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Predhovor

Co uz treba vediet

Tato prednaska volne nadvizuje na bakalarsku prednasku Uvod do fyziky materidlov a magisterské
prednasky Struktira a mechanické vlastnosti materidlov a Elektrické a optické vlastnosti materidlov.
Prednéaska bezi paralelne s prednaskou Magnetické vilastnosti tuhijch latok a supravodivost, ktora sa ve-
nuje podobnym fyzikalnym systémom, ale z iného zorného uhla. Z technického hladiska nevyzadujeme
ziadne Specialne poznatky, okrem znalosti formalizmu druhého kvantovania a met6édy Hartreeho-Focka.

Co sa moZno naudite

V tychto prednaskach sledujeme dvojaké ciele. Prvou tlohou je zasadit uz znédme vysledky do vSeobec-
nejsieho rameca, v ktorom klicovi dlohu hraja pojmy naruSenia symetrie a adiabatickej konti-
nuity. Druhou tdlohou je demonstrovat pouzitie spominanych pojmov pri §tidiu magnetizmu, supra-
tekutosti a supravodivosti.

Odkazy na iné texty

V prednagke sa odvolavam na nasledovné texty z inych drovni:

“Uvod do fyziky tuhych latok”: prednaska ¢islo n citovana ako I.n

“Elektrické a optické vlastnosti tuhych latok”: prednaska &islo n citovana ako II.n
“Teodria kondenzovanych latok” prednaska ¢islo n citované ako IV.n

Poznamka o vol'be jednotiek a o konvenciach

1. V skriptach pouzivame jednotky SI. Jedinou vynimkou je absolutna teplota, ktori chapeme ako
veli¢inu s rozmerom energie.

2. Naboj elektréonu oznacujeme —e, t.j. predpokladéame, ze e > 0.

3. Pod frekvenciou rozumieme kruhovu frekvenciu.

Podmienky na udelenie kreditov
Ak ide o vyberovy predmet:

séria 20 domacich tloh; za kazda sériu mozno ziskat maximéalne 1 bod
Ak ide o povinne volitelny predmet:
astna skuska; maximalne 20 bodov
Hodnotenze:

: >18 bodov

: >16 bodov

: >14 bodov

: >12 bodov

: >10 bodov

FX: <10 bodov
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4 1 EFEKTIVNE MODELY

1 Efektivne modely

V tejto prednagke zavedieme pojem podstatnych a nepodstatnych stupiiov volnosti. UkaZeme tieZ,
Ze eliminacia nepodstanych suphov volnosti vo v8eobecnosti meni tvar modelu pre podstatné stupne
volnosti.

Podstatné a nepodstatné stupne vol'nosti

Pri rieSeni konkrétnych fyzikalnych tloh vzdy postupujeme tak, Ze vesmir rozdelime na skiimany systém
a na okolie. Predpokladame pritom, Ze stupne volnosti popisujice okolie st nepodstatné a preto ich
do nagich tivah nezahifiame. Podstatnymi st potom stupne volnosti skiimaného systému.

Casto sa viak pouZiva aj menej trividlna delba stuphov volnosti na podstatné a nepodstatné. Vo
fyzike tuhych latok napriklad obvykle neprihliadame na to, Zze jadra pozostavaju z nukleénov a tie zase
z kvarkov. Vnitorné stupne volnosti jadier pokladame za irelevantné, pretoZze sa obvykle zaujimame
o procesy pri takych excitaénych energiach (alebo teplotach), pri ktorych mozeme predpokladat, ze
jadrové stupne volnosti st v ich zakladnom stave.! Z toho istého dovodu pri Studiu elektréonovych
vlastnosti obvykle mézeme zanedbat pritomnost plne obsadenych hlboko leziacich a celkom prézdnych
vysoko leziacich pasov.

Efektivny model
Vratme sa na chvilu k problému semiklasickej dynamiky elektrénov, ktory sme skamali v 11.3. V
jednoelektronovom priblizeni mame riesit Schréodingerovu rovnicu (SchR) s hamiltonidnom

h2

H=——NA+V U

S S V() + U (),
kde V(x) je periodicky mriezkovy potencial a U(x) je slabé vonkajsie pole. V I1.3 sme ukazali, Ze v
dostatocne slabych poliach sa mozno obmedzit na pohyb vnutri jedného pasu a vysledkom eliminacie
ostatnych péasov je moznost popisat pohyb elektronu novym (tzv. efektivnym) hamiltonidnom

Heﬁ‘ = En(—iV) + U(X),

kde e, (k) je disperzny zakon ponechaného pasu n. Vsimnime si, Ze pri eliminacii nepodstatnych stupiiov
vol'nosti (v nasom priklade Wannierovych orbitélov pre pasy m # n) doslo k zmene tvaru hamiltonianu
pre ponechané stupne volnosti (Wannierove orbitaly pasu n).

K zmene tvaru modelu pri eliminacii stupniov volnosti dochadza prakticky vzdy. Dal$im nam uZ zna-
mym prikladom je napriklad eliminécia fonénovych stupiiov volnosti vo zviazanom elektrén-fonénovom
probléme, ktorej vysledkom bola renormalizacia spektra elektréonov v blizkosti Fermiho plochy, pozri
I1.16. Systematickou procedtrou na eliminéciu nepodstatnych stupiiov volnosti je tzv. renormalizacna
grupa, ktorej hlavni ideu vylozime v kapitole 16.

Efektivny model pre Mottov-Hubbardov izolant

Vo zvysku tejto prednasky preskiimame konstrukciu efektivneho modelu v jednoduchej situéacii, kedy

eliminaciu nepodstanych stupfiov volnosti mozno vykonat priamociarou aplikiciou poruchovej teorie.
Skumajme material s nedegenerovanym valenénym pasom popisanym Hubbardovym hamiltonia-

nom
H=-1 Z Z (cj»acjg + C;Ucw) + UZ N1 (1)
(i) @ ‘

kde operatory CIU a ¢;j, kreuju a anihiluja elektrony vo Wannierovom orbitali v bode ¢ mriezky. Wan-
nierove orbitaly v réznych bodoch mriezky st navzijom ortogonalne a tunelovaciu amplitidu medzi
najbliz§imi bodmi mriezky (ij) sme oznacili ¢. Predpokladali sme tiez, ze Coulombova interakcia je
extrémne tienena: konecné odpudzovanie U existuje iba pre elektrény na tom istom bode mriezky.
Predpokladajme naviac, Ze pocet elektronov N vo valenénom pése je totozny s po¢tom N mriezko-
vych bodov, N = N, a Ze model sa nachidza v limite silnej vizby t < U. V takom pripade je prirodzené

!Tento argument neplati pre jadra s nenulovym spinom. V tomto pripade st viak rézne natocenia jadrovych spinov tiez
vacsinou irelevantné, okrem pripadov kedy skiimame napr. jadrovi magneticka rezonanciu alebo jadrovy magnetizmus.



za neporusent Cast hamiltonianu vziat operator Hy = U Y, nin; . Spektrum neporuseného problému
teda vyzera nasledovne:

e I/ = 0: kazdy bod mriezky obsadeny préve jednym elektrénom; tato degenerované hladina obsa-
huje 2V spinovych konfiguraci |0y

e £ = U: oproti F = 0 mriezka obsahuje jeden dvojnésobne obsadeny bod (dublon) a jeden
prazdny bod (holén); degenerovana hladina

e F =2U: oproti E = U mriezka obsahuje dalsi holon-dublénovy péar; degenerovana hladina
o ...

Ocakavame, Ze kineticka energia H' tz (i5) Z (cwc]g + c;r-acig) snime degenerécie jednotlivych
hladin, ale pre malé ¢ zakladny stav zostane izolantom.

Poruchovd tedria v degemerovanom pripade

Nech |p) st vlastné stavy neporuseného hamiltonianu Hy s energiou E,, = 0 a nech |n) st vSetky
ostatné vlastné stavy Hy s energiami F, > 0. Vlastné stavy [t/) hamiltonianu H, t.j. stavy splhajtce
SchR H|v) = £|y) s vlastnou energiou € rozvinme do tplného systému stavov

) = Zcu‘:@ + Z cnln).

Dosadenim tohto rozvoja do SchR dostaneme systém rovnic pre koeficienty ¢, a cp:

(E=Euep =Y Hjycw+ > Hpcn, (2)
7 n

(€ —En)en, = Z H;w,cw + Z H).  cu, (3)
w n!

kde sme zaviedli oznacenie H), , = (u[H'|1') a podobne pre ostatné kombinacie indexov.

Nasim ciefom je néjst korekcie k energii F, do druhého radu v t. Budeme predpokladat, Ze ko-
eficienty ¢, st velké, radu 0, kym ostatné koeficienty ¢, st nanajvys radu t'. O porusenej energii £
budeme predpokladat, Ze korekcia £ — E,, je nanajvys rddu t!, a preto rozdiel £ — E,, je velky, radu
t0. Podla rovnice (3) preto koeficient ¢, do rddu t* mozno pisat ako

1 1
PR H e~ — H' ,c..

Dosadenim tohto vysledku do rovnice (2) dostaneme rovnicu platni do radu 2

(E-E)eu=> |H ,+Z g E ———H, | e (4)
l‘/

Téato rovnica urcuje, ako sa pod vplyvom poruchy zmenia energie degenerovanych zékladnych stavov
|p): rézne linedrne kombinécie popisané koefientmi ¢, budia mat rézne energie. Vsimnime si, Ze rov-
nicu (4) mozno zapisat ako SchR v podpriestore zakladnych stavov, [E, + Heg| [¢)) = E|Y), kde sme
zaviedli nasledovny efektivny hamiltonian, ktory pésobi v podpriestore zédkladnych stavov:

H'|n)(n|H'
¢=H
NP

kde sumécia bezi cez vietky excitované stavy |n). Uloha o rozstiepeni degenerovanej hladiny sa teda
redukuje na diagonalizaciu efektivneho Hamiltonidnu H.g v podpriestore zakladnych stavov. Tento
podpriestor je obvykle podstatne mensi ako cely Hilbertov priestor ulohy (pozri cvi¢enia).
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Poruchovd tedria pre Hubbardov model

V Hubbardovom modeli pre vietky dvojice stavov |u), |¢') zo zakladného podpriestoru plati (/| H' |u) =
0. Naviac, (n|H'|u) # 0 plati iba pre stavy |n) s prave jednym holon-dublénovym péarom, preto ener-
geticky menovatel v Heg je zakazdym FE, — E,, = U. Pre maticové elementy efektivneho hamiltonianu
preto dostavame

(0 ) = — = S ul 1B ) o ) = == | () ),
n
kde v druhom kroku sme sumu cez |n) rozsirili na vietky stavy Hilbertovho priestoru (¢im sme vysledok
nezmenili!) a nasledne sme vyuzili ich tplnost. Na tomto mieste je vhodné si v8imnut, Ze operator H’
prestva elektrony pozdlz liniek (if). Je vSak zrejmé, ze maticovy element (u/| (H')? 1) bude nenulovy,
len ak jeden z operatorov H' presunie elektréony povedzme z bodu i do bodu 7, kym druhy z operatorov
H’ ich vrati naspit (spin elektronov sa pritom moze preklopit). Preto maticové elementy Heg mozno
pisat ako sumu operatorov na linkach (ij), t.j. (i/|Heg|p) = Z(¢j><NI|Xij|M>a kde sme zaviedli operator

t? S (el et by
Xij = T (cwcjgcjo_,cw/ + cjacwcw,cjax) .
o,0’

Pouzitim komuta¢nych vztahov pre fermiony d'alej l'ahko nahliadneme, Ze

} : T T T T _ } : (N } : T T
- (cwcjocja,cw/ + CigrCio’ CigCio ) = 2 CigCjqrCjoCio’ — CinCic T+ CigCio | -
o,0!

o,0’ o

Vsimnime si, Ze maticové elementy druhého ¢lena na pravej strane medzi vSetkymi dvojicami stavov
|p), |1y zo zakladného podpriestoru st rovné —2, preto v tomto podpriestore mozno pisat

2t 2t
Xij = U Z Cgacja/cja%’ U

o0’

Kedze stavy |p) st spinovymi konfiguraciami, ocakéavame, ze operator X;; sa bude dat alternativne
zapisat pomocou operatorov spinu S; = %cjaaa,gci/g? Vhodnou volbou sa zda byt skalarny sicin
S; - S;, pretoze tento operator nezavisi od volby stiradnicovej stistavy v spinovom priestore. Na jeho

vyhodnotenie pouzijeme tzv. Fierzovu identitu o ng-0 15 = 200503, —0ag0~s, Pomocou ktorej dostaneme

a? * _— P 20 i t*
FSi -S; = i Z (2cmcwcjﬁcja — cmciacjﬁcw) — Nid Z CiaCjpCiatif — o
(e} (67

) )

kde sipka znazoriiuje rovnost v podpriestore vlastnych stavov. Porovnanie s vyrazom pre X;; teda dava

1
XM_J<&-%—4>,

kde J = 4t?/U. Efektivnym modelom pre Mottov-Hubbardov izolant (aZ na nezaujimavy konstantny
posun energie) je teda antiferomagneticky Heisenbergov model

Heg=J) 8;-8, (5)
(i)

s vymennou konstantou J. Stoji za zmienku, Ze efektivny model (5) mé celkom iny tvar ako péovodny
model (1): novymi stuphiami volnosti si kvantové spiny 1/2, kym povodnymi stupiiami volnosti boli
elektréony nestice ako spin, tak aj naboj. Eliminované teda boli readlne nabojové fluktuécie a ponechali
sme (do druhého radu poruchovej teérie) iba virtualne nabojové fluktuécie, ktoré generuji vymennu
konstantu J.

2Pozri dodatok.



Hamiltonian (5) definuje tzv. Heisenbergov model. Pre J > 0 treba ocakavat, Ze susedné spiny
maju tendenciu usporiadat sa navzajom protibeZzne. V takomto pripade hovorime o antiferomagnetic-
kom Heisenbergovom modeli (AFMH model).

Cvicenia

1. Ukazte, ze operatory S; = %claaaﬁcw splitaji komutaéné vztahy pre moment hybnosti.

2. Dokézte Fierzovu identitu.

3. Porovnajte vysokoteplotné entropie pre nasledujice modely s N >> 1 mriezkovymi bodmi: (a) Heisenbergov model,
(b) Hubbardov model pri poloviénom zaplneni. Navod: pouzite Stirlingov vzorec.

4. Ukazte, ze Lennardovu-Jonesovu interakciu mozno chapat ako efektivnu interakciu medzi atémami inertnych plynov.

Ktoré stupne volnosti sme pritom zanedbali? Ako vyzera povodny hamiltonian obsahujuci aj zanedbané stupne volnosti?

2 Symetrie a zikony zachovania

V tejto prednaske vysvetlime, ¢o rozumieme pod symetriou systému a popiSeme fyzikilne dosledky
symetrii. Nakoniec preskiimame symetrie AFMH modelu.

Transformacia stavov systému
Stavy skimaného systému oznacme [¢). Pri manipulacii so systémom (napriklad pri otoceni alebo
posunuti) sa stavy systému navzajom transformuja. V Zelenej ucebnici (kapitola 13) sa tato zmena
interpretuje tak, Ze otocené alebo posunuté pristroje vyrabaju otocené alebo posunuté stavy. Zmena
stavov pri manipulacii nech je popisand operatorom U, t.j. stav [¢)) nech sa transformuje na stav
|¢") = Ult). V nagich avahach sa obmedzime na sktimanie tzv. globalnych manipulacif, ktoré nemenia
vzdialenosti medzi ¢asticami. Nezaujimame sa teda napr. o permutéacie identickych castic.

Pred manipulaciou bola pravdepodobnost, Ze systém pripraveny v stave |¢)) najdeme v stave |¢),
dana stvorcom |{¢[1))|? prekryvu tychto stavov. Po manipulacii sa tato pravdepodobnost nemé zmenit,
teda pre vSetky dvojice stavov [1) a |¢) ma platit

(¢ [9)? = [(pl) .

Podl'a Wignerovej vety existuja len 2 moZnosti: alebo je operator U unitarny a pri vhodnej volbe faz
plati (¢'|¢") = (p|)), alebo je operator U antiunitarny a pri vhodnej volbe faz plati (¢/[¢)') = (|¢).
V unitarnom pripade je U linearny operator a z podmienky (¢/|¢)) = (o|UTU) = (¢[2p) vyplyva
U'U = UUT = 1.3 Antiunitarnemu pripadu sa budeme podrobnejsie venovat neskor.

Ak manipulacia U parametricky zéavisi od jednej alebo viacerych spojitych premennych, potom
takito manipuldciu nazyvame spojitou. Na druhej strane, ak existuje nanajvys spocitatelny pocet
manipulacii U daného typu, takéto manipulécie nazveme diskrétnymi.

MnoZina manipulacii spolu s operaciou skladania vytvara grupu.? Spojité manipulacie nutne ob-
sahuju identitu U = 1 ako limitny pripad. Ale operator U = 1 je unitarny, preto pre vSetky spojité
manipulacie musi byt operator U unitarny. Antiunitarnymi operatormi U teda mozu byt popisané
iba diskrétne manipulacie. Najdolezitejsim prikladom manipulacie s antiunitarnym U je tzv. inverzia
¢asu, ktorej sa budeme venovat neskoér. Az do odvolania preto budeme predpokladat, Ze operator U je
unitarny.

Nech maticové elementy operatora X pred manipuléciou st (x|X|¢). Aby sa tieto maticové ele-
menty pri manipuldcii nezmenili, musi platit, Ze po manipulacii veli¢ine X zodpoveda operator X' =
UXUT'. Naozaj, v takom pripade bude platit

| X [0y = (XUTX'U W) = (\UTUXUTU ) = (x| X |¢),

3Vysledok UUT = 1 vyplyva z pozorovania, ze U' je Tavou inverznou maticou k U a zo znamej skutocnosti, ze prava
a lava inverzna matica sa totoZné.

4Striktne vzaté, treba rozlisovat medzi manipulaciami (s prvkami g) a operatormi U(g). Grupu vytvaraji manipulacie
g, kym operatory U(g) tvoria (vo vSeobecnom pripade iba tzv. projektivnu) reprezentéaciu tejto grupy, pozri Zelentu
ucebnicu, str. 405.
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kde v poslednom kroku sme vyuzili, Ze U je unitarny operator.

Symetria fyzikalneho systému

Sktimany systém vyhlésime za symetricky vo¢i manipulacii U, ak sa jeho hamiltonian pri tejto mani-
pulécii nezmenti, t.j. ak plati H' = UHU' = H, alebo ekvivalentne [U, H] = 0. Manipulaciu U, voéi
ktorej je systém symetricky, nazyvame symetriou systému.

Priklady: posunutie a otocenie systému

Teraz ukdzeme, ze ak P je operator celkovej hybnosti Studovaného systému, potom operator posunutia o
a mozno vyjadrit v tvare T'(a) = e P/l 7afnime pripadom jednej bezspinovej astice v x-reprezentacii.
Nech stav pred posunutim je popisany vinovou funkciou v (x) a stav po posunuti mé vlnova funkciu
(x + a). Posunutt vlnova funkciu mozno dostat Taylorovym rozvojom povodnej vinovej funkcie:

Y(x+a) = (x) + (a- V) $(x) + % (a- V)*9(x) + ... = *Vo(x) = =P My(x),
pretoze P = —ihV. Dokaz pre N-Casticovu vlnova funkeciu ¥ (x1,...,xy) bezi analogicky:
Y(xy+a,...,xy+a)= EOWIE Vigy(x1,...,XN) = eia'P/h@/J(xl, Ce XN,
pretoze P = —ih Zf\; 1 Vi. Ak ma byt studovany systém symetricky voci vSetkym posunutiam, musi

pre vSetky a operator posunutia komutovat s hamiltonianom, [T'(a), H] = 0. Napriklad volbou infini-
tezimalne malych posunuti o a Tahko ukaZzeme, Ze potom musia v8etky komponenty operatora hybnosti
komutovat s hamiltonianom, [P, H] = 0. Stredné hodnoty operatorov, ktoré komutuji s hamiltonié-
nom, sa vSak v Case nemenia. Teda v translacne invariantnom systéme je hybnost zachovéivajicou
sa veli¢inou® a vlastné stavy takychto systémov mozno zvolit tak, Ze st zaroven vlastnymi stavmi
operatora celkovej hybnosti.

Analogickym postupom moZno ukézat, ze v systémoch s operatorom celkového momentu hybnosti
Jje Rla) = eI/l operatorom otofenia o uhol a okolo osi v smere vektora a. Ak je studovany
systém symetricky voéi otoCeniam, vztah [R(a), H] = 0 musi platit pre vSetky a. Preto musi platit
[J, H] = 0 pre vsetky zlozky J. KedZe (na rozdiel od hybnosti) zlozky operatora momentu hybnosti
navzajom nekomutuji, v rota¢ne symetrickom systéme sa nemoézu sucasne zachovat vSetky zlozky J.
Vlastné stavy systému vSak mozno charakterizovat velkostou momentu hybnosti J? a jednou z jeho
zloziek, povedzme J?, pretoze plati [H,J?| = [H, J*] = [J*,J?] = 0.

Vysledky pre posunutie a otoCenie mozno zovSeobecnit: vo funkcionélnej analyze sa ukazuje, Ze
kazdy unitarny operator U mozno zapisat v tvare U = ¢, kde A je hermitovsky operator. Preto ak U
je symetriou systému, potom plati [A, H| = 0 a veli¢ina popisana operatorom A sa zachovava (je tzv.
integralom pohybu).

Spektralne désledky symetrie

Najprv dokazeme fyzikalne ocCividné tvrdenie, ze ak st dva vlastné stavy systému zviazané operaciou
symetrie, potom ich vlastné energie musia byt rovnaké. Naozaj, nech [¢') = U|¢)) a nech H|¢)) = E|).
Pocitajme energiu stavu [¢)'):

H[Y") = HUY) = UH|¢) = UE|)) = EJ¢'),

kde sme v druhom kroku vyuzili, Ze [U, H] = 0. Teéria reprezentéacii nam (pre znamu grupu symetrie)
naviac umoziuje povedat, aké si mozné degeneracie (t.j. nasobnosti) energetickych hladin. Mozné de-
generacie si pritom dané iba grupou symetrie systému a nezavisia od explicitného tvaru hamiltonidnu.

