|
2~vk

(a†k + a−k).

Znamená to, že elementárnu excitáciu s vlnovým vektorom k vytvoríme koherentným zložením dvoch
procesov: kreácie holej častice s hybnosťou ~k, alebo anihilácie holej častice s hybnosťou −~k. Z
explicitného tvaru vlnovej funkcie základného stavu |Ψ0〉 vidno, že po anihilácii častice s hybnosťou
−~k bude v excitovanom stave prítomná nespárená častica s hybnosťou ~k, teda obidva procesy sú do
istej miery podobné. Z približnej rovnosti u2

k ≈ v2
k ďalej vyplýva, že elementárne excitácie v dlhovlnnej

limite v priemere nemenia počet častíc v systéme. Naviac sa dá ukázať (pozri cvičenia), že rýchlosť v
je totožná s predpoveďou makroskopickej teórie pre rýchlosť zvuku. Preto je prirodzené elementárne
excitácie v dlhovlnnej limite stotožniť s kvantami zvukových vĺn.

V krátkovlnnej limite sa disperzný zákon zjednoduší na tvar Ek ≈ εk, t.j. je rovnaký, ako v ne-
interagujúcom systéme. To je prirodzený výsledok: rýchle častice sú slabým rozptylovým potenciálom
iba málo ovplyvnené. Tomu zodpovedá aj výsledok pre kreačný operátor pre elementárne excitácie v
krátkovlnnej limite: α†k ≈ a

†
k.

Obr. 7: Vľavo: excitačné spektrum podľa teórie Bogoľubova. Vpravo: experimentálne spektrum 4He. Medzidlhovlnnou
oblasťou zvukových vĺn a krátkovlnnou oblasťou voľných častíc sa nachádza tzv. rotónové minimum.

Charakteristický vlnový vektor k0 rozdeľujúci dlhovlnnú a krátkovlnnú oblasť dostaneme porovna-
ním disperzných zákonov Ek v oboch limitách: ~vk0 =

~2k2
0

2m . Tak dostaneme

~k0 = 2mv = 2
√
mUn0a3.

Stojí za povšimnutie, že vlnový vektor k0 rastie so silou interakcie, pričom k0 ∝ U1/2.

Oblasť platnosti teórie Bogoľubova
Teória Bogoľubova je konzistentná, ak počet častíc mimo kondenzátu je malým zlomkom všetkých
častíc, t.j. ak N ′/N � 1. Prechodom od sumy k integrálu vo výraze (64) dostaneme

N ′

N
=

2

π2n

( m
2~2

)3/2
∫ ∞

0
dε
√
ε
ε+ |∆k| −

√
ε(ε+ 2|∆k|)

2
√
ε(ε+ 2|∆k|)

≈ k3
0

24π2n
,

kde n je hustota častíc. V približnej rovnosti sme pre jednoduchosť predpokladali, že k0a � 1. V
takom prípade totiž môžeme v relevantnej oblasti vlnových vektorov k ∼ k0 funkciu |∆k| považovať za
konštantu, |∆k| ≈ |∆0|, a integráciu možno explicitne vykonať.

Teória Bogoľubova teda platí, t.j. ak je splnená podmienka k3
0 � n. Ak hustotu odhadneme po-

mocou strednej vzdialenosti medzi časticami r0 vzťahom n ∼ r−3
0 , dostaneme odtiaľto podmienku

k0r0 � 1. Ak ďalej použijeme explicitný výsledok pre k0, dostaneme napokon podmienku aplikability
teórie Bogoľubova:

U � ~2r0

ma3
.

Teória teda platí pre slabé interakcie U → 0, pre riedky plyn r0 →∞, alebo pre krátkodosahové inte-
rakcie a→ 0. Mohla by vzniknúť námietka, že naša zjednodušená verzia teórie platí iba pre k0a� 1,
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t.j. naviac má platiť U � ~2r3
0

ma5 . Avšak obvykle r0 > a, preto nejde o dodatočnú podmienku.

Realistický model pre 4He
V rámci teórie Bogoľubova sme skúmali hamiltonián (59) so slabou odpudivou párovou interakciou V (r)
s Fourierovou transformáciou Vq. Čisto odpudivý model by však neumožňoval existenciu kvapalného
(t.j. viazaného) stavu. Realistickejším modelom pre hélium je

H = − ~2

2m

∑
i

∇2
i +

1

2

∑
i 6=j

V (ri − rj), (67)

kde V (r) je interakčná energia dvojice atómov vo vzdialenosti r, povedzme typu van der Waalsovej-
Londonovej väzby. Takýto model však nemožno skúmať metódami z predošlej prednášky, okrem iného
preto, že neexistuje Fourierova transformácia Vq (pozri cvičenia). Stojí tiež za zmienku, že model (67)
nie je presným modelom pre systém atómov hélia. Priblíženie spočíva v tom, že atómy 4He sú zložené
z jadier a elektrónov, ich súradnice však v modeli (67) nefigurujú. Model (67) je teda ďalším príkladom
efektívneho modelu. Ponechali sme v ňom iba interakcie dvojíc atómov so súradnicami ťažísk ri a
(okrem iného) sme zanedbali interakcie n-tíc s n ≥ 3.

Feynmanove vety o základnom stave 4He
Pre vlnovú funkciu Ψ0(r1, . . . , rN ) základného stavu systému (67) platia nasledovné vety:

1. Vlnovú funkciu Ψ0(r1, . . . , rN ) možno zvoliť ako čisto reálnu. Dôkaz využíva, že hamiltonián (67)
je reálny, H = H∗, podobne ako v prednáške 3.

2. Reálna vlnová funkcia základného stavu nemôže meniť znamienko. Idea dôkazu sporom je na-
sledovná. Nech základný stav je popísaný reálnou vlnovou funkciou Ψ0 = feiϕ, kde fáza ϕ(r1, . . . , rN )
nadobúda po častiach hodnoty 0 a π a nie je konštantná. Najprv ukážeme, že nezáporná vlnová funkcia
Ψ1 = f má rovnakú energiu ako Ψ0, t.j. 〈Ψ0|H|Ψ0〉 = 〈Ψ1|H|Ψ1〉. Naozaj, integráciou per partes podľa
ri ľahko nahliadneme, že

∫
d3r1 . . .

∫
d3rNΨ∗0(−∇2

iΨ0) =
∫
d3r1 . . .

∫
d3rN |∇iΨ0|2, preto

〈Ψ0|H|Ψ0〉 =

∫
d3r1 . . .

∫
d3rN

 ~2

2m

∑
i

|∇iΨ0|2 +
1

2

∑
i 6=j

V (ri − rj)|Ψ0|2
 = 〈Ψ1|H|Ψ1〉.

Druhá rovnosť je dôsledkom toho, že |Ψ0|2 = f2 = |Ψ1|2. Okrem toho sme využili, že |∇iΨ0|2 =
(∇if)2 + f2(∇iϕ)2 = (∇if)2 = |∇iΨ1|2, keďže gradient ϕ je nenulový len tam, kde f = 0. Teda
energia vlnovej funkcie Ψ1 so špicmi je rovnaká ako energia vlnovej funkcie Ψ0. V ďalšom kroku sa
argumentuje, že odstránenie špicov zníži energiu, t.j. Ψ0 nemohla byť vlnovou funkciou základného
stavu.

3. Až na fázový faktor je normalizovaná vlnová funkcia základného stavu jednoznačná. Dôkaz
sporom: nech Ψ1 a Ψ2 sú dve rôzne kladné normované vlnové funkcie základného stavu, pričom
HΨi = E0Ψi pre i = 1, 2. Potom musí platiť H(Ψ1 − Ψ2) = E0(Ψ1 − Ψ2). Ale podľa vety 2 ne-
smie vlnová funkcia Ψ1 − Ψ2 meniť znamienko. Potom však Ψ1 a Ψ2 nemôžu byť obidve normované.
Tým je dôkaz hotový.

Penroseov-Onsagerov odhad veľkosti kondenzátu v 4He
V rámci teórie Bogoľubova sme ukázali, že v dôsledku interakčných efektov nemôžu všetky atómy tvoriť
kondenzát. Očakávame, že aj počet častíc N0 v kondenzáte skutočného hélia bude redukovaný, ale veľ-
kosť N0 nie je možné kvantitatívne určiť pomocou teórie Bogoľubova. V tomto odstavci prezentujeme
zjednodušenú verziu Penroseovho-Onsagerovho odhadu N0 v 4He pri teplote T = 0.

V našom zjednodušenom prístupe budeme hélium modelovať mriežkovým modelom zavedeným v
odstavci o ODLRO. Budeme študovať kubickú mriežku s N mriežkovými bodmi a s periodickými
okrajovými podmienkami, na ktorej sa pohybuje N < N atómov. Ďalej budeme predpokladať, že
atómy na susedných mriežkových bodoch neinteragujú, kým odpudivé interakcie medzi atómami na
tom istom bode mriežky sú tak veľké, že každý mriežkový bod môže byť obsadený nanajvýš jedným
atómom. Stláčanie hélia si pritom predstavíme ako odoberanie mriežkových bodov pri fixovanom počte
N atómov a pri fixovanej mriežkovej konštante. V momente, kedy sa počet mriežkových bodov vyrovná
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s počtom atómov, hélium stratí schopnosť tiecť. Teda pri N = N hélium skryštalizuje. Keďže v limite
nízkych teplôt sa experimentálna hustota kvapaliny pri zvýšení tlaku z hodnoty p ≈ 0 na kryštalizačný
tlak p ≈ 2.5 × 106 Pa zvýši iba o zhruba 20%, očakávame, že v celej kvapalnej fáze má bezrozmerná
koncentrácia c = N/N hodnotu väčšiu ako zhruba 0.8.

Mnohočasticovú vlnovú funkciu základného stavu |Ψ0〉 odhadneme nasledovne. Najprv zavedieme
pojem konfigurácie atómov na mriežke C = (i1, . . . , iN ), t.j. N -tice bodov, ktoré sú obsadené atómami
4He. Za vlnovú funkciu základného stavu zoberieme

|Ψ0〉 =
1√

Z(N,N )

∑
C
ψ†i1 . . . ψ

†
iN
|0〉,

kde |0〉 je vákuum, t.j. stav bez častíc, a

Z(N,N ) =

(
N
N

)
=

N !

N !(N −N)!

je počet rôznych konfigurácií N atómov na mriežke s N bodmi. Všimnime si, že vlnová funkcia |Ψ0〉
je normalizovaná, t.j. 〈Ψ0|Ψ0〉 = 1, a naviac spĺňa vety 1 a 2. Analogickú vlnovú funkciu (ale pre
kontinuum) skúmal aj Feynman.

Počet častíc v kondenzáte budeme počítať pomocou vzťahu

N0 = 〈Ψ0|a†0a0|Ψ0〉 =
1

N
∑
ij

〈Ψ0|ψ†iψj |Ψ0〉.

Fixujme preto dva rôzne mriežkové body i a j a počítajme 〈Ψ0|ψ†iψj |Ψ0〉. K maticovému elementu
prispejú len tie konfigurácie v rozvoji vlnovej funkcie |Ψ0〉, v ktorých je bod j obsadený a bod i je
neobsadený. Takýchto konfigurácií je Z(N−1,N −2), pretože máme rozmiestniť N−1 atómov (okrem
atómu v bode j) a k dispozícii máme N − 2 mriežkových bodov (všetky okrem i a j). Každá takáto
konfigurácia |C〉 = ψ†i1 . . . ψ

†
iN
|0〉 prispeje do maticového elementu 〈Ψ0|ψ†iψj |Ψ0〉 jednotkou, pretože

stav ψ†iψj |C〉 je niektorou z pôvodných Z(N,N ) konfigurácií. Preto

〈Ψ0|ψ†iψj |Ψ0〉 =
Z(N − 1,N − 2)

Z(N,N )
=
N(N −N)

N (N − 1)
≈ c(1− c),

kde sme uvážili, že N � 1. Keďže maticový element 〈Ψ0|ψ†iψj |Ψ0〉 nezávisí od i,j, pre počet častíc v
kondenzáte tak dostaneme odhad

N0

N
≈ 1− c.

Keďže v kvapalnom héliu očakávame c > 0.8, v kondenzáte sa nachádza len malý zlomok všetkých
atómov. Penrose a Onsager v presnejšej teórii odhadujú, že N0/N ≈ 0.08.37

Upozorňujeme však, že hustota normálnej zložky pri teplote T = 0 je ρn = 0 aj napriek tomu,
že N0/N � 1.38 Hustotu normálnej a supratekutej zložky treba totiž chápať ako parametre funkcií
odozvy a nie ako vlastnosti rozdelenia častíc. Túto tému pekne analyzujú napríklad Nozières a Pines.

Adiabatická kontinuita
Podľa Bogoľubova možno supratekutinu opísať ako kvapalinu s kondenzátom. Penroseov-Onsagerov
výpočet ukazuje, že hoci kvantitatívne teória Bogoľubova nepredpovedá správny počet holých častíc v
kondenzáte, samotná prítomnosť kondenzátu v héliu zostáva zachovaná aj v tejto presnejšej teórii. To
naznačuje, že teória Bogoľubova je kvalitatívne správna a verí sa, že štartujúc z tejto teórie možno tzv.

37Detailné numerické simulácie základného stavu hélia s Lennardovými-Jonesovými interakciami (spolu s odkazmi na
experimentálne dáta) možno nájsť v práci P.A. Whitlock, D.M. Ceperley, G.V. Chester and M.H. Kalos, Phys. Rev. B
19, 5598 (1979). Podľa tejto práce sa zlomok N0/N mení medzi hodnotami 11% pre p = 0 a 6% pre kryštalizačný tlak.

38Ak by sme nástojili na vysvetlení pomocou rozdelenia častíc, tejto poznámke treba rozumieť nasledovne. Náš výpočet
sa týkal rozdelenia “holých atómov”, t.j. atómov, aké by boli vo vákuu. Atómy v médiu však svojou prítomnosťou
toto médium deformujú a stávajú sa “oblečenými atómami”, pričom “oblečený atóm”=”holý atóm”+”oblak deformácií”.
Keby sme počítali pri nulovej teplote rozdelenie takýchto oblečených atómov, mali by sme vidieť, že všetky obsadzujú
kondenzát.
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adiabaticky dospieť k presnému opisu hélia. Máme tu na mysli, že spojitá zmena interakcií od modelu
Bogoľubova po realistické interakcie v 4He sa prejaví v hladkej zmene koncentrácie kondenzátu.

Ďalším výsledkom teórie Bogoľubova je, že excitácie v dlhovlnnej limite majú charakter zvukových
vĺn a sú popísané lineárnym disperzným zákonom. Tento výsledok zostáva v platnosti aj v presnejšej
teórii Feynmana a je v zhode s experimentom (hoci veľkosť rýchlosti zvukových vĺn je potrebné upraviť).
Aj v tomto prípade sa verí, že excitačné spektrum sa adiabaticky vyvíja pri zmene interakcií.

Anderson sformuloval všeobecný princíp adiabatickej kontinuity, podľa ktorého možno popis vlast-
ností konkrétnych fyzikálnych systémov redukovať na dve podúlohy:

1. identifikáciu jednoduchého modelového systému s rovnakými symetriami ako symetria skúma-
ného systému (napr. Bogoľubovova supratekutina, ale aj normálny kov, pásový izolant, Heisenbergov
feromagnet, supravodič BCS, atď.); vyriešenie tejto úlohy poskytne kvalitatívny popis systému,

2. aplikáciu vhodnej poruchovej teórie s modelovým systémom ako štartovacím bodom, ak sú po-
trebné kvantitatívne predpovede.

Cvičenia
1. Predpokladajte, že ak0 � 1 a ukážte, že do druhého rádu v U pre energiu základného stavu (63) platí

EGS
N

=
1

2
Una3

[
1− 1

4π
√
π

ma2U

~2

]
.

Ďalej ukážte, že tento výsledok Bogoľubovovej teórie je v zhode s druhým rádom poruchovej teórie podľa U .
2. Nájdite stavovú rovnicu p = p(n) a makroskopickú rýchlosť zvuku v2

s = 1
m
∂p
∂n

v teórii Bogoľubova. Výsledok pre vs
porovnajte s dlhovlnnou rýchlosťou bogoľubónov v. Návod: použite výsledok pre energiu EGS do prvého rádu podľa U .
3. Ukážte, že Fourierova transformácia van der Waalsovho-Londonovho potenciálu neexistuje.
4. K druhej Feynmanovej vete. Presvedčte sa, že ak funkciu f(x) = x, ktorá na intervale 〈−1, 1〉 mení znamienko, na-
hradíme funkciou

√
x2 + a2, ktorá nemení znamienko, potom “kinetická energia”

∫ 1

−1
dx(∂f/∂x)2 klesne o člen úmerný

a, kým “potenciálna energia”
∫ 1

−1
dxU(x)f2(x) narastie iba o člen úmerný a2. Preto pre malé a celková energia klesne.

5. Skúmajte tzv. Jastrowovu vlnovú funkciu Ψ0(r1, . . . , rN ) =
∏
i<j f(ri − rj) pre základný stav hélia s variačnou fun-

kciou f(r). Aké vlastnosti musí mať funkcia f(r), aby Ψ0(r1, . . . , rN ) bola symetrická pri permutáciách častíc a zároveň
spĺňala Feynmanove vety o základnom stave?

14 Supravodivosť: základné fakty

V tejto prednáške podáme úvodnú informáciu o supravodivosti. Ukážeme, že supravodivosť možno chá-
pať ako supratekutosť Cooperových párov a načrtneme najjednoduchší popis magnetických vlastností
supravodičov. Podrobný výklad supravodivosti podávajú tri autoritatívne knihy: Tinkham (fenomeno-
lógia), Schrieffer (mikroskopická teória) a de Gennes (odvodenie Ginzburgovej-Landauovej teórie).

Supravodivosť ako nová termodynamická fáza
Vo väčšine kovov vzniká pri nízkych teplotách nová termodynamická fáza, ktorú nazývame supravodi-
vou. Teplota prechodu medzi normálnym kovom a nízkoteplotnou fázou sa nazýva kritická teplota Tc.
Jej typické hodnoty sú uvedené v tabuľke 1.

Al Nb Nb3Ge MgB2 HgBa2Ca2Cu3O8

Tc (K) 1.1 9.5 23 39 135
2∆
Tc

3.5 3.7 4.2 4 5 až 10
λ (nm) 50 44 90 120∗ 130∗

ξ (nm) 1600 38 3 6.5∗ 1.3∗

Tabuľka 1: Kritická teplota Tc, podiel 2∆
Tc

, hĺbka vniku λ a rozmer Cooperovho páru ξ vybraných supravodičov. V
hexagonálnom materiáli MgB2 a v tetragonálnych vysokoteplotných supravodičoch vniká magnetické pole rovnobežné s
kryštalografickou osou c inak ako pole kolmé na os c. Hviezdičkou sú označené dáta pre pole rovnobežné s osou c. Podobne
vlnové funkcie Cooperových párov nemajú tvar gule, ale disku. Hviezdičkou sú označené polomery (a nie hrúbky) disku.
Dáta pre vysokoteplotné supravodiče (posledný stĺpec) sa týkajú tzv. optimálne dopovaných materiálov.
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Rekordná teplota prechodu sa realizuje v tzv. vysokoteplotných supravodičoch, ktorých vlastnosti
sa v mnohom odlišujú od nízkoteplotných supravodičov. Náš výklad bude zameraný na nízkoteplotné
supravodiče, ktorých správanie je v hrubých rysoch pochopené.

Obr. 8: Vľavo: teplotná závislosť (v limite nízkych teplôt) príspevku elektrónov cV k mernému teplu supravodiča.
Bodkovaná čiara znázorňuje dáta pre cV v normálnom stave. Takéto dáta možno získať buď extrapoláciou dát pre
T > Tc, alebo rozrušením supravodivosti - napríklad silným magnetickým poľom. V strede: teplotná závislosť entropie
S = S(T ) určená integrovaním dát pre cV . Vpravo: teplotná závislosť voľnej energie F = F (T ) určená integrovaním dát
pre entropiu.

V nulovom aplikovanom magnetickom poli je fázový prechod do supravodivého stavu druhého druhu,
t.j. nie je spojený s existenciou skupenského tepla premeny. To znamená, že pri Tc je entropia supra-
vodivej fázy S rovnaká ako entropia normálnej fázy SN . V bode prechodu sa však líši merné teplo pri
konštantnom objeme cV oboch fáz.39 V normálnom kove je merné teplo cV lineárnou funkciou teploty.
V supravodiči je merné teplo cV pri T � Tc omnoho menšie. Integrovaním experimentálnych dát pre
cV (T ) možno určiť entropiu supravodivej fázy:40

S(T ) =

∫ T

0
dT ′

cV (T ′)

T ′
.

Porovnaním s entropiou SN vypočítanou analogickým postupom, ale z dát pre merné teplo extrapolo-
vaných z normálnej fázy, vidno, že S < SN , t.j. nová fáza je usporiadanejšia ako normálny kov. Keďže
pri Tc sú voľné energie oboch fáz rovnaké, ďalšou integráciou výrazu dF = −SdT možno určiť rozdiel
voľných energií oboch fáz:

F (T )− FN (T ) =

∫ Tc

T
dT ′

[
S(T ′)− SN (T ′)

]
.

Takáto analýza experimentálnych dát ukazuje, že voľná energia v supravodivej fáze je nižšia než v
normálnej fáze a ich rozdiel pri nízkych teplotách prepočítaný na jeden elektrón je rádu T 2

c /εF . Tento
výsledok interpretujeme tak, že v novej fáze nastala reorganizácia elektrónového spektra v blízkosti
Fermiho plochy, pri ktorej zlomok Tc/εF zo všetkých elektrónov znížil svoju energiu zhruba o Tc.

Nekonečná vodivosť a Meissnerov jav
V obyčajných kovoch je spád napätia V na drôte priamo úmerný prúdu I tečúcemu cez drôt, V = RI,
kde R je odpor drôtu. So znižovaním teploty odpor klesá a pri prechode do supravodivého stavu,
t.j. pri teplote Tc, sa odpor drôtu mení skokom z konečnej hodnoty na nemerateľne malú hodnotu.
Supravodivý stav je teda stavom s nulovým odporom.

Najpresnejšie možno odpor supravodiča určiť pomocou merania tzv. perzistentných prúdov. Skú-
majme masívny prstenec, cez ktorý preteká magnetický tok Φe(t) = Φi budený vonkajšími cievkami.
V čase t = 0 vypnime prúd v cievkach, teda pre t > 0 nech Φe(t) = 0. Podľa Faradaya sa v prstenci

39V tomto odstavci pre jednoduchosť zanedbávame malú teplotnú rozťažnosť kovov a experimentálne dáta pre merné
teplo, ktoré sú obvykle získavané pri konštantnom tlaku, interpretujeme ako dáta pri konštantnom objeme. Okrem toho
máme na mysli iba príspevok elektrónov k mernému teplu. Naviac predpokladáme, že študovaný kov sa nachádza v
nulovom magnetickom poli.

40Použili sme vzťah cV = T dS
dT

a tiež tretiu termodynamickú vetu, podľa ktorej je entropia pri nulovej teplote S(0) = 0.
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indukuje napätie U(t) = −dΦe
dt = Φiδ(t). Ak odpor prstenca označíme R a jeho indukčnosť L, potom

prúd I(t) v prstenci bude spĺňať rovnicu

U(t) = RI + L
dI

dt
, (68)

ktorá má riešenie I(t) = I0e
−t/τ s časovou konštantou τ = L

R . Pre uvažovaný delta-funkčný napäťový
pulz má počiatočný prúd veľkosť I0 = Φi

L , ako sa ľahko presvedčíme integrovaním rovnice (68) cez
infinitezimálny časový interval okolo t = 0. Teda z merania časovej závislosti prúdu možno určiť odpor
supravodiča. Ako však možno merať prúd v uzavretej slučke? Rovnicu (68) pre prúd v uzavretej slučke
možno po uvážení Faradayovho zákona pre U(t) zapísať v tvare

d

dt
(Φe + LI) = −RI.

To znamená, že v materiáloch s R = 0 musí byť celkový magnetický tok cez prstenec Φ = Φe + LI
konštantný. Experimenty ukazujú, že v masívnych supravodivých prstencoch je pokles toku Φ neme-
rateľne malý.41

Obr. 9: Vľavo: Supravodivý prúd tečie po povrchu drôtu a odtieňuje vnútro supravodiča od magnetického poľa B.
Možno naň teda nazerať ako na rovnovážny Meissnerov prúd. Vpravo: rozloženie prúdu v priereze drôtu.

Supravodič sa v slabých externých magnetických poliach správa ako ideálny diamagnet, t.j. vnútri
masívneho supravodiča je magnetické pole nulové (tzv. Meissnerov jav). Inými slovami, po povrchu
masívneho supravodiča vloženého do externého magnetického poľa tečú rovnovážne povrchové prúdy,
ktoré odtienia externé pole tak, aby vnútri supravodiča bola splnená podmienka B = 0. Tieniace
prúdy pritom tečú vo vrstve s hrúbkou λ, ktorú nazývame hĺbkou vniku magnetického poľa. Jej typické
hodnoty sú uvedené v tabuľke 1.

Meissnerov jav považujeme za základnú vlastnosť supravodiča. Napríklad transport náboja bez
energetických strát možno chápať ako dôsledok Meissnerovho javu. Naozaj: obvykle nazeráme na drôt,
ktorým preteká prúd I, ako na zdroj magnetického poľa. Ak sa však na ten istý drôt pozrieme ako na
drôt vložený do magnetického poľa, potom transportný prúd I bude tiecť kvôli Meissnerovmu javu:
vďaka tomu, že vo vrstve hrúbky λ tečie prúd pozdĺž drôtu, je vnútro drôtu odtienené od magnetic-
kého poľa (pozri obrázok 9). Je podstatné si uvedomiť, že tento prúd je rovnovážny, a teda bezstratový.