Druhy vysledok, ktory dokdZeme, mozno pouzit na redukciu numerickej naro¢nosti rieSenia Sch-
rodingerovej rovnice pre systémy s integralmi pohybu A. UkaZeme, Ze maticové elementy hamilto-
nianu medzi stavmi s roznymi vlastnymi hodnotami o # 8 operatora A (t.j. medzi stavmi “s roz-
nymi symetriami”) st nulové. Naozaj, nech Al)) = a|y) a A|p) = [|¢). Pocitajme maticovy element

5Niekedy méame do &inenia so systémami, ktoré sa symetrické pri posunutiach iba v niektorych smeroch. Zlozky
hybnosti sa potom zachovéivaji iba v symetrickych smeroch.



(o|[A, H]|Y) = (¢|(AH — HA)|¢). Pretoze A je integralom pohybu, vysledkom musi byt 0. Ak vsak
vyuzijeme, ze stavy [¢), |¢) st vlastnymi stavmi A, z druhého vyjadrenia dostaneme

0= (= B) (Pl H[).

Ale kedze a # 8, musi byt (¢|H|1)) = 0, v zhode s nasim ocakavanim. Preto hamiltonian mozno dia-
gonalizovat postupne v podpriestoroch s roznymi symnetriami. Podobne ako pri diskusii o degeneracii
hladin, tedria reprezentacii umoziuje podobné tivahy dotiahnut ovela dalej.

Priestorova inverzia

Mnoho fyzikélnych tloh, napriklad t4 o pohybe elektronu v atome vodika, vykazuju tzv. symetriu voci
priestorovej inverzii. Ide o priklad diskrétnej symetrie popisanej unitarnym operatorom Up. Ziadame,
aby transformacné vlastnosti operatorov polohy, hybnosti a spinu Castice ¢ pri priestorovej symetrii
boli nasledovné:

v} = UprUl = —v;, p,=UppUL = —pi, S, =UpS;U}, =S, (6)

Posobenie na operatory r; a p; je prirodzené: pri invertovani zmenia znamienko vsetky polohy (merané
od centra inverzie). Nasledne zmenia znamienko aj rychlosti ¢astic. Pre moment hybnosti L; = r; X p;
preto musi platit U pLiU]TD = L; a transformad¢né vlastnosti spinu st désledkom pozorovania, Ze spin je
vniutorny moment hybnosti. Vektory, ktoré pri inverzii menia znamienko, nazyvame polarnymi, kym
vektory nemeniace znamienko nazyvame axialnymi.

Stoji za zmienku, Ze komuta¢né vztahy medzi transformovanymi polohami r; a hybnostami p} si
rovnaké ako vztahy medzi r; a p; v neinvertovanom systéme, [r}, pg] = [r;, p;], ako aj ma byt.

KedZe dve po sebe nasledujtce inverzie zodpovedaja identickej transformécii, Ziadame, aby platilo
U]% = 1, ¢ize UIZI = Up. Ale z unitarity vyplyva, Ze U;l = UITD7 teda Up = U;rj a operator Up je
hermitovsky. Tento operator preto zodpoveda fyzikalnej veli¢ine - (priestorovej) parite.

Ak pre nejaky problém plati, Ze jeho hamiltonian H zapisany pomocou dynamickych premennych r;,
pi a S; sa pri priestorovej inverzii (vo¢i pevne zvolenému pociatku) nezmenti, t.j. ak plati H = UpHU f ,
potom o tomto probléme povieme, Ze je symetricky voci inverzii. Vlastné stavy takéhoto systému
mozno charakterizovat vlastnou hodnotou P operatora Up, tzv. paritou stavu. Lahko nahliadneme, Ze
pripustné st iba dve hodnoty parity P = +1. Naozaj, nech Up|i)) = P|). Potom U3|¢) = P2?[3)), ale
kedZe U% = 1, musi platit P? = 1.

Nakoniec prepiSeme vztahy (6) v jazyku druhého kvantovania pre elektrony. Za bazu jednocastico-
vych stavov vezmeme Wannierove orbitaly v mriezkovych bodoch R a obmedzime sa na stavy z jediného
pasu. Nech pre jednoduchost je parita Wannierovych orbitalov (tzv. vnatorna parita) P = +1. Potom
vztahy (6) moZno zapisat ako transformaéné vztahy pre krea¢né a anihila¢né operatory pre elektrony
v orbitali R a s priemetom spinu o = +1:

) = Upch Uh = (cro) = UperoUh = (7)
Ro PCRsY P _Ro’ Ro PCRoUp = C-Ro-

Ak naviac uvazime, Ze fyzikalne vakuum ma paritu 1, t.j. Up|0) = |0), vztahy (7) nam povedia nielen
ako sa transformuji operétory, ale aj stavy systému.

Obratenie casu
Dalsou ¢asto Studovanou diskrétnou manipulédciou je operacia otocenia Casu 7. Pri tejto manipulécii
ziadame, aby platili nasledovné transformacné vztahy pre operatory polohy, hybnosti a spinu ¢astice i:

v,=Tr, T =r;, p,=TpT =-pi, S;=TS,T =-8,. (8)

Pri otoCeni ¢asu v nejakom okamihu sa totiz v tomto okamihu nezmenia polohy ¢castic, ale iba ich
rychlosti. Nasledne zmenia znamienko aj momenty hybnosti L; = r; X p;, a preto ziadame aj zmenu
znamienka spinu.

Je tu v8ak problém: skimajme napriklad operatorovu identitu [z,p] = ik pre jednu z Castic. Po
obrateni ¢asu sa operator [z,p] transformuje nasledovne: Tz, p]TT = [T2T, TpTT] = [z, —p] = —ih.
Na druhej strane, ak by operator T bol unitarny, potom by sa c-¢islo ¢h pri obrateni ¢asu nezmenilo,
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TihT' = ih. Teda po obrateni ¢asu by sa rovnost operatorov [z,p] a ih narusila. Uvidime, Ze tento
problém moZno odstranit, ak budeme predpokladat, Ze operator T je antiunitarny.

Antilinedrne operdtory
Operétor A posobiaci v Hilbertovom priestore nazveme antilinearnym, ak pre v8etky dvojice stavov
|9), |x) z Hilbertovho priestoru a pre vSetky dvojice komplexnych &isel o, S plati

Alalg) + BIx)) = a" Al¢) + 57 Alx) = a*|A¢) + 57| Ax),

kde sme stavy A|¢) (kde operéator A pdsobi doprava) oznadili skratene |A¢). V tomto texte budeme
zakazdym predpokladat, Ze antilinearny operator posobi doprava.b

V Hilbertovom priestore zvolme Iubovolna uplnta ortonormélnu bazu s prvkami |n),|m),.... V
tejto baze mozeme pisat Aln) = > Ann|m), kde c-¢isla Ay, st maticové elementy A,,,, = (m|An).
Posobenie antilinearneho operatora A na veobecny stav [¢) = ) cy|n) je potom dané vztahom
Alg) = Zm,n CpAmn|m).

Antilinearny operator A! hermitovsky zdruzeny k operatoru A definujeme jeho pésobenim na
bazové vektory, Afln) = 3" A,,|/m). Viimnime si, ze tito definicia sa 1i& od definicie operatora
hermitovsky zdruzeného k linearnemu operatoru. Posobenie antilinearneho operatora Af na vieobecny
stav [1h) = > dn|n) je potom dané vztahom Af|)) = > mn pAnm|m). Odtialto Tahko nahliadneme,
7e plati

(9l ATY) = (| Ag). (9)

Antiunitarne operdtory
Antilinearny operator U, pre ktory plati YUt = 1, nazyvame antiunitarnym operatorom. Pre kazdy stav
[v) =3 dn|n) ma teda platit, Ze UUTY) = [1b). Rozvojom oboch stran tejto rovnosti do bazovych
stavov ahko nahliadneme, Ze matica koeficientov Uy, musi byt unitarna, ) UmU;,, = Okn. Na
druhej strane, z ekvivalentnej formulécie unitarity matice ) Umilhy,,, = Oky explicitnym vypocétom
Tahko ukazeme, Ze pre vietky vektory |¢) plati UT|U¢) = |¢), Gize zaroven plati UTU = 1.

V dalom vyklade vyuzijeme dve vlastnosti antiunitarnych operatorov U:
(i) ak ¢ je oby¢ajné c-¢islo, potom plati U = cUUT = ¢*;
(ii) z rovnice (9) vyplyva, Ze pre skaldrne suciny plati (Ux|Uy) = (YUTUX) = (]x).

Operdtor obrdtenia casu

Nech 7 je antiunitarny operétor, ktory spliia vztahy (8). UkiZeme, Ze tento operator realizuje obratenie
Casu. Naozaj, nech pri tejto manipulacii stavy |[¢)) prejda na stavy [¢)') = |Tv). Pre skalarne stciny
potom plati (¢'|v') = (T@|T) = (|¢), Cize stvorce prekryvov |(1)]¢)|? zostédvaji nezmenené, ako aj
mé byt.

Podobne operéatorova identita [z,p] = ih nie je pri obrateni ¢asu narusend. Naozaj, pri obrateni
¢asu sa operétor [z, p| transformuje nasledovne: T [z, p|TT = [Tz T, TpT'] = [z, —p] = —ih. Na druhej
strane, ked7ze operator T je antiunitarny, c-¢islo ifi sa transformuje ako TihTT = —ih. Preto rovnost
operatorov [z, p| a ik nie je pri obrateni ¢asu naruena.

Dvakrat po sebe aplikovana operacia obratenia ¢asu 72 vracia systém do poévodného stavu a musi
byt rovna konstante. D4 sa ukézat (pozri cvicenie), Ze tato konstanta je rovna +1, t.j. 72 = +1.

Nakoniec opét prepiSeme vztahy (8) v jazyku druhého kvantovania pre elektrony v tej istej béaze
ako pri priestorovej inverzii:

/
(ck(,) = ’7’01{[}_7#T = ack_o,, (cro) = TeroT' = ocr_y, const’ = TconstT ' = const*. (10)

Predpokladali sme pritom, Ze Wannierove orbitéaly sa pri ¢asovej inverzii nezmenia. Ak naviac uvazime,
ze pre fyzikalne vakuum plati 7|0) = |0), vztahy (10) nam opét povedia nielen ako sa pri obrateni ¢asu

T.ahko overime, Ze stéin AB dvoch antilinearnych operatorov A, B je linearny operator. Potom pri vypoéte maticového
elementu (| AB|¢) modZeme operator AB nechat posobit dolava aj doprava a dostaneme rovnaky vysledok. Ak by sme
tento maticovy element chceli interpretovat pomocou posobenia B doprava s vysledkom |B¢) a posobenia A dolava s
vysledkom (1A, museli by sme ziadat, aby platil vztah (| AB|¢) = [(Y.A|B¢)]", pretoze ak |¢) = > caln), potom v
rozvoji (Y| AB|¢) figuruji koeficienty c,,, kym v rozvoji |B¢) figuruju koeficienty c;,. Lahko overime, Ze tento vtah bude
splneny, ak pdsobenie dolava definujeme vzfahom (¢.A|x) = [(¢|Ax)]"
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transformujii operatory, ale aj stavy systému. Lahko tieZ moZno overit, Ze v systéme s N elektronmi
plati 72 = (—1)" (pozri cvicenia).

Symetrie AFMH modelu

Pomocou vztahov (6,8) Tahko nahliadneme, ze AFMH model je symetricky voci priestorovej symetrii
aj voli obrateniu ¢asu. Naviac, ak model formulujeme na konecnej mriezke s periodickymi okrajovymi
podmienkami, potom AFMH model je symetricky vo¢i posunutiam Ty, kde a je Tubovolny mriez-
kovy vektor. D4 sa ukazat, ze v takom pripade mozno vlastné stavy modelu charakterizovat pomocou
kvéazihybnosti (pozri cvi¢enia).

Nakoniec preskimajme symetriu AFMH modelu voé¢i otodeniam v spinovom priestore. Definujme
operator celkového spinu mriezky Stot = > ; S;. Lahko sa nahliadne, Ze tento operator splha komu-
tacné vztahy pre spin (pozri cvi¢enia). V tomto odstavci ukédzeme, ze AFMH hamiltonian komutuje so
vietkymi zlozkami operatora Stot, ako aj s operatorom SZ, = (SZ,)? + (SE,)? + (S&)%:

[H,Swe] =0, [H, Sy = (11)

KedZe operatory spinu na roéznych mriezkovych bodoch komutujt, prvy zo vztahov (11) bude platit,
ak [S;-S;, Sf +5 Jk] = 0 pre 'ubovolI'nu kartézsku zlozku k spinu. Ak skalarny suéin zapiSeme po zlozkach
a pouzijeme Einsteinovu sumacni konvenciu, dostaneme

[SiSt, SF+ Sk = [SL, SF1S% + SI[SL, S¥] = iepm (S S, + SLST") = 0
kde v druhej rovnosti sme vyuzili komutaény vztah [Sf,Sﬂ = i€pmS;" pre operatory spinu, kde
€1km je uplne antisymetricky tenzor. V poslednej rovnosti sme vyuzili, Ze tenzor €, je pri zdmene
indexov m a [ antisymetricky, kym vyraz S;”S;- + SfS]m je pri tejto operécii symetricky. Tym je prvy
zo vztahov (11) dokizany. Zo vztahu [H, SE,] = 0 naviac trivialne vyplyva [H, (SE,)?] = 0, pretoze
[H, (SE,)?] = H(SE,)?—(SE,)2H = SE HSE, Sk HSE . Teda druhy zo vztahov (11) je jednoduchym
dosledkom prvého vztahu. Tym je dokaz komutacnych vztahov (11) je hotovy.

Désledkom vysledku (11) a komuta¢ného vztahu [SZ.,, Stot] = 0 je, Ze vlastné stavy AFMH modelu
mozno zvolif ako vlastné stavy operatorov celkového spinu S2; a jeho priemetu na zvolent os, napr.

z
tot*

Cvicéenia

1. Ukazte, ze ak Stvorec antiunitdrneho operatora je rovny konstante, potom tato konStanta je rovna +1 alebo -1. Po-
mocou vztahov (10) ukazte, ze pre lubovolny bazovy stav |1) systému s N elektronmi plati T2[y) = (—1)V |4), a preto
T2 = (-1,

2. Kramersova degeneracia. Ukazte, Ze v systéme s neparnym poctom elektrénov, pre ktory plati [T, H] = 0, ku kazdému
vlastnému stavu |1)) systému existuje k nemu ortogonalny stav |1') s tou istou vlastnou hodnotou energie.

3. Diskrétna translaéna symetria AFMH modelu. Posunutie o mriezkovy vektor a definujme vztahom T,SrT, = SR+a-
Ukazte, Ze posunutie Ty je symetriou AFMH modelu s periodickymi okrajovymi podmienkami. Presvedéte sa, ze prvky
grupy posunuti navzajom komutuji. (Grupa posunuti je abelovskai.) Podla tedrie reprezenticii mozno pre abelovski
grupu zvolit sadu bazovych stavov |k, A) kde fik je tzv. kvazihybnost a A st v8etky ostatné kvantové ¢isla stavu (ako
napr. Sior a S ), pricom plati Tu|k, \) = e'*2|k, \). Ukazte, ze kvazihybnost /ik je definovana modulo vektory reciproé-
nej mriezky.

4. Dokazte, Ze operator Sio, splita komuta¢né pravidla pre spin. Aké hodnoty SZ, pripadaji do tvahy na mriezke s

parnym poc¢tom A bodov?

3 Heisenbergov model: exaktné vysledky

V tejto a v dvoch nasledujucich prednaskach budeme sktimat AFMH model (5) na mriezke, ktora
pozostava z 2 podmriezok A a B s rovnakym poc¢tom N /2 spinov, pricom interaguju iba spiny z
opacnych podmriezok. Takato mriezku budeme nazyvat bipartitnou a jej koordina¢né ¢islo oznacime
z. Okrem toho budeme predpokladat, Ze v uzloch mriezky st spiny o velkosti S. V predoslej prednagke
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sme ukézali, Ze v efektivnom modeli pre jednopasovy Hubbardov model sa realizuje S = %, ale da sa
cakat, ze v komplikovanejsich situaciach sa mézu vyskytnat aj modely s vyS$im spinom S.

Najprv ukdzeme, Ze zakladny stav (kvantového) AFMH modelu nie je totozny s klasickym zaklad-
nym stavom. Potom sformulujeme niekolko presnych vysledkov pre skutoény zékladny stav modelu.
Hlavnym vysledkom je, Ze celkovy spin zakladného stavu AFMH modelu na bipartitnej mriezke je
nulovy.

Explicitny tvar AFMH modelu
V dalsom vyklade bude ¢asto uzitoéné explicitne rozpisat skalarny sacin v definicii AFMH modelu (5).
Tak dostaneme rozklad AFMH hamiltonianu

1 _ _
H=7) [s;s; + 5 (878 +578))| = He+ HL, (12)
(ij)
kde H, je hamiltonian tzv. Isingovho modelu a ¢len H |, ktory pochadza zo zloziek x,y skalarneho
sucinu, je zapisany pomocou tzv. zvySovacich a zniZzovacich operatorov spinu, pozri dodatok.

Dvojspinovy model

V tomto odstavci preskimame zakladny stav dvojspinového modelu s hamiltonidnom H = JS; - Ss.
Vyuzijtac tvar hamiltonianu (12) Tahko overime, Ze ak spiny maja velkost S, potom energia klasického
(Néelovho) zakladného stavu |[N) = | + 5, —S) je (N|H|N) = —JS%. Na druhej strane, presné riesenie
dvojspinového modelu dostaneme nasledovnym prepisom hamiltonidnu: H = % (SZ — S? —S3), kde
sme zaviedli operator celkového spinu Sy = S1 + So. Je zrejmé, Ze v zédkladnom stave nadobuda cel-
kovy spin minimalnu moznt hodnotu, Sio; = 0. Kedze S? = S2 = S(S + 1), presna energia zakladného
stavu je Ey = —JS(S + 1). Ukazali sme teda, ze Néelov stav nie je zakladnym stavom dvojspinového
AFMH modelu.

Model na mriezke

V tomto odstavci ukdZzeme, ze Néelov stav |N) (t.j. stav so spinmi s priemetom +S na podmriezke
A a spinmi s priemetom —S na podmriezke B) nie je vlastnym stavom AFMH hamiltonianu, ¢ize ne-
moze byt ani zdkladnym stavom. NaSou tlohou bude ukazat, Ze stav H|N) nie je c-¢iselnym nasobkom
stavu |N). Lahko nahliadneme, ze H,|N) = —3N2JS%|N), teda klasicky stav |N) je vlastnym stavom
z-ovej Casti Heisenbergovho modelu. AvSak pésobenie operatora H| na stav |N) vyrdba konfiguracie
s priemetom spinu S — 1 na podmriezke A a s priemetom spinu —S + 1 na niektorom zo susednych
bodov v podmriezke B, ktoré su ortgonalne k |N). Preto | N) zjavne nie je vlastnym stavom operétora
H | . Presny zakladny stav AFMH modelu je znamy iba pre linearnu retiazku spinov, pre viacrozmerné
systémy vSak zakladny stav nie je znamy.

Nerovnosti pre energiu zdkladného stavu

Teraz ukazeme, Ze napriek tomu, Zze vlnovi funkciu zékladného stavu AFMH modelu nepozname,
jeho energiu Ey vieme odhadnut pomerne dobre. Horny odhad energie zakladného stavu dostaneme
porovnanim s vhodnym varia¢nym stavom - napr. s energiou Néelovho stavu (N|H|N), pre ktorta podl'a
predoslého odstavea plati (N|H|N) = (N|H,|N) = —3NzJS2.

Dolny odhad Ey dostaneme nasledovne. Pre kazdy mriezkovy bod j definujme operator H; ako tu
¢ast Heisenbergovho modelu, do ktorej vstupuje spin S;. Hamiltonian potom mozZno pisat ako stucet
prispevkov Hj; od jednotlivych mriezkovych bodov j, H = %ZJ Hj, kde faktor % zohladhuje, Ze v
takomto rozklade je kazda vizba zapocitana dvakrat. Ak teraz energiu zédkladného stavu hamiltonianu
H; oznacime ¢, potom pre energiu zékladného stavu musi platit Fg > %J\/’ e’

Teraz zostava explicitne vypocitat e. Ak definujeme operator L; = > . S; 7, kde suma prebieha
cez z spinov susediacich s bodom 7, potom hamiltonian H; moéZzeme vyjadrit v tvare

H;j=JS;-Lj=%[(S; +L;)* - 5(S+1) - L3].

Ak totiz pre Tubovolny stav celej mriezky [1) pouzijeme rozvoj |1) = 3 . car|t])|¢"), kde |1]) st vlastné stavy
operéatora H; a |¢*) je Tubovolna ortonormalna baza pre mriezku s vylacenim bodu 5 a jeho najblizsich susedov, potom
Tahko nahliadneme, ze plati (Y|H;[¢) > (¥7|H;|¥)) = e, kde [¢7) je zakladny stav operdtora H;. Odtialto vyplyva
(WIHIY) = 5 3, (I Hjlv) > Fe.
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Nech vel'kost spinu L; v zdkladnom stave je m. Potom velkost spinu S;+L; musi byt aspoii [ = |[m—S].
Energiu zikladného stavu dostaneme minimalizéciou ¢ = 4 min,, [[(I +1) — S(S + 1) — m(m + 1)].
Lahko nahliadneme (pozri cvicenia), Ze minimum sa realizuje pre maximélne mozné m = 25 a energia
v mimime je ¢ = —JS (25 + 1).

Kombinéciou horného a dolného odhadu dostdvame nasledovny exaktny vysledok pre energiu za-
kladného stavu:

1 Nz
—) < < -
zS)_EO_ 2

Nz

2
1
5 971+

JS2. (13)

Relativne korekcie energie oproti klasickému hornému odhadu teda mézu byt nanajvys radu % Tieto
korekcie budi malé na mriezkach s vysokym koordina¢nym ¢islom z a pre velké spiny S. Najvacsie
kvantové korekcie mozno naopak ocakavat pre spiny S = % na linearnej retiazke, kde z = 2.

Vinové funkcie v baze spinoviyjch konfigurdcii
Odteraz budeme predpokladat, Ze Heisenbergov model popisuje spiny S = % Budeme skiimat rozklady
vlnovych funkeii vlastnych stavov do spinovych konfiguracii [¢) = > u ay|p).

Zatnime Stadiom maticovych elementov H,,, = (u|H|u') Heisenbergovho hamiltonianu v tejto
baze. KedZe hamiltonian Heisenbergovho modelu mézeme zapisat v tvare H = H, + H |, pozri rov-
nicu (12), stadi separatne presktimat maticové elementy H, a H,. Operator H, je zjavne diagonalny,
kedze nepreklapa spiny: (u'|H|u) = E;6,s, s realnou hodnotou energie E}. Vysledkom posobenia
operatora H| na stav |u) je linearna superpozicia stavov |u'), z ktorych kazdy vznikne preklopenim
dvojice spinov v roznych podmriezkach. Maticové elementy (u/|H | |u) teda nadobtdaji iba dve mozné
hodnoty: %, ak |p') moze vzniknut takymto preklopenim, alebo 0, ak takéto preklopenie neexistuje.
Naviac zjavne plati (u/|H|p) = (u|H|¢). To znamena, ze matica H,, je realna a symetrickd a
vSetky jej nediagonalne prvky st nezaporné.

SchR pre vlnovt funkciu vlastného stavu H|v) = E|t) moZno v baze spinovych konfigurécii pisat
ako maticovi rovnicu

Hypa = Eay (14)

s realnou vlastnou hodnotou E. Ak teraz rovnicu (14) s¢itame (alebo od¢itame a vysledok vydelime
imaginarnou jednotkou) s rovnicou k nej komplexne zdruzenou, dostaneme nové vlastné vektory a,+ay,
a %(a“ — a:) s tou istou vlastnou energiou, ktoré su explicitne redlne. To znamené, Ze vlastné stavy v

béze spinovych konfiguracii mozno volit ako ¢isto realne.

Marshallovo znamienkové pravidlo
Nech (normalizovana) vlnova funkcia zékladného stavu AFMH modelu ma tvar |¢)) = >_  au|p). Pre
strednit hodnotu energie zdkladného stavu potom dostavame

J
(WIH) = lauPEL + 5 an D aw, (1)
H SN0

kde do sumy g/ (p) prispievaju iba tie konfiguracie |p'), ktoré mézu vzniknat preklopenim dvojice spinov
v konfiguracii |u). Pytajme sa teraz, akd volba znamienok optimalizuje energiu (¢|H|¢) pri danych
velkostiach koeficientov |a,|. Odpoved dava tzv. Marshallovo znamienkové pravidlo:

ap = (~1)P® x Ja, (16)

kde P(u) je pocet spinov 1 na podmriezke A. Naozaj: kedZze kazdé preklopenie spinov na bipartit-
nej mriezke meni pocet spinov v podmriezke A, pri takejto volbe znamienok vo vyraze (15) plati
aya, = —layllay], o (pre J > 0) zjavne minimalizuje stredntt hodnotu (1| H |v).

Zdkladné stavy v sektoroch s fixovanym Sg;

Skiimajme normovany zakladny stav v sektore s fixovanou hodnotou celkového spinu SZ,;. V rozvoji
takéhoto stavu do spinovych konfiguracii mézu samozrejme vystupovat iba tie konfiguréacie |u), ktoré
maji predpisani hodnotu S§;. V tomto odstavci ukdZzeme, Ze Ziaden z koeficientov a, pre pripustné
konfiguracie nesmie byt nulovy. Dékaz urobime sporom a pobeZzi v dvoch krokoch.
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V prvom kroku predpokladajme, Ze pre niektortt z pripustnych konfiguracii |u) plati a, = 0.
UkaZzeme, 7ze potom aj pre vSetky konfiguracie |u'), do ktorych sa z |u) da dostat preklopenim dvojice
spinov, musi platit a,, = 0. Toto pozorovanie plynie z rovnice (14), pretoze na pravej strane dostaneme
nulu a na lavej strane dostaneme stcet koeficientov a,,, pricom vsetky z nich podla Marshallovho
pravidla musia mat rovnaké znamienka - teda musia byt nulové.

V druhom kroku si sta¢i uvedomit, Ze z l'ubovolnej konfiguracie |u) sa da dostat sériou preklopeni
dvojice spinov do I'ubovolnej inej konfiguracie |4') v tom istom sektore Sg, pozri cvi¢enia. Preto po-
stupné aplikovanie kroku 1 vedie k zaveru, Ze ak pre jednu z konfigurécii plati a, = 0, potom vSetky
ostatné amplittdy a,, v danom sektore musia byt tiez nulové. To v8ak znamena, Ze povodny stav nebol

normovany. Dostali sme spor.

Model H
Sktimajme pomocny (nefyzikalny) model pre spiny S = % na bipartitnej mriezke s N' bodmi s hamil-

tonidnom
Hyo=J) ) 8;-8,,
i€A jEB
v ktorom v8etky spiny z podmriezky A interaguja so vSetkymi spinmi z podmriezky B. Model teda
obsahuje interakcie aj medzi nekone¢ne vzdialenymi bodmi, odtial jeho oznacenie Hyo.
Ak zavedieme celkové spiny podmriezok S 4, Sg a celkovy spin celej mriezky Sior = S4 +Sp, Tahko
nahliadneme, Ze podobne ako v dvojspinovom modeli plati

J
Hoo:JsA-sB:ﬂsfotfsiﬁs?B].

Pre nas dalsi vyklad je dolezité pozorovanie, Ze v sektore S&, = M je energia d alekodosahového modelu
H., minimalizovana maximalizaciou Sy = Sp = N /4 a minimaliziciou celkového spinu, Sior = M.
Lahko sa nahliadne, Ze SchR pre Hy ma opit tvar (14) a jediny rozdiel oproti AFMH modelu je,
ze matica (Hoo),yr obsahuje viac nediagonalnych prvkov. Preto pre zékladny stav [¢oc) = >_, bulp)
modelu H, opit plati Marshallovo znamienkové pravidlo a vSetky koeficienty b, st nenulové.

Spin zdkladného stavu

KedZe pre AFMH model ako aj pre Hy, plati Marshallovo znamienkové pravidlo, ich zakladné stavy
vo fixovanom sektore Si; = M, t.j. [v) = >, aulp) a |es) = >°, bulp), nemdzu byt navzajom kolmé.
Naozaj, pri rovnakej znamienkovej konvencii bude platit

(Yoolth) = Zb:au = Z bullau| >0,
p p

pretoze vietky koeficienty |a,| aj |b,| musia byt nenulové.

Na druhej strane, vdaka rota¢nej invariancii hamiltonianov H a H., musia mat stavy [¢) a |ts) 0s-
tré hodnoty celkového spinu. Tieto hodnoty ozna¢me Sior & Sg, priCom vieme, ze Sgo, = M. Skimajme
velidinu (o0 |S2,4]10). Ak operdtor S2., nechame posobit doprava, dostaneme Siot(Stot + 1) (oo |t0). Pri
posobeni dolava vSak ten isty vyraz da hodnotu M (M + 1)(¢oc|t). Kedze (1poo|t)) # 0, aby sa oba
vyrazy rovnali, musi zjavne platit Syt = M. Teda zékladny stav Heisenbergovho modelu v sektore
S = M nesie celkovy spin Sior = M, t.j. miniméalnu mozni hodnotu v danom sektore. Lahko sa
naviac ukaze, ze v sektore S¢,; = M existuje jediny stav, ktory minimalizuje energiu. Dva rozne dege-
nerované zakladné stavy by totiz museli spliiat Marshallovo pravidlo, a preto by nemohli byt navzajom
ortogonélne.

Ostava uz len zistit, ktory sektor S7,, = M dava absolitne najnizsiu energiu AFMH modelu. Ttto
otazku mozno jednoducho zodpovedat, ak si uvedomime, 7e (vdaka rotacnej invariantnosti) energia
nemdze zavisiet od priemetu celkového spinu S, ale iba od jeho velkosti Sior. Ukazali sme totiz, ze v
sektore SZ, = M, v ktorom sa nachadzaji stavy s celkovym spinom Sior > M, je jedinym optimalnym
stavom stav Sio; = M. To vSak znamené, Ze energia zakladného stavu ako funkcia Sio; spliia nerovnost

EO(Stot) < E(](Séot), ak Stot < Séot'
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Teda energia AFMH modelu je (ostro) rastiicou funkciou Sior a zékladny stav AFMH modelu na bi-
partitnej mriezke je singlet, tj. stav s celkovym spinom Sy, = 0.

Cvicenia

1. Nech |N) je Néelov stav. Linearnou kombinéciou kolkych spinovych konfiguracii je stav H|N)?

2. Nech m je nasobkom S, ktory nadobtuda hodnoty od 0 po zS a nech | = |m — S|. Najdite minimalnu mozna hodnotu
energie € = Z ming, [[(I + 1) — S(S + 1) — m(m + 1)].

3. Na §tvorcovej mriezke dokazte, Ze z l'ubovol'nej konfiguracie |u) sa d4 dostat sériou preklopeni dvojice susednych spinov
do Tubovol'nej inej konfiguracie |p1') v tom istom sektore Sg.

4. Vypocitajte velkost podpriestoru Sg,, = M pre systém N spinov S = % Pre aké M je podpriestor najvacsi? Porov-

najte velkost tohto podpriestoru s velkostou celého Hilbertovho priestoru.

4 Heisenbergov model: spinové viny

Veri sa,? Ze zakladny stav AFMH modelu na hyperkubickych 2D a 3D mriezkach mozno popisat pomo-
cou poruchovej tedrie, vychédzajic z neporuseného hamiltonianu H, s klasickym zakladnym stavom
(Néelov stav), ak H | vezmeme ako poruchu. V tejto prednaske skonstruujeme taktto poruchovi teoriu
pre spiny velkosti S. Otéazke o hlbSom vyzname takto skonstruovaného zakladného stavu, napr. jeho
symetriach, sa budeme venovat v nasledujicej prednaske.

Bozoénova reprezentacia spinov
Hilbertov priestor pre spin S v mriezkovom bode i pozostava z 2S5 + 1 stavov s roznymi priemetmi na
fixovani os, v naSom pripade os z: S7 = 5,5 —1,..., -5 +1,—-S5. Nech v klasickom Néelovom stave je
priemet spinu v danom mieste povedzme S? = S. Po zapnuti poruchy H; budt v danom mieste okrem
stavu S7 = S s nenulovou (avSak mensou) pravdepodobnostou pritomné aj ostatné priemety spinu.
Nagim cielom v tomto odstavci bude interpretovat 25 + 1 spinovych stavov ako bozénové stavy
sn; = 0,1,...,25 bozénmi. Priradenie urobime tak, Ze najpravdepodobnejSej hodnote spinu prira-
dime stav s 0 bozénmi. Pocet bozénov potom bude popisovat odchylku od klasického stavu v danom
mriezkovom bode. Predpokladajme teda, Ze na podmriezke A plati S7 ~ S, kym na podmriezke B je
S? ~ —S. Spinové operatory budeme reprezentovat pomocou bozénovych operatorov podla Holsteina
a Primakoffa, pricom explicitny tvar tejto reprezentacie zavisi od podmriezky:

Bozonovd reprezentdcia spinu v bode © na podmriezke A

Namiesto trojice operatorov spinu S7, S’ii zavedieme kreacné a anihila¢né operatory aj, a;, ktoré splhaji
kédnonické komutacné vztahy pre bozény. Pomocou tychto operatorov vyjadrime spinové operatory
nasledovne:

S7=S8—dala;, SF=+28

V tychto vyjadreniach treba vyrazy v/1 + x rozumiet ako Taylorov rozvoj, t.j. v1 +x = 1+5— “”—; +...

Priamym dosadenim sa T'ahko nahliadne, Ze ak operatory aj, a; spliiaju bozénové komutaéné vztahy,
potom operatory (17) spliiaji komutaéné vztahy pre operatory spinu (pozri cvicenia).

Z vyjadrenia pre operdtor S vyplyva, ze 25 + 1 stavov S7 = 5,5 —1,...,—-5+1, -5 je reprezen-
tovanych stavmi s n; = 0,1,...,2S a-bozénmi (zniZova¢mi spinu). V Hilbertovom priestore bozénov
ale existuju aj (nefyzikalne) stavy s va¢sim poc¢tom castic, t.j. s menSou hodnotou S?. Vsimnime si
vSak, ze podla (17) aplikicia zniZovaca S; na stav s priemetom S7 = —S da nulu! Preto tieto stavy

nie st dosiahnutelné a teoria je konzistentna.

Bozonovd reprezentdcia spinu v bode j na podmriezke B
Namiesto trojice operatorov spinu S7, SZ-i zavedieme tentokrat bozonové krea¢né a anihila¢né operatory

80krem iného na zaklade numerickych simulécii a difrakénych experimentov.
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bz, b;. Pomocou tychto operdtorov vyjadrime spinové operatory nasledovne:

S7 =S +blb = vV28b! bTb —281/1 bTb 18
§ =S N1 as ~ 3 (18)

Opét sa Tahko nahliadne, Ze ak operatory bl-L, b; splhaji bozénové komutaéné vztahy, potom opera-
tory (18) spliaji komutacné vztahy pre operatory spinu.

Z vyjadrenia pre operator S? vyplyva, Ze stavmi s n; = 0,1,...,2S b-bozénmi (zvySovacmi spinu)
je v tomto pripade reprezentovanych 25 +1 stavov S7 = —S, =S +1,...,5—1,5. Z rovnakého dovodu
ako na podmriezke A nie si stavy s vadsim poctom bozénov dosiahnutelné.

Heisenbergov model v bozénovej reprezentacii

Priblizenie spinovijch vin

Ak zavedieme z vektorov 7 spéajajucich zvoleny mriezkovy bod s jeho najbliz8§imi susedmi, potom
Heisenbergov model na mriezke s podmriezkami A a B mozno zapisat v tvare

H=1J7Y Y "Si-Sis,

€A 7=1

kde suma bezi cez N'/2 bodov i v podmriezke A a body i + 7 lezia v podmriezke B. Vimnime si, Ze
kazdé dvojica najblizsich susedov je takto zapocitané prave raz.

Nasim cielom bude popisat zédkladny stav AFMH modelu a jeho excitacie s malymi energiami.
Budeme preto predpokladat, ze iba malo spinov je excitovanych. Hamiltonidn prepiSeme pomocou re-
prezentacie Holsteina-Primakoffa (17, 18) a vysledok rozvinieme do kvadratickych ¢lenov v operatoroch
a, b. Takéto priblizenie nazyvame priblizenim spinovych vin. Pévod tohto nazvu sa ozrejmi neskor. Ak
vyuZijeme vztahy

1 1
2 — _
S8 ~ —S% + S(ala; + blby), 5518~ Saiby, 5878 ~ Sabl,
dostaneme nasledovny kvadraticky hamiltonidn v operatoroch a, b:
H~-N2552 4 s ! bib; | + 7S b 1
B L RTEH PIUED S T ) oI (LSRRI BT
€A JjEB €A T=1

Prvy ¢len v hamiltoniane (19) popisuje energiu klasického Néelovho stavu. Treti ¢len popisuje kvantové

korekcie sposobené spinovymi fluktuaciami H | . Druhy ¢len zohladnuje, Ze spinové fluktuécie zvySuja
Isingovu energiu H,.

v
1. BRILOD (Mo VA FoNA

Obr. 1: Heisenbergov model na Stvorcovej mriezke. Vlavo: realny priestor. Vpravo: reciproény priestor.

Translacnd invariantnost

Pre konkrétnost majme na chvilu na mysli 2D hyperkubicka (t.j. §tvorcovi) mriezku. Hoci AFMH
model je invariantny vo¢i posunutiam o Tubovolné nasobky vektorov (a,0) a (0,a), klasicky Néelov
stav sa zreprodukuje iba pri posunutiach o nasobky vektorov a; = (a,a) a as = (a,—a), t.j. iba pri
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tych posunutiach, ktoré prevadzaju podmriezku A do podmriezky A (a nie do B). Teda transla¢na
symetria Néelovho stavu je nizsia nez symetria AFMH modelu. Naviac, elementarna bunka Néelovho
stavu s elementarnymi vektormi a; a ay obsahuje 2 body p6vodnej mriezky (po jednom z podmriezok
A a B) a je oproti nej zrotované o 45°.

Vdaka translacnej invariantnosti AFMH modelu je vyhodné definovat nasledovné Fourierove trans-
formacie bozénovych operatorov na podmriezkach A a B s A//2 bodmi:

=/ 2 —ik-R; P ]2 —ikR, T
a; = NZG ¢ air(, b; = NZe R
k k

Vinovy vektor k v tychto vyrazoch lezi v recipro¢nom priestore podmriezky A, t.j. v tzv. magnetickej
zéne, ktord je zrotovana o 45° a ma poloviény objem oproti Brillouinovej zéne pévodnej mriezky. V
magnetickej zéne sa nachadza N'/2 dovolenych k-bodov a operatory ay a by splhaji také isté bozénové
komutac¢né vztahy, ako operatory a; a b; (pozri cvicenia).

Po Fourierovej transformécii nadobudne hamiltonian v spinovo-vlnovom priblizeni tvar?

N
H = —TZJS2 + JSz Z {a;r{ak + 00 b+ malbl |+ akb—k)] ) (20)
K

kde sme zaviedli oznagenie v = 1 3. ¢™®7. Porovnanie vysledkov (19) a (20) ukazuje, Ze Fourierova
transformacia odstranila podstatny problém hamiltonidnu (19), ktorym bolo vzajomné previazanie
vBetkych bozénovych operatorov, a v hamiltoniane (20) st uZ zviazané iba mody ak a bik.

Diagonalizdcia spinovo-vinového hamiltonidnu

Nasim kone¢nym cielom bude zapisat hamiltonian (20) ako stcet volnych bozénovych modov (alebo
harmonickych oscilatorov), podobne ako sa nam to podarilo pri skiimani kmitov mriezky v harmo-
nickom priblizeni. Ak zavedieme stipcovy vektor bozénovych operatorov zy a c-Giselntt maticu My

pomocou vztahov
(0373 1 Yk >
Tk = , My = ,
() om0

potom hamiltonian (20) moézeme formélne zapisat v maticovom tvare

H= _AgZJS(S+1) +JSZE$LMk$k- (21)
Kk

Tu si treba vSimnut, ze kvoli prehodeniu poradia operatorov bik a b_y oproti hamiltonianu (20) sa
zmenil aj prvy (c-Giselny) ¢len v hamiltoniane (21).

Ako uvidime o chvilu, ak chceme hamiltonian (21) zapisat ako siacet volnych bozonovych modov,
potrebujeme od médov zx prejst k novym moddom &, a to tak, aby hamiltonian zapisany pomocou
& bol diagonalny. V nasom pripade diagonalizaciu zrealizujeme transforméciou & = Uyxy k dvojici
novych bozoénovych operatorov «, 3, vytvarajicej novy stipcovy vektor

§k(ﬁf_k>,

Uy = ( e Yk ) .
Uk Uk
Lahko nahliadneme (pozri cvifenia), Ze transforméacia od zy ku & je kanonickd (t.j. od bozonov k
bozénom), ak pre redlne prvky matice Uy plati

kde za transformac¢nii maticu vezmeme

uf —vi =1. (22)

98 hamiltonianmi podobného tvaru sa stretneme aj pri skimani supratekutosti a supravodivosti, zakazdym v pribliZzeni
stredného pola.
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Inverzna transformécia méa tvar xyx = Vi€ s transformacnou maticou

Vk:<Uk)‘1:< o _““>-

—Vk Uk
V operatoroch «, 8 tak hamiltonian (21) nadobudne tvar

e AgZJS(S +1)+ 782 3 €LV MVt

k

Doteraz sme nespecifikovali tvar matic Uy a Vi. V dalsom kroku zvolime Vi tak, aby matica VII My Vi
1:301& diagonalna. Explicitny vypocet ukazuje, ze diagonalne prvky matice VIZ My Vi musia byt rovnakeé.
Ziadame preto, aby platil vztah

JS2VI My Vi = e, (23)

kde 1 je jednotkova matica.l9 Tak dostaneme

Nz Nz

H— _TJS(S +1)+ nggjcgk = _TJS(S +1)+ ) ek (aLak + BkaT_k) :
k k

Doteraz nezname bezrozmerné koeficienty uy, vy a energie £ najdeme rieSenim systému rovnic (22,23).
Tak dostaneme (pozri cvicenia)

1 1 1 1
ex = JSz 1—712, ui=§ 72—#1 , 1)12(25 72—1 , (24)
\/1_71( \/1_7k

kde volime ux > 0 a vk > 0. Vdaka parnosti funkcie 7 = v_g zaroven platia vztahy ex = e_y,
Uk = U_k & Vx = U_x. Po elementarnej aprave nakoniec dostaneme vysledny hamiltonian v spinovo-
vlnovom priblizeni:

H =B+ e (afox + BL6) (25)
k

Hamiltonian (25) popisuje systém volnych bozénov typu a a 8. Zakladnym stavom hamiltonianu (25)
je vakuum oboch typov bozénov, pricom energia zakladného stavu ma hodnotu

Eoz—N;JS(SJré), 5:/32(1—,/1—%2). (26)
k

Excitovanymi stavmi hamiltonidnu (25) si stavy s koneénymi poc¢tami bozénov, pri¢om energia ey
oboch typov bozonov je rovnaka a zavisi od vlnového vektora k. V nasledujtcej prednéaske uvidime, ze
tieto bozény mozno interpretovat ako excitacie typu spinovych vin.

Vsimnime si, ze vdaka faktoru 0 vo vyraze (26) kvantové fluktuacie znizuji energiu zakladného
stavu oproti jej hodnote v klasickom Néelovom stave. Ak vyraz (26) porovname s exaktnym vysled-
kom pre energiu zékladného stavu (13), dostaneme podmienku 0 < § < 1/z. Spinovo-vlnova teoria
je konzistentna s touto podmienkou, pretoze numerickym vypoétom d Tahko overime, Ze v 3D méame
d =0.097 < 0.167 = 1/6, v 2D mame 6 = 0.158 < 0.25 = 1/4 a v 1D je § = 0.363 < 0.5 = 1/2 (pozri
cvicenia). Stoji tiez za povSimnutie, Ze so zniZovanim koordina¢ného ¢isla z kvantova korekcia ¢ rastie.