Supravodivosť a supratekutosť
Bezdisipatívny transport náboja v supravodičoch je zjavným analógom bezdisipatívneho transportu
hmotnosti v supratekutinách. Supravodivosť sa však týka elektrónových stupňov voľnosti kovov, preto
sa od supratekutosti He II podstatne líši dvomi aspektmi:
1. vzniká vo fermiónovom systéme
2. vzniká v systéme nabitých častíc.

Ako môže fermiónový systém vytvoriť kondenzát, t.j. makroskopicky obsadený stav? Vznik supra-
vodivosti pri chladení kovu možno pochopiť ako dvojkrokový proces: najprv vzniknú dvojelektrónové
“molekuly”, tzv. Cooperove páry, ktoré sú bozónmi, a v druhom kroku Cooperove páry vytvoria kon-
denzát.42 Keďže elektróny sú veľmi ľahké, v súvislosti so supravodivosťou obvykle hovoríme o bez-
disipatívnom transporte náboja (náboj Cooperovho páru je −2e), ale málokedy o bezdisipatívnom
transporte hmoty.

41Prstenec treba vložiť do magnetického poľa pri teplote vyššej, než je kritická, a až potom ho schladiť pod Tc.
42V konvenčných supravodičoch je teplota, pri ktorej vznikajú Cooperove páry, obvykle neodlíšiteľná od teploty,
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Predstava o Cooperových pároch je konzistentná s meraniami optickej vodivosti σ′(ω), pozri pred-
nášku 19: V nesupravodivom kove možno vytvoriť excitáciu s ľubovoľne nízkou excitačnou energiou
vytvorením časticovo-dierového páru, v ktorom sa diera nachádza tesne pod Fermiho plochou a častica
tesne nad ňou, preto v limite nízkych frekvencií je vodivosť σ′(ω) nenulová. V supravodivom stave (v
limite nízkych teplôt) je však vodivosť σ′(ω) nulová pre všetky konečné frekvencie až po frekvenciu
2∆/~. Teda v excitačnom spektre supravodiča existuje zakázaný pás okolo chemického potenciálu so
šírkou 2∆. Tento výsledok možno interpretovať ako dôsledok vzniku Cooperových párov s väzbovou
energiou 2∆, pričom 2∆ ∼ Tc, pozri tabuľku 1. Jednou z kľúčových otázok teórie supravodivosti je
otázka o pôvode síl, ktoré viažu elektróny do Cooperových párov. Tejto otázke sa budeme venovať v
nasledujúcej prednáške. Vznik Cooperových párov pritom ovplyvňuje iba rozloženie tých elektrónov,
ktorých energia sa nachádza v intervale šírky ∼ Tc okolo Fermiho plochy, t.j. zlomku ∼ Tc/εF zo
všetkých elektrónov, v súlade s analýzou termodynamických veličín. Typické veľkosti ξ Cooperových
párov sú uvedené v tabuľke 1.

Podľa kvantovej mechaniky môže celkový spin Cooperovho páru (t.j. sústavy dvoch spinov S = 1
2)

nadobúdať hodnoty S = 0 alebo S = 1. Experimenty ukazujú, že spinová magnetická susceptibilita
väčšiny supravodičov pri teplotách menších než Tc klesá a pri nulovej teplote vymizne. Tento výsle-
dok vysvetľujeme tým, že celkový spin Cooperových párov je obvykle S = 0 a Cooperove páry sú
nemagnetické. Supravodiče s S = 0 sa v literatúre nazývajú singletné. Prípad S = 1 (tzv. tripletná
supravodivosť) sa realizuje iba v malom počte supravodičov, pravdepodobne napr. v UPt3.43

Dá sa očakávať, že pri nenulovej teplote a/alebo pri nenulových aplikovaných poliach bude časť
Cooperových párov rozbitá. Elektróny z rozbitých párov, tzv. normálna zložka, spolu s kondenzátom
párov teda tvoria dve elektrónové “kvapaliny”, podobne ako v prípade supratekutého hélia.

Obr. 10: Teplotná závislosť podielu nS/n elektrónov v kondenzáte. Často pre ňu zhruba platí Gorterova-Casimirova
empirická formula nS/n = 1− (T/Tc)

4.

Makroskopická vlnová funkcia
Budeme predpokladať, že kondenzát možno popísať (podobne ako v prípade supratekutého 4He) mak-
roskopickou vlnovou funkciou ψ(r), kde r je súradnica ťažiska Cooperovho páru. Funkcia ψ(r) je pritom
normovaná tak, aby |ψ(r)|2 bola koncentrácia Cooperových párov v okolí bodu r. Vlnová funkcia ψ(r)
hrá úlohu parametra usporiadania, podobne ako napr. vektor magnetizácie m je parametrom usporia-
dania v prípade feromagnetu. Keďže každý Cooperov pár v kondenzáte obsadzuje ten istý kvantovo-
mechanický stav úmerný ψ(r), očakávame, že ψ(r) spĺňa obyčajnú Schrödingerovu rovnicu pre jednu
časticu

i~
∂ψ

∂t
=

1

2m∗∗
(−i~∇+ 2eA)2ψ + Uψ, (69)

kde m∗∗ = 2m∗ je hmotnosť Cooperovho páru, −2e je jeho náboj a U je jeho potenciálna energia.44

kedy vzniká kondenzát (čiže supravodivosť). Jednou z príčin zrejme je, že rozmer Cooperových párov ξ je v týchto
supravodičoch obvykle omnoho väčší ako typická vzdialenosť medzi susednými elektrónmi r0. Cooperove páry sa teda
silno prekrývajú, čo pravdepodobne podporuje tvorbu kondenzátu.
Vo vysokoteplotných supravodičoch však existuje široký interval teplôt, v ktorom podľa jednej triedy teórií existujú

Cooperove páry bez fázovej koherencie. Táto interpretácia experimentov je konzistentná s podstatne menšou hodnotou
pomeru ξ/r0 vo vysokoteplotných supravodičoch oproti konvenčným supravodičom, avšak nie je všeobecne akceptovaná.

43Pôvodne bol za tripletný supravodič považovaný aj materiál Sr2RuO4. Najnovšie experimenty však túto interpretáciu
spochybňujú.

44V rovnici (69) sme predpokladali, že Cooperov pár v mieste r interaguje s vektorovým potenciálom A(r). Ale
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Ak sa obmedzíme na skúmanie homogénneho supravodiča s chemickým potenciálom pre elektróny µ,
potom pri vložení Cooperovho páru sa energia supravodiča zväčší o 2µ a preto v tomto prípade treba
voliť U = 2µ.

Londonova rovnica a Meissnerov jav
V tomto odstavci ukážeme, že systém s nenulovým kondenzátom popísaným vlnovou funkciou ψ(r)
bude vykazovať Meissnerov jav. Najprv odvodíme výraz pre hustotu supravodivého prúdu. Rovnica
komplexne združená k rovnici (69) má tvar

−i~∂ψ
∗

∂t
=

1

2m∗∗
(i~∇+ 2eA)2ψ∗ + Uψ∗.

Vynásobme teraz rovnicu (69) vlnovou funkciou ψ∗ a komplexne združenú rovnicu vynásobme vlnovou
funkciou ψ. Rovnice odčítajme a po úprave dostaneme (pozri cvičenia)

∂

∂t
|ψ|2 +∇ ·

[
− i~

4m∗
(ψ∗∇ψ − ψ∇ψ∗) +

eA

m∗
|ψ|2

]
= 0.

Keďže nábojová hustota kondenzátu je daná vzťahom % = −2e|ψ|2, túto rovnicu možno chápať ako
rovnicu kontinuity pre náboj ∂%/∂t+∇ · j = 0 s prúdovou hustotou

j =
ie~
2m∗

(ψ∗∇ψ − ψ∇ψ∗)− 2e2A

m∗
|ψ|2. (70)

Ak vlnovú funkciu parametrizujeme v tvare ψ(r) = |ψ(r)|eiθ(r), potom výraz pre prúdovú hustotu
možno ekvivalentne zapísať ako (pozri cvičenia)

j = −2e2

m∗
|ψ|2

(
A +

~
2e
∇θ
)
. (71)

Teda supravodivý prúd tečie ako odozva na vektorový potenciálA a/alebo gradient fázy makroskopickej
vlnovej funkcie.45 Tento výsledok je zovšeobecnením prednášky 11 na prípad nabitého kondenzátu.

V slabých poliach môžeme v prvom priblížení zanedbať závislosť |ψ|2 od magnetického poľa a
koncentráciu Cooperových párov môžeme brať ako priestorovo konštantnú a závisiacu len od teploty.
Za tohto predpokladu namiesto (71) dostaneme tzv. Londonovu rovnicu

j = − 1

µ0λ2

(
A +

~
2e
∇θ
)
, (72)

kde sme zaviedli označenie 1
λ2 = 2µ0e2

m∗ |ψ|
2.

Teraz ukážeme, že Londonova rovnica vysvetľuje Meissnerov jav a že λ je hĺbka vniku. Naozaj,
rotácia Londonovej rovnice má tvar λ2∇ × µ0j = −B a s uvážením Maxwellovej rovnice v statickom
prípade µ0j = ∇×B ju preto možno písať v tvare λ2∇× (∇×B) +B = 0. Ak teraz použijeme vzťah
z vektorovej analýzy ∇× (∇×B) = ∇(∇ ·B)−∇2B a uvážime, že ∇ ·B = 0, dostaneme rovnicu

∇2B =
1

λ2
B.

Táto rovnica popisuje Meissnerov jav s hĺbkou vniku λ: napríklad do polonekonečného supravodiča v
polpriestore x > 0 totiž vniká magnetické pole B0 rovnobežné s povrchom supravodiča podľa vzťahu46

B(x) = B0e
−x/λ.

Cooperov pár je nelokálny objekt s typickým rozmerom ξ. Preto rovnica (69) môže popisovať elektromagnetické vlastnosti
supravodičov, iba ak hodnota A(r) je v celom objeme Cooperovho páru konštantná, t.j. ak λ > ξ. Pre λ < ξ musíme
elektromagnetické vlastnosti supravodičov popisovať tzv. nelokálnou teóriou: silové pôsobenie na Cooperov pár v mieste
r závisí od vektorového potenciálu v objeme ∼ ξ3 okolo r.

45Keďže prúd je fyzikálne pozorovateľná veličina, jeho veľkosť nemôže závisieť od výberu kalibrácie pre vektorový
potenciál. Preto kalibračnú transformáciu elektromagnetického poľa A → A + ∇χ treba kompenzovať kalibračnou
transformáciou makroskopickej vlnovej funkcie podľa predpisu θ → θ − 2e

~ χ.
46Predpokladáme, že v oblasti x < 0 je vákuum. V tomto prípade možno zvoliť konštantnú amplitúdu vlnovej funkcie
|ψ|, pozri nasledujúci odstavec.
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Napokon preskúmame teplotnú závislosť Londonovej hĺbky vniku λ. Očakávame, že pri nulovej
teplote tvoria všetky elektróny kondenzát, preto v tejto limite |ψ|2 = n

2 a 1
λ2 = µ0ne2

m∗ . Tento odhad je
v rádovom súlade s experimentálnymi hodnotami hĺbky vniku. S rastúcou teplotou koncentrácia elek-
trónov v kondenzáte nS = 2|ψ|2 klesá. Preto hĺbka vniku rastie a napokon pri Tc diverguje: supravodič
prestáva vykazovať Meissnerov jav.

Okrajová podmienka pre makroskopickú vlnovú funkciu
Pre supravodič konečných rozmerov je potrebné Schrödingerovu rovnicu pre vlnovú funkciu riešiť s vhodne zvolenou
okrajovou podmienkou. Častým prípadom je požiadavka, aby normálová zložka supravodivého prúdu na povrchu vzorky
bola nulová. Supravodivý prúd zapíšme v tvare

j = − e

2m∗
[ψ∗(−i~∇+ 2eA)ψ + ψ(i~∇+ 2eA)ψ∗] = − e

m∗
Re [ψ∗(−i~∇+ 2eA)ψ] .

Okrajovú podmienku n · j = 0, kde n je vektor normály k povrchu, preto možno písať v tvare

n · (−i~∇+ 2eA)ψ =
i~
b
ψ, (73)

kde b je reálna konštanta s rozmerom dĺžka. Hodnota b závisí od typu rozhrania a možno ju určiť pomocou mikroskopickej
teórie. Dá sa ukázať, že pre rozhranie supravodič-izolant (napr. vákuum) možno voliť b→∞, pre rozhranie supravodič-
magnet b→ 0 a pre rozhranie supravodič-normálny kov nadobúda b konečnú hodnotu.

Obr. 11: Magnetický tok Φ =
∫

Σ
B · dS prechádzajúci cez ľubovoľnú plochu Σ s okrajom na čiare C hlboko vnútri

masívneho supravodivého prstenca nadobúda kvantované hodnoty.

Kvantovanie magnetického toku
Skúmajme masívny supravodivý prstenec a v ňom dráhu C, ktorá obopína dieru v prstenci a leží dostatočne ďaleko od
povrchu prstenca. V takom prípade možno pozdĺž C meissnerovské tieniace prúdy zanedbať a platí −

∮
C
µ0λ

2j · dr = 0.
Na druhej strane, z Londonovej rovnice (72) vyplýva

−
∮
C

µ0λ
2j · dr =

∮
C

A · dr +
~
2e

∮
C

∇θ · dr = Φ− ~
2e

2πk,

kde Φ je magnetický tok prechádzajúci cez (akúkoľvek) plochu s okrajom v čiare C a k je celé číslo. Pri odvodení sme
použili predpoklad, že vlnová funkcia supravodiča je jednoznačná, a preto sa jeho fáza pri obehnutí čiary C môže zmeniť
iba o násobok 2π. Avšak podľa predpokladu platí −

∮
C
µ0λ

2j · dr = 0, preto magnetický tok Φ musí spĺňať podmienku
Φ = kΦ0, kde sme zaviedli tzv. kvantum magnetického toku ako kombináciu fundamentálnych konštánt s rozmerom
magnetického toku:

Φ0 =
h

2e
= 2.0678× 10−15 Tm2.

Ukázali sme teda, že magnetický tok uväznený v masívnom supravodivom prstenci musí byť násobkom Φ0. Tento
výsledok nám pomôže vysvetliť stabilitu perzistentných prúdov: Stavy s rôznymi hodnotami k totiž nesú rôzne perzis-
tentné prúdy. Stavy s nenulovými prúdmi sú síce metastabilné, ale zníženie prúdu vyžaduje zmenu celej makroskopickej
vlnovej funkcie. To je ale obvykle spojené s nutnosťou prekonať obrovskú energetickú bariéru, a preto pokles prúdu je
na laboratórnej časovej škále extrémne nepravdepodobný.

Cvičenia
1. Presvedčte sa, že hustota supravodivého prúdu je daná vzťahmi (70) a (71).
2. Vypočítajte tlak, ktorým pôsobí konštantné magnetické pole B0 na polonekonečný supravodič s hĺbkou vniku λ. Pole
nech je rovnobežné s povrchom supravodiča. Návod: Objemová hustota sily pôsobiaca na prúd s prúdovou hustotou j je
f = j×B.
3. Skúmajte supravodivú platničku s hĺbkou vniku λ a hrúbkou 2L v magnetickom poli B0 rovnobežnom s povrchom
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platničky. Nájdite priebeh magnetického poľa v platničke a vypočítajte priemerné magnetické pole B v platničke. Vypo-
čítajte magnetizáciu platničky M = 1

µ0
(B −B0) a susceptibilitu definovanú vzťahom χ = µ0M/B0.

4. Skúmajte dva masívne homogénne supravodiče s chemickými potenciálmi µ1 a µ2, ktoré sú spojené tenkým supra-
vodivým drôtikom s prierezom S a dĺžkou L. Predpokladajte, že masívne supravodiče sú popísané vlnovými funkciami
ψ1(t) = |ψ1|eiθ1−2iµ1t/~ a ψ2(t) = |ψ2|eiθ2−2iµ2t/~. Ukážte, že:
(a) v prípade µ1 = µ2 v drôtiku tečie jednosmerný prúd úmerný sin(θ2 − θ1) (tzv. jednosmerný Josephsonov jav)
(b) v prípade µ1 6= µ2 v drôtiku tečie striedavý prúd s frekvenciou ~ω = 2(µ2 − µ1) (tzv. striedavý Josephsonov jav)
Návod. Zanedbajte magnetické polia generované prúdmi, ako aj prípadné nabíjanie oboch supravodičov. Pre vlnovú
funkciu v drôtiku použite ansatz ψ(x, t) = L−x

L
ψ1(t) + x

L
ψ2(t) a prúd počítajte zo známej vlnovej funkcie ψ(x, t) po-

mocou (70). V prípade µ1 = µ2 ukážte, že ansatz je riešením jednorozmernej Schrödingerovej rovnice (69) pre drôtik.
Prípad µ1 6= µ2 je zložitejší, pretože v drôtiku nemožno definovať chemický potenciál.

15 Supravodivosť: efektívna interakcia

V tejto prednáške sa venujeme otázke o pôvode príťažlivej interakcie medzi elektrónmi. Vychádzajúc z
predstavy o zviazanom systéme elektrónov a fonónov odvodíme efektívny hamiltonián v elektrónovom
sektore a pomocou neho skonštruujeme modelový hamiltonián BCS.

Izotopický jav
Je dobre známe, že chemické vlastnosti prvkov dominantne závisia od protónového čísla atómov a
takmer vôbec nezávisia od atómovej hmotnosti izotopu. V supravodivých prvkoch sa však kritická
teplota mení pri zmene priemernej hmotnosti izotopu M podľa vzťahu Tc ∝ M−1/2. Dá sa preto
očakávať, že hoci supravodivosť je novou fázou elektrónov, pri formovaní supravodivého stavu hrajú
rolu aj kmity mriežky. Medzi energetickými škálami charakterizujúcimi supravodič platia nerovnosti

Tc � ~ω0 � εF ,

pretože teplota prechodu v nízkoteplotných supravodičoch je rádovo 1 K, t.j. 10−4 eV, charakteristická
energia kmitov mriežky ~ω0 je rádovo 10−2 eV a Fermiho energia εF je rádovo 1 eV.

Model želé s deformovateľným pozadím
Tvorba Cooperových párov, t.j. viazaných stavov elektrón-elektrón, bude zrejme možná, iba ak medzi
elektrónmi existuje efektívna príťažlivá interakcia. V prednáške II.16 sme ukázali, že rozptyl dvojice
elektrónov s počiatočnými hybnosťami k a p do konečných stavov s hybnosťami k+q a p−q sa môže
uskutočniť výmenou virtuálneho fonónu. V tomto odstavci budeme prezentovať zjednodušený argu-
ment, kde v jednotnom formalizme zahrnieme coulombovské interakcie medzi elektrónmi aj interakcie
elektrónov s fonónmi. Všeobecnejšiu teóriu popisujeme v IV.n.

Začnime skúmaním efektívnej interakcie medzi elektrónmi v kove. Pre jednoduchosť sa obmedzíme
na štúdium tzv. modelu želé, ale s deformovateľným iónovým pozadím. Coulombovskú interakciu medzi
elektrónmi popisuje hamiltonián

HCoulomb =
1

8πε0

∫
d3r

∫
d3r′ρe(r)

e2

|r− r′|
ρe(r′) =

1

2V
∑
q

Vqρ
e
qρ

e
−q,

kde ρe(r) je hustota elektrónov. Druhú rovnosť dostaneme zavedením Fourierovej transformácie ρe(r) =
1
V
∑

q ρ
e
q exp (iq · r) v systéme s objemom V a s periodickými okrajovými podmienkami. Zaviedli sme

tiež Fourierovu transformáciu coulombovskej interakcie, Vq = e2

ε0q2 .

Dielektrická konštanta
Je dobre známe, že akýkoľvek náboj externe vložený do elektrónovej kvapaliny bude rýchlo obklopený
kompenzujúcim nahromadením náboja elektrónov a iónov, ktoré povedie k odtieneniu tzv. holej in-
terakcie Vq. V nasledujúcom výklade zovšeobecníme výsledky elementárnej teórie tienenia z II.12 na
prípad, kedy máme do činenia s dvomi polarizovateľnými médiami: elektrónovým plynom a iónovým
pozadím.
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Predpokladajme, že do elektrónovej kvapaliny je zavedená malá externá nábojová hustota v tvare
rovinnej vlny δ%q exp(iq · r − iωt).47 Dôsledkom bude vznik tieniacich nábojových hustôt elektrónov
%eq exp(iq ·r− iωt) a iónov %iq exp(iq ·r− iωt). Preto celková nábojová hustota bude %q exp(iq ·r− iωt),
kde %q = δ%q+%eq+%iq. Celkový potenciál generovaný externým nábojom preto bude φq exp(iq·r−iωt),
kde φq je dané Poissonovou rovnicou,

φq =
%q
ε0q2

=
δ%q

ε0ε(q, ω)q2
.

Prvá rovnica popisuje φq ako dôsledok celkovej nábojovej hustoty %q, kým druhá rovnica berie do úvahy,
že potenciál φq je pôvodne generovaný externou nábojovou hustotou δ%q, ale v médiu s dielektrickou
konštantou ε(q, ω) = δ%q/%q, ktorá môže závisieť od vlnového vektora a frekvencie. Pre malé externé
náboje očakávame, že tieniace náboje lineárne závisia od celkového náboja %q, t.j. %eq = −αe(q, ω)%q a
%iq = −αi(q, ω)%q, kde sme definovali tzv. polarizovateľnosti αe,i(q, ω) elektrónov a iónov. Dielektrická
konštanta potom bude daná vzťahom

ε(q, ω) = 1 + αe(q, ω) + αi(q, ω).

Elektrónovú polarizovateľnosť v dlhovlnnej limite q � kF a ~ω � εF sme počítali v II.12, kde sme
ukázali, že

αe(q, ω) =
ω2
p

v2
sq

2 − ω(ω + iγ)
,

kde ωp je plazmová frekvencia elektrónov s koncentráciou n a hmotnosťou m, pričom ω2
p = ne2

mε0
,

vs = vF /
√

3 je rýchlosť zvuku v (hypotetickom) nenabitom elektrónovom plyne a γ = 1/τ , kde τ je
relaxačný čas elektrónov. Elektrónovú polarizovateľnosť αe(q, ω) možno presnejšie počítať pomocou
mikroskopickej teórie, pozri IV.n.

Pre iónovú polarizovateľnosť očakávame analogickú formulu, ale s iónovými parametrami. Ak pred-
pokladáme, že ióny nesú náboj Ze a majú hmotnosť M , potom iónová plazmová frekvencia bude
Ω2
p = nZe2

Mε0
. Keďže ωp � Ωp, a posteriori možno overiť, že pre relevantné frekvencie možno iónovú

susceptibilitu aproximovať jej vysokofrekvenčnou limitou, αi(q, ω) = −Ω2
p/ω

2.

Kolektívne módy
Zviazaný systém elektrónov a fonónov môže vykonávať spontánne pozdĺžne oscilácie pri frekvencii ω,
ktorá rieši rovnicu ε(q, ω) = 0, pozri I.21. V dlhovlnnej limite q → 0 existujú dve riešenia tejto rovnice.
Prvé riešenie je vysokofrekvenčné, ω � vsq, γ. V tejto limite máme αe(q, ω) ≈ −ω2

p/ω
2 a riešením je

ω ≈ ωp, t.j. obyčajný plazmón. Pomer modulácií iónovej a elektrónovej hustoty v plazmóne je

%iq
%eq

=
αi(q, ω)

αe(q, ω)
≈

Ω2
p

ω2
p

� 1,

teda plazmové kmity sú dominantne kmitmi elektrónov (ióny nestíhajú kmitať).
Druhé riešenie sa realizuje v nízkofrekvenčnej limite ω � vsq, kedy αe(q, ω) ≈ k2

s/q
2, kde ks = ωp/vs

je prevrátená hodnota tieniacej dĺžky. Toto riešenie má tvar ωq = Ωpq/
√
q2 + k2

s , ktorý sa v dlhovlnnej
limite redukuje na ωq = vq. Ide teda o pozdĺžnu zvukovú vlnu s rýchlosťou

v

vF
≈
√
Zm

3M
.

Tento výsledok sa nazýva Bohmova-Staverova formula a je v dobrej kvalitatívnej zhode s experimentom.
Všimnime si, že v � vs, teda fonóny sú pomalé v porovnaní s elektrónmi. Pomer modulácií iónovej a
elektrónovej hustoty vo zvukovej vlne je

%iq
%eq

=
αi(q, ω)

αe(q, ω)
≈ −1,

47Používame pritom nasledovnú konvenciu. Symbolmi ρ označujeme hustoty častíc, kým symboly % = qρ označujú
nábojové hustoty generované časticami s nábojom q.
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teda celková modulácia nábojovej hustoty je malá, %iq + %eq ≈ 0. Inými slovami, v tomto móde sa hýbu
celé (neutrálne) atómy. To je zároveň dôvodom, prečo frekvencia zvukových vĺn môže byť malá.

Obr. 12: Vľavo: efektívna interakcia Veff(q, ω) ako funkcia ω pri fixovanej hodnote q. Vpravo: pri rozptyle elektrónov z
okolia Fermiho plochy do okolia Fermiho plochy je energia ~ω prenesená v zrážke malá, ale prenesená hybnosť ~q môže
byť veľká.

Efektívny hamiltonián
Pre frekvencie ω porovnateľné s fonónovými frekvenciami, t.j. pre ω � vsq, má efektívna interakcia
medzi dvomi nábojovými hustotami v tvare rovinných vĺn tvar

Veff(q, ω) =
Vq

ε(q, ω)
=

e2

ε0q2

1

1 + k2
s
q2 −

Ω2
p

ω2

=
e2

ε0(q2 + k2
s)

[
1 +

ω2
q

ω2 − ω2
q

]
.

Posledná rovnica ukazuje, že efektívnu interakciu možno reprezentovať ako súčet dvoch príspevkov:
tienenej Coulombovskej interakcie e2

ε0(q2+k2
s)

a efektívnej elektrón-elektrónovej interakcie spôsobenej

interakciou s fonónmi e2

ε0(q2+k2
s)

ω2
q

ω2−ω2
q
. Pri fixovanej hodnote vlnového vektora q je celková interakcia

príťažlivá pri ω < ωq a odpudivá pri ω > ωq, pozri obrázok 12.
Po uvážení tienenia preto možno efektívny hamiltonián pre systém elektrónov zapísať v tvare

Heff =
∑
kσ

εkc
†
kσckσ +

1

2V
∑
q

Veff(q, ω)ρeqρ
e
−q,

kde prvý člen predstavuje grandkánonickú kinetickú energiu, t.j. kinetickú energiu zníženú o chemický
potenciál. Teda na Fermiho ploche platí rovnosť εk = 0.48 Ak teraz operátory hustoty elektrónov
zapíšeme vo formalizme druhého kvantovania (pozri II.13), dostaneme

Heff =
∑
kσ

εkc
†
kσckσ +

1

2V
∑
q

∑
kσpσ′

Veff(q, ω)c†k+qσckσc
†
p−qσ′cpσ′ .

Keď teraz uvážime, že operátor c†k+qσckσ má pre neinteragujúce elektróny v Heisenbergovom obraze
časový vývoj ei(εk+q−εk)t/~ (pozri cvičenia), frekvenciu ω vo výraze pre Heff identifikujeme ako ~ω =

εk − εk+q. Na druhej strane však tiež platí c†p−qσ′cpσ′ ∝ ei(εp−q−εp)t/~, čo by indikovalo voľbu ~ω′ =
εp−εp−q. Ale ak budeme predpokladať zachovanie energie v zrážke, potom platí εk+q−εk = −(εp−q−
εp) = ∆ε. Ak ďalej uvážime, že V (q, ω) = V (q,−ω), potom obidve voľby sú ekvivalentné a efektívny
hamiltonián pre systém elektrónov možno prepísať do tvaru

Heff =
∑
kσ

εkc
†
kσckσ +

1

2V
∑
q

∑
kσpσ′

Veff(q,∆ε)c†k+qσc
†
p−qσ′cpσ′ckσ,

kde sme naviac použili tzv. normálne usporiadanie, t.j. kreačné operátory sme písali naľavo od ani-
hilačných, aby sme vylúčili nefyzikálnu interakciu elektrónu samého so sebou, pozri napr. II.13. Stojí

48Pripomíname, že Fermiho plocha je definovaná pomocou singularity obsadzovacej funkcie elektrónov pri T = 0.
V IV.n ukážeme, že takáto definícia má zmysel aj pre interagujúce systémy.
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za zmienku, že Heff je efektívnym hamiltoniánom v zmysle kapitoly 1, pretože po odstránení fonónov
z teórie sa interakcia medzi elektrónmi zmenila. Striktne vzaté, disperzný zákon εk by mal zároveň
zohľadňovať zmenu spektra elektrónov popísanú v prednáške II.16. V ďalšom výklade budeme pred-
pokladať, že táto zmena je už vo výraze pre εk zahrnutá.

Modelový hamiltonián BCS
Z predchádzajúceho výkladu vyplýva, že (ak je energia ∆ε prenesená v zrážke dostatočne malá) ampli-
túda rozptylu dvoch elektrónov Veff(q,∆ε) popisuje príťažlivú silu. V ďalšom výklade budeme skúmať
vplyv malej príťažlivej interakcie na systém elektrónov. Pri riešení tejto úlohy nebudeme skúmať realis-
tický hamiltonián Heff ,49 ale úlohu si zjednodušíme zavedením nasledovného modelového hamiltoniánu
BCS, ktorý zhruba reprodukuje hlavné črty hamiltoniánu Heff :

HBCS =
′∑

kσ

εkc
†
kσckσ −

1

V

′∑
k

′∑
k′

Vkk′c
†
k↑c
†
−k↓c−k′↓ck′↑. (74)

Hamiltonián (74) si vyžaduje dlhšie zdôvodnenie:
Po prvé, čiarky nad sumami cez k a k′ znamenajú, že sa obmedzujeme iba na hybnosti vnútri

energetických šupiek |εk| < ~ω0 a |εk′ | < ~ω0 v tesnej blízkosti Fermiho plochy, pozri obrázok 13. Za
energetickú škálu ~ω0 pritom berieme typickú energiu fonónov (t.j. energiu rádu Debyeovej energie), čiže
~ω0 � εF . Hamiltonián (74) teda popisuje iba príťažlivú časť Heff (pozri obrázok 12) a odpudivá časť
je úplne ignorovaná. Stavy s hybnosťami mimo spomínanej energetickej šupky okolo Fermiho plochy
možno (v princípe) eliminovať pomocou tzv. renormalizačnej procedúry, o ktorej sa letmo zmienime v
nasledujúcej prednáške. Všimnime si tiež, že v interakčnej časti hamiltoniánu (74) sme použili opačnú
znamienkovú konvenciu, než je obvyklé: príťažlivé interakcie zodpovedajú Vkk′ > 0.

Obr. 13: Vľavo: energetická šupka v k-priestore, pre ktorú konštruujeme modelový hamiltonián (74). Hrúbka šupky
je nadhodnotená, aby bola viditeľná. Realistickejšie by bolo prirovnať Fermiho guľu k Zemeguli a šupku k atmosfére.
Vpravo: rozptylové procesy ponechané v hamiltoniáne (74). Tieto procesy sa nazývajú rozptylmi v Cooperovom kanáli
alebo jednoducho Cooperovými rozptylmi.

Druhým podstatným zjednodušením je, že interakčná časť hamiltoniánu (74) popisuje iba rozptyly
(Cooperových) párov elektrónov s celkovou hybnosťou k + p = 0. Všeobecný interakčný člen v Heff

však obsahuje rozptyly párov so všetkými možnými celkovými hybnosťami k + p. Obmedzenie na
rozptyl párov s nulovou celkovou hybnosťou možno zdôvodniť nasledovne. Keďže supravodivosť je
nízkoteplotnou nestabilitou kovov, supravodivý stav môže zásadne ovplyvniť len rozloženie elektrónov
v tesnej blízkosti Fermiho plochy. Ak však žiadame, aby elektróny v stavoch k,p ležali v blízkosti
Fermiho plochy, potom počet procesov, pri ktorých aj rozptýlené elektróny k + q,p − q (pozri výraz
pre Heff) ležia v blízkosti Fermiho plochy, bude maximálny v prípade p = −k. Preto páry elektrónov
s nulovou hybnosťou môžu najlepšie využiť existenciu príťažlivej interakcie a stačí sa obmedziť iba na
ne. Dá sa tiež argumentovať, že teória s nulovou hybnosťou Cooperových párov popisuje supravodič so
stojacim kondenzátom, t.j. termodynamicky rovnovážny stav.

Nakoniec pripojme ešte technickú poznámku. Aby bol hamiltonián (74) hermitovský, musíme
žiadať, aby amplitúda rozptylu Cooperovho páru (k′ ↑,−k′ ↓) do páru (k ↑,−k ↓) mala symetriu
Vkk′ = V ∗k′k. Naviac budeme žiadať Vkk′ = Vk−k′ = V−kk′ , aby sme interakčný člen mohli zapísať

49K tejto úlohe sa vrátime v IV.n.
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pomocou kreačných a anihilačných operátorov pre singletné páry, t.j. páry s celkovým spinom S = 0:

1

V

′∑
k

′∑
k′

Vkk′c
†
k↑c
†
−k↓c−k′↓ck′↑ =

1

4V

′∑
k

′∑
k′

Vkk′
(
c†k↑c

†
−k↓ − c

†
k↓c
†
−k↑

) (
c−k′↓ck′↑ − c−k′↑ck′↓

)
.

Bežné supravodiče, včítane vysokoteplotných, majú totiž singletné Cooperove páry. Teória sa však dá
rozšíriť aj na popis supravodičov s tripletnými pármi.

Cvičenia
1. Ukážte, že v modeli neinteragujúcich elektrónov pre operátor X = c†k+qσckσ v Heisenbergovom obraze platí X(t) =

ei(εk+q−εk)t/~X(0). Návod: využite, že ∂ck
∂t

= i
~e
iHt/~[H, ck]e−iHt/~.

2. Pri výpočte efektívnej interakcie Veff sme predpokladali, že jeden náboj generuje tienené pole a druhý (už netienený)
náboj s týmto poľom interaguje. Keby obidva náboje boli tienené, muselo by platiť Veff(q, ω) = e2

ε0q2ε2(q,ω)
. Zdôvodnite,

prečo by bol takýto výpočet efektívej interakcie chybný. Návod: Skúmajte doskový kondenzátor s dielektrikom s rela-
tívnou permitivitou εR a s plošným nábojom ±σ na kovových doskách. Porovnajte tri výpočty energie kondenzátora:
i) pomocou makroskopickej elektrostatiky (polia E a D), ii) pomocou mikroskopickej elektrostatiky - iba pole E - pre
nábojové hustoty na doskách σ/εR a −σ (tento výpočet zahŕňa tienenie raz), iii) pomocou mikroskopickej elektrostatiky
pre nábojové hustoty na doskách ±σ/εR (tienenie zahrnuté dvakrát).
3. Výsledok pre Veff(q, ω) porovnajte s alternatívnym výrazom z II.16.
4. Ukážte, že maticový element Vkk′ v hamiltoniáne (74) je zhruba nezávislý od izotopickej hmotnosti M .

16 Cooperova nestabilita a renormalizačná grupa

V tejto prednáške najprv ukážeme, že normálny kov s príťažlivými interakciami medzi elektrónmi je
nestabilný voči tvorbe viazaných stavov párov elektrónov. Ten istý výsledok odvodíme aj alternatív-
nym postupom: metódou renormalizačnej grupy.

Cooperova nestabilita
V rámci modelového hamiltoniánu BCS (74) budeme najprv skúmať nasledovnú zjednodušenú úlohu.
Budeme študovať plne zaplnené neinteragujúce Fermi more (t.j. všetky stavy s k < kF budú plne
obsadené) a budeme sa pýtať, čo sa stane dvom dodatočným elektrónom pridaným k takémuto systému.
Budeme pritom predpokladať, že Fermiho more je inertné a jeho jedinou úlohou je zabrániť rozptylu
skúmaných elektrónov do stavov s k < kF .

Cooperov pár opíšeme nasledovnou vlnovou funkciou s nulovou celkovou hybnosťou:

|ψ〉 =
1

V

′∑
p>kF

ψpc
†
p↑c
†
−p↓|FS〉 =

1

2V

′∑
p>kF

ψp

(
c†p↑c

†
−p↓ − c

†
p↓c
†
−p↑

)
|FS〉,

kde |FS〉 je plne obsadené Fermiho more. V druhej rovnici sme predpokladali, že ψp = ψ−p. Táto
rovnica explicitne ukazuje, že Cooperov pár je v singletnom stave s celkovým spinom S = 0.

Našou úlohou bude hľadať riešenie Schrödingerovej rovnice HBCS|ψ〉 = E|ψ〉, pričom predpokla-
dáme, že hamiltonián HBCS nepôsobí na |FS〉. Schrödingerova rovnica tak nadobudne tvar

′∑
p>kF

(2εp − E)ψpc
†
p↑c
†
−p↓|FS〉 −

1

V

′∑
p>kF

′∑
k>kF

Vkpψpc
†
k↑c
†
−k↓|FS〉 = 0.

Ak teraz na ľavej strane vymeníme sumačné indexy k a p v druhom člene a vezmeme skalárny súčin
s vektorom 〈FS|c−p↓cp↑, dostaneme sadu rovníc pre koeficienty ψp:

(2εp − E)ψp =
1

V

′∑
k>kF

Vpkψk.

Aby sme ďalej zjednodušili diskusiu, budeme predpokladať, že Vpk = V , čo sa ukazuje ako celkom dobrá
aproximácia pre jednoduché supravodiče. V takomto prípade nič nezávisí od uhlových premenných a ak
sa obmedzíme na hľadanie riešení s energiou E = −|E| < 0, ktoré popisujú viazané stavy elektrónov,50

50Okrem nich samozrejme existuje kontinuum rozptylových stavov pri energiách E > 0.



63

sumy môžeme zameniť za integrály: 1
V
∑′

k>kF
= N(0)

∫ ~ω0

0 dεk. Tak dostaneme integrálnu rovnicu

ψp =
λ

2εp + |E|

∫ ~ω0

0
dεkψk,

kde sme zaviedli bezrozmernú väzobnú konštantu λ = N(0)V . Integrovaním
∫ ~ω0

0 dεp oboch strán
dostaneme rovnicu pre vlastnú energiu E:

1

λ
=

∫ ~ω0

0

dε

2ε+ |E|
=

1

2
ln

~ω0 + |E|/2
|E|/2

.

V limite slabej väzby λ � 1, ktorá je relevantná pre väčšinu klasických supravodičov, pre energiu E
viazaného stavu napokon dostaneme výsledok E = −2~ω0e

−2/λ. Keďže energia Cooperovho páru je
nižšia než energia páru neinteragujúcich elektrónov na Fermiho ploche (ktorá je rovná 0), zrejme bude
energeticky výhodné vyberať elektróny z Fermiho mora a vyrábať z nich Cooperove páry zo stavov
nad Fermiho plochou. Fermiho more teda bude nestabilné voči tvorbe párov.

Stojí tiež za zmienku, že nestabilita vzniká pri ľubovoľne slabej príťažlivej interakcii λ > 0 a že
väzobná energia je neanalytickou funkciou λ. To naznačuje, že párovací prechod nebude možné popísať
konečným rádom poruchovej teórie a supravodivý stav treba popísať neporuchovou teóriou.

Cooperova nestabilita: renormalizačná grupa
V tomto odstavci ukážeme alternatívny argument ukazujúci nestabilitu voči tvorbe párov v systémoch
s príťažlivými interakciami. Ako bonus ukážeme, že (za istých okolností) je supravodivosť možná do-
konca aj v systémoch s čisto odpudivými interakciami. Náš alternatívny argument bude využívať tzv.
metódu renormalizačnej grupy. Ide o veľmi užitočnú teoretickú metódu s mnohými aplikáciami napr. v
kvantovej teórii poľa a štatistickej fyzike. V tomto texte stručne vyložíme základné idey tejto metódy,
ako sa používa vo fyzike kondenzovaných látok.

Renormalizačná grupa
Hlavným problémom pri teoretickom popise makroskopických systémov je obrovský počet stupňov
voľnosti. Obvykle nás však zaujímajú iba stupne voľnosti s veľkými vlnovými dĺžkami a s malými
frekvenciami, pretože tieto stupne voľnosti sú zodpovedné za makroskopické vlastnosti.51 Renormali-
začná grupa je metóda, ktorá umožňuje postupne znižovať počet stupňov voľnosti študovaného modelu
sériou infinitezimálnych krokov, pričom v každom kroku sa eliminujú najnepodstatnejšie stupne voľ-
nosti. Žiadame však pritom, aby správanie ponechaných stupňov voľnosti po renormalizačnom kroku
bolo také isté, ako pred týmto krokom. Túto podmienku často možno splniť nasledovne. Nech model
pred renormalizačným krokom je popísaný sadou (vektorom) parametrov g = (g1, g2, . . . , gN ). Často sa
stane, že správanie ponechaných stupňov voľnosti po renormalizačnom kroku je také isté ako pred ním,
ak po renormalizačnom kroku zmeníme parametre modelu na g′. Teórie, ktoré majú túto vlastnosť,
nazývame renormalizovateľné. Ide o veľmi netriviálnu vlastnosť: mohlo by sa stať, že proces eliminácie
stupňov voľnosti by sme museli kompenzovať novými, čoraz komplikovanejšími členmi v hamiltoniáne.
V takomto prípade by metóda renormalizačnej grupy nebola užitočná.

Obvykle možno jednotlivé renormalizačné kroky charakterizovať jediným spojitým parametrom. V
príklade, ktorý o chvíľu preskúmame, to bude excitačná energia jednočasticových stavov Λ: po danom
kroku budú stavy s energiou väčšou než Λ eliminované. Pred začiatkom renormalizačnej procedúry
má Λ veľkosť najväčšej prípustnej excitačnej energie. V procese renormalizácie budeme hodnotu Λ
postupne znižovať.

Prečo hovoríme o grupe? Pri zmene škály Λ1 → Λ2 a pri súčasnej zámene parametrov g1 → g2

sme nezmenili správanie ponechaných stupňov voľnosti, teda transformácia {Λ1,g1} → {Λ2,g2} je
operáciou symetrie. Podobne transformácia {Λ2,g2} → {Λ3,g3} je (pre ponechané stupne voľnosti)
operáciou symetrie. Ak v množine operácií symetrie budeme násobenie definovať pomocou skladania
transformácií, ľahko ukážeme, že množina operácií symetrie tvorí “grupu”.52

51Peknú diskusiu čitateľ nájde napríklad v knihe Callena.
52V skutočnosti ide iba o semigrupu, pretože k žiadnemu prvku (okrem identity) neexistuje inverzný prvok: stupne

voľnosti vieme eliminovať, ale neexistuje univerzálna procedúra na ich pridávanie.
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Aktuálnu hodnotu škály Λ je výhodné parametrizovať bezrozmerným parametrom t: Λ(t) = Λ0e
−t.

Pri takejte voľbe zodpovedá t = 0 pôvodnému modelu so škálou Λ0. Parameter t popisuje zmenu škály.
Všimnime si, že postupné zmeny škály o t1 a t2 možno popísať jedinou zmenou o t1 + t2, pretože
e−t1e−t2 = e−(t1+t2).

Ak predpokladáme, že parametre modelu g sú spojitými funkciami parametra t, potom je prirodzené
očakávať, že vektor g(t) bude riešením diferenciálnej rovnice

dg

dt
= β(g) (75)

s počiatočnou podmienkou g(0) = g0, kde parametre g0 charakterizujú pôvodný, nerenormalizovaný
hamiltonián. Vektorová funkcia β(g), tzv. beta funkcia, je kľúčovým objektom teórie. Všimnime si,
že β(g) je iba funkciou aktuálnych parametrov g. Ak poznáme beta funkciu, rovnicu (75) môžeme
integrovať (prinajhoršom numericky). Zaujíma nás pritom správanie g(t) v limite t→∞, t.j. správanie
dlhovlnných, nízkoenergetických stupňov voľnosti. Ak v tejto limite niektorá zo zložiek gi → 0, potom
príslušný proces bude irelevatný v dlhovlnnej limite. Ak naopak gi → ∞, potom v dlhovlnnej limite
bude zodpovedajúci proces natoľko dôležitý, že ho nebude možné popísať poruchovou teóriou a bude
potrebné ho zahrnúť do neporušeného hamiltoniánu. Tretia možnosť gi →const 6= 0 sa nazýva margi-
nálnou, pretože sa realizuje medzi popísanými dvomi jednoduchšími limitami.

Cooperov problém a renormalizačná grupa
Teraz ukážeme, ako funguje metóda renormalizačnej grupy v jednoduchom kontexte Cooperovho prob-
lému. Budeme teda skúmať pár elektrónov p ↑,−p ↓ pridaných k zaplnenému Fermiho moru, pričom
hamiltonián (74) budeme chápať ako súčet H0 +Hint. Hilbertov priestor pozostáva zo všetkých párov
p↑,−p↓ s p > pF , ktorých energia je menšia než 2Λ0 = 2~ω0 (v jednotkách, v ktorých elektrón na Fer-
miho ploche má energiu =0). Pre jednoduchosť budeme predpokladať, že všetky rozptylové procesy sú
popísané jediným parametrom: Vk,k′ = V0. Renormalizácia sa bude realizovať postupným znižovaním
energetickej škály Λ z počiatočnej hodnoty Λ0, t.j. v danom kroku budú eliminované Cooperove páry s
energiou väčšou než 2Λ. Budeme pritom žiadať, aby sa nemenila amplitúda Γ

V pre rozptyl Cooperovho
páru z nízkoenergetického stavu p ↑,−p ↓ do iného nízkoenergetického stavu k ↑,−k ↓, počítaná do
druhého rádu poruchovej teórie podľa Hint. Uvidíme, že Γ sa v procese renormalizácie nemení, iba ak
pri zmene škály Λ zmeníme aj parameter V . Takáto procedúra sa nazýva poruchovou renormalizáciou.

Predpokladajme, že renormalizačný proces pokročil do bodu, kedy energetická škála má hodnotu
Λ a interakčná energia má hodnotu VΛ. Podľa kapitoly 1 je všeobecný vzťah pre Γ

V do druhého rádu
poruchovej teórie daný vzťahom

Γ

V
= 〈k↑,−k↓ |Hint|p↑,−p↓〉+ 〈k↑,−k↓ |Hint

1

2εp −H0 + i0
Hint|p↑,−p↓〉.

Ak využijeme, že pre úplný systém stavov platí
∑

K |K↑,−K↓〉〈K↑,−K↓| = 1, dostaneme odtiaľto

Γ

V
= 〈k↑,−k↓|Hint|p↑,−p↓〉+

∑
K

〈k↑,−k↓|Hint|K↑,−K↓〉〈K↑,−K↓|Hint|p↑,−p↓〉
2εp − 2εK + i0

= −VΛ

V
+

(
VΛ

V

)2∑
K

1

2εp − 2εK + i0
=

1

V

[
−VΛ +N(0)V 2

Λ

∫ Λ

0

dε

2εp − 2ε+ i0

]
.

Preto do druhého rádu poruchovej teórie pre amplitúdu rozptylu Γ(Λ) na škále Λ platí

Γ(Λ) = −VΛ +N(0)V 2
Λ

∫ Λ

0

dε

2εp − 2ε+ i0
.

Podľa predpokladu sa však veličina Γ nemá pri zmene Λ zmeniť, t.j. má platiť dΓ
dΛ = 0. Explicitným

derivovaním formuly pre Γ(Λ) tak dostaneme podmienku

dV

dΛ
= − 1

1− 2N(0)VΛ

∫ Λ
0

dε
2εp−2ε+i0

×
N(0)V 2

Λ

2Λ− 2εp
≈ −

N(0)V 2
Λ

2Λ
,
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kde v približnej rovnosti sme sa obmedzili iba na členy do rádu V 2
Λ a predpokladali sme, že εp � Λ,

keďže skúmame rozptyl párov v tesnej blízkosti Fermiho plochy.
Ak teraz použijeme parametrizáciu energetickej škály Λ = Λ0e

−t a zavedieme bezrozmernú väzobnú
funkciu λ(t) = N(0)V (t), potom rovnicu pre funkciu λ = λ(t) môžeme zapísať v tvare konzistentnom
so všeobecnou rovnicou (75):

dλ

dt
=
λ2

2
,

teda beta funkcia pre Cooperov problém je β(λ) = 1
2λ

2.
Riešenie diferenciálnej rovnice pre λ(t) spĺňajúce počiatočnú podmienku λ(t = 0) = λ0 má tvar

λ(t) =
λ0

1− 1
2λ0t

. (76)

Zaujíma nás správanie funkcie λ(t) pri rastúcom t. Začnime prípadom, kedy interakcie sú odpudivé, t.j.
λ0 < 0. V tomto prípade v limite t → ∞ dostaneme λ → 0, teda odpudivé interakcie v Cooperovom
kanáli sú v nízkoenergetickej limite irelevantné.

V prípade príťažlivých síl λ0 > 0 však cooperovské interakcie so znižovaním energetickej škály Λ
rastú a divergujú pri t∗ = 2/λ0. Energetická škála zodpovedajúca t∗ je Λ∗ = Λ0e

−t∗ = ~ω0e
−2/λ. Táto

škála je rádovo totožná s väzbovou energiou Cooperových párov.

Zahrnutie coulombovského odpudzovania
Napokon ukážeme jeden netriviálny dôsledok rovnice (76). Náš modelový výpočet efektívnej elektrón-
elektrónovej interakcie Veff ukazuje, že táto pozostáva z dvoch príspevkov: z odpudivej tienenej cou-
lombovskej interakcie Vc < 0 a z príťažlivej interakcie Vep > 0 v dôsledku interakcie s fonónmi. Pripo-
míname, že v tejto prednáške máme opačnú znamienkovú konvenciu ako obvykle: príťažlivé interakcie
sú kladné. Je to ekonomické, lebo hovoriac o supravodivosti, musíme študovať príťažlivé interakcie.

Pri nulovej prenesenej energii ~ω = 0 v modeli želé dostávame Vc +Vep = 0, teda nastáva delikátna
rovnováha oboch interakcií. Keďže model želé je veľmi hrubým modelom tuhej látky, je teda na mieste
otázka, či supravodivosť prežije aj v prípade, kedy Vc + Vep < 0.

Bogoľubov si uvedomil, že interakcia Vc je prítomná medzi všetkými elektrónmi, t.j. jej škála Λc je
daná šírkou vodivostného pásu, v bežných kovoch obvykle niekoľko eV. Na druhej strane, interakcia
Vep je príťažlivá len pod energetickou škálou Λep ∼ ~ω0.53

Ak teda budeme študovať reálny kov, môžeme najprv metódou renormalizačnej grupy eliminovať
stupne voľnosti medzi Λc a Λep. Po zavedení bezrozmernej elektrón-fonónovej väzobnej funkcie λ =
N(0)Vep a bezrozmernej elektrón-elektrónovej väzobnej funkcie µ = N(0)Vc pre výslednú bezrozmernú
efektívnu väzobnú funkciu λeff na škále Λep dostaneme λeff = λ− µ∗, kde

µ∗ =
µ

1 + 1
2µ ln

(
Λc
Λep

) .
Teda coulombovské odpudzovanie je na škále Λep renormalizované na hodnotu µ∗, pričom µ∗ < µ.
Kritériom supravodivosti teda nie je λ > µ, ale iba slabšia podmienka λ > µ∗. Toto kritérium môže
byť splnené aj v systémoch, v ktorých interakcie na pôvodnej škále sú zakaždým odpudivé.

Separácia energetických škál ~ω0 � Λc je teda na jednej strane dobrá pre supravodivosť, keďže
vedie k potlačeniu coulombovského odpudzovania, na druhej strane primalá škála ~ω0 znižuje energiu
viazaného stavu Cooperovho páru.