Spinovo-vinovy model ako efektivny model

Zrekapitulujme si vyklad v tejto prednaske. Vychadzali sme z predstavy o tom, Ze skuto¢ny zakladny
stav mozno dostat poruchovym rozvojom okolo klasického Néelovho stavu. Pre zékladny stav a jeho
excitécie s nizkou energiou sme potom dostali vysledok (25), ktory mozno interpretovat ako dalsi

10St0ji za zmienku, Ze prechod od matice My k diagonalnej matici £, 1 nie je oby&ajnou diagonalizaciou matice, znamou
z algebry. To sa okrem iného prejavi tak, Ze cx nie st vlastnymi ¢islami matice Mx. Matematické aspekty diagonalizécie
hamiltonianu (21) st hlbsie skamané v praci J.L. Hemmen, Z. Phys. B 38, 271 (1980).
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netrividlny priklad efektivneho hamiltonidnu: v AFMH modeli pre spiny S maja elementarne excitacie
bozoénovi Statistiku, bez ohl'adu na velkost spinu S.

Ak sa teda vratime k Hubbardovmu modelu v limite U > t pri polovi¢nom zaplneni, pozorujeme
v nom zaujimavu sekvenciu efektivnych modelov pri postupnom znizovani energie A: pri vysokych
energiach ide o model pre elektréony so spinom S = 1/2 a nabojom —e, pri energiach J < A < U
je efektivnym modelom AFMH model pre (fermionové) spiny S = 1/2 ktoré nenestt naboj, kym pri
nizkych energiach A < J st efektivnym stupiiom volnosti bozénové spinové viny.

Cvicenia

1. Ukézte, 7e operatory (17) spliaju komutatné vazfahy pre operatory spinu. Navod: vyuzite vzfahy [aTa,a] = —a a
podobne [afa, al] = +af.

2. Dokazte, ze Fourierova transformacia nemeni komutaéné vztahy.

3. Dokazte, ze ak plati podmienka (22), potom transforméacia &k = Ukzk je kdnonicka.

4. Ukazte, ze vysledky (24) st rieSenim rovnic (22,23).

5. Numericky vypocitajte koeficient § vystupujuci v energii zakladného stavu (26).

5 Heisenbergov model: spontanne narusenie symetrie

V tejto prednaske si najprv uvedomime, Ze zdkladny stav v spinovo-vlnovej teorii je stavom so spon-
tanne naruSenou (spojitou) symetriou a ukaZzeme, Ze v takejto situacii bude excita¢né spektrum obsa-
hovat tzv. Goldstoneove mody. Zavedieme tiez pojem parametra usporiadania a demonstrujeme vplyv
kvantovych a tepelnych fluktuécii na jeho velkost. Napokon ozrejmime, ako moze dojst k spontadnnemu
naruseniu symetrie v systéme s nezachovavajicim sa parametrom usporiadania.

Spontanne narusenie symetrie v spinovo-vlnovej teoérii

Vdaka pritomnosti skalarnych sacinov v AFMH hamiltonidne tvar tohto hamiltonidnu nezavisi od
vol'by stiradnic v spinovom priestore. Na druhej strane, Néelov stav |A) oc¢ividne od tejto volby zavisi:
spiny st v tomto stave v zavislosti od podmriezky orientované bud rovnobeZne alebo protibeZne s
vopred zvolenou osou v spinovom priestore. Zakladny stav spinovo-vlnovej teodrie |0), t.j. vakuum pre
bozény typov «, 3, tuto vlastnost zdedi. Teda symetria stavu |0) je nizsia, nez symetria hamiltonianu.
V takejto situacii hovorime, Ze stav |0) je stavom so spontanne naruSenou symetriou.

Vo vSeobecnosti symetriu systému U vyhlasime za spontdnne narusent, ak zakladny stav systému
|0) nie je invariantny voéi tejto symetrii, t.j. ak vysledkom posobenia U na stav |0) nie je ten isty
stav (az na fazu): U|0) # €?|0). Takyto zakladny stav je potom nevyhnutne degenerovany, pricom
degenerované vinové funkcie zakladného stavu mozno navzajom transformovat operdciami symetrie U.
V takomto pripade budu infinitezimalne externé polia schopné vybrat jeden konkrétny stav spomedzi
degenerovanych stavov.

Skumajme teraz ten isty systém pri vysokych teplotach, T — oco. V tejto limite o¢akavame, Ze ter-
modynamicky stav systému'! bude symetricky vo¢i U. Potom vSak musi existovat teplota T, (kriticka
teplota), nad ktorou je termodynamicky stav systému symetricky a pod ktorou je symetria hamilto-
nidnu spontanne naruSena.

Goldstoneove médy

Podla spinovo-vlnovej tedrie pozostava excitacné spektrum AFMH modelu z 2 typov volnych astic
a . Obidva typy Castic st bozony, ktoré nesu kvazihybnost k a rovnaku energiu ey, teda ich spektra
st exaktne degenerované. Pri skumani fyzikalnej povahy Castic o a 8 je uZitoéné vyjadrit ich kreacné

"Ktory je popisany maticou hustoty systému, pozri IV.1.
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operatory pomocou pévodnych operatorov spinu:

2 . . 1 . A
alT( = NG Uk Z eZk'RiaZ + vk Z Ry bj| = NS Uk Z ek R S, 4 vk Z ek Ry Sj_ ,
| ieA jeB icA jEB

ﬁlt = NG kaeZleai—l—ukZe’kRﬂb; A Ukz:e’kRZS;F—|—ukZe’th9;-r )

i€A jeB icA jeB

kde sme najprv operatory &k vyjadrili cez pdvodné Holsteinove-Primakoffove operatory xy a nasledne

sme pouzili inverznt Fourierovu transforméciu. Vyuzili sme tieZ symetrie uxy = u_x a vx = v_k. V

pribliznych rovnostiach sme vyuzili najnizsie ¢leny rozvoja Holsteinovej-Primakoffovej transformacie
al ~ A5, ai~ =S bl ~ 557, b~ A=S;

7 pribliznych rovnosti vidno, Zze ¢astice a znizuju projekciu spinu na jednotlivych bodoch mriezky
S7o 1. Kedze ui =1 —}—1112{, amplitiida tohto zniZovania je va¢sia na podmriezke A nez na podmriezke B,
teda toto zniZovanie zaroven zmensuje parameter usporiadania. Podobne, ¢astice 8 zvySuju projekciu
spinu na jednotlivych bodoch mriezky S? o 1 (tentokrat dominantne na podmriezke B). Porovnanie
s klasickym vypoctom (pozri cvi¢enia) ukazuje, Ze Castice o a 8 moZno interpretovat ako kvanta
klasickych tzv. spinovych vin, t.j. precesného pohybu spinov okolo zakladného stavu, a nazyvame ich
magnénmi. Vztah medzi magnénmi a spinovymi vinami je pritom podobny vztahu medzi fonénmi a
klasickymi kmitmi mriezky.

V&imnime si, Ze na mriezke s mriezkovou konstantou a v dlhovlnnej limite & — 0 plati

m ~ \/gk‘a, ex ~ JSV2zka, Uk & Uk X/ -

Bozénovy disperzny zakon ma teda ten isty tvar ako pre dlhovinné akustické fonony. Obidva médy o
a § majua pre k — 0 nulova energiu a takéto médy nazyvame Goldstoneovymi bozénmi.

Ukazeme, Ze existencia Goldstoneovych bozénov je nevyhnutnym désledkom spontanneho narusenia
spojitej symetrie. Naozaj, hamiltonian (20) moZzno zapisat ako sucet prispevkov jednotlivych médov v
tvare H = —%JS(S +1)+ >, Hx, kde

Hy/(JSz) = % (aLak + aka;f() + % (bT_kb_k + b_ka_k> + Vi (aLbT_k + akb_k) .

Ak vyuZijeme, Ze aL:U ~ Sy /VNS a bchzo ~ S§/VNS, potom prispevok (tzv. anomalnych) médov
k = 0 mozno zapisat v tvare

Jz Iz 1 e
Hk:O 2./\/ [Stotstot + Stotstot] = ﬁ [( tot)z + (Sgot)Q] : (27>

Ak uvazime, ze L2/(21) je energia rotaéného pohybu telesa s momentom hybnosti L a s momentom
zotrvacnosti I, potom Hy—( popisuje energiu rotacie (v spinovom priestore) celej mriezky spinov okolo
osi £ a y s momentom zotrvacnosti I = Jnghj V termodynamickej limite N — oo v8ak I — oo, a preto
energia anomalnych moédov k = 0 musi byt nulova. Ak mé byt disperzny zékon spinovych vin spojity,
v dlhovlnnej limite preto musi byt e — 0.

Parameter usporiadania

Nech M je operatorom intenzivnej fyzikalnej veli¢iny, ktora sa pri aspon jednej zo symetrii systému
nezachovava, [U, M] # 0, vdaka ¢omu vo vysokoteplotnej faze (M) = + n<n|M|n> =0, t.j. stredna
hodnota (M) je nulova. Nech viak zéroveii v nizkoteplotnej faze plati (M) # 0. Takato velidinu M
nazveme parametrom usporiadania. Bohuzial neexistuje v8eobecny predpis na kongtrukciu parametrov
usporiadania a ich identifikicia je ¢asto najtazSou tlohou pri §tudiu novych faz. Pripad, kedy plati
[M , H] = 0, nazyvame pripadom so zachovévajicim sa parametrom usporiadania. Na druhej strane,
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ak plati [M , H] # 0, potom hovorime o nezachovavajiucom sa parametri usporiadania. Obidva pripady
sa mozu vyskytnat, castejsi je viak pripad s nezachovévajicim sa parametrom usporiadania.'?

V pripade antiferomagnetu je rozumnou volbou parametra usporiadania M operator rozdielu mag-
netizacie oboch podmriezok,

Zs > s (28)

€A jEB

Ide o vektorovy parameter usporiadania, pretoze spiny mozu v stave so spontdnnym naruSenim symet-
rie zamrznut Tubovolnym smerom.

Parameter usporiadania v spinovo-vinovej tedrii

V Néelovom stave polarizovanom v smere osi z o¢akavame, Ze nenulovi hodnotu ma iba zlozka (M?).
V tomto odstavci preto preskimame predpoved spinovo-vlnovej teorie pre velkost parametra usporia-
dania (M?). Podla defini¢nych vztahov reprezentacie Holsteina-Primakoffa (17, 18) plati

<Z$Z ZSZ> S——Zakak—l—bT W) =8 — 68, (29)

€A jEB

kde sme vyuzili, ze ), 4 ZaZ = > akak a Z]eB i = Dk be_kb_k. Stoji za pov8imnutie, Ze v
spinovo-vlnovej teorii je parameter usporiadania (M#) zmenSeny oproti hodnote S v Néelovom stave
o korekciu 4.5. Stredné hodnoty operatorov a, b je najjednoduchsie pocitat prechodom od a, b k opera-
torom «, 8. Tak dostaneme:

() = (e, — vBs) (wone — BT ) = i (afend) + o [1+ (81,80
B b = (—owene+ uBl ) (—owal + wefa0) = o [1+ (afen) | + ud (5T 8.

Tieto vztahy platia tak v zédkladnom stave, t.j. pri teplote T' = 0, ako aj pri konec¢nej teplote, pricom
<akak) (8" B-x) = n(ek), kde n(e) je Boseho-Einsteinova rozdelovacia funkcia. Po dosadeni do
vztahu (29) pre korekciu k (M?#) dostaneme

5S:%Z[vﬁ+nk(ui+vk jivz 1+2”“—1, (30)
Kk Kk | \/1-7%

kde sme pre jednoduchost zapisu zaviedli oznacenie nx = n(eg).

Sktmajme najprv korekciu 0.5 pri nulovej teplote, kedy ny = 0. Numerickou integraciou vyrazu (30)
dostaneme (pozri cvicenia) 05 = 0.078 pre 3D mriezky a 05 = 0.197 pre 2D mriezky. Pre 1D mriezky
vsak dostaneme §S — oo. To znamené, Ze v 1D teoria nie je konzistentna a kvantové fluktuacie v 1D
usporiadanie kompletne rozrusia.!?

Kvantovd dolnd kritickd dimenzia (T =0)
Podl'a vysledku (30) je korekcia parametra usporiadania S sac¢tom prispevkov od jednotlivych spino-
vych vin. Divergencia korekcie §S v 1D mriezkach méa poévod v prispevku od dlhovlnnych moédov k — 0,
kedy méame do ¢inenia so sumou Tb‘ >« 1/k. Zamenou sumy za integral a prechodom do sférickych su-
radnic Tahko nahliadneme, Ze vysledok je timerny vyrazu I(D,L) = [, fé:i" dkkP=2, kde Kpin ~ 1/L
je minimalny vlnovy vektor na mriezke s linedrnym rozmerom L a Kpax ~ 1/a je hrani¢na hodnota
vlnového vektora, nad ktorou nemozno pouzit dlhovlnna limitu.

V systémoch s dimenziou D > 1 dostaneme I(D, L) = (K2-1 — KP-1) /(D — 1) a tento vysledok
zostane koneénym aj v termodynamickej limite L — oo, kedy I(D,00) = KP-1. To viak znamena, ze
pre D > 1 bude korekcia 6.5 konecné a poruchova tedria médze fungovat.

12prikladom systému so zachovivajlcim sa parametrom usporiadania je feromagneticky Heisenbergov model, pozri
dodatok.
13Tento vysledok je v zhode s presnym riesenim 1D modelu pomocou tzv. Betheho ansatzu.
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V systéme s dimenziou D = 1 v8ak dostaneme I(1,L) = In(Kpyax/Kmin) ~ In(L/a), ¢o je v
termodynamickej limite divergentna korekcia. Kvantovou dolnou kritickou dimenziou Dy nazyvame
poslednt (najvacsiu) dimenziu, pri ktorej nemdze dojst k naruSeniu symetrie v zakladnom stave v
dosledku kvantovych fluktuacii. Podl'a spinovo-vlnovej teérie pre AFMH model plati Drg = 1.

Hohenbergova-Merminova- Wagnerova veta
Vysledok (30) mozno pouzit aj na odhad korekcie 0.5 pri kone¢nej (ale nizkej) teplote T'. Opéat ocaka-
vame, ze potencidlne singularne prispevky pochadzajtu z dlhovlnnej limity, kedy ny o< T'/k, odkial pre
prispevok tepelnych fluktuécii vyplyva §.5p j:\r/ Zk 1/ k2. Prechodom od sumy k integralu dostaneme
6Sr T | II({ mox JkkP=3 kde Kpin ~ 1/L je opit minimélny vinovy vektor na mriezke, ale maximalny
vlnovy vektor j je tentokrat obmedzeny Boseho-Einsteinovym rozdelenim a K o< T

V systémoch s dimenziou D > 2 potom v termodynamickej limite dostaneme 657 o TP~2, teda
rastica teplota sposobuje pokles parametra usporiadania v silade s oCakavaniami. AvSak pre D =
2 dostaneme dS7 o T'In(KpaxL), teda pri kone¢nej teplote tepelné fluktuacie v termodynamickej
limite rozrusia usporiadany stav. Tento vysledok sa nazyva Hohenbergova-Merminova-Wagnerova veta.
Okrem tu naértnutého argumentu vo formalizme tedrie spinovych vin existuje aj rigorézny dokaz tohto
tvrdenia pre Heisenbergov model a podobné modely.

Poslednt (najvacsiu) dimenziu, pri ktorej nemoze dojst k naruseniu symetrie pri kone¢nej teplote v
dosledku tepelnych fluktuécii, nazyvame dolnou kritickou dimenziou Dy,. Pre AFMH model a mnoho
dalgich systémov s linearnym disperznym zédkonom pre Goldstoneove mody je Dy = 2.

Celkovy spin stavu so spontiAnnym naru$enim symetrie
Definujme operéator celkového spinu podmriezky A, S4 = > .. 4 S;, a obdobne aj operator celkového
spinu podmriezky B, Sp = ZjeB S;. Pre operator celkového spinu potom zjavne plati Sioy = S4+Sp,
kym operator magnetizacie (28) je dany vztahom M = (S4 — Sg)/N. Podla vety o zakladnom stave
antiferomagnetického Heisenbergovho modelu je celkovy spin zakladného stavu nulovy. Teraz ukazeme,
Ze potom aj spiny podmriezok musia byt nulové, (S4) = (Sp) = 0.

N4&s dokaz bude vyuzivat pojem vektorového operatora. Pod vektorovym operatorom V rozumieme
operéator, pre ktorého kartézske zlozky platia komutac¢né vztahy

[Stota V ] Z.eklm‘/ma (31)

kde €gy, je Uplne antisymetricky tenzor. Ak teraz vztah (31) zlava aj sprava obloZime zékladnym
stavom Heisenbergovho modelu [t) a vyuZijeme, ze SE,|¢) = 0, lahko nahliadneme, 7e (¢)|V]1)) = 0,
teda stredna hodnota vSetkych vektorovych operatorov v singletnom stave musi byt nulové.

Ale S4 aj Sp st o¢ividne vektorové operatory, preto musi platit (S4) = (Sp) = 0. Ukazali sme teda,
7e v exaktnom zékladnom stave AFMH modelu musi byt parameter usporiadania nulovy, <M> =0.
Znamend to, ze symetria AFMH modelu nemoéze byt spontanne narusena?

Spontdnne naruSenie translacnej symetrie v krystdli
Analogicka situacia ako v AFMH modeli nastéva pri vzniku krystalu: vlastny stav krystalu by mal
mat dobre definovanii celkovi hybnost piot, a preto jeho poloha by musela mat nekone¢ni neurcitost.
Inymi slovami, kry$tal na prvy pohlad neméZe spontanne narusit transla¢na invariantnost pohybovych
rovnic pre elektrony a jadra.

Ak v8ak vytvorime vlnovy balik s neurc¢itostou celkovej hybnosti krystalu Ap, potom méZzeme krys-
tal lokalizovat s presnostou polohy Ax ~ h/Ap. Narast energie krystalu v dosledku lokalizacie je pritom

AFE ~ (2 /\/)l , kde M je hmotnost krystalu ako celku. Aviak kedze M oc NV, energia AFE je zanedbatelne

malé (pozri cvicenia) a spontanne narusenie (translacnej) symetrie je mozné.

Andersonova veZa stavov
Posunutie krystalu ako celku popisujt anomalne akustické mody s k = 0. Presktimajme preto prispevok
anomélnych moédov k = 0 k AFMH hamiltonidnu. Vysledok (27) moZno prepisat v tvare

Jz . Jz
Hk:O = W [Sgot - ( tot)2] ~ ngot
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V druhej (pribliznej) rovnosti sme uvazili, Ze priemet celkového spinu do smerov x a y, ktory je timerny
St~ VNS(ax—o + b;r(:O) a S = \/J\TS(aL:O + bx—o), je omnoho vAa¢3i nez priemet do smeru z,
got ~ ka:()bk:() - aizoak:O-

Vsimnime si, Ze vyraz %&’t, ktory popisuje rotaciu krystalu spinov ako celku, ma podobny tvar aj
fyzikdlny vyznam ako operator kinetickej energie krystalu %. Vdaka jeho pritomnosti preto v spektre
antiferomagnetického Heisenbergovho modelu existuje okrem zakladného stavu s celkovym spinom
Stot = 0 tzv. Andersonova veza stavov s celkovymi spinmi St = 1,2, ... a energiami J2Stot (Stor+1) /N
zanedbatelne vys$imi (v limite velkych A') ako energia zakladného stavu.'* Z tychto stavov potom
moZno vytvorit vinovy balik vytvarajici Néelov stav, ktory nardSa rota¢ni symetriu. Energia tohto
balika je pritom prakticky rovnaka ako energia exaktného zakladného stavu, podobne ako tomu bolo
v pripade naruSenia symetrie v krystali.

Stoji za zmienku, Ze limita A" — oo je teda nevyhnutnou podmienkou spontanneho narusenia sy-
metrie. V nasledujucej prednaske spozname alternativny pohlad na tento fakt.

Cvicenia

1. Vypocéitajte disperzny zakon pre antiferomagnetické spinové viny v klasickom AFMH modeli. Navod: pouZite analo-
gicky postup ako v prednagke 1.25, kde boli skimané feromagnetické spinové viny.

2. Numerickou integraciou vyrazu (30) pre Stvorcovt a kubickt mriezku overte vysledky pre S uvadzané v prednéske.
3. Odhadnite vel'kost krystalu, ktory mozno pri izbovej teplote lokalizovat s presnostou rozmeru jadra.

4. V limite nizkych teplot vypocitajte merné teplo AFMH modelu na kubickej mriezke.

6 Magneticka anizotropia a Isingov model

V tejto prednaske najprv ukazeme, Ze v désledku koneénej spinovo-orbitalnej interakcie méze mat efek-
tivny spinovy model nizsiu symetriu ako AFMH model. Zavedieme Isingov model a pomocou pojmu
narusenia ergodicity ukdZeme, Ze aj v systémoch s diskrétnou symetriou (ako napr. Isingov model) su
fazové prechody (striktne vzaté) mozné iba v nekone¢nych systémoch.

Spinovo-orbitalna vizba

Pohybova rovnica pre Castice so spinom, tzv. Pauliho rovnica, nie je fundamentalnou rovnicou kvan-
tovej mechaniky, ale iba najniz§im ¢lenom v nerelativistickom rozvoji Diracovej rovnice pre elektréon
vo vonkajSom elektromagnetickom poli. Systematicky nerelativisticky rozvoj ziskany pomocou tzv.

Foldyho-Wouthuysenovej transformacie vedie k d'alsim korekciam:

A2
H = ch—i—(p—;;)—ego—}—i:jS-B
eh . eh? p? eh?
mze2S BXP) Hiph 58 (VX E) — g s + gV B (82)

kde operator spinu S je normalizovany tak, Ze vlastné hodnoty jeho priemetu na zvolent os si :l:%.
Prvy ¢len je pokojova energia elektronu, kym druhy, treti a Stvrty ¢len tvoria Pauliho hamiltonian.
Zvysné styri ¢leny v druhom riadku popisuju tzv. relativistické korekcie. Nas v8ak zaujima iba prvy z
nich (popisujuci tzv. spinovo-orbitalnu vézbu), pretoze druhy z nich vypadne, ak sa elektromagnetické
pole v ¢ase nemeni. Posledné dva ¢leny zas neposobia na spinové stupne volnosti. Stoji za zmienku,
ze (32) je dalsim prikladom efektivneho hamiltonianu.

Ak elektrické pole vznika ako dosledok stredovo symetrickej potencidlnej energie elektronu V(r),

potom E = é%—‘r/r. Preto spinovo-orbitalnu vézbu moZno v tomto pripade pisat v tvare
R 10V
H = T S . L r) = —m—m—"—— 33
o =S L, () = 5 S (3

14\Mohla by vzniknaf otézka, & existencia Andersonovej veZe stavov nie je dosledkom zanedbania interakcii medzi
sektorom k = 0 a ostatnymi sektormi AFMH hamiltonianu. Numerické simulécie antiferomagnetického Heisenbergovho
modelu vSak potvrdzuju pritomnost Andersonovej veZze stavov, pozri napr. vysledky pre trojuholnikovi mriezku, Bernu
et al, Phys. Rev. B 50, 10048 (1994).
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kde L =r x p/h je (opdt bezrozmerny) operator orbitalneho momentu hybnosti elektronu. Fyzikalnu
interpretaciu spinovo-orbitalnej vazby podéva napriklad Zelend ucebnica.

Magneticky hamiltonian pre i6én s nezaplnenou vrstvou 3d
Nositelom magnetického momentu st ¢asto i6ny s nezaplnenou atomarnou vrstvou 3d. Hamiltonian
popisujuci elektrony v takychto iénoch moZzno schematicky zapisat v tvare

Hion - HHF + (Hee - VHF) + Hc.f. + Hs.o.a

kde Hyr je jednoelektréonovy hamiltonian iénu v priblizeni Hartreeho-Focka a He. — Vgp je rozdiel
medzi presnou energiou coulombovského odpudzovania elektronov Hee a jej pribliznym popisom po-
mocou Hartreeho-Fockovej potencialnej energie Vigr. Clen H, . popisuje tzv. krystalové pole, t.j. zmenu
potencialnej energie elektrénov v dosledku pritomnosti nenulovych nabojov okolo studovaného atému,
kym ¢len Hg, popisuje spinovo-orbitalnu interakciu. Jednotlivé prispevky na pravej strane vyrazu pre
Hion st usporiadané podla ich typickej velkosti, pricom ¢len Hyp je obvykle najvacsi a ¢len Hg,. zas
najmensi. '

Pri konstrukeii efektivneho hamiltonidnu pre i6n budeme relevantné stupne volnosti identifikovat
tak, Ze zatneme s najpodstatnejsim ¢lenom v hamiltoniane a postupne budeme zohladhovat mene;j
podstatné prispevky.

V priblizeni Hartreeho-Focka je zédkladnym stavom i6nu Slaterov determinant vodiku podobnych
jednocasticovych stavov. Tieto jednocasticové stavy mozno (vdaka pribliznej rotacnej symetrii'® ha-
miltonianu Hyp) charakterizovat kvantovymi ¢islami [ a m, rovnako ako v atéme vodika. Podl'a pred-
pokladu vrstva 3d i6nu je obsadena iba ¢iasto¢ne, t.j. obsahuje N (s hodnotou od 1 do 9) elektrénov.

]\? > Napriklad pre

ion Cr3t s N = 3 elektronmi v 3d vrstve tak dostaneme 120 degenerovanych mnohocasticovych stavov.

Vplyv ¢lena Hee — Vigr popisuju prvé dve Hundove pravidla. Podla prvého pravidla bude v zaklad-
nom stave ionu celkovy elektronovy spin Satom nadobidat maximalnu mozni hodnotu, kym podla dru-
hého pravidla bude celkovy elektronovy orbitalny moment Laon taktieZz maximalizovany (pri hodnote
Satom predpisanej prvym pravidlom), pozri cvifenia. Degeneracia zakladného stavu teda po zohlad-
neni coulombovskych interakcii medzi elektréonmi bude (2Sat0m + 1) X (2Latom + 1) a pripustné vinové
funkcie zékladného stavu |Latom, ML, Satom, Mg) st charakterizované priemetmi My, Mg. V pripade
ionu Cr3t dostaneme celkovy spin Satom = %, celkovy orbitadlny moment Laiom, = 3 a degeneraciu
zékladného stavu 28, vyrazne menej ako pévodnil degeneraciu 120.

V poradi dalsim ¢lenom podla velkosti v hamiltonidne Hijo, st tzv. efekty kryStalového pola H ..
Pre konkrétnost predpokladajme, Ze okolie iénu Cr3* ma tetragonalnu symetriu. Pomocou teérie grip
sa da ukazat, Ze v takomto pripade sa 7 orbitalnych stavov s Latom = 3 rozstiepi na tri nedegenerované
hladiny a dve 2x degenerované hladiny, pozri cvi¢enia. Pre jednoduchost predpokladajme, ze zakladny
stav |I') je jeden z orbitélne nedegenerovanych stavov. Po zohladneni spinovej degeneracie st vinové
funkcie zakladného stavu stc¢inom orbitalnej a spinovej casti,!” |I', Mg) = |T') ® |S, M), a degeneracia
zékladného stavu je 4. Zvysnych 6 x 4 = 24 excitovanych stavov oznacme |X, Mg), pricom opét
|Xa MS> = ‘X> ® ’Sa MS>

V poradi dalsim ¢lenom podla velkosti v hamiltonidne pre ion Cr®* je spinovo-orbitalna vizba
Hy, = Z?:1 ¢(r;)S;-L;, kde suma bezi cez vietky 3 elektrony v orbitaloch typu 3d. Podla Wignerovej-
Eckartovej vety v béaze stavov |Latom, ML, Satom, Ms) - a teda aj v baze ich linedrnych kombinacii
T, Mg), | X, Mg) - st maticové elementy operatora Hg, rovnaké ako maticové elementy operatora

Pocet takychto Slaterovych determinantov je zjavne dany kombina¢nym ¢islom <

H, = )\Satom . Latorna

15V i6noch s nezaplnenou vrstvou 4f naopak obvykle plati |Hee — Viar| > |Hs.o0.| 3> |He.x.|.

16D4 sa ukazat, ze Hartreeho-Fockov hamiltonian Hyr v atémoch s plnymi vrstvami je rotacne symetricky. Kedze
pocet elektréonov v nezaplnenej vrstve je obvykle malym zlomkom celkového poctu elektréonov, Hur zostane priblizne
rota¢ne symetrickym aj v atdomoch s ¢iastoCne zaplnenymi vrstvami. Stoji tiez za zmienku, Ze - na rozdiel od atému
vodika - vlastné energie hamiltonidnu Hyur zévisia od kvantovych ¢&isel n aj [.

"Vo vseobecnom pripade sa vlnové funkcie viac ako dvojelektrénovych systémov nedaju pisat ako jednoduchy sacin
orbitalnej a spinovej ¢asti. V nasom priklade s Satom = % je v8ak spinova vinova funkcia plne symetrickd vodi zamene
Gastic, preto celkova vlnovi funkciu mozno pisat ako sucin tejto funkcie a plne antisymetrickej orbitélnej vinovej funkcie.
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kde A je (pre vSetky uvaZované stavy rovnaka) energia spinovo-orbitalnej vizby, pozri cvi¢enia.

Teraz preskiimame, ako spinovo-orbitidlna vizba H’ zmeni energie Styroch degenerovanych stavov
IT', Mg). Efektivny hamiltonian budeme opét konstruovat do druhého radu poruchovej teorie podla H',
podobne ako v (4). Najprv si v§imnime, Ze plati (I'|Latom|I") = 0, pretoze vinova funkciu |T') musi byt
mozné zvolit ako ¢isto realnu.'® Odtial vyplyva, Ze prvy rad poruchovej teérie podla H' neprispieva k
zmene energie. V priestore stavov |I', Mg) méa preto efektivny hamiltonian tvar

I'\L XN X|L
Hatom = Z AQ/B atomsftom7 Aaﬁ = AZ Z < ’ atomE|IF >_< E_|X at0m| >7
X

ktory explicitne ukazuje, Ze vdaka vizbe medzi spinmi a mriezkou nie st vo veobecnosti vietky smery
v spinovom priestore ekvivalentné. Hamiltonidn H,ion popisuje tzv. magnetickd anizotropiu mriezko-
vého bodu (single ion anisotropy).

Isingov model

Symetria tenzora A®? je diktovana symetriou mriezky. Napriklad pre tetragonélnu mriezku o¢akavame
A®T = AYY £ A%*. Pre konkrétnost budeme predpokladat, Ze iba zlozka A** je nenulové, pri¢om plati
A?*? = —A, kde A je kladné energia, pozri cvienia. Heisenbergov model pre mriezku atomarnych spinov
S = % s magnetickou anizotropiou ma potom tvar

H=1J)S8;8; —AZ (57)? (34)
(ig)

V limite A > J budu mat nizku energiu iba tie konfiguracie, kde vo v8etkych mriezkovych bodoch
bude priemet spinu na os z rovny i%. Posobenie ¢lena H) z rozkladu (12) nas z tohto podpriestoru
spinovych konfiguracii zarucene vyvedie von, a preto ho v prvom priblizeni moézeme ignorovat. V
takom pripade efektivnym modelom pre (34) bude H = J 37, S7S7 — AY,(57)2, kde st povolené

iba konfiguracie S? = :l:%. Ak teraz spinovy stav S7 = % popiSeme pomocou efektivneho spinu S; = 1

> 2

a podobne stav S7 = —% pomocou S; = —%, efektivny hamiltonidn mézeme prepisat ako tzv. Isingov
model . o

HIsing = JZ S’L R (35)

(i)
kde J = 9.J. Kongtantni energiu —%./\/' A sme pritom ignorovali ako nepodstatnt.

Medzi Isingovym a Heisenbergovym modelom existujii dva podstatné rozdiely. Z hl'adiska symetrie
mé Heisenbergov model spojitt symetriu (a néasledne aj Goldstoneove mody), kym symetria Isingovho
modelu je iba diskrétna: hamiltonidn (35) je invariantny pri sticasnej zmene znamienka S — —S;
vo v8etkych bodoch mriezky (ktort moZno interpretovat napr. ako symetriu vo¢i obrateniu casu).
Z hladiska kvantovej mechaniky je Isingov model trividlny, pretoze je diagonalny v priestore spino-
vych konfiguracii. Dosledkom tejto vlastnosti napr. je, Ze zakladny stav Isingovho modelu je znémy.
V literature sa Isingov model Studuje s obidvomi znamienkami interakcie J. Pre J < 0 hovorime o
feromagnetickom modeli, kym pre J > 0 hovorime o antiferomagnetickom modeli.

Narusenie ergodicity

Spontanne narusenie symetrie stvisi s dalsim doéleZitym pojmom naruSenia ergodicity. Skuimajme pre
konkrétnost povedzme feromagneticky Isingov model. Pri nizkych teplotach prichddzaju do uvahy
dva stavy: v jednom je vic8ina spinov T, v druhom je vacsina spinov |. Ku kazdej konfiguracii existuje
zrkadlova konfiguracia s tou istou energiou. Ak by teda Studovany systém mohol tepelnymi fluktuéciami
navstivit v8etky rovnako pravdepodobné konfiguracie, potom by v fiom nemohlo déjst k spontannemu
naruSeniu symetrie. Musime teda predpokladat, Ze systém pripraveny s va¢Sinou spinov T terméalnymi
fluktudciami nemoze prejst do stavu s vacsinou spinov |. Takéto vymedzenie dostupného podpriestoru
v celom kadnonickom priestore nazyvame narusenim ergodicity.

181de totiz o vlastny stav reilneho hamiltonidnu, pozri prednasku 3. Na druhej strane, operdtor momentu hybnosti
Latom = —ih ), r; x V; je rydzo imaginarny, preto maticovy element (I'|Latom|I") musi byt imaginarny. AvSak stredna
hodnota hermitovského operatora musi byt realna, preto (I'|Latom|I’) = 0. Nulova velkost strednej hodnoty orbitalneho
momentu hybnosti sa v literattre nazyva vymrznutim orbitdlneho momentu hybnosti.
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Kedy sa moze realizovat narusenie ergodicity? Skimajme povedzme proces premagnetizovania 3D
systému s N x N x N spinmi zo stavu s va¢Sinou spinov T na stav s vacsinou spinov |. Takyto proces sa
mozZe realizovat ako rast bubliny spinov | v majoritnom prostredi so spinmi 1. Aby sa premagnetizoval
cely systém, musi bublina nadobudnit rozmery porovnatelné s rozmermi celého systému. Ale pretoze
povrchové energia bubliny vtedy bude Eyuppie ~ JN?2, pravdepodobnost takejto fluktuacie pri teplote
T bude e~ Evuvbie/T Kedze pri konec¢nej teplote v kone¢nom systéme tato pravdepodobnost nikdy nie
je nulova, k naruseniu ergodicity v takomto systéme, striktne vzaté, nemoze dodjst. V termodynamicke;
limite N — oo je vSak narusenie ergodicity mozné.

Naru8enie ergodicity je uvedenym argumentom zarucené aj v 2D systémoch, pretoze vtedy povr-
chova energia bubliny bude Eyyppe ~ JN, ktora tiez diverguje (i ked slabsie ako v 3D) pre N — oo.
V 1D systémoch vSak spominany argument nefunguje, pretoze povrch bubliny pozostava z dvoch bo-
dov a energia bubliny je konecné. Preto v 1D systémoch obvykle nemézu existovat fazové prechody pri
konecnej teplote. Inymi slovami, dolna kriticka dimenzia v systémoch s diskrétnou symetriou je Dy = 1.

Cvicéenia

1. Dva elektréony v atomdarnej vrstve 2p vytvaraji 15 degenerovanych mmnohocasticovych stavov hamiltonidnu Hgr.
Ukaizte, 7e v prvom rade poruchovej teoérie podla He. sa tieto stavy rozstiepia a zékladny stav spliia Hundove pravidla.
Navod:

a) Definujte operatory celkového spinu S a celkového momentu hybnosti L a ukaZte, Ze plati [Hee, S] = [Hee, S*] =
[Hee, L] = [Hee, L¥] = 0. Kedze zaroveii plati [S®, L?] = 0, vlastné stavy hamiltonianu He. mozno volit ako stavy s
ostrou hodnotou vlastnych hodnét operatorov 82, 5% L2, L?.

b) Ukazte, Ze v priestore 15 mnohocasticovych stavov mozno zvolit nasledovnt bazu: devit stavov s kvantovymi ¢islami
S =1a L =1, pat stavov s kvantovymi &islami S =0 a L = 2, a jeden stav s kvantovymi ¢islami S =0 a L = 0.

c¢) Ukazte, ze v prvom rade poruchovej teorie podla He. sa 15x degenerovana hladina rozstiepi na jednu 9x degenerovant
hladinu, jednu 5x degenerovani hladinu a jednu nedegenerovanu hladinu.

d*) Ukazte, Ze energie stavov z bodu c) spliiaju Hundove pravidla.

2. Ukazte, ze pri zniZeni symetrie systému vo v8eobecnosti dochadza k znizeniu degenerécie jeho hladin.

3. Nech V je vektorovy operator vzhladom na Latom, t.j. nech pre komponenty Vi plati [L{:mm, Vl} = jerm V""", Podla
Wignerovej-Eckartovej vety su v podpriestore s fixovanou hodnotou Latom maticové elementy operatora V tmerné ma-
ticovym elementom operatora Latom, t.j- {Latom, ML|V|Latom, M1) = const X (Latom, ML |Latom|Latom, M1,). UkéZte, Ze
¢(r;)L; je vektorovy operator. Néasledne ukaZzte, Ze maticové elementy operatora Hs.o. st rovnaké ako maticové elementy
operatora H = ASatom * Latom-

4. Ukazte, %e maticové elementy A®? spliiaji podmienku A®® < 0.

5. Kvalitativne zdovodnite, preco je dolna kriticka dimenzia D™ Isingovho modelu nizsia nez DJ**""*'® Heisenber-

govho modelu.

7 Model XY a kvantova kvapalina spinov

V tejto prednéske zavedieme model XY ako priklad spinového modelu so spojitou, ale nizSou symetriou
ako Heisenbergov model. Tento model je v jednorozmernom pripade exaktne rieSitelny. UkaZzeme, Ze
kvantova dolné kritickd dimenzia modelu XY je Dyg = 1 a popiSeme tzv. kvantovii kvapalinu spinov,
t.j. stav bez spontanneho narusenia symetrie.

Model XY

Na Isingov model sa da pozriet ako na Heisenbergov model so symetriou zredukovanou zo spojitej
grupy trojrozmernych rotacii na diskrétnu symetriu. Z hladiska symetrie pripada do tivahy este jedna
moznost, ktora sa nachadza medzi spominanymi extrémami: definujme model, ktory bude invariantny
pri otoceniach okolo (jedinej) fixovanej osi, povedzme osi z. Takyto model ma o¢ividne nasledovny tvar

Hyy = J 3 (5757 + SY8Y) = % SO(SFST + S7S7) (36)
(ig) (ig)

19V skutonosti nepotrebujeme striktne nekoneéné N. Stadi, ak doba, pocas ktorej je systém uvézneny v jednom
podsystéme, je dostatocne dlhé v porovnani s dobou pozorovania.
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a nazyva sa modelom XY. Zjavne plati [SZ, Hxy| = 0, teda vlastné stavy Hxy moZno volit tak, Ze
maju zaroven ostri hodnotu priemetu celkového spinu Sg ;. Model XY (podobne ako AFMH) mozno
studovat pre spiny roéznej velkosti S na mriezkach s réznou dimenziou D a pre obe znamienka .J.

Klasicky zékladny stav modelu XY s J > 0 je Néelov stav polarizovany v rovine xy. Lahko sa v8ak
nahliadne, Ze tento stav nie je vlastnym stavom hamiltonianu (36). Na po¢udovanie, pre model s J < 0
nie je zakladnym stavom ani feromagneticky stav plne polarizovany v rovine zy (pozri cvicenia). V
zékladnom stave preto o¢akédvame pritomnost kvantovych fluktuécii a na zaklade analogie s Heisenber-
govym modelom ocakivame, ze v 1D nemdze dojst k spontdnnemu naruseniu symetrie. Inymi slovami,
ocakavame, ze spiny v 1D nemdzu “zmrznit” v kryStalickom usporiadani, ale zostévaju “kvapalné”. V
nasledujticom odstavci toto o¢akavanie potvrdime presnym rieSenim modelu (36).

Presné rieSenie modelu XY v 1D
Skamajme (kvantovy) feromagneticky model XY pre retiazku A spinov S = 2 s periodickou okrajovou
podmienkou Spr11 = S1. Hamiltonidn problému mé explicitny tvar

N-1
J _ J _ _
Hxy = D) ;(SJrSzH + 8755 - 5(57\751 + Sy ST)-

Ukazeme, ze vo vSetkych sektoroch SZ; je tento model ekv1valentny so systémom volnych fermiénov.

Dalej ukaZeme, Ze najnizSia energia sa realizuje v sektore ¢+ = 0 a zakladny stav v tomto sektore nie
je magneticky, t.j. pre v8etky mriezkové body plati (S;) = 0.

ZmieSand reprezentdcia operdtorov spinu
Ulohu budeme riesit v troch krokoch. V prvom kroku budeme operéatory spinu reprezentovat pomocou
novych operatorov:
S, = aj;, Sf:a;ra,-—}.

2
Lahko nahliadneme, Ze komutac¢né vztahy pre nové operétory a, a' na jednom bode mriezky musia byt
fermionové, t.j. {a;, 7J} =1a{a,a} = {az, Z} = 0. Ziadtcou vlastnostou tejto reprezentacie je, ze
Hilbertov priestor na danom mriezkovom bode je dvojrozmerny (dovolené pocty ¢astic a sa 0 a 1), v
zhode s dvomi hodnotami priemetu spinu :I:%. Avgak bohuzial komutaéné Vzt’ahy pre nové operatory

a,a’ na roznych bodoch mriezky musia byt bozénové: [a;, a,;r-] = [a;,a5] = [a;r, a,]] = 0, teda operatory

a, af nepopisuju ani bozony, ani fermiéony (pozri cvicenia). V tejto reprezentacii méa hamiltonian tvar

S+ = (IT’

K3 3

<

Hxy = — Z a;ja;iv1 + aZ_HaZ) — g(aj\/al + aia,/\/).
=1
Jordanova- Wignerova transformdcia
V druhom kroku prejdeme od operatorov a,al k fermiénovym operatorom ¢, ¢! pomocou nasledovnej
(tzv. Jordanovej-Wignerovej) transformacie pre i > 2

T
C;-r = CLZUlUQ Uiz, ¢ =Uj_1...UUia;, U; = (—1)0‘1'0“,

pricom naviac c{ = a]; a ¢ = a1. VSimnime si, Ze plati UE = 1, a preto CZT

T

c = alai. Vdaka tejto
identite moZzeme podla potreby v U; zamieﬁat’ operétor a;a; za c cl Lahko overime, Ze operatory c, ct

spliiajii fermionové komutacné vztahy {c;, c! } =d;; a {c, c]} {cl, ]} = 0. Pomocou operatorov ¢, cf

moZno po zavedeni operatora celkového poctu fermionov Q = Zi:l cZT

prepisat na fermionizovany tvar (pozri cvi¢enia)

¢; hamiltonidn pre XY retiazku

N—-1

J J
Hxy = D) Z (CZCz‘H + CZT+1Cz') - (—1)Q+1§(Cj\f01 + CICN)-
i=1
Kedze plati Q = S, + N/2, v sektore s fixovanou hodnotou priemetu spinu Sg; mozno namiesto

operatora poc¢tu fermiénov @) pisat c-¢islo.
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Fourierova transformdcia
V tretom kroku diagonalizujeme fermionizovany hamiltonian pomocou Fourierovej transformacie ¢; =
ﬁ Dok cpe’F1% 20 kde a je mriezkova konstanta. Ak vlnové vektory k zvolime tak, aby platila podmienka

CN4+1 = (—l)QHcl, potom diagonalizovany hamiltonidn nadobudne tvar

Hxy = g 5kCLCk7 e = —J coska,
k

ktory popisuje volné fermiény s disperznym zakonom &j. Dovolené hodnoty k treba volit ako rieSenia
rovnice eNe = ¢in(@+1)  Pre parny pocet fermionov Q tak dostavame k = (2n + 1)7/(Na), kym
pre neparne pocty fermionov k = 2nw/(Na). Pre konkrétnost budeme odteraz predpokladat, ze pocet
mriezkovych bodov N je parny, ale nedelitelny 4.