Cvičenia
1. Ako závisí väzobná energia Cooperovho páru E od izotopickej hmotnosti? Ak predpokladáme, že E je rádu Tc,
vysvetľuje Cooperova nestabilita experimentálne pozorovaný izotopický jav? Návod: použite Bohmovu-Staverovu formulu
a výsledok cvičenia 14/4.

53Nad touto škálou je elektrón-fonón-elektrónová interakcia odpudivá, preto ju možno traktovať podobne, ako coulom-
bovské odpudzovanie.
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2. Vypočítajte rozmer Cooperovho páru ξ2 = 〈ψ|R2|ψ〉
〈ψ|ψ〉 , kde R je relatívna vzdialenosť elektrónov tvoriacich pár. Návod:

najprv ukážte, že ψ(R) =
∑

p ψpe
ip·R, kde ψp ∝ 1

2εp+|E| . Použite tiež vzťah∫
d3RR2ψ∗(R)ψ(R) =

∑
p,k

∫
d3Rψ∗k

(
∇ke

−ik·R
)
·ψp

(
∇pe

ip·R
)

=
∑
p,k

∇kψ
∗
k ·∇pψp

∫
d3Rei(p−k)·R = V

∑
p

|∇pψp|2 ,

kde v druhom kroku sme integrovali per partes podľa p a k.
3. Vyriešte Cooperov problém pre dvojicu dier vnútri inertného Fermiho mora.
4. Dá sa ukázať, že v mnohočasticovom formalizme má beta funkcia tvar β(λ) = λ2. V tomto jazyku možno divergenciu
λ interpretovať ako supravodivú nestabilitu. a) Nájdite škálu Λ∗, pri ktorej λ diverguje. b) Ako sa zmení výraz pre µ∗?
c)∗ Preskúmajte závislosť Λ∗ od ω0 v modeli, v ktorom efektívna interakcia na škále ~ω0 má hodnotu λ− µ∗.

17 Teória BCS

V tejto prednáške najprv identifikujeme parameter usporiadania pre supravodivosť a symetriu, ktorá je
v supravodiči spontánne narušená. Potom prezentujeme teóriu Bardeena, Coopera a Schrieffera (BCS),
t.j. diagonalizáciu hamiltoniánu (74) metódou stredného poľa.

Parameter usporiadania pre supravodič
Cooperov pár s nulovou celkovou hybnosťou je kreovaný operátorom a† =

∑
k ψkc

†
k↑c
†
−k↓. Očakávame,

že supravodič je kondenzátom takýchto Cooperových párov. Preto vlnová funkcia základného stavu
supravodiča (t.j. pri teplote T = 0) bude úmerná koherentnému stavu:

eza
† |0〉 = exp

[
z
∑
k

ψkc
†
k↑c
†
−k↓

]
|0〉 =

∏
k

exp
[
zψkc

†
k↑c
†
−k↓

]
|0〉,

kde v druhej rovnosti sme využili, že operátory c†k↑c
†
−k↓ s rôznymi hybnosťami k navzájom komutujú.54

Ak ďalej využijeme, že vďaka Pauliho princípu platí (c†k↑c
†
−k↓)

2 = 0, vlnovú funkciu základného stavu

môžeme zapísať v tvare
∏

k exp
[
zψkc

†
k↑c
†
−k↓

]
|0〉 =

∏
k

[
1 + zψkc

†
k↑c
†
−k↓

]
|0〉. Vlnová funkcia, ktorú

sme dostali, zatiaľ nie je normovaná. BCS túto vlnovú funkciu zapísali v jednoducho normalizovateľnom
tvare

|Ψ0〉 =
∏
k

(u∗k + v∗kc
†
k↑c
†
−k↓)|0〉. (77)

Budeme pritom žiadať, aby pre všetky k platila nasledovná podmienka:

|uk|2 + |vk|2 = 1. (78)

Pri tejto voľbe platí 〈Ψ0|Ψ0〉 =
∏

k〈0|(uk + vkc−k↓ck↑)(u
∗
k + v∗kc

†
k↑c
†
−k↓)|0〉 =

∏
k

(
|uk|2 + |vk|2

)
= 1,

teda vlnová funkcia |Ψ0〉 je normovaná. Stredný počet elektrónov v stave |Ψ0〉 je definovaný vzťahom
〈N〉 =

∑
k〈Ψ0|(c†k↑ck↑ + c†−k↓c−k↓)|Ψ0〉, z ktorého vyplýva

〈N〉 =
∑
k

〈0|(uk + vkc−k↓ck↑)(c
†
k↑ck↑ + c†−k↓c−k↓)(u

∗
k + v∗kc

†
k↑c
†
−k↓)|0〉 = 2

∑
k

|vk|2.

V makroskopickom systéme je teda veličina 〈N〉 úmerná objemu. Všimnime si, že |vk|2 je pravdepodob-
nosť obsadenia dvojice stavov k ↑,−k ↓. Keďže supravodivosť je nízkoteplotnou nestabilitou Fermiho
plochy, očakávame, že |vk|2 sa líši od rozdelenia elektrónov iba v tesnej blízkosti Fermiho plochy. Inými
slovami, predpokladáme, že |vk| → 1 hlboko vnútri Fermiho mora a |vk| → 0 pre stavy vysoko nad
Fermiho plochou.

54Pre komutujúce operátory A a B totiž platí eA+B = eAeB . Naozaj, keďže vtedy (A+B)n =
∑n
j=0

n!
j!(n−j)!A

n−jBj ,
potom eA+B =

∑∞
n=0

1
n!

(A+B)n =
∑∞
n=0

∑n
j=0

1
j!(n−j)!A

n−jBj =
∑∞
k=0

1
k!
Ak
∑∞
j=0

1
j!
Bj = eAeB .
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Obr. 14: Koeficienty |vk|2 a |uk|2 ako funkcie vlnového vektora. Rozdelenie elektrónov v supravodivom stave sa od
rozdelenia v normálnom stave podľa teórie BCS líši len pre elektróny s excitačnou energiou εk ∼ ∆, t.j. v šupke okolo
Fermiho plochy s hrúbkou δk ∼ 1

ξ
, kde ξ ∼ ~vF

∆
je tzv. (Pippardova) koherenčná dĺžka.

Keďže vlnová funkcia |Ψ0〉 nie je vlastným stavom operátora počtu elektrónov, vypočítajme aj
strednú kvadratickú odchýlku počtu elektrónov

√
〈(N − 〈N〉)2〉 =

√
〈N2〉 − 〈N〉2. Dostaneme

〈N2〉 =
∑
k 6=p

〈(c†k↑ck↑ + c†−k↓c−k↓)(c
†
p↑cp↑ + c†−p↓c−p↓)〉+

∑
k

〈(c†k↑ck↑ + c†−k↓c−k↓)
2〉

= 4
∑
k 6=p

|vk|2|vp|2 + 4
∑
k

|vk|2 = 4
∑
kp

|vk|2|vp|2 + 4
∑
k

(
|vk|2 − |vk|4

)
.

Preto v makroskopických systémoch je stredná kvadratická odchýlka počtu elektrónov zanedbateľná,√
〈(N − 〈N〉)2〉 = 2

√∑
k |vk|2|uk|2 ∝

√
V. Tento výsledok je samozrejme plne analogický výsledkom

pre koherentné stavy, pozri kapitolu 11.
Ľahko nahliadneme, že v stave popísanom vlnovou funkciou BCS platí

bk = 〈Ψ0|c−k↓ck↑|Ψ0〉 = ukv
∗
k. (79)

Pre vlnové vektory v blízkosti Fermiho plochy očakávame, že vk aj uk sú nenulové (pozri obr. 14), a
teda bk 6= 0. Na druhej strane, v normálnom (nesupravodivom) stave očakávame, že bk = 0. Veličina
bk je teda parametrom usporiadania pre supravodič: supravodivý kov je v stave s nediagonálnym
ďalekodosahovým usporiadaním (ODLRO), podobne ako atómy hélia v supratekutom stave.

Zostáva nám vyjadriť sa k otázke, akú symetriu narúša supravodivý stav charakterizovaný nenulo-
vým parametrom usporiadania bk. Podobne ako pri diskusii o supratekutosti, aj modelový hamiltonián
BCS (74) je invariantný voči globálnej (t.j. pre všetky stavy k rovnakej) kalibračnej transformácii

c†k → e−iϕc†k, ck → eiϕck.

Teda pohybové rovnice nezávisia od voľby globálnej fázy. Na druhej strane sa však vlnová funkcia (77)
pri takejto transformácii zmení na fyzikálne inú vlnovú funkciu (nejde pritom iba o zmenu celkovej fázy
vlnovej funkcie). Teda supravodivý stav popísaný vlnovou funkciou (77) si spomedzi všetkých prípust-
ných fáz jednu vybral a “zmrzol” v nej, podobne ako spiny magnetu pod kritickou teplotou zmrznú v
jednom z prípustných smerov.

Teória BCS
Supravodič opíšeme grandkánonickým modelovým BCS hamiltoniánom (74). Pripomíname, že napr.
v modeli želé platí εk = ~2k2

2m − µ, t.j. v energii εk je zahrnutý aj chemický potenciál a na Fermiho
ploche platí εk = 0. Naším cieľom bude nahradiť tento komplikovaný mnohočasticový hamiltonián
jednoduchším hamiltoniánom.

Pre operátor c−k↓ck↑ môžeme napísať identitu c−k↓ck↑ = bk + (c−k↓ck↑− bk). Zmyslom identity je,
že akúkoľvek veličinu môžeme zapísať ako súčet jej strednej hodnoty a fluktuácie okolo strednej hod-
noty. Dosaďme teraz túto identitu (a tiež identitu k nej hermitovsky združenú) do hamiltoniánu (74).
Predpokladajme ďalej, že fluktuácie operátorov c−k↓ck↑ okolo ich stredných hodnôt sú malé, a preto
zanedbajme členy typu (fluktuácia)2. Priblíženie, pri ktorom zanedbávame fluktuačné efekty, sa nazýva
priblížením stredného poľa.55 Takto dostaneme tzv. redukovaný BCS hamiltonián

Hred =
′∑
k

εk

(
c†k↑ck↑ + 1− ck↓c†k↓

)
− 1

V

′∑
k

′∑
k′

Vkk′
(
c†k↑c

†
−k↓bk′ + b∗kc−k′↓ck′↑ − b∗kbk′

)
,

55Na rozdiel od magnetických systémov, kde je toto priblíženie veľmi nepresné, v prípade supravodivosti je priblíženie
stredného poľa obvykle veľmi dobrým priblížením, pozri cvičenia.
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kde sme kinetickú energiu prepísali do tvaru, ktorý bude neskôr výhodný. Definujme teraz dôležitú
energetickú škálu (tzv. funkciu energetickej medzery)

∆k =
1

V

′∑
k′

Vkk′bk′ . (80)

Keďže podľa predpokladu Vkk′ = V−kk′ , funkcia energetickej medzery je párna, ∆k = ∆−k. Pomocou
funkcie ∆k možno redukovaný BCS hamiltonián zapísať v kompaktnom tvare

Hred =

′∑
k

(
c†k↑ c−k↓

)( εk −∆k

−∆∗k −εk

)(
ck↑
c†−k↓

)
+

′∑
k

(b∗k∆k + εk). (81)

Hamiltonián (81) je hľadaným zjednodušeným hamiltoniánom. Všimnime si, že jeho prvý člen je kvad-
ratický v kreačných a anihilačných operátoroch, kým druhý člen je obyčajnou konštantou, ktorej hod-
nota bude dôležitá pri definovaní tzv. kondenzačnej energie. Vďaka tomu môže byť hamiltonián (81)
jednoducho diagonalizovaný.

Diagonalizácia hamiltoniánu (81).
Podobne ako v kapitolách 4 a 12, diagonalizáciu zrealizujeme transformáciou od holých elektrónov k
novým kvázičasticiam s kreačnými operátormi γ†k↑ a γ

†
k↓:(

γk↑
γ†−k↓

)
=

(
u∗k −v∗k
vk uk

)(
ck↑
c†−k↓

)
.

Táto transformácia je kánonickou, t.j. transformáciou od fermiónových operátorov k fermiónovým
operátorom (pričom obidve sady operátorov spĺňajú kánonické komutačné vzťahy), ak transformačná
matica je unitárna, t.j. ak platí (78). Ľahko overíme, že spätná transformácia má tvar(

ck↑
c†−k↓

)
=

(
uk v∗k
−vk u∗k

)(
γk↑
γ†−k↓

)
.

Transformačnú maticu vyberieme tak, aby hamiltonián v nových premenných bol diagonálny, t.j.(
u∗k −v∗k
vk uk

)(
εk −∆k

−∆∗k −εk

)(
uk v∗k
−vk u∗k

)
=

(
Ek 0
0 −Ek

)
.

Využili sme pritom, že vlastné hodnoty matice (81) sú ±Ek, kde Ek =
√
ε2
k + |∆k|2. Prvú vlastnú

hodnotu sme zvolili kladnú a druhú zápornú. Ľahko možno overiť, že táto voľba je nevyhnutná, ak
základný stav supravodiča má byť vákuom pre častice γ (tzv. bogoľubóny). Výsledný diagonalizovaný
hamiltonián má tvar

Hred =
′∑

kσ

Ekγ
†
kσγkσ + EGS, (82)

EGS =

′∑
k

(b∗k∆k + εk − Ek). (83)

To znamená, že v priblížení stredného poľa možno supravodič chápať ako plyn voľných fermiónov s
disperzným zákonom Ek. Základný stav tohto plynu má energiu EGS a vlnová funkcia základného
stavu |ψ〉 musí spĺňať podmienky γk↑|ψ〉 = γk↓|ψ〉 = 0 pre všetky k. Ľahko možno overiť, že vlnová
funkcia (77) spĺňa tieto podmienky, pozri cvičenia.

Aby sme úplne ukončili diagonalizáciu, potrebujeme nájsť funkcie uk a vk ako riešenia rovníc

(|uk|2 − |vk|2)εk + ukv
∗
k∆∗k + u∗kvk∆k = Ek, 2ukvkεk + v2

k∆k − u2
k∆∗k = 0.
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Riešením týchto rovníc (s funkciou uk zvolenou ako čisto reálna) je

uk =

√
1

2

(
1 +

εk
Ek

)
, vk =

∆∗k
|∆k|

√
1

2

(
1− εk

Ek

)
.

Všimnime si, že uk = u−k a vk = v−k, keďže εk a ∆k sú párne funkcie. Naviac, naša voľba dáva
hlboko vnútri Fermiho mora |vk|2 = 1, kým vysoko nad Fermiho energiou je |uk|2 = 1, v súlade s
požiadavkami kladenými na vlnovú funkciu |Ψ0〉, pozri obr. 14.56

Self-konzistentná rovnica pre parameter usporiadania
Doteraz sme vyjadrili všetky veličiny pomocou funkcie ∆k, ktorú sme však nepoznali. Teraz zostrojíme
(tzv. self-konzistentnú) rovnicu pre ∆k. Začneme s výpočtom strednej hodnoty

bk = 〈c−k↓ck↑〉 = 〈(−v∗kγ
†
k↑ + ukγ−k↓)(ukγk↑ + v∗kγ

†
−k↓)〉 = ukv

∗
k

[
1− 〈γ†k↑γk↑〉 − 〈γ

†
−k↓γ−k↓〉

]
,

kde v poslednej rovnici sme využili, že vo všetkých vlastných stavoch hamiltoniánu (83) existuje presne
daný počet bogoľubónov a preto zmiešané členy neprispievajú. Naviac, keďže bogoľubóny tvoria ne-
interagujúci plyn, ich počet je daný Fermiho-Diracovým rozdelením:57

〈γ†kσγkσ〉 = fk =
1

exp(Ek/T ) + 1
.

Ak naviac využijeme explicitný tvar funkcií uk a vk, ľahko overíme, že ukv∗k = ∆k
2Ek

. Po dosadení do
výrazu pre bk tak dostaneme výsledok

bk =
∆k

2Ek
[1− 2fk] =

∆k

2Ek
tanh

(
Ek

2T

)
,

ktorý možno chápať ako zovšeobecnenie výrazu (79) na prípad konečných teplôt. Ak tento výsledok
dosadíme do definičného vzťahu (80), dostaneme napokon

∆k =
1

V

′∑
k′

Vkk′
∆k′

2Ek′
tanh

(
Ek′

2T

)
. (84)

Rovnica (84) sa nazýva rovnicou pre energetickú medzeru. Ide o tzv. self-konzistentnú rovnicu, čím
sa myslí to, že funkciu ∆k na pravej strane treba zvoliť tak, aby táto voľba bola konzistená s ľavou
stranou. Rovnica (84) je ústrednou rovnicou BCS teórie, pretože na jej základe vieme rozhodnúť, kedy
sa v danom systéme realizuje supravodivosť.

Cvičenia
1. V priblížení stredného poľa na operátor c†k↑c

†
−k↓ pôsobí pole

1
V
∑′

k′ Vkk′bk′ namiesto presného výrazu 1
V
∑′

k′ Vkk′c−k′↓ck′↑.
Akej veľkej chyby sa pritom dopustíme, ak predpokladáme, že fluktuácie operátorov c−k′↓ck′↑ okolo hodnôt bk′ sú pre
rôzne hodnoty k′ navzájom nezávislé?
2. Ukážte, že vlnová funkcia (77) je vákuom pre operátory γkσ.
3. Overte, že platí vzťah

[
c−k↓ck↑, c

†
k↑c
†
−k↓

]
= 1 − c†k↑ck↑ − c

†
−k↓c−k↓. Možno operátor c†k↑c

†
−k↓ doslovne považovať za

kreačný operátor bozónu? Ďalej ukážte, že platí
[
c−k↓ck↑, c

†
k↑ck↑

]
= c−k↓ck↑ a

[
c†k↑c

†
−k↓, c

†
k↑ck↑

]
= −c†k↑c

†
−k↓.

4. Pomocou cvičenia 3 ukážte, že ak za (kánonický) hamiltonián supravodiča vezmeme Hred = Hred + µNel, kde Hred je
grandkánonický hamiltonián (81) a Nel je operátor počtu elektrónov, potom pre časový vývoj operátorov platí

i~ ∂
∂t
c−k↓ck↑ =

[
c−k↓ck↑, Hred

]
= 2µc−k↓ck↑ +

[
2εkc−k↓ck↑ −∆k(1− c†k↑ck↑ − c

†
−k↓c−k↓)

]
,

i~ ∂
∂t
c†k↑ck↑ =

[
c†k↑ck↑, Hred

]
= ∆∗kc−k↓ck↑ −∆kc

†
k↑c
†
−k↓.

56Presnejšie by sme mali hovoriť iba o šupke medzi εF − ~ω0 a εF + ~ω0, v ktorej je hamiltonián (74) definovaný.
Neskôr však uvidíme, že ∆� ~ω0. Preto prívlastok “hlboko” má dobrý zmysel, aj keď sa obmedzíme iba na stavy vnútri
tejto šupky.

57Stojí za zmienku, že keďže Ek > 0, v supravodivom stave pri teplote T = 0 je fk = 0, t.j. v základnom stave nie sú
častice γ prítomné. Ďalšie dôležité pozorovanie je, že energia Ek je grandkánonickou excitačnou energiou meranou voči
chemickému potenciálu, ktorý je obsiahnutý v definícii energie εk.
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Ďalej ukážte, že pre časový vývoj stredných hodnôt bk = 〈c−k↓ck↑〉 a nk↑ = 〈c†k↑ck↑〉 v BCS riešení platí i~ ∂
∂t
bk = 2µbk a

i~ ∂
∂t
nk↑ = 0, čiže bk(t) = e−i2µt/~bk(0) a nk↑(t) =konštanta. Rovnako sa dá ukázať, že n−k↓(t) =konštanta. Porovnajte

tieto výsledky s Josephsonovými rovnicami v kapitole 11. Aký je fyzikálny dôvod pre výsledok nkσ(t) =konštanta? Aká
je energia Cooperovho páru?
5. Alternatívne odvodenie teórie BCS pomocou variačnej metódy. V takomto prístupe nahraďte hamiltonián (74) efek-
tívnym hamiltoniánom

H0 =

′∑
k

[
εkc
†
k↑ck↑ + εkc

†
−k↓c−k↓ −∆kc

†
k↑c
†
−k↓ −∆∗kc−k↓ck↑

]
,

kde ∆k,∆
∗
k chápte ako variačné parametre. Minimalizáciou odhadu veľkého termodynamického potenciálu F0+〈H−H0〉0

podľa ∆k,∆
∗
k odvoďte self-konzistentnú rovnicu pre parameter usporiadania (84).

18 Termodynamika supravodičov

V tejto prednáške najprv odvodíme výsledky BCS pre kritickú teplotu Tc a energetickú medzeru ∆.
Potom preskúmame kondenzačnú energiu, entropiu a merné teplo supravodičov.

Riešenie self-konzistentnej rovnice
Skúmajme riešenia rovnice pre energetickú medzeru (84) pre jednoduchý modelový potenciál Vkk′ = V .
Ukazuje sa, že takýto potenciál dáva dobré výsledky pre konvenčné supravodiče, v ktorých príťažlivá
interakcia vzniká v dôsledku interakcie elektrónov s mriežkou. V tomto prípade musíme ∆ zvoliť ako
konštantu nezávislú od k. Ak naviac vezmeme ∆ čisto reálne, dostaneme

1

λ
=

∫ ~ω0

0

dε√
ε2 + ∆2

tanh

(√
ε2 + ∆2

2T

)
,

kde λ = N(0)V je väzbová konštanta. Všimnime si, že ∆(T ) je funkciou teploty T . Rovnicu explicitne
vyriešime v limitách T = 0 a T → Tc. Funkcia ∆(T ) je spojitá a nenulová medzi týmito teplotami,
preto hrá rolu parametra usporiadania.

Pri teplote T = 0 sa pravá strana redukuje na tabuľkový integrál. Tak dostávame presný výsledok
∆(0) = ~ω0

sinh(1/λ) ≈ 2~ω0e
−1/λ, kde druhá rovnosť platí v limite slabej väzby λ� 1.

V limite T → Tc očakávame, že parameter usporiadania ∆ je infinitezimálne malý. Kritickú teplotu
Tc preto možno počítať z rovnice

1

λ
=

∫ ~ω0

0

dε

ε
tanh

(
ε

2Tc

)
=

∫ ~ω0
2Tc

0
dx

tanhx

x
≈ ln

(
1.13~ω0

Tc

)
,

kde približná rovnosť platí v limite ~ω0 � Tc. Po invertovaní odtiaľto dostávame vzťah pre kritickú
teplotu Tc ≈ 1.13~ω0e

−1/λ, ktorý platí v limite λ� 1. Porovnaním hodnôt Tc a ∆(0) dostávame

∆(0)

Tc
≈ 1.76,

teda podľa BCS teórie je podiel energetických škál Tc a ∆(0) daný univerzálnym číslom nezávislým od
materiálových parametrov ω0 a λ. Táto netriviálna predpoveď je v dobrej zhode s experimentálnymi
dátami pre nízkoteplotné supravodiče so slabou väzbou, pozri tabuľku 1.

Obr. 15: Typická závislosť parametra usporiadania ∆ od teploty T .

Teória BCS naviac dokáže prirodzene vysvetliť izotopický jav. K tomu si stačí uvedomiť dve veci.
Po prvé, Debyeova frekvencia škáluje s hmotnosťou iónov nasledovne: ω0 ∝M−1/2. Po druhé, väzbová
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konštanta λ v prípade slabej väzby nezávisí od M , ako možno ľahko overiť napr. pre model želé, v
ktorom λ = N(0)V ∼ n

εF
e2

ε0k2
s
. Z týchto dvoch výsledkov vyplýva pozorovaná závislosť Tc ∝M−1/2.58

Termodynamika supravodičov v magnetickom poli
Experimenty ukazujú, že dostatočne silné magnetické polia rozrušujú supravodivosť. V tomto odstavci
ukážeme, ako možno z magnetizačných meraní určiť tzv. kondenzačnú energiu definovanú ako rozdiel
voľných energií normálneho a supravodivého stavu. Kondenzačnú energiu teda možno určiť buď z
meraní merného tepla (pozri prednášku 14), alebo z magnetizačných meraní, čo umožňuje krížovú
kontrolu výsledkov.

Skúmajme nasledovnú jednoduchú experimentálnu konfiguráciu. Magnetické pole nech je budené
dlhým solenoidom dĺžky L s N závitmi, nesúcim prúd I. Magnetické pole vnútri solenoidu potom
bude H = NI/L. Do solenoidu je umiestnená homogénna kovová vzorka v tvare dlhého valca, ktorá
vypĺňa celý objem solenoidu. Objem vzorky označme V = LS, kde S je prierez solenoidu. Nech M
je magnetizácia vzorky a B = µ0H + µ0M je magnetická indukcia vo vzorke. Helmholtzovu voľnú
energiu vzorky v magnetickom poli definujeme vzťahom F (T,B) = F0(T ) + V

∫ B
0 HdB. Definujeme

tiež objemovú hustotu Helmholtzovej voľnej energie f(T,B) = f0(T ) +
∫ B

0 HdB.
Skúmajme premenu vzorky zo stavu 1 s magnetizáciou M1 a Helmholtzovou voľnou energiou F1

do stavu 2 s magnetizáciouM2 a voľnou energiou F2. Pri infinitezimálnej zmene magnetizácie o dM sa
magnetický tok cez jeden závit solenoidu zmení o dΦ = µ0SdM . Vďaka tomu zmena vzorky indukuje
na závite napätie U = −dΦ/dt. Teda v procese transformácie vzorky zo stavu 1 do stavu 2 vzorka
koná prácu A na N závitoch solenoidu, pričom A = N

∫
UIdt = −NI

∫
dΦ = −NIµ0S(M2 −M1).59

Ak využijeme vzťah pre pole H vnútri solenoidu, môžeme písať A = −Vµ0(M2 −M1)H.
Stavy 1 a 2 budú v termodynamickej rovnováhe, ak sa celková energia systému “vzorka + cievka” v

procese premeny nezmení, t.j. ak platí F2 +A = F1. Túto podmienku možno alternatívne zapísať ako
F2 − Vµ0HM2 = F1 − Vµ0HM1 alebo, po odčítaní konštanty Vµ0H

2 od oboch strán, v tvare

F2 − VHB2 = F1 − VHB1.