& A&
) | _—e
\‘\\ ‘: . '\. i 7
. : [
EEEAS e D f - \ ¢ f it S
-7 ‘\ | / R 'L \ T L.
o Wl e J/ &
L 2
i
Q _}tnmuc Q L«ey’«'/me

Obr. 2: Dovolené hodnoty vinovych vektorov k na mriezke N' = 6. VIavo: parny pocet fermiénov Q. Vpravo: neparny
pocet fermiénov Q. V oboch pripadoch je dovolenych A hodnét k.

Zakladny stav

V kazdom sektore s predpisanym SZ.,, t.j. fixovanym po¢tom fermionov Q = Sg, +N /2, je zdkladnym
stavom Fermiho more, v ktorom st obsadené stavy s hybnostami k € (—kp, kp). Absolitne najnizsiu
energiu dosiahneme v sektore @ = N /2, ¢o je podla predpokladu neparne celé ¢islo. V tomto pripade
totiz Fermiho more obsahuje vSetky stavy so zdpornou energiou a neobsadené zostavaju vietky stavy
s kladnou energiou.?! T'ahko nahliadneme, Ze zakladny stav systému je nemagneticky:

(57) = (ala:) - % = (cles) - % -2 > leher) - % =0, (S =(S7)=0.
k

V termodynamickej limite N” — oo, v ktorej budeme odteraz pracovat, mame kp = o-. Energia za-
kladného stavu je Eg = Z| k|<kp €k = —%N J, teda kvantové fluktuacie zniZuju energiu oproti klasickej
hodnote Ey = —%J\/'J.

Ezxcitované stavy v sektore S, =0

Excitované stavy retiazky XY moZno rozdelit do dvoch skupin. V prvej skupine st stavy zo sektora
Q = N/2 s celkovym priemetom spinu Sg; = 0. Tieto excitacie vzniknt presunom jedného alebo via-
cerych fermioénov z Fermiho mora do neobsadenych stavov, pricom sa vytvoria tzv. ¢asticovo-dierové
pary. V tejto skupine dostaneme excitacni energiu AE — 0 iba ak Castice aj diery si blizko Fermiho
“plochy”. Celkovéa hybnost takychto stavov, t.j. stredna hodnota operatora Py = ) ) hk:c,t;ck, je bud
Piot = 0 alebo Pt ~ +2hkF.

Ezcitované stavy v sektore Sg; # 0

Druhou skupinou s excitované stavy s poc¢tom fermiénov @ # N/2; a teda s celkovym priemetom
spinu SZ; # 0. Analyza tychto stavov je zlozitejsia. Napr. po pridani (alebo odobrani) jedného fermionu
k zdkladnému stavu dostaneme Q = N'/2+ 1, teda stav s parnym poctom fermiénov.?? Preto dovolené

29Pouzivame nedoésledné oznacenie, ktoré je viak v literattire bezné. Operator ¢; anihiluje fermion v mieste j, kym
operator ci anihiluje fermién v stave rovinnej viny s vinovym vektorom k. Ide teda o dva rézne operatory. O ktory z
nich ide by malo byt zrejmé z kontextu a aj z pouzivanych indexov: i a j oznac¢uju body mriezky, k vlnovy vektor.
21D4 sa ukazat, Ze optimalny stav s parnym poctom castic mé pre kazdé konedné N vyssiu energiu, pozri cvienia.
22Pripominame, ze A je parne a nedelitelné 4.
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vlnové vektory fermionov sa oproti ich hodnotam v zakladnom stave zmenia a buda k = (2n+1)7/(Na),
pozri obrazok 2. Zéakladny stav v sektore s @ = N/2 £ 1 ma teda zjavne celkovii hybnost Pt = 0.
Excitované stavy s malymi energiami v tomto sektore st tvorené Casticovo-dierovymi parmi. Celkova
hybnost takychto stavov je opat bud Pyt ~ 0 alebo Pt = £2hkp.

Po pridani (alebo odobrani) dvoch fermionov k zdkladnému stavu dostaneme @ = N/2 + 2, teda
stav s neparnym poctom fermionov, podobne ako zakladny stav modelu. Celkova hybnost takychto
stavov, pokial ich energie sit malé, je opat bud Pio; ~ 0 alebo Py, =~ £2hkp.

Kvantova kvapalina spinov

V jednorozmernych systémoch vo vSeobecnosti o¢akavame, Ze spojita symetria nemoze byt spontanne
narusend ani v zékladnom stave, t.j. pri teplote T' = 0. NaruSeniu symetrie totiz zabrania kvantové fluk-
tuacie. Vynimkou st systémy, ktorych parameter usporiadania M sa zachovava, [M , H] = 0, napriklad
feromagneticka Heisenbergova retiazka spinov.

Systém spinov pri T' = 0 bez spontanne naruSenej symetrie sa nazyva kvantovou kvapalinou spi-
nov. Speciélny pripad kvantovej kvapaliny, ktory sa realizuje v 1D modeli XY, sa nazyva algebraickou
kvantovou kvapalinou. Tato kvapalina mé (v termodynamickej limite N' — oo) nulovii medzeru v exci-
ta¢nom spektre a dé sa ukéazat, Ze korela¢né funkcie medzi spinmi preto klesaju s mocninou vzdialenosti
medzi nimi.

Cvicenia

la) Ukazte, ze zékladny stav modelu XY s J > 0 nie je Néelov stav.

1b) Ukazte, ze zakladny stav modelu XY s J < 0 nie je plne polarizovany feromagnet.
2. Dokazte komuta¢né vztahy pre operatory a;, a}.

3. Dokazte, ze Jordanove-Wignerove operétory c;, c;[ splitaji komutaéné vztahy pre fermiény a overte vyjadrenie Hxy

pomocou tychto operatorov. Pomdcka: pomocou pdsobenia na bazové stavy ukazte, ze az U; = a;f a Uiaz = fal.h.
4. Ukaizte, Ze na mriezke s N' = 41 + 2 bodmi m4 v sektore s neparnym () najnizsiu energiu stav s Q = N /2 a energiou
E = —J/sin 5. Dalej ukédzte, Ze vietky stavy s pArnymi poctami fermiéonov Q majt vy3siu energiu.

5. Ukazte, ze volna energia 1D modelu XY je dana vztahom

/2
1n2+2/ dxln(coshJcosx)
™ Jo

F=-NT oT

Néavod: vypocitajte Statistickti sumu Z pre systém volnych fermiénov ¢ predpokladajtce, ze vietky pocty fermionov od 0

do N st mozné. N4jdite entropiu v limite nizkych a vysokych teplot.

8 Zovseobecnena tuhost

V tejto prednéske zavedieme pojem zovSeobecnenej tuhosti k ako d'aldej charakteristiky systémov so
spontanne narusenou spojitou symetriou. Na priklade klasického modelu XY predvedieme, ako mozno
tuhost x pocitat. Napokon model XY vyrieSime v tzv. pribliZzeni stredného pola.

Zovseobecnena tuhost
Tuhé latky su stavy hmoty so spontanne naruSenou translacnou a rota¢nou symetriou. S naruSenim
tychto spojitych symetrii je asociovani mechanické tuhost, ktort mézeme zjednoduSene definovat na-
sledovne. Skimajme povedzme ty¢ dlzky L z tuhej latky. Jeden koniec ty¢e nech je pevne ukotveny.
Druhy koniec tyce skratme o uhol a okolo osi ty¢e. Ocakavame (pozri napr. 1.9), Ze hustota volnej
energie tyce f(a) pri takejto deformacii narastie oproti hustote volnej energie nedeformovanej tyce f(0)
nasledovne: f(a) = f(0) + 2ksona(e/L)?. Konstantu r nazyvame mechanickou tuhostou. Na druhej
strane, skritenie koncov stlpca toho istého materidlu v kvapalnom stave nevyvolava néarast hustoty
volnej energie tohto stlpca, teda Kliquid = 0. Existencia tuhosti teda nie je vlastnostou pohybovych
rovnic pre atéomy, ale termodynamického stavu. Anderson zdoéraznuje: “ We are so accustomed to the
rigidity property (of solids) that we don’t accept its almost miraculous nature, that it is an emergent
property not contained in the simple laws of physics, although it is a consequence of them.”
Dosledkom existencie koneénej mechanickej tuhosti tuhych latok je stalost ich tvaru.?? Ak spo-

23Na rozumne dlhych ¢asovych skalach, pozri napr. I.1. Vdaka nenulovosti x mézeme dokonca hovorit o idealne tuhych
telesach, v ktorych berieme k — co.
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minand ty¢ kratime len na jednom konci a pokial bude jej druhy koniec volny, bude sa tento krutit
rovnako ako koniec, na ktory posobime. Druhy koniec bude mdct silovo posobit na iné telesa. Anderson
hovori o “bezdisipativnom transporte sily v tuhych teleséach”.

Pojem mechanickej tuhosti mozno zovseobecnit na pripad Tubovolného systému so spontdnne naru-
Senou spojitou symetriou. Existencia zovSeobecnenej tuhosti je désledkom prirodzeného, ale netrivial-
neho predpokladu, Ze (volna) energia systému s narusenou symetriou je minimalizovana, ked symetria
je naruSené rovnakym sposobom v celej vzorke. Citlivost hustoty volnej energie na vhodne zvolent
okrajovia podmienku nazveme zovSeobecnenou tuhostou.

Tuhost klasického modelu XY

V tomto odstavci ukédzeme, ako mozno pocitat tuhost klasického feromagnetického modelu XY v 3D.%
Sktimajme vzorku tvaru kocky s NV = N3 bodmi. Nech R = (k,I,m), kde k = 1,..., N atd., &isluje
mriezkové body a nech fgr je uhol natoCenia spinu v mriezkovom bode R voéi zvolenému smeru v
(spinovej) rovine XY. Hamiltonian Hxy zviizuje skimanych N3 spinov navzijom, ako aj so spinmi
mimo vzorky. Pre spiny na krajoch vzorky preto potrebujeme vediet hodnoty fgr vo fiktivnych bodoch
mimo vzorky, ktoré s nimi susedia. Pre body mimo naSej mriezky v smeroch y a z tieto hodnoty
predpiSseme pomocou periodickych okrajovych podmienok a v smere x predpiSeme okrajovi podmienku,
ktoré je analégom skrutenia tyce o uhol a v priklade so Zeleznou tycou:

Okt N m = Ok im + Ok i+Nm = Ok 1m, Oktm+N = Ok m-

Ak prejdeme od pola Og k polu ¢r tak, Ze plati fr = ¢r + q - R pricom q = (¢,0,0) a ¢ = a/N,
potom pole ¢r splia obvyklé periodické okrajové podmienky vo vietkych smeroch. Viimnime si, ze v
tomto odstavci povaZujeme za bezrozmerné ako polohy R, tak aj vinové vektory q. Hamiltonian H(q)
deformovaného systému ma tvar

H(q)=—-J Z cos [pr — ¢ +q- (R —R')]
(RR)

a k nemu prislusna volna energia F'(q) = —T'In Z(q) je definovana Statistickou sumou

2(q) = [ Doc O, / po =] /0 " dom.
R

Nasim cielom je néjst rozvoj volnej energie deformovaného systému F'(gq) podla mocnin ¢ do
druhého radu véitane. Ocakavame, Ze dostaneme vyraz

Flq) = Fo+ yraN, (7)

kde Fy je voIna energia nedeformovaného systému a ¢len imerny prvej mocnine ¢ v rozvoji absentuje.
Koeficient k (s rozmerom energia) budeme interpretovat ako zovseobecnent tuhost modelu XY.
Zatneme rozvojom hamiltonianu podla mocnin ¢ do druhého radu, H(q) = Hy + Hy + Ho, kde

>
Hy=-J Y coslgr —¢r],  Hi=Jqy sin[¢r — ¢r-sl, HQZJ%ZCOS[QSR_QZ)R—H‘
(RR/) R R

Vsimnime si, ze Hg popisuje nedeformovany systém a obsahuje sumy cez vSetky linky mriezky, kym
korekéné ¢leny prvého a druhého radu Hi a Ho obsahuju iba prispevky liniek v smere deformécie.
Zavedme dalej Statistickt sumu a stredovanie pre nedeformovany systém s hamiltonianom Hy:

Zo= [Doc T, (X(@)a = [DocITX ()

248pinové modely mozno odvodit ako efektivne modely pre systémy elektronov. Vysledkom tohto odvodenia st kvantové
modely, t.j. jednotlivé komponenty operatorov S; navzajom nekomutujta. V literature sa vSak ¢asto uvazuja aj tzv. klasické
spinové modely, v ktorych S; chapeme ako klasické vektory.
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Potom statistickii sumu deformovaného systému moézeme do druhého radu podla ¢ pisat nasledovne:
2
_ /D¢eHo/TeH1/TeH2/T _ Zole-M/Te /Ty o 7, <1 _ B HP H2> ‘
0

Statisticktt sumu deformovaného systému sme teda vyjadrili pomocou strednych hodnét v nedefor-
movanom systéme s hamiltoniAnom Hy. V takomto systéme je vSak energia konfiguracie s rozdielmi
faz ¢r — ¢rs = Arr’ Vv susednych bodoch R a R/ rovnaka ako energia konfiguracie s rozdielmi faz
orR — dr = —ARR’/. Preto takito dvojica konfiguracii je rovnako pravdepodobna. Odtialto potom
vyplyva, Ze linearny ¢len v rozvoji Statistickej sumy Z(q) vypadne, (Hi)o = 0. Pre volnu energiu F(q)
preto dostavame nasledovny rozvoj do druhého radu podla g:

F(q):—Tano—T1n< +—> = Fy + (Ha)o — <H1>
0

212 T 2T
Tento vysledok ma ocakavany tvar (37), t.j. neobsahuje ¢len umerny ¢. Pre zovSeobecnenu tuhost s

naviac dostavame explicitny vyraz:

K= /{[ <Z cos (PR — ¢R§c>> - 1{/\/ < > sin (R — ¢R§:)] > : (38)
R 0 R 0

Vztah (38) demonstruje, Ze tuhost x (ktora popisuje, nakolko sa systém brani zmene okrajovych
podmienok a mozno ju chapat ako tzv. funkciu odozvy) mozno uréit studiom Statistickych vlastnosti
neporuseného systému s hamiltonidnom Hy. Tento vysledok mé vSeobecni platnost: aj v kvantovych
systémoch mozno funkcie odozvy uré¢it studiom rovnovaznych korelacii, pozri IV.3.

Stadium teplotnej zévislosti & zafnime pozorovanim, Ze prvy ¢len vo vyraze (38) mozno na D-
rozmernej hyperkubickej mriezke zapisat pomocou (teplotne zévislej) strednej hodnoty energie E(T")
modelu XY ako —ﬁE (T'). V limite nizkych teplot, kedy polia ¢r vykonavaji malé tepelné kmity okolo
sponténne polarizovaného stavu, mozno hamiltonian modelu XY aproximovat nasledovnym klasickym
harmonickym modelom,

Hporm = J Z [ ¢R or)?

(RR/)

Energia zakladného stavu na D-rozmernej hyperkubickej mriezke je E = —DNJ. KedZze model
Hyarm obsahuje A klasickych harmonickych stupiiov volnosti, podla ekviparti¢nej vety jeho ener-
gia pri konecneJ teplote bude E(T) = —DNJ + 1/\/ T. Prispevok prvého ¢lena vo vyraze (38) teda
bude J — T Co sa tyka druhého ¢lena vo vyraze (38), v harmonickom pribliZeni méZeme pisat
> g sin (ngR $R-2) = > g (¥R — ¢R-2) = 0, pricom posledné rovnost je dosledkom periodickych
okrajovych podmienok. V limite nizkych teplot teda oCakavame, Ze tuhost s rastom teploty klesa
podla vztahu

k(T)=J— ET (39)
Numerické simulécie trojrozmerného modelu XY ukazuja,?® Ze pri dalsom raste teploty sa pokles tu-
hosti zrychluje, az napokon pri kritickej teplote T, = 2.2J tuhost spojito vymizne. Pri kritickej teplote
teda ma funkcia x(7T) singularitu: pre vSetky teploty 1" > T, je tuhost striktne nulova v silade s oca-
kédvaniami pre kvapalinu spinov, kym pre T' < T, je naopak tuhost kone¢na.

Klasicky model XY v priblizeni stredného pola

V tomto odstavci skonstruujeme najjednoduchsiu pribliznt teériu pre klasicky D-rozmerny model XY
pri konecnej teplote. Budeme predpokladat, Ze pravdepodobnosti natoc¢enia uhlov v réznych bodoch
mriezKy st navzajom nezavislé a pravdepodobnost konfiguracie {¢r } je teda suc¢inom pravdepodobnosti
P(¢r) v jednotlivych bodoch mriezky, P({¢r}) = [[g P(¢r). Optimalnu funkciu P(¢) najdeme
minimalizaciou volnej energie

F = (H) - T(S),

25Pozri napr. Y.H. Li and S. Teitel, Phys. Rev. B 40, 9122 (1989).
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kde prvy ¢len predstavuje strednt hodnotu energie pocitanej pre rozdelenie spinov P({¢r}),
<H> = —NDJ/ dgf)l / d¢2p(¢1)P(¢2) COS(gf)l — gf)g)

Druhy ¢len predstavuje entropiu rozdelenia spinov P({¢r}),

8) =N [ d6P(6)n P(9).

—T

D4 sa ukazaf,?® Ze presna volné energia modelu XY splita nerovnost Fegact < F, ¢ize mame do ¢inenia
s variac¢nou tlohou so zatial nezndamou varia¢nou funkciou P(¢).

Minimalizacia volnej energie F' podla P(x) pri zohladneni vizby ffﬂ d¢pP(¢) = 1 popisanej Lag-
rangeovym multiplikitorom A déva nasledovni rovnicu pre funkciu P(y):

™
—2DJ/ dpP(p)cos(x — @)+ TInP(x)+7T — A =0. (40)
—Tr
V dalsom vyklade budeme predpokladat, Ze vo faze s naruSenou symetriou st spiny natocené v smere
¢ = 0. Preto je prirodzené ocakavat, ze plati P(¢) = P(—¢). O chvilu uvidime, Ze taktto symetriu mé
aj systém v stave bez naruSenej symetrie. Parameter usporiadania pri konec¢nej teplote, t.j. priemerné
natocenie spinov do smeru ¢ = 0, je o¢ividne popisany vztahom
™

m = d¢P(¢) cos ¢. (41)

Po zohl'adneni symetrie funkcie P(¢) lahko nahliadneme, Ze rovnica (40) ma nasledovné rieSenie

P(x) = const x e X, a = 22Jm (42)

kde konstantu mozno lahko dopoéitat z normaliza¢nej podmienky pre P(x). Dosadenim vysledku (42)
do vyrazu (41) napokon dostaneme tzv. self-konzistentnii rovnicu pre parameter usporiadania m,

(43)

kde I,,(a) = & J7_de cos(ng)e®5? st tzv. modifikované Besselove funkcie.

V limite vysokych teplot je bezrozmerny parameter ¢ maly a pre modifikované Besselove funkcie
platia vztahy Ip(a) = 1 + (%)2 +...ala)= (%) +3 (%)3 + .... Rovnica (43) sa vtedy zredukuje
na tvar m = DJm/T. Pre teploty T > D.J je jedinym rieSenim tejto rovnice m = 0, t.j. rieSenie bez
naruSenia symetrie. Pod teplotou 7, = D.J ma rovnica (43) aj rieSenia s nenulovou hodnotou parametra
usporiadania m. Da sa ukéazat (pozri cvicenia), Ze volna energia tychto rieSeni je nizsia nez pre m = 0.
Preto T, je kritickou teplotou modelu XY.

PribliZenie, ktoré sme pouzili pri rieSeni modelu XY, sa nazyva priblizenim stredného pol'a. Rozde-
lenie pravdepodobnosti (42) pre natocenie spinu totiz dostaneme, ak na spin pdsobi magnetické pole,
ktoré je orientované v smere ¢ = 0 a jeho velkost je imernéd m. Toto pole je v naSom pripade sprieme-
rovanym vysledkom posobeni okolitych spinov, odtial nazov stredné pole. Cim silnejsie stredné pole
posobi, tym bude priemerné natocenie spinov do smeru ¢ = 0 (t.j. m) vicsie. Rovnica (43) nastavuje
hodnotu m tak, aby vel'kost stredného pola bola konzistentné s priemernym nato¢enim spinov.

Cvicenia

1. RieSenim rovnice (43) ukazte, ze pri teplotach T tesne pod kritickou teplotou T. plati a* = 8(T. — T)/T., Cize
m o (Te — T)l/ 2. Takéto teplotna zavislost parametra usporiadania je charakteristicka pre teériu stredného pola.

2. Ukazte, %e volna energia na bod mriezky f = F/N pre rozdelenie (42) m4 tvar

Il (a)
Io(a)

ali(a)
Io(a)

fla) =T, { r -7 [m (2rlo(a)) —

26Pozri IV.5.
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Presvedte sa, ze minimalizacia f(a) podla a vedie k self-konzistentnej rovnici (43). Dalej ukézte, Ze tesne pod kritickou
teplotou T, kedy treba ocakavat, ze parameter a je maly, Taylorovym rozvojom f(a) dostaneme tzv. Landauov rozvoj
Tc 4

_Tca2+—a
4 64"

fi(a) = —Tn(2r) + =

3. Ukazte, ze pre T' < T. funkcia fr,(a) nadobtida minimum pre hodnotu a uvedenu v cviceni 1, kym v bode a = 0
(nemagnetické rieSenie) funkcia fr,(a) nadobtida lokalne maximum. Ukazte, Ze (v pribliZeni stredného pol'a) volné energia
modelu XY pre T > T. je f = —T In(27), kym pre teploty tesne pod kritickou teplotou plati f = —T In(27) —(T.—T)?/T..
Na zéklade tychto vysledkov najdite predpovede teodrie stredného pola pre teplotni zavislost entropie, merného tepla a
vnatornej energie.

4. Numerickym riesenim rovnice (43) najdite teplotnu zavislost parametra usporiadania m.

5. V priblizeni stredného pola najdite teplotna zéavislost tuhosti fazy. Navod: pocitajte volni energiu deformovaného
systému F(q) a ukazte, ze k = Jm?. Ukazte, Ze naivny vypocet podla (38) da nefyzikalny vysledok.