Ak zavedieme nový (Gibbsov) termodynamický potenciál G(T,H) = F (T,B) − VHB, potom pod-
mienku rovnováhy stavov 1 a 2 vo vonkajšom aplikovanom poli H môžeme písať ako rovnosť Gibb-
sových voľných energií G2(T,H) = G1(T,H), prípadne ako rovnosť príslušných objemových hustôt
g2(T,H) = g1(T,H), kde g(T,H) = f0(T ) +

∫ B
0 HdB −HB. Ak teraz budeme predpokladať, že (rov-

novážna) funkcia B = B(H) monotónne rastie a naviac platí B(0) = 0, potom porovnaním príslušných
plôch v grafe funkcie B = B(H) ľahko overíme (pozri obrázok), že

∫ B
0 HdB−HB = −

∫ H
0 BdH. Preto

pre objemovú hustotu Gibbsovej voľnej energie platí

g(T,H) = f0(T )−
∫ H

0
BdH = f0(T )− µ0

2
H2 + µ0

∫ H

0
(−M)dH.

Obr. 16: K Legendreovej transformácii od Helmoltzovej voľnej energie F (B) ku Gibbsovej voľnej energii G(H).

Experimenty ukázali, že v silných aplikovaných magnetických poliach supravodiče prechádzajú do
normálneho kovového stavu. Predpokladajme, že supravodivá a normálna fáza sú v rovnováhe pri kritic-
kom magnetickom poliHmax. Objemové hustoty (Helmholtzovej) voľnej energie v nulovom aplikovanom
poli v normálnom a supravodivom stave označme fN (T ) a fS(T ) a príslušné magnetizácie označme

58V systémoch so silným coulombovským odpudzovaním sa však pozorujú odchýlky od vzťahu Tc ∝ M−1/2, ktoré sú
spôsobené závislosťou renormalizovaného coulombovského odpudzovania µ∗ od ω0.

59Pre ∆M = M2 −M1 > 0 je práca vykonaná vzorkou na solenoide záporná, pretože ∆Φ > 0 a indukované napätie je
podľa Lenzovho zákona orientované proti toku prúdu I.
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MN (T,H) a MS(T,H). Ale v normálnom stave možno obvykle zanedbať slabú magnetickú odozvu,
t.j. možno položiť MN = 0. Podmienka rovnováhy gS(T,Hmax) = gN (T,Hmax) potom nadobudne tvar

fS(T )− fN (T ) = µ0

∫ Hmax

0
MS(T,H)dH. (85)

Výsledok (85) ukazuje, že kondenzačnú energiu supravodiča možno určiť (aj) z magnetizačných meraní.
V tzv. supravodičoch 1. typu označujeme pole Hmax ako Hc. V týchto supravodičoch sa Meissnerov

jav realizuje pre všetky polia H < Hc, preto MS = −H a všeobecný výsledok (85) sa redukuje na tvar

fS(T )− fN (T ) = −1

2
µ0H

2
c (T ). (86)

Tento tvar explicitne demonštruje, že voľná energia supravodiča je nižšia ako normálneho kovu.60

Termodynamika supravodičov v teórii BCS
Termodynamické vlastnosti supravodičov možno jednoducho počítať pomocou diagonálneho grandká-
nonického hamiltoniánu (83). Príslušná veľká štatistická suma je Z = Tre−Hred/T a veľký termodyna-
mický potenciál F(T,V, µ) = −T lnZ má (až na konštantu) tvar podobný výsledku pre voľné častice
F(T,V, µ) = EGS − 2T

∑′
k ln

(
1 + e−Ek/T

)
. Ak využijeme explicitnú formulu pre EGS, dostaneme

odtiaľto

F(T,V, µ) =

′∑
k

[
b∗k∆k + εk − Ek − 2T ln

(
1 + e−Ek/T

)]
.

Veľký termodynamický potenciál súvisí s energiou E, entropiou S a počtom elektrónov N vzťahom
F = E − TS − µN . Naviac platí dF = −pdV − SdT −Ndµ, preto E, S a N možno počítať pomocou
parciálnych derivácií, ako je v termodynamike obvyklé.

Počet elektrónov
Pre počet elektrónov vo vyčlenenej šupke okolo Fermiho plochy platí N = −

(
∂F
∂µ

)
T,V

, preto po-

trebujeme skúmať zmenu δF veľkého potenciálu pri zmene chemického potenciálu δµ. Komplikáciou
oproti skutočne voľným časticiam je, že zmena δµ okrem zmeny δεk = −δµ vyvolá aj zmenu δ∆k, a
teda aj δbk a δEk. Pre zmenu veľkého potenciálu pri zmene chemického potenciálu preto dostávame
δF =

∑′
k [δb∗k∆k + b∗kδ∆k + δεk − (1− 2fk)δEk]. Ak teraz uvážime, že δEk = [2εkδεk + δ∆∗k∆k +

δ∆k∆∗k]/(2Ek), dostaneme

δF =
′∑
k

[
δb∗k∆k + b∗kδ∆k −

(1− 2fk)∆∗k
2Ek

δ∆k −
(1− 2fk)δ∆∗k

2Ek
∆k + δεk − (1− 2fk)

εk
Ek

δεk

]
.

Dá sa ukázať, že súčet prvých štyroch členov, ktoré pochádzajú od neexplicitnej závislosti F od che-
mického potenciálu, vypadne.61 Tak dostaneme nasledovnú rovnicu pre počet elektrónov

N = −δF
δµ

=

′∑
k

[
1− εk

Ek
+ 2fk

εk
Ek

]
.

Stojí za zmienku, že identický výsledok dostaneme aj priamym výpočtom strednej hodnoty N = 〈N̂〉
operátora počtu elektrónov N̂ =

∑′
kσ c

†
kσckσ, ak prejdeme k operátorom γ:

N =

′∑
k

[
〈(u∗kγ

†
k↑ + vkγ−k↓)(ukγk↑ + v∗kγ

†
−k↓)〉+ 〈(−v∗kγk↑ + u∗kγ

†
−k↓)(−vkγ

†
k↑ + ukγ−k↓)〉

]
= 2

′∑
k

[
|uk|2fk + |vk|2(1− fk)

]
.

60V supravodičoch 2. typu sú síce magnetizačné krivky komplikovanejšie, ale ak definujeme tzv. termodynamické
kritické pole Hc(T ) vzťahom 1

2
H2
c =

∫Hmax

0
(−MS)dH, výraz (86) pre kondenzačnú energiu zostane v platnosti.

61Najprv si všimnime, že tretí a štvrtý člen možno zjednodušiť s využitím vzťahu (1 − 2fk) ∆k
2Ek

= bk. Potom ľahko
nahliadneme, že druhý a tretí člen sa vyrušia. V súčte prvého a štvrtého člena

∑′
k [δb∗k∆k − bkδ∆∗k] teraz nahraďme ∆k

a δ∆∗k pomocou definičnej rovnice (80). Ak pritom využijeme, že Vkk′ nezávisí od µ a že platí Vkk′ = Vk′k, aj tieto členy
sa vyrušia.
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Obvykle je koncentrácia elektrónov vo vzorke a priori známa. V takom prípade je rovnica N = N(µ)
implicitnou rovnicou pre chemický potenciál. Vo všeobecnosti je chemický potenciál v supravodivom
stave µSC rôzny od chemického potenciálu normálneho kovu µN . Jednoduchou analýzou však možno
ukázať, že ak ∆(ε) = ∆(−ε) a ak hustotu stavov v blízkosti Fermiho plochy možno v normálnom stave
považovať za konštantnnú, potom platí µSC = µN . Poznamenajme ešte, že pre nekonštantnú hustotu
stavov je chemický potenciál funkciou teploty aj v neinteragujúcom Fermiho plyne, pozri napr. I.12.

Kondenzačná energia
Pod kondenzačnou energiou pri teplote T = 0 rozumieme rozdiel (vztiahnutý na jednotkový objem
supravodiča) medzi energiou základného stavu supravodiča ESCGS =

∑′
k(b∗k∆k + εk − Ek) + µSCN ,

pozri (83), a energiou (hypotetického) základného stavu normálneho kovu ENGS =
∑′

k(εk−|εk|)+µNN :

1

2
µ0H

2
c =

1

V
(ENGS − ESCGS ).

Ak zanedbáme zmenu chemického potenciálu pri prechode do supravodivého stavu a využijeme vzťah
b∗k = ∆∗k/(2Ek), ktorý platí pri teplote T = 0, dostaneme

1

2
µ0H

2
c =

1

V

′∑
k

(
Ek − |εk| −

|∆k|2

2Ek

)
=

1

V

′∑
k

(Ek − |εk|)2

2Ek
.

V jednoduchom supravodiči s ∆k = ∆ možno kondenzačnú energiu explicitne vypočítať:

1

2
µ0H

2
c =

1

2
N(0)

∫ ~ω0

−~ω0

dε

(√
ε2 + ∆2 − |ε|

)2

√
ε2 + ∆2

≈ N(0)∆2

∫ ∞
0

dx

(√
x2 + 1− x

)2

√
x2 + 1

=
1

2
N(0)∆2.

V približnom kroku sme hornú hranicu integrovania ~ω0 zamenili za nekonečno, pretože integrand pre
veľké ε spadá ako ∝ ε−3. Chyba, ktorej sa pritom dopustíme, je zanedbateľná, keďže ∆� ~ω0.

Výsledok pre kondenzačnú energiu možno interpretovať nasledovne: v energetickej šupke šírky ∆
okolo Fermiho plochy vzniknú viazané stavy elektrónov - Cooperove páry. Väzbová energia týchto pá-
rov je rádovo ∆ a ich počet v jednotkovom objeme je rádovo N(0)∆. V modeli voľných elektrónov platí
N(0) = 3

4
n
εF

, kde n je koncentrácia elektrónov, preto kondenzačná energia pripadajúca na 1 elektrón
je ∆2/εF ∼ T 2

c /εF , v zhode s experimentálnymi výsledkami.

Entropia a merné teplo
Entropiu možno získať z veľkého termodynamického potenciálu podobne ako počet elektrónov derivo-
vaním, S = −

(
∂F
∂T

)
µ,V . Pre zmenu veľkého potenciálu pri zmene teploty δT tentokrát dostávame

δF =

′∑
k

[
δb∗k∆k + b∗kδ∆k − (1− 2fk)δEk − 2δT ln

(
1 + e−Ek/T

)
− 2δTfk

Ek

T

]
.

Identickým postupom ako pri výpočte počtu častíc možno ukázať, že prvé tri členy, ktoré pochádzajú
z neexplicitnej závislosti F od teploty, sa navzájom vyrušia. Preto pre entropiu supravodiča dostávame
známy výraz pre entropiu voľných fermiónov

S = −δF
δT

= −2
∑
k

[(1− fk) ln(1− fk) + fk ln fk] .

Numerický výpočet ukazuje, že entropia supravodivého stavu je nižšia než entropia normálneho kovu
SN
V = 2π2

3 N(0)T . Inými slovami, supravodivý stav je usporiadanejší než normálny stav. V limite nízkych
teplôt T � ∆ vieme tento výsledok ukázať pre konvenčné supravodiče s ∆k = ∆ aj analyticky. Naozaj,
v tejto limite je fk ≈ e−Ek/T � 1, a preto

S

V
≈ 2

V
∑
k

fk ln
1

fk
=

4N(0)

T

∫ ∞
∆

dEE2

√
E2 −∆2

e−E/T ≈ 2N(0)∆
√

2∆

T
e−∆/T

∫ ∞
∆

dE√
E −∆

e−
E−∆
T ,
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kde v poslednej rovnici sme využili, že integrál je dominovaný energiami E−∆ ∼ T . Posledný integrál
dáva

√
πT , a preto

S

V
≈ 2
√

2πN(0)∆

√
∆

T
e−∆/T .

Tento výsledok explicitne ukazuje, že entropia supravodivého stavu je pri nízkych teplotách omnoho
menšia než SN .

Zo známej entropie možno určiť elektrónový príspevok k mernému teplu pri konštantnom objeme
pomocou vzťahu cV = T

V
(
dS
dT

)
V
. Pripomíname, že cV je merné teplo vztiahnuté na jednotkový objem.

Pri nízkych teplotách preto dostávame62

cV ≈ 2
√

2πN(0)∆

(
∆

T

)3/2

e−∆/T ,

čiže merné teplo je exponenciálne potlačené oproti jeho hodnote v normálnom stave cNV = 2π2

3 N(0)T .
Všimnime si, že z merania teplotnej závislosti cV možno v princípe určiť energetickú medzeru ∆.

Cvičenia
1. Pri teplote T = 0 nájdite rozdiel kinetickej aj potenciálnej energie medzi supravodivým stavom a normálnym stavom
modelu (74). Ktorá energia stabilizuje supravodivý stav?
2.∗ Vypočítajte kritickú teplotu pre systém s nasledovnou interakciou medzi Cooperovými pármi: Vkp = V1F1(k,p) −
V2F2(k,p), kde Fi(k,p) = 1 pre |εk|, |εp| < ~ωi a ináč Fi(k,p) = 0. Člen úmerný V1 opisuje príťažlivú interakciu s
maximálnou energiou ~ω1, kým V2 je odpudivá interakcia s maximálnou energiou ~ω2 � ~ω1. Takýto model realistic-
kejšie popisuje tienené coulombovské interakcie. Návod: predpokladajte, že pre |εk| < ~ω1 platí ∆k = ∆1, kým pre
~ω1 < |εk| < ~ω2 platí ∆k = ∆2.
3.∗ Supravodič modelujme Hubbardovým modelom s príťažlivou interakciou U = −|U |. Ukážte, že v limite silnej väzby
|U | � t sú pri nízkych teplotách T � |U | mriežkové body alebo obsadené dvojicou elektrónov so spinmi ↑, ↓ (t.j.
lokálnym Cooperovým párom), alebo prázdne. Odhadnite kritickú teplotu Tc takéhoto systému, ak koncentrácia elek-
trónov n = N

N � 1. Návod: najprv analogickým postupom ako pri konštrukcii efektívneho spinového modelu Heff pre
U � t v kapitole 1 ukážte, že amplitúda tunelovania medzi susednými mriežkovými bodmi pre lokálne Cooperove páry je
teff = 2t2

|U| . Tento výsledok interpretujte pomocou efektívnej hmotnosti meff . Kritickú teplotu odhadnite pomocou formuly
pre Boseho-Einsteinovu kondenzáciu. Ukážte, že Tc � |U |, t.j. existujú tri teplotné režimy: (i) ak T � |U |, máme plyn
fermiónov; (ii) ak Tc < T � |U |, máme nesupravodivý plyn bozónov; (iii) ak T < Tc, máme supravodič.
4.∗ Ukážte, že v termodynamickej limite je priblíženie stredného poľa pre hamiltonián (74) presné.

19 Spektroskopia supravodičov

V tejto prednáške sa venujeme otázke, ako možno overiť teóriu BCS experimentálne. Podrobne ana-
lyzujeme predpovede BCS pre fotoemisné a tunelové experimenty a bez dôkazu popíšeme aj optickú
spektroskopiu.

Excitované stavy supravodiča
Redukovaný hamiltonián BCS teórie (81) sa rozpadá na neinteragujúce sektory dvojíc jednočasticových
stavov k↑ a −k↓. V každom z týchto sektorov možno skonštruovať 4 mnohoelektrónové stavy: 1 stav
bez elektrónov, 2 stavy s jedným elektrónom a 1 stav s dvomi elektrónmi. Základný stav je tvorený
lineárnou superpozíciou stavov bez elektrónov a s dvomi elektrónmi. Ľahko nahliadneme, že zvyšné tri

62Pri derivovaní treba v princípe započítať aj teplotnú závislosť energetickej medzery ∆(T ). Dá sa však ukázať, že táto
je v konvenčných supravodičoch pri nízkych teplotách exponenciálne malá. Preto ju možno zanedbať.
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mnohočasticové stavy možno skonštruovať ako nasledovné excitované stavy BCS:

γ†k↑|Ψ0〉 = c†k↑

∏
p6=k

(u∗p + v∗pc
†
p↑c
†
−p↓)|0〉,

γ†−k↓|Ψ0〉 = c†−k↓

∏
p6=k

(u∗p + v∗pc
†
p↑c
†
−p↓)|0〉,

γ†k↑γ
†
−k↓|Ψ0〉 = (vk − ukc†k↑c

†
−k↓)

∏
p6=k

(u∗p + v∗pc
†
p↑c
†
−p↓)|0〉.

Všimnime si, že excitované stavy γ†k↑|Ψ0〉 a γ†−k↓|Ψ0〉majú presne definovaný počet elektrónov v sektore
k ↑,−k ↓ - obsahujú po jednom elektróne - a ich (grandkánonická) energia je EGS + Ek. Odtiaľto
vyplýva, že zo základného stavu sa do excitovaných stavov γ†k↑|ψBCS〉 a γ†−k↓|ψBCS〉 môžeme dostať iba
prostredníctvom procesov, ktoré menia počet elektrónov. Treba si však uvedomiť, že napríklad stav
γ†k↑|Ψ0〉 môže zo základného stavu vzniknúť dvomi spôsobmi: buď pridaním elektrónu v stave k ↑,
alebo odstránením elektrónu v stave −k ↓.

Na druhej strane, základný stav |Ψ0〉 a k nemu ortogonálny stav γ†k↑γ
†
−k↓|Ψ0〉 nemajú presne de-

finovaný počet elektrónov v sektore k↑,−k↓ - sú lineárnymi kombináciami stavov s 0 a 2 elektrónmi.
Teda excitačné procesy, ktoré nemenia počet elektrónov, musia pri nulovej teplote vybudiť aspoň dva
bogoľubóny - na prechod do stavu γ†k↑γ

†
−k↓|Ψ0〉 je potom potrebná energia 2Ek.

Alternatívny prístup
Spektrum v sektore jednočasticových stavov k ↑ a −k ↓ možno skonštruovať aj explicitnou diagonali-
záciou vo Fockovom podpriestore, ktorého báza pozostáva zo stavu bez častíc |0〉, z dvoch jednočasti-
cových stavov c†k↑|0〉 a c

†
−k↓|0〉 a z plne obsadeného stavu c†k↑c

†
−k↓|0〉. V tejto báze je hamiltonián (81)

reprezentovaný nasledovnou maticou 4× 4:
0 0 0 −∆∗k
0 εk 0 0
0 0 εk 0
−∆k 0 0 2εk

 .

V tomto prístupe je očividné, že stavy c†k↑|0〉 a c
†
−k↓|0〉 sú vlastnými stavmi s presne jedným elek-

trónom a s energiou εk. Zvyšné dva stavy sú lineárne superpozície bezčasticových a dvojčasticových
stavov. Základným stavom je lineárna kombinácia u∗k|0〉+v∗kc

†
k↑c
†
−k↓|0〉 s energiou εk−Ek a najvyšším

excitovaným stavom je ortogonálna kombinácia vk|0〉 − ukc†k↑c
†
−k↓|0〉 s energiou εk + Ek.

Spektrálna funkcia elektrónu
Vo zvyšku tejto prednášky sa venujeme popisu fyzikálnych vlastností supravodičov. Začnime popisom
experimentov, pri ktorých sa mení počet častíc v systéme. Pre jednoduchosť sa pritom obmedzíme na
prípad T = 0. Naviac budeme pracovať v kánonickom súbore a budeme predpokladať, že základný stav
|Ψ0〉 obsahuje N elektrónov a jeho energia je EN0 .

Ak do systému v stave |Ψ0〉 pridáme elektrón v jednočasticovom stave kσ, výsledkom bude stav
c†kσ|Ψ0〉 systému s N +1 elektrónmi. Tento stav možno rozložiť do bázy vlastných stavov |n〉 systému s
N +1 elektrónmi, ktorých energie sú EN+1

n . Pravdepodobnosť toho, že stav c†kσ|Ψ0〉 má energiu EN+1
n ,

je
∣∣∣〈n|c†kσ|Ψ0〉

∣∣∣2. Definujme nasledovnú spektrálnu funkciu pre pridávanie elektrónov:

A>σ (k, E) =
∑
n

∣∣∣〈n|c†kσ|Ψ0〉
∣∣∣2 δ [E − (EN+1

n − EN0 )
]
,

Funkcia A>σ (k, E) meria váhu, s ktorou elektrón pridaný do jednočasticového stavu kσ zvýši energiu
systému o E. Túto funkciu možno (aspoň v princípe) merať pomocou tzv. inverznej fotoemisie.63

63Úvodnú informáciu o fotoemisnej spektroskopii čitateľ nájde napr. v II.24. Inverzná fotoemisia je v čase obrátený
proces fotoemisie.
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Všimnime si, že keďže EN+1
n −EN0 ≥ E

N+1
0 −EN0 = µ, spektrálna funkcia A>σ (k, E) môže byť nenulová

iba pre energie E ≥ µ. V špeciálnom prípade neinteragujúcich elektrónov môže byť funkcia A>σ (k, E)

nenulová iba pre k > kF . V tomto prípade k nej prispieva iba stav |n〉 = c†kσ|Ψ0〉 s energiou EN+1
n =

EN0 + εk + µ.
Definujme tiež spektrálnu funkciu pre odoberanie elektrónov:

A<σ (k, E) =
∑
n

|〈n|ckσ|Ψ0〉|2 δ
[
E − (EN0 − EN−1

n )
]
,

kde |n〉 sú tentoraz vlastné stavy systému s N − 1 elektrónmi, ktorých energie sú EN−1
n . Funkcia

A<σ (k, E) meria váhu, s ktorou elektrón odobraný z jednočasticového stavu kσ zníži energiu systému
o E a možno ju merať pomocou fotoemisných experimentov. Keďže EN0 − EN−1

n ≤ EN0 − E
N−1
0 =

µ, spektrálna funkcia A<σ (k, E) môže byť nenulová iba pre energie E ≤ µ. V špeciálnom prípade
neinteragujúcich elektrónov môže byť funkcia A<σ (k, E) nenulová iba pre k < kF . V tomto prípade k
nej prispieva iba stav |n〉 = ckσ|Ψ0〉 s energiou EN−1

n = EN0 − εk − µ.
Ak definujeme celkovú spektrálnu funkciu vzťahom

Aσ(k, E) = A>σ (k, E) +A<σ (k, E),

potom pre neinteragujúce elektróny dostávame Aσ(k, E) = δ[E − (µ + εk)], kde µ + εk je kánonická
energia stavu k. Teda vkladanie alebo vyberanie elektrónu do stavu kσ je v neinteragujúcom systéme
možné pri jedinej, presne definovanej energii. V špeciálnom prípade neinteragujúcich elektrónov je pre
k > kF nenulová iba funkcia A>σ (k, E), kým pre k < kF je nenulová iba funkcia A<σ (k, E).

Spektrálna funkcia v supravodivom stave
Teraz preskúmame spektrálnu funkciu elektrónu A>σ (k, E) v supravodivom stave. Maticový element∣∣∣〈n|c†kσ|Ψ0〉

∣∣∣2 ľahko vypočítame prechodom k bogoľubónovým operátorom. Jediný excitovaný stav,

ktorý dá nenulový príspevok, je |n〉 = γ†kσ|Ψ0〉 s grandkánonickou energiou EGS +Ek, preto v prípade

vkladania elektrónov máme
∣∣∣〈n|c†kσ|Ψ0〉

∣∣∣2 = |uk|2. V grand-kánonickej formulácii nepoznáme presné
počty elektrónov v stavoch |n〉 a |Ψ0〉, ale vieme, že v prípade vkladania elektrónov je v stave |n〉 o
jeden elektrón viac ako v stave |Ψ0〉. Preto rozdiel energií En − E0 pozostáva z dvoch príspevkov: z
nárastu grand-kánonickej energie H o Ek a z príspevku od zmeny počtu elektrónov µ∆N = µ, čiže
En − E0 = µ+ Ek. Preto A>σ (k, E) = |uk|2δ [E − (µ+ Ek)].

Obr. 17: Mapa spektrálnej funkcie elektrónu A(k, E) v rovine (εk,E) pre vlnové vektory k v tesnej blízkosti Fermiho
plochy. Tmavé oblasti zodovedajú veľkým hodnotám A(k, E). (F. Horváth)

Podobne v prípade odoberania elektrónov jediný excitovaný stav, ktorý dá nenulový príspevok, je
|n〉 = γ†−k−σ|Ψ0〉 s grandkánonickou energiouEGS+Ek. Pre maticový element dostaneme |〈n|ckσ|Ψ0〉|2 =
|vk|2. Rozdiel energií En − E0 pozostáva z nárastu grand-kánonickej energie H o Ek a z príspevku od
zmeny počtu elektrónov µ∆N = −µ, preto En − E0 = Ek − µ a A<σ (k, E) = |vk|2δ [E − (µ− Ek)].
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Pre spektrálnu funkciu elektrónu v supravodivom stave Aσ(k, ε) teda dostávame výsledok

Aσ(k, E) = |uk|2δ [E − (µ+ Ek)] + |vk|2δ [E − (µ− Ek)] . (87)

Teraz preskúmame niekoľko dôležitých dôsledkov výsledku (87). Začnime s pozorovaním, že spektrálna
funkcia (87) nezávisí od projekcie spinu σ, ktorú odteraz nebudeme uvádzať. Ide o dôsledok predpokladu
o singletnom párovaní (spin Cooperovho páru S = 0). V tripletných supravodičoch (spin S = 1)
spektrálna funkcia môže, ale nemusí, závisieť od σ.

Ďalej si všimnime, že pre fixovanú hybnosť k v blízkosti Fermiho plochy v supravodivom stave
existuje nenulová váha pre vkladanie a zároveň pre odoberanie elektrónu. Súčet oboch váh je kon-
štantný, lebo |uk|2 + |vk|2 = 1. V limite ∆→ 0 spektrálna funkcia spojito prejde na spektrálnu funkciu
neinteragujúcich elektrónov, pretože váhy |uk|2 pre k < kF a |vk|2 pre k > kF vymiznú.

Podobne pri fixovanej energii E k spektrálnej funkcii prispievajú dve hybnosti, jedna pod a jedna
nad Fermiho plochou. Spektrálna váha je však striktne nulová v tesnej blízkosti Fermiho plochy, a síce
v intervale medzi µ−∆ a µ+ ∆. Z tohto dôvodu hovoríme o ∆ ako o energetickej medzere.

Tunelová hustota stavov
V niektorých prípadoch (napr. pri skúmaní difúzneho tunelovania) nás zaujíma iba celkový počet
elektrónových stavov s danou energiou E, bez ohľadu na hybnosť elektrónov. V takýchto prípadoch je
užitočné skúmať tzv. tunelovú hustotu stavov supravodiča,

NS(E) =
1

V
∑
k

AS(k, E),

kde AS(k, E) je spektrálna funkcia supravodiča. Táto definícia, ak ju aplikujeme na neinteragujúce
elektróny v normálnom kove so spektrálnou funkciou A(k, E) = δ[E− (µ+εk)], reprodukuje normálnu
hustotu stavov N(E) definovanú v I.12.

V ďalšom výklade sa (v súlade s bežnou praxou) od kánonickej energie E vrátime ku grandká-
nonickej energii ε = E − µ. Ak spektrálna funkcia AS(k, ε) nezávisí od smeru hybnosti k, ale len od
energie εk, potom je výhodné sumu cez k nahradiť integrálom, 1

V
∑

k =
∫∞
−∞ dεkN(εk). Naviac, pretože

funkcia NS(ε) nás zaujíma iba pre energie |ε| ∼ ∆, t.j. v tesnej blízkosti Fermiho plochy, hustotu stavov
v normálnom stave možno považovať za konštantnú, N(εk) ≈ N(0), a pre tunelovaciu hustotu stavov
dostaneme

NS(ε)

N(0)
≈
∫ ∞
−∞

dεkAS(εk, ε) =

∫ ∞
−∞

dεk
[
|uk|2δ(ε− Ek) + |vk|2δ(ε+ Ek)

]
.

Pre energie ε > 0 preto platí

NS(ε)

N(0)
=

∫ ∞
−∞

dεk
Ek + εk

2Ek
δ(ε− Ek) =

∫ ∞
0

dεkδ

(
ε−

√
ε2
k + ∆2

)
= Re

[
ε√

ε2 −∆2

]
,

kde sme v druhom kroku využili, že Ek je párna funkcia εk. Analogickým výpočtom ľahko overíme, že
pre ε < 0 platí NS(ε) = NS(−ε), teda hustota stavov je párna funkcia.

Všimnime si, že sme opäť dostali výsledok, podľa ktorého pre energie |ε| < ∆ v systéme neexistujú
stavy, do ktorých možno vložiť elektrón. Stojí za zmienku, že absencia stavov pre |ε| < ∆ je kompen-
zovaná nahromadením stavov (divergenciou NS(ε)) pri energiách tesne nad energiou ∆ a že celkový
počet stavov

∫
dεN(ε) zostáva nezmenený. Pre nízkoteplotné supravodiče je predpoveď teórie BCS

pre tunelovú hustotu stavov v dobrom súhlase s experimentálnymi výsledkami získanými na tzv. tune-
lových spojoch medzi obyčajným kovom a supravodičom. Tieto experimenty nám obvykle poskytujú
jedno z najpresnejších meraní parametra ∆.

Optická spektroskopia
Informáciu o energetickej medzere možno získať aj pomocou experimentov, ktoré nemenia počet častíc
vo vzorke. Ako príklad takéhoto typu experimentov v tomto odstavci kvalitatívne popíšeme predpovede
teórie BCS pre optickú vodivosť σ(ω), ktorú možno určiť napríklad z merania odrazivosti, pozri I.22.
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Podľa najjednoduchšieho (tzv. Drudeho) modelu možno príspevok vodivostného pásu k frekvenčne
závislej vodivosti normálneho kovu σN (ω) = σ′N (ω) + iσ′′N (ω) popísať vzťahmi

σN (ω) =
σ0

1− iωτ
, σ′N (ω) =

σ0

1 + (ωτ)2
, σ′′N (ω) =

σ0ωτ

1 + (ωτ)2
,

kde τ je doba života elektrónov a σ0 = ne2τ/m∗ je statická vodivosť, pozri I.22. Drudeho model často
dobre popisuje optické vlastnosti normálnych kovov. Dôvody sú aspoň tri:

Po prvé, σN (ω) ako funkcia komplexnej frekvencie ω je analytická v hornej polrovine. Táto vlastnosť
musí byť splnená, ak odozva systému má byť kauzálna, pozri I.21.

Po druhé, v limite vysokých frekvencií komplexná vodivosť klesá k nule, σN (ω)→ 0. V tejto limite
pritom naviac platí σ′′N (ω) = ne2

m∗ω , t.j. vodivosť nezávisí od doby života elektrónov a je totožná s
výsledkom pre neinteragujúce elektróny. Tak to však aj má byť, pretože pri vysokých frekvenciách
elektróny nestihnú vykonať zrážky, teda vysokofrekvenčný výraz pre σ′′N (ω) je presný.

Po tretie, reálna časť optickej vodivosti spĺňa nerovnosť σ′N (ω) ≥ 0, ako aj má byť, pretože σ′N (ω)
meria straty elektromagnetickej energie v systéme, ktoré nemôžu byť záporné.

Z prvých dvoch vlastností vyplýva, že σN (ω) spĺňa Kramersove-Kronigove vzťahy. Drudeho formula
naviac spĺňa exaktné tzv. sumačné pravidlo pre vodivosť∫ ∞

0
dωσ′(ω) =

π

2

ne2

m∗
, (88)

ktoré musí platiť vždy, teda nielen v normálnom, ale aj v supravodivom stave - preto pri σ′(ω) nepíšeme
index N . Naozaj: sumačné pravidlo (88) vyplýva z Kramersovho-Kronigovho vzťahu pre σ′′(ω), ak ho
použijeme v limite vysokých frekvencií, kde poznáme presný tvar σ′′(ω) = ne2

m∗ω :

σ′′(ω) =
1

π
P

∫ ∞
−∞

dνσ′(ν)

ω − ν
ω→∞−−−→ ne2

m∗ω
=

1

π

∫ ∞
−∞

dνσ′(ν)

ω
.

Vo výsledku stačí použiť, že funkcia σ′(ω) je párna (pozri I.21) a sumačné pravidlo (88) je dokázané.
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Obr. 18: Reálna časť optickej vodivosti σN (ω) v normálnom stave (čierna) a σSC(ω) v supravodivom stave pri nulovej
teplote (červená). Vodivosť σSC(ω) je nulová pri nízkych (ale konečných) frekvenciách ~ω < 2∆. Pri nulovej frekvencii je
vodivosť σSC(ω) nekonečná. Jej váhu D môžeme určiť z chýbajúcej plochy: D = 2

π

∫∞
0
dω[σ′N (ω)−σ′reg(ω)]. (F. Herman)

V supravodivom stave sa obmedzíme na analýzu reálnej časti vodivosti σ′SC(ω), ktorá meria ab-
sorpciu pri frekvencii ω. Naviac budeme pre jednoduchosť predpokladať, že teplota T = 0. Keďže
pri absorpcii nedochádza k zmene počtu častíc, očakávaná minimálna energia, pri ktorej supravodič
môže absorbovať žiarenie, je ~ω = 2∆. Explicitný výpočet, ktorý tu nebudeme reprodukovať, toto
očakávanie potvrdzuje, pozri obrázok 18. Z tohto obrázku je zrejmé, že v supravodivom stave môže byť
sumačné pravidlo (88) splnené, len ak σ′SC(ω) obsahuje dodatočný príspevok, ktorý bude kompenzovať
žlto vyznačenú chýbajúcu plochu. Takýto príspevok skutočne existuje: vodivosť supravodiča je totiž
pri frekvencii ω = 0 nekonečná, preto môžeme písať

σ′SC(ω) = πDδ(ω) + σ′reg(ω),
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kde prvý (singulárny) člen popisuje nekonečnú vodivosť a σ′reg(ω) je tzv. regulárny príspevok k σ′SC(ω).
Váhu D môžeme určiť zo sumačného pravidla: D = ne2

m∗ −
2
π

∫∞
0 dωσ′reg(ω). Dá sa ukázať, že váha D

súvisí s hĺbkou vniku λ pomocou vzťahu D = 1
µ0λ2 , pozri cvičenia.

Cvičenia
1. Ukážte, že pôsobenie externého poľa, ktoré narúša symetriu voči otočeniu času, potláča supravodivosť. Návod: najprv
uvážte, že časovo invertované stavy k ↑ a −k ↓ budú mať v prítomnosti poľa rôzne energie, povedzme εk↑ = εk + δk a
εk↓ = εk− δk. Potom počítajte spektrum supravodiča v sektore jednočasticových stavov k↑ a −k↓. Čím je daná energia
δk pre magnetické pole? Uvážte, že magnetické pole pôsobí na orbitálny, ale aj na spinový stupeň voľnosti elektrónov.
2. Ukážte, že základný stav (u∗k + v∗kc

†
k↑c
†
−k↓)|0〉 v sektore jednočasticových stavov k ↑ a −k ↓ nie je vlastným stavom

operátora spinu. Presvedčte sa však, že základný stav (u∗k + v∗kc
†
k↑c
†
−k↓)(u

∗
−k + v∗−kc

†
−k↑c

†
k↓)|0〉 v sektore generovanom

jednočasticovými stavmi k↑, k↓, −k↑ a −k↓ je spinový singlet, ak platí u−kvk = ukv−k.
3. Ukážte, že platí D = 1

µ0λ2 , kde λ je hĺbka vniku. Návod: najprv dokážte, že imaginárna časť prislúchajúca k singulárnej
reálnej vodivosti σ′sing(ω) = πDδ(ω) je σ′′sing(ω) = D

ω
. Potom ukážte, že výraz pre singulárny prúd jsing = iσ′′sing(ω)E sa

dá prepísať v tvare Londonovej rovnice (72), pretože E = iωA.
4. Pomocou sumačného pravidla a obrázku 18 ukážte, že pri teplote T = 0 v tzv. čistej limite ∆ � ~/τ platí D = ne2

m∗ ,
kým v tzv. špinavej limite ∆� ~/τ platí D ≈ ne2

m∗
τ∆
~ .

20 Topologické defekty

V tejto prednáške ukážeme, že víry a antivíry zavedené v prednáške 8 sú špeciálnym prípadom topo-
logických defektov - t.j. defektov, ktorých stabilita vyplýva z topologických úvah. Popíšeme fyzikálne
dôsledky, ku ktorým vedie prítomnosť takýchto defektov.

Defekty parametra usporiadania
Pri spontánnom narušení symetrie lokálny parameter usporiadania nadobúda niektorú z viacerých
možných dovolených hodnôt. Symetria, ktorá bola narušená, pritom prevádza (otáča) dovolené hodnoty
z jednej na druhú. Napríklad v prípade feromagnetického stavu Heisenbergovho modelu sú (pri danej
teplote) prípustné všetky natočenia magnetizácie m s fixovanou dĺžkou |m|, pričom prechod medzi
dvomi dovolenými hodnotami m1 a m2 je realizovaný vhodným otočením v spinovom priestore.

V tejto prednáške budeme prípustné hodnoty parametra usporiadania nazývať m, ale budeme mať
pritom na mysli nielen prípad trojrozmerného vektora magnetizácie, ale akýkoľvek parameter usporia-
dania, povedzme fázu supratekutiny θ. Priestor dovolených hodnôt parametra usporiadania označme
ako M . Stavom s najnižšou (voľnou) energiou je obvykle stav s priestorovo homogénnym parametrom
usporiadania m(x) = m, ale v dôsledku pôsobenia externých polí (alebo v procese narušenia symetrie
vo fázovom prechode64) môžu vzniknúť aj konfigurácie s priestorovo závislým parametrom usporiadania
m(x). Veličinu m(x) budeme pritom definovať priemerovaním cez objemy ∆V , ktoré sú veľké oproti
mriežkovej konštante a zároveň malé voči makroskopickým rozmerom, vďaka čomu môžeme polohu x
považovať za spojitú premennú. Obmedzíme sa pritom na skúmanie takých hladko sa meniacich konfi-
gurácií m(x), ktoré nemožno odstrániť spojitou deformáciou poľa m(x). Takéto konfigurácie nazveme
(topologicky) stabilnými.

Singulárne konfigurácie
Ukazuje sa, že nekonštantné stabilné konfigurácie poľa m(x) zakaždým obsahujú singulárne body, čiary
alebo plochy, v ktorých sa parameter usporiadania prudko mení. Príkladom konfigurácie so singulárnym
bodom sú víry a antivíry skúmané v prednáške 8, singulárnymi čiarami sú napríklad dislokácie v
tuhých látkach alebo víry v supravodičoch, kým singulárnymi plochami sú napríklad doménové steny
vo feromagnetoch.

64Táto alternatíva je zaujímavá aj pre kozmológov. V kontexte fyziky tuhých látok je typickým príkladom polykryštál,
ktorého existencia je dôsledkom nukleačného mechanizmu: v rôznych zárodkoch je symetria spontánne narušená rôznym
spôsobom. Iným príkladom je prítomnosť termodynamicky nerovnovážnej koncentrácie dislokácií v kryštáloch, ktorá je
dôsledkom rýchlejšieho rastu kryštálov v prítomnosti dislokácií.
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Pre každú singulárnu konfiguráciu (odteraz budeme hovoriť o defekte) definujme tzv. obopínajúci
priestor P , t.j. vhodne zvolený uzatvorený geometrický útvar maximálnej možnej dimenzie, ktorý vo
veľkej vzdialenosti obopína singularitu. Typ obopínajúceho priestoru je určený rozmernosťou defektu
a priestorovou rozmernosťou D problému, pozri tabuľku 2.

sing. bod sing. čiara sing. plocha
D = 1 S0 - -
D = 2 S1 S0 -
D = 3 S2 S1 S0

Tabuľka 2: Obopínajúce priestory P pre singulárne konfigurácie problémov s rôznou rozmernosťou: S0 je dvojica bodov,
S1 je uzavretá čiara - napr. kružnica, S2 je uzavretá plocha - napr. povrch gule.

Priestor parametrov usporiadania
Budeme predpokladať, že teplota skúmaného systému je ďaleko od kritickej teploty. Očakávame, že
v takomto prípade možno zanedbať fluktuácie veľkosti parametra usporiadania |m| a stačí zohľadniť
priestorovú závislosť jeho “natočenia”. Priestory prípustných parametrov usporiadania M pre magne-
tické systémy potom sú: S0 pre Isingov model, jednorozmerná sféra S1 pre model XY a dvojrozmerná
sféra S2 pre Heisenbergov model. V supratekutinách a supravodičoch sa v priestore môže meniť fáza,
preto podobne ako modeli XY v týchto systémoch M = S1. Vo zvyšku tohto odstavca preskúmame
dva fyzikálne systémy s odlišnými priestormi M .

Nematické kvapalné kryštály sú tvorené molekulami v tvare paličiek. Ťažiská paličiek nemajú (po-
dobne ako v obyčajnej kvapaline) fixované polohy, ale natočenie paličiek v priestore má preferenčný
smer n. Keďže paličky nemajú hlavu a chvost, smery n a −n sú fyzikálne totožné. Priestor M je v
takomto prípade tvorený hemisférou P2 so stotožnenými protiľahlými bodmi.

Obr. 19: Vľavo: fyzikálne rozlíšiteľné dvojrozmerné vektory posunutia kryštálu vytvárajú rovnobežník u = x1a1 +x2a2,
kde 0 ≤ x1,2 ≤ 1, s periodickými okrajovými podmienkami. Hranice s rovnakými počtami šípok treba stotožniť. V strede:
po stotožnení vertikálnych hraníc vznikne valec. Vpravo: po stotožnení horizontálnych hraníc vznikne torus T2.

Skúmajme napokon dvojrozmerný kryštál s elementárnymi vektormi a1 a a2. Pripusťme, že v okolí
bodu x je kryštál posunutý voči referenčnému kryštálu o vektor u(x). Treba si pritom uvedomiť, že
posunutie o vektor u je fyzikálne ekvivalentné posunutiam o u+a1 alebo u+a2. Teda priestor fyzikálne
rozlíšiteľných posunutí u vytvára dvojrozmerný torus T2, pozri obrázok 19.

Homotopia a homotopické triedy
V každom bode x obopínajúceho priestoru P nadobúda parameter usporiadania hodnotu m(x) z
množiny prípustných hodnôt M , teda každému defektu možno priradiť zobrazenie P → M . Podľa
tabuľky 2 ide o zobrazenia F : Sn →M , kde n je 0,1 alebo 2. Prípad n = 0 zodpovedá tzv. doménovým
stenám (v 1D systémoch sú to body, v 2D čiary a v 3D plochy) a bude diskutovaný osve neskôr.

Spojitá deformácia poľa m(x) vedie na spojitú deformáciu zobrazenia F . V topológii sa takáto
deformácia nazýva homotopiou a dve zobrazenia zviazané homotopiou nazývame homotopické. Ak skú-
maný defekt má byť stabilný, potom ním definované zobrazenie F nesmie byť homotopické s identickým
zobrazením, ktoré všetkým bodom obopínajúceho priestoru Sn priradí ten istý bod m z priestoru M .
Množinu všetkých zobrazení F možno zjavne rozdeliť na homotopické triedy, pričom všetky prvky
danej triedy sú navzájom homotopické.

Pre n = 1 možno zobrazenie F reprezentovať ako uzavretú orientovanú čiaru v priestore parametrov
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usporiadania M . Napríklad pre bodový defekt v dvojrozmernom modeli XY, v ktorom je priestor M
totožný s kružnicou S1, sú zobrazenia F reprezentované čiarami obiehajúcimi túto kružnicu. Jednotlivé
homotopické triedy teda možno zjavne charakterizovať počtom obehov kružnice, t.j. celým číslom q. V
modeli XY toto číslo popisuje prírastok fázy

∮
P dr · ∇θ = 2πq pozdĺž dráhy P . Homotopická trieda s

q = 0 zodpovedá magnetu bez defektov,65 triedy s q = ±1 popisujú víry a antivíry z prednášky 8, kým
ostatné defekty zodpovedajú viacnásobne “nabitým” vírom, pozri cvičenia. Keďže nenulové celé číslo q
nemožno spojito vynulovať, topologická stabilita defektov s q 6= 0 je zrejmá.

Homotopické grupy
Nech g1, g2 sú homotopické triedy pre zobrazenia typu S1 → M . Najprv definujme násobenie pre
triedy nasledovným spôsobom. Nech zobrazenia F1 : S1 → M a F2 : S1 → M sú dve zobrazenia
(orientované čiary v priestore M), ktoré patria do tried g1, g2 a prechádzajú cez aspoň jeden spoločný
bod.66 Skonštruujme orientovanú čiaru, ktorá najprv obehne čiaru F1 a potom čiaru F2. Výsledná
čiara definuje nové zobrazenie F : S1 → M , ktoré patrí do niektorej homotopickej triedy g. Túto
triedu nazveme súčinom tried g1 a g2, t.j. g2 ∗ g1 = g. Fyzikálne možno defekt F interpretovať ako
súčet defektov F1 a F2.

Dá sa nahliadnuť, že množina homotopických tried spolu s takto definovanou operáciou násobenia
tvorí grupu.67 Túto grupu nazývame tzv. prvou homotopickou grupou π1(M). Pojem homotopickej
grupy možno rozšíriť aj na zobrazenia F : S2 →M , ktorým priradíme homotopickú grupu π2(M). Ak
je homotopická grupa πn(M) triviálna (s jediným prvkom), potom všetky zobrazenia F : Sn → M
sú homotopické s identitou a stabilné defekty neexistujú. Ak je však grupa πn(M) netriviálna, potom
takéto defekty môžu existovať. V topológii sa napríklad ukazuje, že

πn(Sn) = Z,

πn(Sm) = 0, m > n, (89)

kde Z je grupa celých čísiel s operáciou sčítania a 0 je triviálna grupa s jediným prvkom.

Víry a vírové čiary
Výsledok π1(S1) = Z znamená, že defekty F : S1 → S1 sú stabilné a skladajú sa ako celé čísla. V
špeciálnom prípade 2D modelu XY je tento výsledok očividný: nech θ1,2(r) sú konfigurácie spinov v
(izolovaných) víroch 1 a 2 s nábojmi q1,2. Potom θ(r) = θ1(r)+θ2(r) je konfigurácia spinov pre dvojicu
vírov a platí

∮
P dr · ∇θ =

∮
P dr · ∇θ1 +

∮
P dr · ∇θ2, teda náboj dvojice vírov je q = q1 + q2.

Homotopická grupa π1(S1) = Z sa okrem bodových defektov 2D modelu XY realizuje aj v čiaro-
vých defektoch trojrozmerných systémov s priestorom parametrov usporiadaniaM = S1, t.j. napríklad
v supratekutinách a supravodičoch, v ktorých sú tzv. vírové čiary stabilné. Keďže platí π2(S1) = 0, v
trojrozmerných systémoch s M = S1 však neexistujú stabilné bodové defekty.

Únik do tretieho rozmeru
Podľa (89) pre m > n platí πn(Sm) = 0, a preto v tomto prípade neexistujú stabilné defekty s obopína-
júcim priestorom P = Sn a priestorom dovolených hodnôt M = Sm. Podľa tohto výsledku napríklad
v 2D Heisenbergovom modeli (na rozdiel od modelu XY) neexistujú stabilné bodové defekty (víry),
pretože v tomto prípade platí M = S2, P = S1 a π1(S2) = 0. Tento výsledok možno interpretovať
veľmi jednoducho: víry v 2D Heisenbergovom modeli sú nestabilné, pretože napr. spiny na obrázku 3
sa môžu spojito natočiť do konfigurácie, v ktorej sú všetky spiny kolmé na rovinu obrázka - ide o tzv.
“únik do 3. rozmeru”. Alternatívne možno tento výsledok vysvetliť tak, že uzavretú čiaru na sfére S2

možno spojito stiahnuť do bodu (t.j. do triviálnej konfigurácie).

Ježko
V trojrozmernom Heisenbergovom modeli s M = S2 vďaka výsledku π2(S2) = Z existujú stabilné

65Treba si pritom uvedomiť, že v triede q = 0 nie je iba triviálna konštantná konfigurácia spinov, ale aj všetky
nekonštantné konfigurácie, ktoré možno dostať jej hladkými deformáciami. Klasifikácia možných defektov si teda vyžaduje
klasifikáciu možných homotopických tried.

66Ak by taký bod neexistoval, potom jedno zo zobrazení spojito deformujeme tak, aby táto podmienka bola splnená.
67Napríklad inverzný prvok k F dostaneme obehnutím čiary pre F v opačnom zmysle.
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bodové defekty. Najjednoduchšia konfigurácia s nábojom q = 1 má tvar m(x) = mx̂, kde m = |m| a
x̂ je jednotkový vektor v smere x. Tento defekt sa nazýva jež a jeho stabilita sa interpretuje tým, že
“jež sa nedá učesať”. Bohužiaľ, v prírode sa nevyskytuje, pretože jeho energia je úmerná lineárnemu
rozmeru systému, pozri cvičenia.

Disklinácie
Keďže parameter usporiadania v nematických kvapalných kryštáloch (neorientovaný smer) je podobný
parametru usporiadania pre Heisenbergov model, mohlo by sa zdať, že v 3D nematikách nie sú možné
stabilné čiarové singularity. Nie je to však pravda, pretože platí

π1(P2) = Z2,

kde Z2 je cyklická grupa s dvomi prvkami: identitou e a prvkom g, pričom platí g∗g = e. V nematikách
teda okrem triviálnej konfigurácie existujú čiarové defekty, tzv. disklinácie (pozri obrázok 20). Existuje
však len jeden typ defektov: všetky disklinácie možno spojito transformovať jednu na druhú, ako vidno
v ľavej časti obrázka. Na rozdiel od vírov, zloženie dvoch disklinácií však nedá dvojnásobne nabitú
disklináciu, ale triviálnu konfiguráciu, pozri cvičenia.

Obr. 20: Vľavo: priestor parametrov usporiadania P2 pre nematický kvapalný kryštál. V strede: konfigurácia molekúl v
disklinácii v rovine kolmej na os víru (bodka v strede obrázku). Na ľavom obrázku je táto disklinácia popísaná uzavretou
orientovanou čiarou C1, ktorá spája bod A so s ním totožným bodom A′. Stabilita disklinácie vyplýva z pozorovania, že
túto čiaru nemožno spojito stiahnuť do bodu. Vpravo: to isté ako v strede, ale pre disklináciu popísanú čiarou C2 z A
do A′.

Dislokácie
Dislokácie sú čiarové defekty 3D kryštálov podobné vírovým čiaram a disklináciám. Ide o štruktúrne
defekty, preto priestorom parametrov usporiadania je priestor fyzikálne rozlíšiteľných hodnôt vektora
posunutia u. V 2D kryštáloch, kde M = T2, sa dislokácie redukujú na bodové defekty. Z matematiky
vieme, že

π1(T2) = Z × Z,

kde Z je grupa celých čísel s operáciou sčítania. Teda 2D dislokácie sú charakterizované dvomi celými
číslami q1 a q2. Tento výsledok má jednoduchú interpretáciu: navinutie uzavretej čiary F : S1 → T2

na torus treba popísať počtom navinutí q1 pozdĺž prvého (dlhého) švu v obrázku 19, ale aj počtom
navinutí q2 pozdĺž druhého (krátkeho) švu.