6." Pri teplote T = 0 vypocitajte tuhost x (kvantovej) retiazky spinov S = 1/2 s feromagnetickym Heisenbergovym
hamiltonidnom H = —J )" S,-Sp41. Navod: skiimajte homogénne deformovany stav |1)) = [Hn 6m55;§} | 1, T2, TA).

Predpokladajte, ze § < 1 a vypoditajte energiu do radu 62: %(MHW;) = f% + %/{52. Pouzite tiez

(T Tr [€°9780 - Snpae™ P50 4o, tnga) & (o, Tt [(1+ 0S5 — 6°/8)S0 - Snia (1 — iS5 — 62 /8)] T, Tuta).

9 Prechod Kosterlitza-Thoulessa

V tejto prednéske ukdzeme na priklade 2D verzie klasického modelu XY, Ze zovSeobecnena tuhost moze
byt nenulova aj v systémoch bez spontanneho narusenia symetrie. V tomto pripade je nizkoteplotné
faza s konecnou tuhostou oddelené od vysokoteplotnej fazy s nulovou tuhostou novym typom fazového
prechodu, tzv. Kosterlitzovym-Thoulessovym prechodom.

Tuhost fazy dvojrozmerného modelu XY

Model XY ma spojiti symetriu a da sa ukéazat, ze aj pren plati Hohenbergova-Merminova-Wagnerova
veta. To v8ak znamen4, Ze magnetizacia dvojrozmerného modelu XY musi byt pri konecnej teplote
nulovi. Mohlo by sa zdat, Ze aj zovSeobecnen4 tuhost potom musi byt nulova.

Na prekvapenie sa vSak ukazuje, Ze tuhost dvojrozmerného modelu XY je pri dostato¢ne nizkych
teplotach kone¢né, napriek tomu, Ze spiny nie st zamrznuté. Zdévodnenie je nasledovné. V prednéske 5
sme videli, Ze spontanne naruSenie symetrie je znemoZnené divergenciou poc¢tu dlhovinnych excitacii s
nizkou energiou. Takéto exciticie v8ak takmer nemenia relativny uhol medzi susednymi spinmi, preto
sa da ocakavat, ze vyraz (38) pre tuhost moZno vyhodnotit v ramci harmonického modelu Hyappy,.
Numerické simulédcie naozaj potvrdzuji, Ze tuhost modelu XY je pri dostato¢ne nizkych teplotach
kone¢na a dobre popisana aproximativnym vztahom (39) s D = 2.

Na druhej strane, v limite vysokych teplot by tuhost x mala byt identicky nulova, kedZe aj v troj-
rozmernych systémoch je tomu tak. To v8ak znamené, Ze opat musi existovat teplota T, pri ktorej mé
funkcia k(7T) singularitu. Na rozdiel od trojrozmerného modelu, tato singularita vSak nemdze suvisiet
so spontdnnym naruSenim symetrie pod teplotou T, preto fazovy prechod musi mat int podstatu. Vo
zvysku tejto prednasky kvalitativne popiSeme tento novy typ fazového prechodu, tzv. Kosterlitzov-
Thoulessov prechod.

Viry a antiviry

Podstatnu tlohu pri Kosterlitzovom-Thoulessovom prechode zohrévaji tzv. viry a antiviry, pozri obra-
zok 3. Ide o konfiguracie spinov s jednou singularnou elementarnou bunkou. Pozdlz Iubovolnej uzavretej
c¢iary C obopinajtcej tato bunku bude platit >~ Af = 2mq, kde ¢ = £1 a A = 6; — 6; je prirastok
fazy na elementéarnej linke medzi bodmi i a j.27 V principe by prichadzali do tvahy aj iné celodi-
selné hodnoty ¢, da sa v8ak ukéazat (pozri cvi¢enia), ze takéto excitacie nie st v modeli XY stabilné
a rozpadni sa na viry alebo antiviry s |¢| = 1. V prednaske 20 ukaZeme, Ze (anti)viry su Speciadlnym
pripadom tzv. topologickych defektov. Ich energiu odhadneme aproximovanim harmonického modelu

2TPrirastok fazy je potrebné ohrani¢it na pevne zvoleny interval dlzky 27. Pripustna je napr. volba —7 < Af < .
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Hyorm spojitym modelom
H = % / d’r(V6)2. (44)

Stoji pritom za zmienku, Ze mriezkova konstanta a do vyrazu (44) nevsttpi. V polarnych stradniciach
so stredom v strede (anti)viru plati |Vé| = g/r, preto pre jeho energiu dostdvame odhad

R
d
EvzzﬂJqZ/ & mE
o T a

kde R je linearny rozmer mrieZky. Mohlo by sa zdat, ze vdaka divergentnosti energie E, v limite
R — oo st viry a antiviry nepripustnymi konfiguraciami. Aviak existuje zhruba R?/a? moznych poléh
stredov (anti)virov, ¢ize entropia (anti)virovych konfiguracii je S, = In(R?/a?). Preto pri teplote T
bude prirastok volnej energie po pridani (anti)viru §F, = E, — T'S,. To znamen4, Ze pri dostato¢ne
vysokej teplote bude § F,, < 0 a systém bude spontanne generovat volné viry a antiviry. Kriticki teplotu
T, mozno zhruba odhadntt z podmienky §F), = 0, odkial dostaneme T, ~ §.J.

Ako uvidime o chvilu, aj pri nizkych teplotach budu v systéme pritomné viry a antiviry, buda v8ak
viazané do vir-antivirovych parov. Vazobna energia takychto parov s rastom teploty klesa a v bode
prechodu, t.j. pri T = T, sa vynuluje.

Obr. 3: Vravo: priklad virovej konfiguracie. Vpravo: priklad antivirovej konfiguracie. (J. Imriska, bakalarska praca,
FMFI UK 2009).

Nabojova analdgia

V spojitom modeli (44) je energia (anti)viru ur¢ovana gradientom V@ = (0,6,0,0,0). Ak teraz pre
(anti)vir s “nabojom” ¢ zavedieme “potencial” ¢(r) = —qIn(|r|/a) s gradientom V¢ = —qr/r?, Tahko
nahliadneme, Ze vektory Vi a VO st rovnako dlhé a navzidjom kolmé:

Vo = 2 x V6,
kde 2 = (0,0, 1) je jednotkovy vektor kolmy na rovinu XY. V dalsom vyklade vyuZijeme, Ze plati
Ap(r) = —2mqd(r), (45)

kde §(r) = 6(x)d(y) je dvojrozmerna delta funkcia. Inymi slovami, 2wgd(r) hréa rolu nabojovej hustoty
a rovnica (45) je dvojrozmernou Laplaceovou rovnicou pre potencial ¢(r).?8 Systém virov a antivirov
teda mozno modelovat ako sadu néabojov. To nam umozni jednoducho vypodcitat energiu systému.

Sktmajme vzorku s (anti)virmi s ndbojmi ¢; v miestach r;. Budeme ziadat splnenie periodickych
okrajovych podmienok. Da sa ukéazat (pozri cvicenia), Ze v takomto pripade vzorka musi obsahovat
rovnaky pocet virov a antivirov, t.j. > .¢; = 0. Celkovy potencial takejto konfiguracie je ¢(r) =
— > ;¢ In(|r —r;|/a) a jej energia je

H= J/er(ve)Q = ‘]/erw-w = J% dS - Ve — ‘]/d%@A@,
2 2 2 Js 2

ZNaozaj: explicitnym vypodtom Iahko overime, Ze ak r # 0, potom pre funkciu o(r) plati Ap(r) = 0. Zostava teda
iba overit spravanie funkcie Ap(r) v okoli bodu r = 0. Za tym u¢elom skumajme povrchovy integral fc dS - V¢ po
kruhovej drahe C so stredom v bode r = 0, kde element dS je orientovany v smere vonkajSej normély k C. Na jednej
strane, dosadenim explicitného vyrazu pre V¢ dostaneme fc dS - Vi = —2mq. Na druhej strane, pouzitim Gaussovej
vety mozeme pisat fc dS-Veo=[ d*r A, ¢o vdaka rovnici (45) reprodukuje priamy vypocet. Tym je dokaz rovnice (45)
ukonéeny.



35

kde sme v prvom kroku vyuzili, ze (V6)? = (V¢)2. V druhom kroku sme vyuzili identitu Vo - Vi =
V- (¢V) —pAp a prvy ¢len sme integrovali pomocou (dvojrozmernej) Gaussovej vety, pri¢om povrch
vzorky sme oznacili 3 a element dS je orientovany v smere vonkajsej normaly k 3. Tento ¢len mozno na
velkych mriezkach zanedbat, pozri cvicenia. Na druhej strane, zovSeobecnenim rovnice (45) na pripad

rozloZenia nabojov dostaneme Ap(r) = =27 ) . ¢;0(r —r;), preto
vy 1 2
H=m]Y pigi=-m] ) ggiln—" =3 ; Vit + 1Y a7 (46)
i ij i#] i

kde rjj =r; —r; a Vi; = 2nJ In(a/|r;;|). V poslednom kroku sme energiu nabojov prepisali ako stcet
interak¢nej energie medzi dvojicami nédbojov (prvy ¢len, ¢ # j) a energie jednotlivych virov (druhy
¢len, ¢ = j). Stoji tieZ za zmienku, Ze prispevky ¢ = j sice formalne diverguju, ale skuto¢na energia p
musi byt kone¢na aj na nekone¢nej mriezke (pozri cvi¢enia).

V nabojovej analogii teda mozno systém virov a antivirov popisat ako plyn nabojov ¢ = +1
interagujucich prostrednictvom tzv. 2D coulombovského potencialu V;;. Sila F;;, ktorou posobi ndboj
j na naboj i, je

OVij rij
Fij = —qiq; o QFJQin;Qj- (47)
Opac¢né naboje sa teda pritahuji a rovnaké naboje sa odpudzuji. Energia jednotlivych nabojov je u a
celkovy naboj je nulovy, > . ¢; = 0.

Fazovy prechod v nibojovej analogii
KedZe energia (46) nabojovych konfiguracii je kone¢né, pri akejkol'vek kone¢nej teplote bude v systéme
pritomnéa konecna hustota virov a antivirov. Pri nizkych teplotach v8ak budi dominantne zasttipené iba
konfiguracie s dip6lmi - dvojicami opa¢nych nabojov leziacich blizko seba. Takéto konfigurécie pripomi-
naja rozdelenie ndboja, ktoré ocakavame v dielektrikéch pri kone¢nych teplotach, a preto nizkoteplotnii
fazu nazyvame aj dielektrickou fdzou.

S rastom teploty koncentréicia tepelne excitovanych dipdlov rastie. Interakcia medzi nabojmi ¢
a j vo vzdialenosti r;; vSak potom nema jednoduchy coulombovsky tvar V;;, ale musi byt slabgia,
pretoZe ostatné excitované dipély ju budu &astoéne tienit. Slabsia interakcia vSak znamend dalsi
narast koncentracie dipolov, ktory zas sposobi dodatoény rast tienenia. Ulohu o tepelnych vlastnostiach
problému (46) je teda potrebné riesit self-konzistentne.

Jednym z désledkov zvySovania teploty je, ze naboje tvoriace dip6l sa mézu nachadzat v ¢oraz vac-
Sej relativnej vzdialenosti. Da sa ukazat, Ze pri teplote T, tato vzdialenost diverguje, teda pary ¢ =1
a ¢ = —1 prestanu byt viazané a zafna sa volne pohybovat cez systém. Inymi slovami, dielektricka
faza sa stane nestabilnou voci kovovej fdze. Fyzika tohto prechodu je podobna Mottovmu prechodu
kov-izolant v dopovanom polovodici, ktory sme skimali v I1.14 a ktory sme v II.18 interpretovali ako
polariza¢na katastrofu.

Tuhost fazy a Kosterlitzov-Thoulessov prechod

Silu (47), ktorou posobi naboj j na naboj ¢, mozno zapisat v tvare F;; = —271J¢;Vy;, kde ¢; je
potencial budeny nabojom j v mieste 7. Pripominame, Ze plati Vyp; = 2 x V0;, kde V§; je gradient
fazy v mieste ¢ generovany virom j. Preto F;; = JV0; x Q;, kde vir v mieste ¢ sme popisali vektorom
Q; = (0,0,2mg;). Silu F;; teda mozno interpretovat ako interakciu (anti)viru ¢ s gradientom fazy Vé;.
Avsak tato sila by nemala zavisiet od zdroja gradientu fazy. Silu F pésobiacu na (anti)vir s ndbojom
g = £1 popisany vektorom Q = (0,0,27q) preto musi byt mozné zapisat (aspon pre malé V6) vo
vS8eobecnejsom tvare

F=JV0xQ, (48)

V@ je gradient fazy v mieste viru generovany aj inymi zdrojmi ako studovany (anti)vir.

Pre nas dalsi vyklad je dolezité pozorovanie, Ze v pritomnosti (anti)virov obsahuje pole uhlov 0(r)
singularne &ary, pozdlz ktorych sa faza meni o A = £2r, pozri obrazok 4. V konfiguraciach s nulovym
celkovym nabojom ). ¢; = 0 singularne ¢iary zac¢inaju vo viroch a konéia v antiviroch.

Pri vypoc¢te tuhosti fazy na vzorku zvonku aplikujeme (maly) konstantny gradient fazy V6 a
skiimame nim spdsobenii zmenu volnej energie vzorky dF. Predpokladajme, %e vo vzorke je pritomné
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Obr. 4: Ak pole uhlov obmedzime na interval —m < 6 < 7, potom v konfiguraciach s (anti)virmi existuja singularne
¢iary, naprie¢ ktorymi je rozdiel susednych uhlov A8 = £27. VIavo: vir. V strede: antivir. Vpravo: par vir-antivir.

jedna dvojica vir-antivir, pozri obrazok 5. Pozdlz drah C; a Cs, ktoré nepretinaji spojnicu viru a
antiviru, je rozdiel f4z medzi Tavym a pravym koncom vzorky rovnaky, fCl dr-Vo = fCl dr -V = A6,
kym pre drahu C na obrazku 5, ktora tato spojnicu pretina, plati [ o dr- V0 = Af — 2, pretoze pre
drahu obopinajicu vir musi platit fCQ dr - V0 — fC dr - V0 = 2m.

V kovovej faze su (anti)viry volne pohyblivé. Gradient V€ v smere osi  preto vytla¢a vir na dolny
okraj vzorky a antivir na horny okraj. V zavislosti od okrajovych podmienok v smere osi y ostanii
(anti)viry uviznené na kraji vzorky, alebo z nej dokonca budu tplne vytla¢ené. Vyslednym efektom
tohto procesu je, ze pozdlz vietkych drah vo vzorke sa aplikovany rozdiel faz na koncoch vzorky znizi
o 27. Podobné procesy (tzv. preSmyknutia fazy o 27) pobezia dovtedy, kym sa aplikovany rozdiel faz
efektivne nevynuluje. Preto je zrejmé, Ze v kovovej faze 6 F = 0 a tuhost je nulova.
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Obr. 5: Vlavo: vzorka s parom vir-antivir so zvonku aplikovanym gradientom fazy V6, ktory v smere osi = vytvéara
rozdiel faz Af medzi koncami vzorky. Sily (48) vytla¢aja vir aj antivir k okrajom vzorky. Vpravo: drahy Ci, Ce a C
popisované v texte.

Na druhej strane, v dielektrickej faze na kazdy dipdl posobi dvojica sil F a —F, ktord moze dipél
iba natocit a/alebo deformovat, nie vSak roztrhnut. V tomto pripade k efektivnemu vynulovaniu §F
neprichadza a tuhost zostane kone¢nou aj po zohl'adneni virovych excitacii. Neocakavanym vysledkom
je, ze v bode prechodu T, sa tuhost meni skokom z kone¢nej hodnoty k. = %TC v dielektrickej faze na
nulova hodnotu v kovovej faze.

Cvicenia

1. Ukazte, ze pre ¢iaru C' obopinajtcu systém (anti)virov s nabojmi ¢; plati Y-, A = 273" ¢..

2. Ukazte, ze v systéme s periodickymi okrajovymi podmienkami plati > s, A@ = 0, kde X je povrch vzorky. Podla
cviCenia 1 v takomto systéme teda plati >, ¢; = 0.

3. Ukazte, ze pre konfiguraciu nabojov s celkovym nabojom Y. ¢; = 0, ktoré sa naviac nachadzaji daleko od povrchu
vzorky, v limite R — oo plati §2 dS - Ve — 0.

4. Ukazte, ze energia paru vir-antivir je kone¢na aj na nekonec¢nej mriezke.

5. Pomocou nabojovej analogie (46) ukazte, Ze viry s ¢ = 2 st nestabilné. Navod: porovnajte energiu stavu s (anti)virmi
s nadbojmi +2,-1,-1 s energiou stavu s (anti)virmi +1,+1,-1,-1. Predpokladajte, ze vSetky dvojice roznych virov si vo
vzdialenosti ~ R. Mozno (46) pouZzit na porovnanie energie stavu s virom ¢ = 2 a dvojice virov s nabojmi +17 Ako
zmeni ivahy o stabilite virov zahrnutie entropie?

6. Podla (47) medzi virom a antivirom existuje pritazliva interakcia. Zdovodnite tento vysledok priamo v spinovom
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jazyku, t.j. bez pouzitia nabojovej analdgie.

10 Supratekuté hélium

V tejto prednaske najprv struéne popiSeme experimentélne fakty o supratekutosti hélia. Budeme argu-
mentovat, Ze supratekutost sivisi s existenciou kondenzatu, t.j. makroskopicky obsadeného jednocasti-
cového stavu. Napokon ukdZeme, Ze v systémoch s kondenzatom je spontdnne naruSené tzv. (globalna)
kalibra¢né symetria.

Experimentalne fakty
Pri tlakoch mengich ako zhruba 2.5x 106 Pa zostava hélium kvapalné az do najnizsich skiimanych teplot.
Absencia tuhej fazy je spdsobena sticasnou pritomnostou dvoch faktorov: 1. slabostou interakcii medzi
atomami, 2. malou hmotnostou m atémov He. V doésledku sthry tychto faktorov atémy vykonévaju
kvantové kmity s velkou amplitidou, ktoré hraji rolu analogicki role tepelnych kmitov a rozrusia
krystalické usporiadanie.
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Obr. 6: Vlavo: Fazovy diagram pre “He. Vpravo: teplotna zavislost podielu supratekutej zlozky ps/p.

Podla 3. vety termodynamickej musi entropia v limite 7" — 0 klesat do nuly. Ako je to vSak
mozné v kvapaline, v ktorej existuje nenulova tzv. konfigura¢na entropia? Priroda tento problém riesi
prechodom z obyc¢ajnej kvapalnej fazy do novej nizkoteplotnej kvapalnej fazy, tzv. fazy He II. Fazovy
prechod je spojity, bez skupenského tepla, a realizuje sa pri teplote T¢.(p), ktora zavisi od tlaku p. Pri
tlaku nasytenych par (t.j. na ¢iare koexistencie kvapalina-plyn) je T, = 2.19 K. Merné teplo pri nizkych
teplotach vykazuje Debyeovu teplotni zavislost, ¢y oc T5.

Supratekuté faza s T, ~ 1 K sa realizuje iba pre izotop “He. Izotop 3He sa supratekutym stava iba
pri T, ~ 1 mK, t.j. o tri rady nizsich teplotach. KedZe chemické vlastnosti oboch izotopov st iden-
tické a ich hmotnosti si1 porovnatelné, hlavnym kvalitativnym rozdielom medzi nimi st ich Statistické
vlastnosti: izotop “He je bozén, kedZe pozostava z parneho poctu fermionov (2 protoény, 2 neutroény,
2 elektrony), kym izotop *He je fermion (2 protény, 1 neutrén, 2 elektrony). Spin zakladného stavu
atéomu je S = 0 pre *He a S = 1/2 pre 3He.

Dvojkvapalinovy model
Merania viskozity He II vykazuji nasledovny paradox:
A: v experimentoch, v ktorych hélium tecie cez potrubie (ktoré je v pokoji), je viskozita hélia nulova:
kvapalina tecie cez potrubie aj pri nulovom rozdiele tlakov na koncoch potrubia.
B: v experimentoch, v ktorych si do hélia (ktoré je v pokoji) zavedené pohyblivé objekty, je pohyb
tychto objektov tlmeny ako v oby¢ajnej viskdznej kvapaline. Tlmenie klesa do nuly iba v limite 7" — 0.
Tento paradox riesi tzv. dvojkvapalinovy model, podla ktorého hélium vo faze He II pozostava z
dvoch zloziek, z norméalnej zlozky s hustotou p,, a s konecnou viskozitou a zo supratekutej zlozky s
hustotou ps a s nulovou viskozitou, pricom celkova hustota hélia p = p,, + ps. V experimentoch typu A
totiz ostava normélna zlozka v pokoji vzhladom na steny potrubia a bezdisipativny transport hmoty
je zabezpeceny supratekutou zlozkou. V experimentoch typu B pohyblivé objekty so sebou strhévaja
normalnu zlozku a nastava disipacia. Pri teplotach T' > T, je p, = p, t.j. cela kvapalina je v normélnom
stave. Pri schladeni pod T, sa objavi nenulova hustota supratekutej zlozky, pricom ps so znizovanim
teploty rastie a v limite T' = 0 je cel& kvapalina supratekuté, ps = p.
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Fontdnovy jav
Tzv. fontdnovy jav sa realizuje medzi dvomi nadobami A a B, ktoré si mozu vymienat iba supratekutt
zlozku. Takito situdciu mozno zabezpecit prepojenim nadob tenuckymi kapilarami, cez ktoré nor-
mélna zlozka v dosledku konecénej viskozity nemoze tiect. Experimentalne pozorovanie je nasledovné:
ak zahrejeme nadobu B na teplotu Ts vyssiu ako T4, potom supratekuta zlozka potecie z A do B.
Tento jav mozno chapat ako supratekuty analog osmoézy. Kazda nadoba je totiz roztokom suprate-
kutej zlozky v normaélnej zlozke. Teplejsia nddoba B predstavuje redsi roztok, kedZe je v nej relativne
menej supratekutej zlozky, kym chladnejsia nddoba A predstavuje hustejsi roztok. Tecenie suprateku-
tej zlozky z A do B teda predstavuje difuzny tok vedici k vyrovnavaniu koncentracii. Podla 2. vety
termodynamickej v8ak teplo nemdze tiect z chladnejSieho telesa na teplejsie, t.j. z A do B. Preto do-
chadzame k zéaveru, Ze supratekuta zlozka nesie nulova entropiu. KedZe pri nulovej teplote existuje len
supratekuté zlozka, tento zaver je naviac v zhode s 3. vetou termodynamickou.