Podľa štandardnej teórie možno dislokácie charakterizovať tzv. Burgersovým vektorom b, defino-
vaným ako súčet prírastkov posunutia du kryštálu pozdĺž uzavretej krivky C obopínajúcej dislokačnú
čiaru, b =

∮
C du. Ale Burgersov vektor b musí byť mriežkovým posunutím, preto v dvojrozmernom

kryštáli dostaneme b = q1a1 + q2a2, v súlade s topologickou argumentáciou.

Doménové steny
Striktne vzaté, prípad s obopínajúcim priestorom P = S0 nie je topologickým defektom, ale doménovou
“stenou” s rozmerom D − 1. Oblasti na opačných stranách steny navzájom komunikujú iba cez stenu,
preto v prípade so spojitým priestorom M možno doménovú stenu spojito odstrániť, pozri cvičenia.
Doménové steny sú preto stabilné iba v systémoch s diskrétnym priestorom M : napríklad pre magnety
s konečným počtom osí ľahkej magnetizácie (napr. Isingov model).

Fyzikálna stabilita defektov
Striktne hovoriac, topologická a fyzikálna stabilita defektu nie sú totožné pojmy. Fyzikálne možno
defekt odstrániť dvomi spôsobmi: (i) vytlačiť ho von zo systému, (ii) alebo ho “rozobrať”. Možnosť
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(i) sa bez aplikácie vonkajších síl deje difúziou a v nekonečnom systéme trvá nekonečne dlho. Mož-
nosť (ii) znamená nutnosť prekonať energetickú bariéru a preskúmame ju pre 2D víry v XY modeli.
Predstavme si povedzme, že vír na obrázku 3 rozrežeme pozdĺž zápornej osi x a zafixujeme orientáciu
spinov tesne pod rezom. Potom budeme žiadať, aby sa spiny pri obchádzaní kružníc so stredom v jadre
víru postupne otáčali o čoraz menší uhol. Tým sa postupne znižuje hodnota (∇m)2, ale za cenu skoku
natočenia spinov naprieč cez rez. Tento skok stojí energiu úmernú lineárnemu rozmeru systému, čo je
omnoho viac ako energia pôvodného víru - teda vír je stabilný, pozri cvičenia.

Fyzikálne dôsledky topologických defektov
Prítomnosť topologických defektov znižuje zovšeobecnenú tuhosť systému so spontánne narušenou
symetriou. Napríklad v prednáške o Kosterlitzovom-Thoulessovom prechode sme explicitne ukázali,
že aplikácia gradientu fázy vytláča víry von zo vzorky, čo vedie k zníženiu aplikovaného rozdielu fáz
naprieč vzorkou.

V supravodičoch tiež dochádza k silovému pôsobeniu transportného prúdu na vírové čiary. Pohy-
bujúce sa vírové čiary však spôsobujú ohmické straty, t.j. zánik bezdisipatívneho transportu náboja.
Podobne aplikácia šmykového napätia spôsobuje pohyb dislokácií a následne plastickú deformáciu, t.j.
stratu tvarovej pamäti tuhej látky.

Strate zovšeobecnenej tuhosti a s ňou asociovaného bezstratového transportu možno predísť za-
medzením pohybu topologických defektov. Často používaným spôsobom, ako dosiahnuť tzv. kotvenie
týchto defektov, je zavedenie nepohyblivých bodových defektov do systému.

Cvičenia
1. Načrtnite singulárne konfigurácie spinov v 2D modeli XY pre q = ±2.
2. Ukážte, že v 3D Heisenbergovom modeli je energia ježa, t.j. konfigurácie m(x) = mx̂, kde m = |m| a x̂ je jednotkový
vektor v smere x, úmerná lineárnemu rozmeru systému.
3. Ukážte, že disklinácie C1 a C2 na obrázku 20 možno spojito deformovať jednu na druhú. Ďalej ukážte, že zložením
dvoch disklinácií dostaneme triviálnu konfiguráciu.
4. Prečo musí byť Burgersov vektor b mriežkovým vektorom? Návod: použite Volterrovu konštrukciu.
5. Odhadnite hrúbku doménovej steny L v magnetoch. Návod: nech x je súradnica naprieč stenou a θ(x) nech je natočenie
parametra usporiadania v rovine yz. Plošná hustota energie doménovej steny nech je

σ =

∫
dx
[
A(dθ/dx)2 +K sin2 θ

]
.

(Aký je fyzikálny význam parametrov A a K?) Predpokladajte, že θ(−L/2) = 0, θ(L/2) = π a že θ(x) je lineárnou
interpoláciou medzi týmito bodmi. Minimalizáciou σ(L) nájdite optimálnu hodnotu L.
6. Odhadnite energiu “víru s rezom” v 2D modeli XY, v ktorom sa spiny skrútia pri obehnutí okolo jadra o uhol α < 2π.

21 Topologické izolanty

Tradičná klasifikácia látok z hľadiska elektrických vlastností rozoznávala kovy, polovodiče a izolanty.
Táto klasifikácia vychádzala z obsadenia energetických hladín elektrónov vo vnútri materiálov. V tejto
prednáške ukážeme, že takáto klasifikácia je neúplná, pretože neprihliada na topologické vlastnosti fáz.
Pre jednoduchosť sa pritom obmedzíme na javy, ktoré možno popísať v rámci jednočasticovej teórie.

Chernove izolanty
Objav kvantového Hallovho javu v roku 1980 ukázal, že v silných magnetických poliach môžu byť ma-
teriály hlboko vo svojom vnútri nevodivé, ale zároveň na ich povrchu môžu existovať dokonale vodivé
stavy. Dnes chápeme kvantový Hallov jav ako špeciálny (a historicky prvý) príklad tzv. Chernových
izolantov - čiže istých špeciálnych dvojrozmerných materiálov, v ktorých absentuje symetria vzhľadom
na otočenie času. V ďalšom výklade explicitne ukážeme, že kvantovanie Hallovej vodivosti v Cherno-
vých izolantoch má topologický pôvod.

Pásová štruktúra vo formalizme LCAO
Skúmajme pásovú štruktúru kryštálu v jednoelektrónovom priblížení. Za bázové stavy pritom vezmime
ortogonalizované atomárne stavy |R, j〉, ktoré vznikli z pôvodných atomárnych stavov j v bunke R
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kryštálu. O spinovom stupni voľnosti pre jednoduchosť neuvažujme. Predpokladajme, že báza stavov
|R, j〉 je ortonormálna. Hamiltonián pre elektrón v kryštáli možno v tejto báze písať v tvare

H = −
∑
ij

∑
R,R′

tij(R−R′)c†RicR′j ,

kde tij(R−R′) je amplitúda preskoku zo stavu |R′, j〉 do stavu |R, i〉 a sčitujeme cez všetky usporiadané
dvojice stavov v kryštáli. Z hermitovskosti H pritom vyplýva, že tij(R) = t∗ji(−R).

Podľa Blochovej vety jednočasticové vlastné stavy elektrónov v kryštáloch parametricky závisia
od vlnového vektora k. Metódou LCAO možno tieto stavy hľadať ako lineárne superpozície stavov68

|k, j〉 = 1√
N
∑

R e
ik·R|R, j〉, ktorých kreačné operátory sú c†k,j = 1√

N
∑

R e
ik·Rc†R,j . Hamiltonián pre

elektrón v kryštáli H =
∑

kH(k) sa potom dá vyjadriť ako súčet od k závislých hamiltoniánov

H(k) =
∑
ij

Hij(k)c†k,ick,j

s maticovými elementmi Hij(k) = −
∑

R tij(R)e−ik·R, pre ktoré platí H∗ji(k) = Hij(k). Nech |n(k)〉
sú normalizované od k závislé vlastné stavy hamiltoniánu H(k) z pásu n, t.j. nech |n(k)〉 sú rieše-
niami Schrödingerovej rovnice H(k)|n(k)〉 = εn(k)|n(k)〉. Dá sa ukázať (pozri cvičenia), že operátor
rýchlosti elektrónu vk v podpriestore s fixovaným vlnovým vektorom má tvar vk = 1

~
∂H
∂k . Pre rýchlosť

elektrónu vo vlastnom stave |n(k)〉 potom podľa Feynmanovej-Hellmannovej vety dostávame výsledok
〈n(k)|vk|n(k)〉 = 1

~
∂
∂k〈n(k)|H(k)|n(k)〉 = 1

~
∂εn(k)
∂k , v zhode s kváziklasickým výrazom pre grupovú

rýchlosť.

Chernovo číslo
Skúmajme dvojrozmerný kryštál so štvorcovou Bravaisovou mriežkou a mriežkovou konštantou a. V
takom prípade ležia vektory k v Brillouinovej zóne k ∈ 〈−π

a ,
π
a )×〈−π

a ,
π
a ), ktorá je vďaka periodičnosti

hamiltoniánu H(k) ekvivalentná s dvojrozmerným torusom T2. Počítajme zmenu fázy ∆ϕ stavu |n(k)〉
pri infinitezimálnej zmene k→ k + ∆k:

ei∆ϕ =
〈n(k)|n(k + ∆k)〉
|〈n(k)|n(k + ∆k)〉|

. (90)

Taylorovým rozvojom do 1. rádu podľa ∆k dostaneme |n(k + ∆k)〉 = |n(k)〉 + ∆k · |∇kn(k)〉. Ak
využijeme, že stavy |n(k)〉 sú normované, ľahko nahliadneme, že maticový element 〈n(k)|∇kn(k)〉 je
rýdzo imaginárny (pozri cvičenia). Preto do 1. rádu podľa ∆k platí |〈n(k)|n(k + ∆k)〉| = 1, odkiaľ
vyplýva ∆ϕ = ∆k ·A(k), kde sme zaviedli tzv. Berryho konexiu

A(k) = −i〈n(k)|∇kn(k)〉 = Im [〈n(k)|∇kn(k)〉] . (91)

Rozdiel fáz ∆ϕ samozrejme závisí od voľby fáz vlnových funkcií |n(k)〉: pri kalibračnej transformácii
|n(k)〉 → eiθ(k)|n(k)〉 sa ∆ϕ zmení na ∆ϕ+θ(k+∆k)−θ(k). Pomocou veličiny ∆ϕ ďalej definujme tzv.
Berryho fázu γ =

∑
C ∆ϕ ako zmenu fázy pri prenose pozdĺž uzavretej čiary C v k-priestore. Ľahko

nahliadneme, že táto veličina už od voľby fáz nezávisí (pozri cvičenia) a dostaneme pre ňu výsledok

γ =

∮
C
dk ·A(k). (92)

Z jednoznačnosti vlnovej funkcie pritom vyplýva, že γ = 2πν, kde ν je celé číslo. Nenulové hodnoty
parametra ν sú pritom možné iba v prípade, keď sa vnútri oblasti ohraničenej čiarou C nachádzajú
singulárne konfigurácie poľa A(k), ktoré obsahujú víry.

Ak za krivku C vezmeme hranicu Brillouinovej zóny ∂BZ, potom integrálnu charakteristiku ν
študovaného pásu nazývame Chernovým číslom. Chernovo číslo budeme počítať z rovnice (92) pomocou
Stokesovej vety

ν =
1

2π

∫
BZ

d2k

[
∂Ay
∂kx

− ∂Ax
∂ky

]
=

1

2π

∫
BZ

d2k B(k), (93)

68Takýmto spôsobom sme napríklad v prednáške II.2 skúmali pásovú štruktúru kremíka.
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kde integrujeme cez celú Brillouinovu zónu. Zaviedli sme pritom tzv. Berryho krivosť B(k), pričom

B(k) = −i
[〈

∂n

∂kx

∣∣∣∣ ∂n∂ky
〉
−
〈
∂n

∂ky

∣∣∣∣ ∂n∂kx
〉]

.

Berryho krivosť má nenulovú hodnotu iba v jadrách vírov Berryho konexie.
Dvojrozmerné izolanty s nenulovou hodnotou ν v niektorom z pásov nazývame Chernove izolanty.

Dá sa ukázať, že prípad ν 6= 0 nemôže nastať v systémoch, ktoré sú symetrické pri otočení času.

Hallova vodivosť
Pomocou poruchovej teórie teraz vypočítame príspevok plne obsadeného pásu dvojrozmerného mate-
riálu k Hallovej (priečnej) vodivosti σH a ukážeme prekvapivý výsledok, že σH nemusí byť nulové.

Predpokladajme, že v systéme existuje elektrické pole E v smere osi y a počítajme prúdovú hustotu
jx v smere osi x. Elektrické pole pôsobí na elektróny poruchovým potenciálom V = eEy, v prítomnosti
ktorého sa vlnové funkcie |n(k)〉 do 1. rádu zmenia na

|ñ(k)〉 = |n(k)〉+

′∑
mK

〈m(K)|eEy|n(k)〉
εn(k)− εm(K)

|m(K)〉,

kde čiarka nad sumou vylučuje príspevok mK = nk. Nech skúmaný systém má rozmery L×L. Potom
(jednoelektrónové) operátory prúdu a prúdovej hustoty v smere osi x sú Ix = −evx/L a jx = −evx/L2.
Príspevok plne obsadeného pásu k prúdovej hustote v priečnom elektrickom poli preto je

〈jx〉 = − e

L2

∑
k

〈ñ(k)|vx|ñ(k)〉.

Ak teraz využijeme explicitný tvar vlnových funkcií |ñ(k)〉 a uvážime, že pre E = 0 v systéme prúd
netečie, dostaneme výsledok 〈jx〉 = σHE, kde pre Hallovu vodivosť σH platí

σH = − e
2

L2

∑
k

′∑
mK

[
〈n(k)|vx|m(K)〉〈m(K)|y|n(k)〉

εn(k)− εm(K)
+
〈n(k)|y|m(K)〉〈m(K)|vx|n(k)〉

εn(k)− εm(K)

]
.

V ďalšom výklade ukážeme, že Hallova vodivosť σH je úmerná Chernovmu číslu ν skúmaného pásu.
V prvom kroku si uvedomíme, že pre operátor rýchlosti platí v = ẋ = 1

i~ [x, H], preto

〈n(k)|v|m(K)〉 =
1

i~
〈n(k)|x|m(K)〉 [εm(K)− εn(k)] ,

kde sme využili, že stavy |m(K)〉 a |n(k)〉 sú vlastné stavy hamiltoniánu H. Ak pomocou tejto identity
vylúčime maticové elementy operátora súradnice z výrazu pre σH , dostaneme výsledok

σH = − i~e
2

L2

∑
k

′∑
mK

〈n(k)|vx|m(K)〉〈m(K)|vy|n(k)〉 − 〈n(k)|vy|m(K)〉〈m(K)|vx|n(k)〉
[εn(k)− εm(K)]2

.

Ak ďalej použijeme identity69

〈m(K)|vk|n(k)〉 =
1

~
[εn(k)− εm(K)] 〈m(K)|∇kn(k)〉,

〈n(k)|vk|m(K)〉 =
1

~
[εn(k)− εm(K)] 〈∇kn(k)|m(K)〉,

výraz pre priečnu vodivosť môžeme prepísať do tvaru

σH = − ie
2

~
1

L2

∑
k

′∑
mK

[〈
∂n

∂kx

∣∣∣∣m(K)

〉〈
m(K)

∣∣∣∣ ∂n∂ky
〉
−
〈
∂n

∂ky

∣∣∣∣m(K)

〉〈
m(K)

∣∣∣∣ ∂n∂kx
〉]

.

69Vychádzajme z rovnice H(k)|n(k)〉 = εn(k)|n(k)〉 a zľava na ňu aplikujme operátor 1
~∇k. Výsledkom tejto operácie

je v̂k|n(k)〉+ 1
~H|∇kn(k)〉 = vn(k)|n(k)〉+ 1

~εn(k)|∇kn(k)〉. Použili sme pritom, že v̂k = 1
~∇kH(k) je operátor rýchlosti

(pozri cvičenia) a vn(k) = 1
~∇kεn(k) je rýchlosť elektrónu v stave |n(k)〉. Ak si uvedomíme, že |m(K)〉 je vlastným

stavom operátora H, násobením zľava výrazom 〈m(K)| odtiaľto dostaneme prvú identitu. Druhá identita vyplýva z
prvej identity a z pozorovania, že operátor vk je hermitovský, keďže aj hamiltonián H(k) je hermitovský.
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Teraz si všimnime, že sumu cez mK možno doplniť o stav |m(K)〉 = |n(k)〉, ktorý k sume aj tak
neprispieva, keďže maticový element 〈n(k)|∇kn(k)〉 je rýdzo imaginárny a členy v hranatej zátvorke
sa navzájom vyrušia. Ak ďalej využijeme úplnosť stavov mK a prejdeme od sumácie cez k k integrácii,
dostaneme napokon

σH =
e2

~
1

L2

∑
k

B(k) =
e2

2πh

∫
BZ

d2kB(k) =
e2

h
ν,

kde ν je Chernovo číslo (93) študovaného pásu. To však znamená, že priečna vodivosť Chernovho
izolantu s plnými pásmi je nenulová, pričom jej veľkosť je celočíselným násobkom fundamentálnej
vodivosti e2/h, presne ako pri kvantovom Hallovom jave!

Výpočet, ktorý sme prezentovali, predpokladá, že študovaná dvojrozmerná vzorka nemá povrch,
t.j. je zvinutá do torusu. Dá sa však ukázať, že aj vo fyzikálne relevantnejšom prípade konečnej vzorky
s povrchmi je priečna vodivosť kvantovaná. V takom prípade tento výsledok možno vysvetliť, presne
ako pri kvantovom Hallovom jave, prítomnosťou dokonale vodivých stavov v blízkosti rozhraní medzi
Chernovými izolantmi s rôznym ν. Špeciálnym prípadom takýchto rozhraní je rozhranie medzi Cher-
novým izolantom a vákuom (ktoré je trviálnym izolantom s ν = 0).

Príklad: jednoduchý dvojpásový model
Skúmajme dvojpásový model pre elektróny na štvorcovej mriežke, pričom v každom bodeR sa nachádza
dvojica atomárnych orbitálov ψTR = (φR, χR). Hamiltonián modelu nech má tvar

HψR = mRT3ψR + TxψR+x + T †x ψR−x + TyψR+y + T †y ψR−y, (94)

kde sme zaviedli označenie

T3 =

(
1 0
0 −1

)
, Tx =

1

2

(
1 −i
−i −1

)
, Ty =

1

2

(
1 −1
1 −1

)
.

V jednoduchom translačne invariantnom prípade s mR = m sú riešením Schrödingerovej rovnice
(SchR) HψR = εψR rovinné vlny ψTR = (φ, χ)eik·R s vlnovým vektorom k a SchR nadobudne tvar

H(k)

(
φ
χ

)
= ε(k)

(
φ
χ

)
,

kde od k závislý hamiltonián má tvar H(k) = h(k) · σ, pričom σT = (σx, σy, σz) sú Pauliho matice
a h(k)T = (sin kx, sin ky,m + cos kx + cos ky). Vlastné energie problému potom sú ε(k) = ±|h(k)| a
parametricky závisia od hodnoty parametra m. Ľahko nahliadneme (pozri cvičenia), že medzi pásmi
zakaždým existuje konečná energetická medzera, okrem prípadov m = −2, m = 0 a m = 2, kedy me-
dzera v spektre neexistuje. Explicitný výpočet ukazuje (pozri cvičenia), že pre −2 < m < 0 nadobúda
Chernovo číslo dolného pásu hodnotu ν = 1 a pre 0 < m < 2 je ν = −1, kým pre ostatné hodnoty m
platí ν = 0. K zmene Chernovho čísla teda prichádza pri tých hodnotách parametra m, pri ktorých sa
energetická medzera zatvára.

Povrchové stavy
Skúmajme ďalej ten istý model (94), ale s pomaly a monotónne sa meniacim parametrom mR, ktorý
zavisí od súradnice x. Predpokladajme pritom, že pre x → −∞ platí mR < −2, čo zodpovedá Cher-
novmu číslu ν = 0. Podobne pre x→ +∞ nech −2 < mR < 0, čo zodpovedá Chernovmu číslu ν = 1.
Keďže zmena Chernovho čísla ν je možná, len ak medzera v spektre neexistuje, v okolí mR ≈ −2, t.j.
na rozhraní oblastí s rôznymi Chernovými číslami, očakávame existenciu povrchových stavov s energiou
≈ 0. Dá sa nahliadnuť, že tieto stavy sú chirálne, t.j. bežiace iba jedným smerom, podobne ako hranové
stavy pri kvantovom Hallovom jave. Tieto stavy prispievajú k Hallovej vodivosti a sú dokonale vodivé.

Topologické izolanty
Z hľadiska pásovej teórie sú Chernove izolanty obyčajné izolanty, avšak topológia ich pásovej štruktúry
(konečné Chernovo číslo ν) zabezpečuje, že na rozhraniach medzi Chernovými izolantmi a topologicky
triviálnymi materiálmi (napr. vákuom) existujú dokonale vodivé povrchové stavy. Kvalitatívne podobné
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správanie - t.j. konečná energetická medzera v spektre vnútri materiálu a excitácie s nulovou excitačnou
energiou v blízkosti povrchov - sa realizuje v celej triede nových materiálov, tzv. topologických izolan-
tov. Ich názov zohľadňuje, že podobne ako pri Chernových izolantoch, má toto výnimočné správanie
topologický pôvod.

Cvičenia
1.∗ Ukážte, že vk = 1

~∇kH(k) je operátor rýchlosti v podpriestore stavov typu LCAO s vlnovým vektorom k. Návod:
Najprv ukážte, že ∂

∂t
(c†RicRi) = 1

i~ [c†RicRi, H] =
∑

R′j jRi,R′j . Preto operátor

jRi,R′j =
i

~

[
tij(R−R′)c†RicR′j − t

∗
ij(R−R′)c†R′jcRi

]
možno interpretovať ako pravdepodobnosť preskoku z orbitálu R′j do orbitálu Ri za jednotku času. Operátor rýchlosti
definujte vzťahom v = 1

2N
∑

Ri,R′j jRi,R′j(R − R′), pretože preskoky medzi orbitálmi R′j a Ri majú dĺžku R − R′;
faktor 2 v menovateli zohľadňuje skutočnosť, že každá dvojica orbitálov je započítaná dvakrát. Prechodom do k-priestoru
napokon ukážte, že platí v = 1

~
∑

k∇kH(k), č.b.t.d.
2. Nech |n(k)〉 sú normalizované stavy závislé od parametra k. Ukážte, že maticový element 〈n(k)|∇kn(k)〉 je rýdzo
imaginárny.
3. Ukážte, že Berryho fáza definovaná vzťahom (92) nezávisí od voľby kalibrácie.
4. Skúmajte model (94) v homogénnom prípade mR = m.
a) Ukážte, že spektrum neobsahuje energetickú medzeru, iba ak m = −2, m = 0 a m = 2.
b)∗ Nájdite tvar Berryho konexie pre dolný pás a vypočítajte Chernovo číslo ako funkciu m.

22 Záver

V tomto kurze sme vyložili základné myšlienky tzv. Landauovej-Andersonovej paradigmy. V poslednej
prednáške najprv stručne zrekapitulujeme kľúčové body tejto paradigmy a na záver sa zmienime o
niektorých nových javoch, ktoré idú nad jej rámec.

Paradigma Landaua-Andersona
Z mikroskopického hľadiska si látku za bežných laboratórnych podmienok možno predstaviť ako ob-
rovský súbor jadier a elektrónov. Ak hmotnosti jadier a elektrónov označíme mi a ich náboje qi, a ak
zohľadníme iba elektrostatické interakcie medzi časticami, potom hamiltonián látky H má tvar

H =
∑
i

p2
i

2mi
+

1

2

∑
i 6=j

qiqj
4πε0|xi − xj |

. (95)

Verí sa, že model (95) predstavuje “veľkú zjednotenú teóriu” fyziky tuhých látok: všetky pozorované
javy by malo byť možné vysvetliť v rámci tohto modelu.70 Ich fenomenológia je pritom veľmi bohatá.
Pozorované bolo množstvo rôznych fáz, ktoré sa navzájom líšia fyzikálnymi vlastnosťami, napríklad me-
chanickými, elektrickými, alebo magnetickými. Ústrednou otázkou fyziky tuhých látok je, ako vzniká
táto komplexná fenomenológia. Na túto otázku dáva odpoveď teória, ktorú načrtol Landau a zavŕšil
Anderson.

Efektívne hamiltoniány a renormalizačná grupa
Z hľadiska termodynamiky sa jednotlivé fázy líšia správaním v dlhovlnnej a nízkoenergetickej limite.
Vlastnosti v tejto limite popisujú efektívne hamiltoniány, ktoré vznikajú postupným eliminovaním
krátkovlnných a vysokenergetických stupňov voľnosti. Všeobecná procedúra, ktorou možno takéto od-
stránenie dosiahnuť, sa nazýva renormalizačná grupa. Relevantné stupne voľnosti pritom môžu závisieť
od energetickej škály: napríklad Hubbardov model je efektívnym modelom pre jeden pás elektrónov
so spinom 1

2 a nábojom −e. V limite silných interakcií pri polovičnom zaplnení pásu je jeho nízko-
energetickým efektívnym modelom antiferomagnetický Heisenbergov model pre častice so spinom 1

2 a
70V mnohoelektrónových atómoch, v ktorých je rýchlosť elektrónov porovnateľná s rýchlosťou svetla, však treba

zohľadniť relativistické korekcie. Podobne pri opise optických javov je potrebné zahrnúť väzbu elektrónov s priečnym
elektromagnetickým poľom a pri štúdiu magnetizmu hrajú rolu aj interakcie spinov s magnetickým poľom a/alebo s
orbitálnym pohybom.
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nábojom 0, ktorého nízkoenergetickou limitou je zas model spinových vĺn, t.j. nenabitých bozónov.

Klasifikácia fáz
V rámci paradigmy Landaua-Andersona sa jednotlivé fázy odlišujú symetriami, ktoré môžu byť nižšie,
než symetrie pohybových zákonov. V takom prípade hovoríme o spontánnom narušení symetrie, ktoré
možno kvantifikovať lokálnymi parametrami usporiadania, t.j. veličinami, ktoré možno určiť meraniami
v konečnom okolí študovaného bodu. Parametre usporiadania sa správajú ako klasické (nekvantové)
polia.

Fyzikálne vlastnosti fáz
V stave s najnižšou voľnou energiou obvykle jednotlivé fázy vykazujú aj tzv. usporiadanie na dlhú
vzdialenosť, t.j. symetria je narušená rovnakým spôsobom v celej vzorke. Ak bola narušená spojitá
symetria, potom nárast voľnej energie spôsobený (pomalou) priestorovou nehomogenitou parametra
usporiadania možno popísať pomocou zovšeobecnenej tuhosti. Existencia konečnej zovšeobecnenej tu-
hosti garantuje bezdisipatívny transport veličiny združenej s parametrom usporiadania. V excitačnom
spektre takýchto systémov existujú nízkoležiace kolektívne módy s nulovou energiou v dlhovlnnej li-
mite, tzv. Goldstoneove módy.71 Pole parametra usporiadania môže obsahovať aj tzv. topologické
defekty, t.j. také nekonštatné konfigurácie parametra usporiadania, ktoré nemožno odstrániť pomocou
spojitých deformácií. Takéto defekty podstatným spôsobom ovplyvňujú zovšeobecnenú tuhosť systému.

Adiabatická kontinuita
Verí sa, že efektívne modely s rovnakou symetriou možno spojito (adiabaticky) deformovať jeden na
druhý. Preto je užitočné v každej triede symetrie identifikovať jednoduchého reprezentanta tejto triedy
a vlastnosti ostatných členov triedy ďalej skúmať poruchovou teóriou so zvoleným reprezentantom ako
štartovacím bodom.

ZOO pozorovaných fáz
V tomto odstavci budeme klasifikovať fázy podľa ich mechanických, elektrických a magnetických vlast-
ností. Náš výklad však nemá ambíciu podať vyčerpávajúci prehľad všetkých pozorovaných fáz.

Z hľadiska mechanických vlastností je triviálnou fázou plyn, ktorý sa od všetkých ostatných fáz líši
tým, že nejde o viazaný stav častíc. Plyny a kvapaliny (súhrnne tekutiny) sa zas od všetkých ostatných
fáz líšia tým, že v nich nie sú spontánne narušené žiadne symetrie. Popis vybraných fáz a ich vlastností
uvádzame v tabuľke 3. V tabuľke neuvádzame napr. kvapalné kryštály, pretože na ich popis by bolo
potrebné zaviesť ďalšie pojmy.

Z hľadiska elektrických vlastností rolu plynu hrajú izolanty, t.j. fázy bez voľných nábojov pri
teplote T = 0. Ostatné fázy majú konečné nábojové hustoty. Izolanty a kovy sú jedinými stavmi bez
spontánne narušenej symetrie, na rozdiel od ostatných fáz, ktoré možno vnímať ako kovy s narušenými
symetriami. V tabuľke 4 z takýchto fáz uvádzame iba supravodiče, existujú však aj fázy, v ktorých
elektróny spontánne narúšajú priestorové symetrie (translácie, rotácie) kryštalickej mriežky.

Z hľadiska magnetických vlastností rolu plynu (alebo izolantu) hrajú diamagnety, t.j. fázy bez
voľných magnetických momentov pri teplote T = 0. Ostatné fázy majú konečné hustoty magnetických
momentov. Diamagnety a paramagnety sú jedinými stavmi bez spontánne narušenej symetrie, na
rozdiel od ostatných fáz, ktoré možno vnímať ako paramagnety s narušenými symetriami. V tabuľke 5
z takýchto fáz uvádzame len tie, o ktorých sme hovorili v tomto kurze. Vynechávame teda napr. všetky
magneticky usporiadané fázy kovov.

Klasifikáciu fáz z hľadiska elektrických a magnetických vlastností možno zlúčiť. O obidvoch kla-
sifikáciách predovšetkým platí, že sa zameriavajú výlučne na elektrónové stupne voľnosti,72 opierajúc
sa o Bornovu-Oppenheimerovu separáciu elektrónových a iónových stupňov voľnosti. Podľa (jedno-
elektrónovej) pásovej teórie však existujú iba dve možnosti: izolanty (ktoré sú obvykle diamagnetické)

71Toto tvrdenie platí iba pre dostatočne krátkodosahové sily. Napríklad v nabitom supravodiči medzi elektrónmi pôso-
bia ďalekodosahové sily a v ich dôsledku v takomto systéme neexistuje Goldstoneov mód a kolektívne kmity kondenzátu
sa realizujú na (konečnej) plazmovej frekvencii - tento jav sa nazýva Andersonov-Higgsov mechanizmus.

72Toto obmedzenie nie je celkom opodstatnené. Napríklad pri veľmi nízkych teplotách boli pozorované aj magneticky
usporiadané fázy jadrových spinov.
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a kovy (ktoré sú obvykle paramagnetické). Všetky ostatné fázy z tabuliek 4 a 5 možno chápať ako
nestability kovu. V prípade supravodivosti je to zrejmé z tohto kurzu, kým rôzne magnetické izolanty
sú nízkoteplotnými fázami Mottových-Hubbardových izolantov.

Zovšeobecnená tuhosť jednotlivých fáz, ako aj s ňou asociovaný bezdisipatívny transport, sú po-
tlačené prítomnosťou defektov. V tabuľkách 3,4,5 uvádzame iba tie defekty, ktorých stabilita je garan-
tovaná topológiou. Neuvádzame napríklad hranice zŕn v polykryštáloch, hoci za bežných podmienok
sú tieto defekty vďaka pomalosti difúznych procesov stabilné. V procese žíhania však môžu veľké zrná
rásť na úkor malých, pretože stabilita doménových stien v kryštáloch nie je kontrolovaná topológiou.

Fázové prechody
Podľa veľkosti skoku entropie ∆S v bode fázového prechodu (alebo skupenského tepla prechodu)
fázové prechody delíme na spojité, pri ktorých ∆S = 0, a nespojité, kedy ∆S 6= 0. Pri spojitých
fázových prechodoch sa obvykle zúčastnené fázy A a B líšia symetriou, pričom symetria fázy A s
nenulovým parametrom usporiadania je podgrupou symetrie fázy B. Bod fázového prechodu oddeľuje
oblasti stability fáz: na jednej strane prechodu je lokálne stabilná iba fáza A, kým na opačnej strane
prechodu je lokálne stabilná iba fáza B. Preto nemôže dochádzať k prehriatiu a podchladeniu, ani k
hysterézii. Pri približovaní k bodu prechodu zo strany nesymetrickej fázy A v nej vznikajú oblasti s ináč
než majoritne orientovaným parametrom usporiadania, ktorých rozmer ξ− rastie, až v bode prechodu
ξ− → ∞ a všetky orientácie parametra usporiadania sú rovnako pravdepodobné. Naopak na strane
symetrickej fázy B v nej vznikajú zárodky usporiadanej fázy A o veľkosti ξ+, pričom rôzne zárodky
majú rôzne orientovaný parameter usporiadania. Pri približovaní k bodu prechodu ξ+ rastie, až v bode
prechodu ξ+ → ∞ a jedna z orientácií parametra usporiadania začne dominovať. Korelačné dĺžky ξ±
rastú ako mocniny vzdialenosti od fázového prechodu, napríklad pri teplotou kontrolovanom prechode
s kritickou teplotou Tc platí ξ ∝ |T − Tc|−ν , obvykle s tým istým exponentom ν v oboch fázach A aj
B. Aj ďalšie fyzikálne veličiny vykazujú podobné správanie, napríklad merné teplo diverguje podľa c ∝
|T − Tc|−α, susceptibilita (t.j. závislosť parametra usporiadania od vonkajšieho poľa) diverguje podľa
χ ∝ |T − Tc|−γ a veľkosť parametra usporiadania (v usporiadanej fáze) sa mení podľa m ∝ (Tc− T )β .
Bezrozmerné čísla α, β, γ a ν sa nazývajú kritické exponenty. Platia medzi nimi tzv. škálovacie vzťahy,
napríklad v d-rozmernom systéme platí

νd = 2− α = 2β + γ.

Hodnoty kritických exponentov závisia od priestorovej rozmernosti systému d a od rozmernosti pa-
rametra usporiadania, ale nie od jeho fyzikálnej povahy. Rovnaké exponenty sa napríklad pozorujú v
blízkosti kritického bodu prechodu kvapalina-plyn (pozri prednášku I.3; v tomto prípade je paramet-
rom usporiadania rozdiel hustôt pozdĺž krivky nasýtených pár) a pri Tc feromagnetu s ľahkou osou
magnetizácie MnF2. Fázové prechody teda vytvárajú triedy univerzality. Obidva spomínané príklady
majú jednorozmerný parameter usporiadania, podobne ako Isingov model. Ich trieda univerzality je
teda tzv. 3D Isingovho typu s exponentami

α ≈ 0.110, β ≈ 0.326, γ ≈ 1.237, ν ≈ 0.630,

ktoré možno nájsť napr. technikou renormalizačnej grupy. Tieto exponenty majú iné hodnoty ako
predpovede teórie stredného poľa (alebo Ginzburga-Landaua)

αMF = 0, βMF =
1

2
, γMF = 1, νMF =

1

2
,

ktoré nezávisia ani od d, ani od rozmernosti parametra usporiadania.
Nespojité fázové prechody nazývame aj prechodmi 1. druhu. V tomto prípade bod prechodu nie je

ničím výnimočný ani pre fázu A, ani pre fázu B: napríklad na obidvoch stranách prechodu sú lokálne
stabilné obidve fázy. Bod prechodu je význačný iba tým, že sa v ňom rovnajú voľné energie fáz A a B,
a teda na rôznych stranách prechodu sú globálne stabilné rôzne fázy. Pri prechodoch 1. druhu preto
môže dochádzať k prehriatiu a podchladeniu, ako aj k hysterézii. Kritické správanie sa pri nespojitých
prechodoch nepozoruje: fáza A sa premieňa na fázu B nukleačným mechanizmom. O symetrii fáz A,B
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nemožno vo všeobecnosti nič povedať, napríklad symetria jednej fázy nemusí byť podgrupou symetrie
druhej fázy73 - v takomto prípade sa nedá hovoriť o symetrickej a nesymetrickej fáze.

V prírode sa občas realizujú aj tzv. slabé prechody 1. druhu. V takomto prípade prechod vyzerá
ako spojitý, ak nie sme vo veľmi tesnej blízkosti k bodu prechodu. Veľmi blízko prechodu sa však rast
korelačných dĺžok ξ zastaví. V bode prechodu potom ξ nadobúda konečné hodnoty a existuje v ňom
malý, ale konečný skok entropie ∆S.

Topologické fázy a topologické fázové prechody
V rámci paradigmy Landaua-Andersona sú vlastnosti fáz diktované narušenými symetriami. Na prí-
klade 2D modelu XY sme však videli, že nenulová tuhosť je možná aj v systéme bez spontánneho
narušenia symetrie. V tomto prípade konečnú tuhosť zabezpečuje absencia voľných topologických de-
fektov (vírov a antivírov) a prechod do tekutej vysokoteplotnej fázy s voľnými topologickými defektmi
nazývame topologickým fázovým prechodom.

Ďalším príkladom neúplnosti paradigmy Landaua-Andersona je kvantový Hallov jav, alebo všeobec-
nejšie Chernove izolanty. Z hľadiska pásovej teórie ide o obyčajné izolanty, avšak konečnosť Chernovho
čísla (t.j. topologická vlastnosť) zabezpečuje kvalitatívne nové správanie: existenciu dokonale vodivých
povrchových stavov. Kvalitatívne podobné správanie - t.j. konečná energetická medzera v spektre vnútri
materiálu a excitácie s nulovou excitačnou energiou v blízkosti povrchov - sa realizuje v celej triede
nových materiálov, tzv. topologických izolantov. Ich názov zohľadňuje, že podobne ako pri Chernových
izolantoch, aj v tomto prípade má pozorované výnimočné správanie topologický pôvod.

73Takáto situácia môže nastať napríklad pri štruktúrnom prechode medzi dvomi rôznymi kryštalickými štruktúrami.
Iným príkladom je prechod z tuhého do supratekutého hélia.
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23 Dodatok

Priestorová Fourierova transformácia
Obvykle skúmame systémy v tvare (veľkého) rovnobežnostenu s objemom V a s periodickými okrajo-
vými podmienkami. Dovolené hodnoty vlnových vektorov q sú potom diskrétne a Fourierove transfor-
mácie pre ľubovoľnú veličinu F (r) definujeme vzťahmi

F (r) =
1

V
∑
q

Fqe
iq·r.

Fourierovsky transformovanú funkciu Fq teda obvykle označujeme tým istým písmenom ako pôvodnú
funkciu F (r). Aby sme tieto dve rôzne funkcie rozlíšili, závislosť od vlnových vektorov q píšeme ako
index. Inverzná Fourierova transformácia má tvar:

Fq =

∫
d3rF (r)e−iq·r.

Časová Fourierova transformácia
K ľubovoľnej časovo závislej veličine F (t) definujeme jej Fourierovu transformáciu Fω vzťahom

F (t) =

∫ ∞
−∞

dω

2π
Fωe

−iωt.

Inverzná Fourierova transformácia má tvar:

Fω =

∫ ∞
−∞

dtF (t)eiωt.

Stirlingova formula: pre n� 1 platí

n! ≈
√

2πn
(n
e

)n
.

Diagonalizácia hermitovskej matice 2×2
prvky matice 2× 2:

H =

(
a b
b∗ c

)
vlastné čísla:

E± =
a+ c

2
±

√(
a− c

2

)2

+ |b|2

vlastné vektory: (
ϕ
χ

)
λ

=
1√
2

( √
1− λα

λe−iδ
√

1 + λα

)
,

kde λ = ±1, α = (c−a)/2√
|b|2+(c−a)2/4

, eiδ = b/|b|

Operátor nábojovej hustoty
1. kvantovanie

ρ(r) =
∑
i

δ(r− ri)

Fourierova transformácia
ρq =

∑
i

e−iq·ri

druhé kvantovanie pre bezspinové častice

ρq =
∑
k

a†k−qak
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Operátor prúdovej hustoty pre častice s hmotnosťou m
1. kvantovanie

j(r) =
1

2m

∑
i

[piδ(r− ri) + δ(r− ri)pi]

Fourierova transformácia
jq =

1

2m

∑
i

[
pie
−iq·ri + e−iq·ripi

]
druhé kvantovanie pre bezspinové častice

jq =
~

2m

∑
k

(2k− q)a†k−qak

Reprezentácia operátorov spinu pomocou elektrónových operátorov
Nech Si a Sj sú operátory spinu pre elektróny v ortogonálnych orbitáloch i a j. Pre tieto operátory
platia nasledovné komutačné vzťahy:

[Sαi , S
β
j ] = iεαβγδijS

γ
i .

Namiesto zložiek Sxi , S
y
i často používame zvyšovacie a znižovacie operátory S±i = Sxi ± iS

y
i . Pre trojicu

operátorov Szi , S
±
i platia komutačné vzťahy:

[Szi , S
±
j ] = ±δijS±i , [S+

i , S
−
j ] = 2δijS

z
i .

Na druhej strane, nech c†iα a ciα sú kreačné a anihilačné operátory pre elektrón v orbitáli i s priemetom
spinu α, α ∈ (↑, ↓), ktoré spĺňajú kánonické (anti)komutačné vzťahy:

{ciα, cjβ} = {c†iα, c
†
jβ} = 0; {ciα, c†jβ} = δijδαβ.

Pomocou c†iα a ciα možno spinové operátory reprezentovať nasledovne:

Si =
1

2
c†iασαβciβ, S+

i = c†i↑ci↓, S−i = c†i↓ci↑,

kde σ = (σx, σy, σz) je trojica Pauliho matíc, ktorých explicitný tvar je

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

identity pre Pauliho matice:

σµσν + σνσµ = 2δµν1

σαβ · σγδ = 2δαδδβγ − δαβδγδ

skalárny súčin spinov:

Si · Sj = Szi S
z
j +

1

2

(
S+
i S
−
j + S−i S

+
j

)
Atómové jednotky
dĺžka:

aB =
4πε0~2

me2
= 0.529Å

energia:

εB =
~2

2ma2
B

=
1

2

e2

4πε0aB
=

1

2

me4

(4πε0~)2
= 13.6 eV
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Štatistická mechanika: kánonický súbor
kánonický hamiltonián: H
kánonická štatistická suma: Z = Tre−H/T ; Z = Z(T,V, N)
rovnovážna matica hustoty: ρ = 1

Z e
−H/T

stredná hodnota veličiny X: 〈X〉 = TrρX
voľná energia: F = −T lnZ; F = F (T,V, N)
logaritmovanie definície ρ: −T lnZ = H + T ln ρ
štatistická fyzika: F = −T lnZ = 〈H〉+ T 〈ln ρ〉
termodynamika: F = E − TS
porovnanie štatistiky a termodynamiky: vnútorná energia E = 〈H〉, entropia S = −〈ln ρ〉 = −Trρ ln ρ

dF = −pdV − SdT + µdN ; p = −
(
∂F

∂V

)
T,N

; S = −
(
∂F

∂T

)
V,N

; µ =

(
∂F

∂N

)
T,V

nech hamiltonián závisí od parametra: H = H(λ)
potom Z = Z(T,V, N, λ) = Tre−H(λ)/T , F = F (T,V, N, λ) = −T ln Tre−H(λ)/T

analóg Feynmanovej-Hellmanovej vety:
(
∂F
∂λ

)
T,V,N = 1

ZTr
[
∂H
∂λ e

−H(λ)/T
]

=
〈
∂H
∂λ

〉
T,V,N,λ

Štatistická mechanika: grandkánonický súbor
grandkánonický hamiltonián: H = H − µN
grandkánonická štatistická suma: Z = Tre−H/T ; Z = Z(T,V, µ)
rovnovážna matica hustoty: ρ = 1

Z e
−H/T ; preto −T lnZ = H − µN + T ln ρ

stredná hodnota veličiny X: 〈X〉 = TrρX
grandkánonická voľná energia: F = −T lnZ = 〈H〉+ T 〈ln ρ〉 − µ〈N〉 = E − TS − µN
entropia: S = −〈ln ρ〉 = −Trρ ln ρ

F = F(T,V, µ); dF = −pdV−SdT−Ndµ; p = −
(
∂F
∂V

)
T,µ

; S = −
(
∂F
∂T

)
V,µ

; N = −
(
∂F
∂µ

)
T,V

nech hamiltonián závisí od parametra: H(λ) = H(λ)− µN
analóg Feynmanovej-Hellmanovej vety:

(
∂F
∂λ

)
T,V,µ =

〈
∂H
∂λ

〉
T,V,µ,λ

veta o malých prírastkoch pri zmene δH: (δF )T,V,N = 〈δH〉T,V,N,λ = 〈δH〉T,V,µ,λ = (δF)T,V,µ

Feromagnetický Heisenbergov model
Skúmajme feromagnetický Heisenbergov model H = −J

∑
〈ij〉 Sj ·Sj pre spiny S = 1

2 na hyperkubickej
mriežke s N spinmi. Ľahko nahliadneme, že za základný stav takéhoto modelu možno vziať akýkoľvek
homogénny stav so spinmi spontánne zamrznutými v smere n, napríklad stav |0〉 so všetkými spinmi ↑,
kedy n = (0, 0, 1). Zjavne ide o stavy so spontánne narušenou rotačnou symetriou v spinovom priestore.
Stojí za zmienku, že feromagnetický Heisenbergov model v spontánne zmagnetizovanom stave v smere
n síce nie je symetrický vzhľadom na všetky otočenia, ale má zbytkovú spojitú symetriu: je totiž
symetrický voči otočeniam okolo osi n.

Parametrom usporiadania pre feromagnet bude M̂ = 1
N
∑

i Si, pričom bude platiť 〈M̂〉 = n. Keďže
[M̂, H] = 0, parameter usporiadania je zachovávajúcou sa veličinou. Vďaka tejto skutočnosti kvantové
fluktuácie absentujú a pri teplote T = 0 dochádza (na rozdiel od antiferomagnetického modelu) k
spontánnemu narušeniu symetrie aj na jednorozmernej mriežke.

Celkový spin základného stavu |0〉 a jeho priemet na os z sú S = Sz = N/2. V ďalšom výklade
sa sústreďme na štúdium stavov s projekciou celkového spinu Sz = N/2 − 1. V tomto podpriestore
existujeN konfigurácií, ktoré dostaneme zo stavu |0〉 preklopením jediného spinu v ľubovoľnom bodeR
mriežky. Takéto konfigurácie označíme |R〉. Keďže hamiltonián komutuje s operátorom Sz, výsledkom
pôsobenia operátora H na konfiguráciu |R〉 musia byť konfigurácie z podpriestoru Sz = N/2 − 1.
Explicitný výpočet ukazuje, že

H|R〉 = −J
∑
〈ij〉

Szi S
z
j |R〉 −

J

2

∑
〈ij〉

(S+
i S
−
j + S−i S

+
j )|R〉 =

(
E0 +

zJ

2

)
|R〉 − J

2

∑
τ̂

|R + τ̂〉,
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kde z je koordinačné číslo mriežky, t.j. počet najbližších susedov na mriežke,74 E0 je energia základného
stavu |0〉 a τ̂ označuje z spojníc mriežkového bodu s jeho najbližšími susedmi. Teda vďaka preklápaniu
spinov sa na stav |R〉 môžeme pozrieť ako na časticu pohybujúcu sa cez mriežku. Ak predpokladáme
periodické okrajové podmienky, problém možno diagonalizovať Fourierovou transformáciou:

|k〉 =
1√
N

∑
R

eik·R|R〉; H|k〉 = (E0 + εk)|k〉; εk =
zJ

2
[1− γk] ; γk =

1

z

∑
τ̂

eik·τ̂ .

Vlastné stavy |k〉 nazývame spinovými vlnami. Náš výsledok pre energiu spinovej vlny εk je identický s
výsledkom klasického výpočtu pri T = 0.75 Spinová vlna nesie kvázihybnosť k, ktorá je pozorovateľná
v rozptylových experimentoch podobne ako pre fonóny.76 V dlhovlnnej limite k → 0 pre energiu
magnónov platí εk → 0, ide teda o Goldstoneov mód.

Teraz ukážeme, že výsledok εk → 0 v dlhovlnnej limite je prirodzeným dôsledkom narušenia sy-
metrie. Naozaj, projekcia celkového spinu Sz v stave |k〉 je očividne Sz = N/2−1. Aký je však celkový
spin v stave |k〉? Z kvantovej mechaniky vieme, že spomedzi N stavov s Sz = N/2− 1 iba jeden stav
má celkový spin S = N/2 a ostatné stavy majú S = N/2 − 1. Stav s celkovým spinom S = N/2
dostaneme aplikáciou znižovacieho operátora celkového spinu S− na stav |0〉. Ľahko nahliadneme, že
takto dostaneme “spinovú vlnu” |k = 0〉. Ukázali sme teda, že stav |k = 0〉 nie je excitovaným stavom.
V skutočnosti je to stav degenerovaný so stavom |0〉, s tým rozdielom, že kým v stave |0〉 je Sz = N/2,
v stave |k = 0〉 je to Sz = N/2− 1. Tým sme dokázali, že spinová vlna je Goldstoneov mód, podobne
ako v antiferomagnetickom modeli. Avšak, na rozdiel od antiferomagnetického modelu, vo feromag-
netickom modeli so zachovávajúcim sa parametrom usporiadania má Goldstoneov mód v dlhovlnnej
limite energiu εk ∝ k2.

Ďalším pôsobením znižovacieho operátora S− na stav |k = 0〉 by sme dostali ďalší z degenerovaných
základných stavov s celkovým spinom S = N/2 a projekciou Sz = N/2− 2, atď. Posledný stav, ktorý
takto dostaneme, obsahuje všetky spiny natočené nadol, teda Sz = −N/2. Na druhej strane, stavy
|k〉 s k 6= 0 majú kvantové čísla S = Sz = N/2 − 1. Môžeme ich teda interpretovať ako prítomnosť
častice so spinom S = 1, tzv. magnónu. Kreačné a anihilačné operátory pre magnóny možno definovať
vzťahmi

a†k =
1√
N

∑
R

eik·RS−R; ak =
1√
N

∑
R

e−ik·RS+
R; [ak, aq] =

[
a†k, a

†
q

]
= 0

Komutačné vzťahy pre magnónové kreačné a anihilačné operátory sa podobajú na bozónové vzťahy,
ale s jednou výnimkou:[

ak, a
†
q

]
=

1

N
∑
R,R′

e−ik·Reiq·R
′ [
S+
R, S

−
R′
]

=
2

N
∑
R

ei(q−k)·RSzR ≈
1

N
∑
R

ei(q−k)·R = δk,q

kde sme využili, že
[
S+
R, S

−
R′
]

= δR,R′S
z
R. Približná rovnosť platí, iba ak môžeme operátor SzR nahradiť

číslom 1/2, t.j. v základnom stave a pre stavy s malým počtom magnónov.
Podobným spôsobom možno postupovať pri štúdiu sektorov s nižšími Sz. Napríklad pre Sz =

N/2 − 2 dostaneme 1
2N (N − 1) konfigurácií. Jeden stav má celkový spin S = N/2 a zodpovedá

ďalšiemu z degenerovaných základných stavov. N − 1 stavov s celkovým spinom S = N/2 − 1 do-
staneme aplikovaním znižovacieho operátora S− na N − 1 spinových vĺn; keďže a†0a

†
k|0〉 = a†ka

†
0|0〉,

môžeme tieto stavy považovať za (otočené) jednomagnónové stavy. Zvyšné stavy majú celkový spin
S = N/2−2 a možno ich považovať za dvojmagnónové stavy. Magnóny v týchto stavoch navzájom in-
teragujú, čo vedie ku konečným dobám života, ako aj k vzniku viazaných stavov. Podrobnejšiu diskusiu
o dvojmagnónových stavoch čitateľ nájde napr. v Mattisovej knihe.

74Pre hyperkubické mriežky je z = 2D, kde D je rozmernosť systému.
75Pozri napr. I.25.
76Pozri napr. II.8.
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