Perzistentné pridenie

Naplime rirku stocent do prstenca héliom, vyhrejme ju nad 7, a prstenec rozto¢me. Prstenec strhava
hélium so sebou a po ¢ase rotuje ako tuhé teleso. Teraz prstenec schladme pod T, a zastavme ho. Sup-
ratekuté zlozka pritom moze zotrvat v rotaénom pohybe s priemernou rychlostou prudenia v. Systém
prstenec + hélium potom nesie moment hybnosti tmerny psv a sprava sa ako vi¢ik. Tento moment
hybnosti mozno merat tudiom precesnej frekvencie vi¢ika v gravitacnom poli. Je pozoruhodné, Ze pri
zmene teploty sa meni koncentracia ps(T'), ale rychlost pridenia v od teploty nezavisi. Supratekuta
zlozka teda ma fixované pole rychlosti.

Druhy zvuk

Teplo sa v He II nesiri diftzou, ale ako vina teploty a entropie, tzv. druhy zvuk. Vdaka takémuto me-
chanizmu vedenia tepla je He II dobrym vodi¢om tepla.?? V ramci dvojkvapalinového modelu si druhy
zvuk mozno predstavit ako kolektivny mod, pri ktorom je celkova hustota hélia konstantna. Normélna
a supravodivé zlozka kmitaja oproti sebe, ¢o sposobuje moduléciu teploty a entropie.

Boseho-Einsteinova kondenzacia
Fontanovy jav demonstruje, Ze supravodiva zlozka nesie nulovi entropiu. Perzistentné prudenie zas
ukazuje, Zze pole rychlosti je fixované. Naviac, izotop He sa supratekutym stéva iba pri velmi nizkych
teplotach. Vsetky tieto experimentéalne skuto¢nosti prirodzene vysvetlTuje predpoklad, Ze kondenzéat
je tvoreny atémami obsadzujicimi jeden a ten isty jednocasticovy stav. Najjednoduchsim modelom
supratekutosti He II je preto systém nezavislych bozénov.

Sktumajme systém nezavislych bozénov so spinmi S = 0 v kockovej Skatuli s objemom V a s
periodickymi okrajovymi podmienkami. Celkovy pocet Castic v systéme s chemickym potencidlom pu a
teplotou 1" je uréeny Boseho-Einsteinovym rozdelenim

1
N= Zk: G/ 1

21.2 . . . oy . . 4
kde gy = % V systéme s predpisanym poctom ¢astic je tato rovnica defini¢nou rovnicou pre chemicky
potencial. Po Standardnej zdmene sumy za integral, integracii vo sférickych sturadniciach a prechode k

bezrozmernym premennym mozno tiuto rovnicu prepisat ako nasledovnu rovnicu pre hustotu astic

N 1 /°° dzy/Z
P=3 = 9228 oz—u/T _ 1’
Voo (2m)2N3 )y e /T -1

kde A = h/v/2mT je tzv. termélna dlzka.

2%Ked chladime tekuté hélium pozdlz krivky nasytenych par odsavanim pér, hélium sa zbavuje energie vyparovanim
najteplejsich atémov. Normalna kvapalina pritom prechadza varom, t.j. lokalne fluktuacie teploty nad teplotu vyparova-
nia vytvaraju v objeme kvapaliny bublinky, ktoré (v gravitaénom poli Zeme) sttipaju na povrch kvapaliny. Supratekutéa
kvapalina v8ak pri chladeni nevrie, pretoZe vysoké tepelna vodivost neumoziuje lokalne prehriatie kvapaliny. K vyparo-
vaniu dochédza vyluéne z povrchu supratekutiny, ktora vyzera ako “velmi suché Martini”.
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Chemicky potencial musi spliiat nerovnost x < 0, inak by sme podl'a Boseho-Einsteinovej statistiky
dostéavali zdporné pocty Castic. Preto integral vo vyraze pre p je zhora ohrani¢eny koneénym integralom
f0°° gff ~ 2.32. Pri nizkych teplotach viak termalna dlzka A diverguje, a preto prava strana rovnice
pre p pri dostatoéne nizkych teplotach urcite nemoze nadobudat predpisani hodnotu p. Minimélna
teplota T, pri ktorej mozno uvedeny postup pouzit, je dana podmienkou p ~ 0.059/A3, odkial po

aprave dostéavame?’

2.2/3
Tow ~ 3310
m
Pri teplotach T < Tpp méa chemicky potencial hodnotu g = 0 a podla integrilnej formuly pre
pocet Castic mame v systéme iba N (T/TBE)3/ 2 tastic. Lahko sa vSak dovtipime, Ze Castice, ktoré
podla integralnej formuly zdanlivo chybajt, v skuto¢nosti obsadzuju jednocasticovy stav s hybnostou
k = 0 a energiou ¢ = 0. Koniec koncov, pri teplote 7' = 0 buda vSetky castice obsadzovat iba tento
stav. Stubor ¢astic obsadzujucich stav k = 0 nazyvame kondenzatom a stotoziiujeme ho so supratekutou
zlozkou.3! Na druhej strane, stibor astic, ktoré st terméalne excitované von z kondenzéatu, stotozitujeme
s normalnou zlozkou. Pre pocet Castic v kondenzate teda dostavame vyraz

No_ (T \"
N TBE '

Pri teplote Trp teda v systéme neinteragujtcich bozoénov existuje fazovy prechod, ktory oddeluje dve
fazy, vysokoteplotnii normalnu fazu a nizkoteplotna fazu s dvomi zlozkami: normalnou a supratekutou.

Makroskopicka koherencia a ODLRO (off-diagonal long range order)

Hoci ani excita¢né spektrum, ani termodynamické veli¢iny ako napr. merné teplo pri nizkych teplotach
alebo typ prechodu pri T, nie st v BE modeli uspokojivo popisané (pozri cvicenia), kl'ai¢ové mak-
roskopické vlastnosti supratekutin, t.j. existenciu perzistentnych bezdisipativnych pradov, moZno na
zéklade tohto modelu vysvetlit.

Najprv identifikujme parameter usporiadania pre BE kondenzat. Pre jednoduchost modelujme
supratekutinu ako systém castic, ktoré mozu obsadzovat iba orbitaly v bodoch i na mriezke. Castice sa
mozu cez mriezku hybat preskokmi medzi mriezkovymi bodmi, podobne ako elektrony v modeli tesnej
véizby. Jednocasticovy stav s hybnostou fik je kreovany operatorom

T 1 }: T ik-Ry 1 1 }: T _—ik-R;
al. = —— Qp.e i | al e i
k \/N - 7 wz \/N ” k

kde NV je pocet mriezkovych bodov a operator d}j vklada ¢asticu do bodu i s polohovym vektorom R;.

Skumajme neinteragujici systém Ny Castic v zakladnom stave, kedy vSetky Castice vytvaraju kon-
denzat v stave k = 0 s najnizSou energiou. Predpokladajme naviac, ze Ny a N su ¢isla toho istého
radu. Lomenymi zatvorkami (X) budeme oznacovat strednt hodnotu veli¢iny X v zakladnom stave.
Pre maticové elementy (@Z}j ;) potom dostaneme vysledok

1 < kR, +ik R, N
(W) = O DL o (afar) = WO

kK

Je dolezité si uvedomit, ze tento vysledok plati aj pre vzdialené bunky ¢ a j, pre ktoré |R; —R;| — oo.
Inymi slovami, v systéme s kondenzatom musi existovat koherencia medzi vzdialenymi bunkami i a j. Na
druhej strane v8ak vzdialené body nemdzu byt korelované, ¢ize stredntt hodnotu <1/1;r 1) musi byt mozné
faktorizovat, t.j. <¢Zzpj> R~ (zp;f) X (1p;). Preto sme nuteni postulovat existenciu tzv. nediagonalneho
usporiadania na dlhé vzdialenosti (ODLRO, off-diagonal long range order):

<¢i>=\/¥e”, (a0) = v/Noe™. (49)

30Teplota Tzr sice radovo suhlasi s experimentalnymi hodnotami pre kriticka teplotu 7., ale tento stlad netreba
preceniovat. Napriklad zavislost od hustoty je opaénéa ako v experimente: pri tlaku nasytenych par (nizsia hustota) je
T, ~ 2.19 K, kym pri teplote tuhnutia (vy3sia hustota) je T. ~ 1.76 K.

31Neskér uvidime, 7e koncentréacia ¢astic v kondenzate interagujicich systémov nie je totozna s hustotou supratekute;
zlozky ps.
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Tento typ usporiadania ako prvi postulovali O. Penrose a L. Onsager. VSimnime si, Ze kondenzat je
charakterizovany nielen po¢tom ¢astic Ny, ale aj fazou 6, ktora moze byt zvolené pre referenény bod
i Tubovolne, ale musi byt homogénna v celom systéme. Inymi slovami, kondenzat je charakterizovany
komplexnym &islom (ag) = z = v/Noe®.

Lahko nahliadneme, Ze veli¢ina (1;) je parametrom usporiadania pre supratekutinu, kedZe v nor-
méalnom stave (1;) = 0. Pytajme sa dalej, akd symetria je naruSend v supratekutom stave. Za tym
acelom si najprv vSimnime, Ze v druhom kvantovani st jednocasticové operatory dané kvadratickymi
funkciami krea¢nych a anihilaénych operatorov, s jednym krea¢nym a jednym anihilaénym operatorom.
Podobne dvojcasticové ¢leny st dané kvartickymi funkciami s dvomi krea¢nymi a dvomi anihila¢nymi
operatormi. Preto mnohocasticové systémy s invariantné voci nasledovnej (globélnej, t.j. pre vsetky
body rovnakej) kalibra¢nej transforméacii:

Ol = ple™™ g = et (50)

Parameter usporiadania supratekutiny (1;) nie je invariantny pri takejto kalibra¢nej transformécii, a
preto supratekutina je fazou so spontanne narusenou globalnou kalibra¢nou symetriou.

Cvicenia

1. Odhadnite konfigura¢nii entropiu kvapaliny. Navod: kvapalinu modelujte ako sadu N atémov, ktoré mozu obsadzovat
N > N mriezkovych poldh, pri¢om na kazdej mriezkovej polohe moZe byt najviac jeden atém. Atomy povaZzujte za
nerozligitelné. Ako mozno odhadniit koncentraciu ¢ = N/N obsadenych bodov?

2. V limite nizkych teplot vypoé&itajte energiu, merné teplo, entropiu, volna energiu a tlak v dvoch systémoch: a) pre
model nezavislych bozénov s fixovanym poétom, b) pre plyn zvukovych vin. Vysledky porovnajte s experimentalnym
vysledkom ¢y o T2 pre merné teplo hélia.

3. K fontanovému javu: najdite rozdiel tlakov dp = pp — pa medzi nddobami A a B, ak prislusny rozdiel teplot je
0T = Tp —Ta. Navod: ziadajte rovnost chemickych potencidlov pre hélium v oboch nadobéch a entropiu hélia odhadnite
v modeli plynu zvukovych vin. MoZno fontanovy jav vysvetlit v modeli nezavislych bozénov s fixovanym poctom?

4. Vypotitajte frekvenciu precesie vicika vytvoreného zo supratekutého prstenca.

5. Ukazte, Ze globalna kalibra¢na transformaécia (50) je kanonicka. Je napr. Hubbardov model invariantny vod&i tzv. lo-

kilnym kalibraénym transforméaciam, pre ktoré fazovy faktor ¢; zavisi od polohy?

11 Josephsonove rovnice

V tejto prednaske najprv explicitne skonstruujeme stavy s ostrou hodnotou fazy kondenzatu. Pomocou
nich ukdzeme, Ze existencia kondenzatu vysvetluje supratekutost.

Koherentné stavy

V tomto odstavci skonstruujeme vlastny stav |#) anihila¢ného operatora, ag|d) = z|6). Stav |#) nazy-
vame tzv. koherentnym stavom. Budeme predpokladat, ze vinova funkcia |6) je normovana, preto pre
koherentny stav plati (#|ag|d) = z. V stlade s predoslou prednaskou preto za vlastnia hodnotu vezmeme
2z = +/Noe”, kde 6 je faza kondenzatu.

n
Nech |n) = —= (ag) |0) je stav s n ¢asticami. Lahko nahliadneme, Ze vlnova funkcia |6) musi

Vn!

byt linedrnou kombinaciou stavov s roéznymi poctami Castic, |0) = > "7 cn|n). Toto je vieobecna
vlastnost stavov s naruSenou symetriou, ako sme podrobne diskutovali v kapitole 5. Ak vyuZijeme vztah

agln) = v/n|n — 1) (pozri cvifenia), porovnanim rozvojov pre stavy ag|6) a z|0) dostaneme rekurzivne
) . . v s . ) . 1 . ~

vztahy pre koeficienty, ¢,+1 = ﬁcn. RieSenim tychto vztahov je ¢, = ﬁz”co. Koeficient ¢y mozno

urcit z normalizatnej podmienky > o |c,|? = 1, odkial vyplyva |co| = e~ No/2 Po vyjadreni ¢isla z

pomocou amplitidy a fazy pre koherentny stav dostaneme explicitny vysledok (pozri cvicenia)

) = D caln) = leale™n), (51)
n=0 n=0

—NONn 1/2 1 (=N, )2
en| = (E—20) &~ o (52)
n! (27 Np)1/4
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Koherentny stav |f) je teda zhruba gaussovskou superpoziciou stavov s réoznymi poctami ¢astic n,
pri¢om stredna hodnota n je Ny. Standardna odchylka n od strednej hodnoty je v/Ny, ¢o je (pre velké
pocty castic v kondenzate) zanedbatelne mala hodnota oproti Ng.

Pre tplnost dodajme, Ze koherentny stav mozno zapisat aj kompaktnejsie v elegantnom tvare

10) = e~ No/2¢250), (53)

v ., . , s . s . T 0o n n
za' __ z
pricom exponencidlnu funkciu operatora treba opét rozumiet ako Taylorov rozvoj e** = "° ; 2; (aT) .

O-reprezentdcia
Stavy s presne definovanym poctom ¢astic dostaneme zo stavov |#) nasledovnou projekciou:

27 d0
n / —mO ’9
’Cn‘

Tento vysledok mozno zapisat v tvare |n) = 027r d0,(0)]0), kde 1, (0) = 27r|1cn\6_m0 mozno interpre-
tovat ako vlnova funkciu stavu |n) v f-reprezentacii. Teda systém v stave |n) sa s amplitidou pravde-
podobnosti ¥, (0) nachadza v koherentnom stave |f) a prechod od bazy |0) k baze |n) je podobny ako
prechod od p-reprezentacie k x-reprezentacii pre jednu Casticu.

V&imnime si, Ze operator po¢tu Castic v f-reprezentéicii mozno zapisat v tvare

%
20

/'//\L:

Naozaj, pri takejto definicii dostaneme 71, (0) = ni,(0) v sulade s faktom, Ze vlnova funkcia 1, ()
popisuje stav s n Casticami. Ak teraz naviac uvazime, ze v f-reprezentacii je operator 6 totoZny s
nasobenim c-¢islom 6, dostaneme nasledovny komutacny vztah pre operatory poc¢tu castic a fazy,

7, 0] = i. (54)

teda pocet Castic a faza st kdnonicky zdruzené veli¢iny. Totoznym postupom ako pri vyklade Heisen-
bergovho principu neurcitosti mozno ukazat, ze z tohto komutacného vztahu potom vyplyva vztah
neurcitosti pre pocet Castic a fazu, An - Af > %

n-reprezentdcia
Pre velké pocty ¢astic mozno n chapat ako spojiti premenni. Rozvoj (51) sa potom da zapisat v tvare
= [dnyg(n)|n), ¢o mozno interpretovat ako zapis stavu |#) v n-reprezentacii s vlnovou funkciou
g(n) = |cn|e™. Pre operator fazy v n-reprezentécii potom dostaneme
- 0
0=—i—,
on’
pretoZe pdsobenie derivacie na |¢,| mozno pre |n — Ng| < Ny zanedbat. KedZe v n-reprezentacii je
operator n oby¢ajnym nasobenim &slom n, opat samozrejme dostavame komutacény vztah (54).

Josephsonove rovnice

Vycélenme v supratekutine maly, ale makroskopicky objem AV. Pocet Castic v tomto objeme médZe
vdaka pohybu ¢astic dnu a von fluktuovat. Predpokladajme, Ze hamiltonian zvoleného elementu zavisi
od fazy a k nej kanonicky zdruZzeného poctu castic: H = H (ﬁ,é) Potom Heisenbergova pohybova
rovnica pre operator 0 m4 tvar

i1 4 10H
9 =—[0,H = ———
zh[ 4] hon’
pricom druhé rovnost je zapisand v n-reprezentacii. Pohybova rovnica pre 7 je podobné:
1 10H
2 s - Lo
= i = e

pricom druhé rovnost je tentoraz zapisana v #-reprezentacii.
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Ak je stredny podcet Castic Ny v objeme velky, potom Heisenbergove vztahy neurcitosti mozno
splnit v stavoch s malymi relativnymi fluktuaciami fazy Af < 1 aj poctu ¢astic An/Ny < 1. Pre
takéto objemové elementy mozno fazu 6 aj pocet Castic n povaZzovat za klasické veliéiny a namiesto
operatora H = H(n, é) mozno pisat klasicku energiu E = E(n, ). Ak naviac uvazime, %e pre chemicky
potencial u plati 0E/On = u, pohybové rovnice nadobudni tvar tzv. Josephsonovych rovnic,

OE OF

(55)

Najprv preskiimajme dosledky Josephsonovych rovnic pre izolovany kondenzat. Z rovnice pre fazu
vyplyva, ze 6(t) = 6y — ut/h, t.j. faza supratekutiny sa vyvija v ¢ase, ako keby islo o oby¢ajnu vlnovi
funkciu s energiou p, e = eboe=int/h Kedze pre izolovany kondenzat musi platit n = 0, z rovnice pre
n vyplyva OFE /00 = 0, t.j. energia supratekutiny nezavisi od fazy. To bolo samozrejme treba ocakavat.

Teraz preskimajme dva susediace kondenzaty 1 a 2 s fazami 61 a 63, spojené tenkou kapildrou
umoziujicou vymenu Castic. Energia systému opéat nemoze zavisiet od absolutnych hodnot 61 a 6o, ale
moze byt funkciou ich rozdielu, F = E(6; — 62). Rovnice pre pocty ¢astic n; a ng mozno pisat v tvare

T 10F 10F :
YT hoe, hovy 2
Ukézali sme teda, Ze pokial energia E nie je konstantnou funkciou rozdielu faz 6 = 61 — 65,

potom cez spoj potecie prud castic. V limite slabej vizby medzi kondenzatmi ocakavame, Ze funkcia
E(0) musi byt periodickd s periodou 27. Naviac, pokial ide o systém invariantny vo¢i obrateniu ¢asu,
E(0) bude parna funkcia, pretoze pri obrateni ¢asu sa vlnové funkcie zmenia na komplexne zdruzené.
Najjednoduchsou funkciou tohto typu je E(0) = —Ejcosf, kde Ej je tzv. Josephsonova energia spoja.
Pomocou mikroskopickej teorie mozno ukazat, ze funkcia E(f) ma tento jednoduchy tvar napr. pre
tzv. tunelové spoje, t.j. pre dva kondenzéty oddelené sice vysokou, ale tenkou potencidlovou bariérou.
Obvykle pritom plati Ey > 0, t.j. energia spoja sa minimalizuje pre nulovy rozdiel faz 6. Cez tunelovy
spoj teda pre 6 # 0, 7 tecie koneény rovnovazny prud castic

1(0) = % sin 6.
Josephson tento jav teoreticky predpovedal pre supravodice. Experimenty nasledne potvrdili existenciu
Josephsonovho javu v supravodi¢och aj v supratekutinach.

Ak dalej budeme predpokladat, Ze medzi chemickymi potencidlmi oboch kondenzéitov je zvonka
udrziavany konstantny rozdiel dpu = p; — pa, potom z rovnice (55) pre fazu vyplyva, Ze rozdiel faz
kondenzéatov 8 = 0; — 0, sa vyvija v Case, h = —dp. Teda rozdiel faz sa v ¢ase meni podla 0(t) =
Oy — wyt, kde wy = ‘% je tzv. Josephsonova frekvencia. Spojenim rovnic pre praud a fazu dostaneme
tzv. striedavy Josephsonov jav, pri ktorom pruad

I(t) = % sin (fp — wt)

periodicky osciluje v ¢ase. V supravodi¢och moZno rozdiel chemickych potencidlov vytvorit priloze-
nim napétia V, pricom 6 = 2eV .32 Presné merania napitia V a Josephsonej frekvencie w; potom
umoziuju velmi presne zmerat tzv. Josephsonovu kongtantu Kj; = 275, ktora je kombinaciou funda-
mentalnych konstéant.

Josephsonove rovnice v spojitom pripade

Josephsonove vysledky teraz zovSeobecnime na pripad nehomogénnej supratekutiny pri konecnej tep-
lote. Nech v supratekutine existuje fazové pole 6(r). Budeme predpokladat, ze volné energia suprate-
kutiny je minimalna pre konstantné pole 6(r) a jej prirastok pre nehomogénne polia bude

OF = EJZ (1 —cos(Oryz — Or)) + (1 — cos(friy — Or)) + (1 — cos(fr4z — OR))] ,
R

32 Ako uvidime neskér, kondenzat v supravodiéi je totiz tvoreny Cooperovymi parmi s nabojom —2e.
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kde sme reprezentovali nehomogénnu supratekutinu ako sadu malych, ale makroskopickych kockovych
elementov s objemami AV = d? zviazanych Josephsonovou energiou E;. Pre hladké polia (r) mozeme
funkcie cos(fr++ — Or) rozvintat do Taylorovho radu a dostaneme

B kd® Or+z — OR 2 Or+y — OR 2 R4z — OR 2 K 2 13

R

kde sme zaviedli tuhost fazy x = Ej/d. V poslednej rovnici sme vyraz pre 6F interpretovali ako
Riemannovu sumu pre integral. Porovnanim vysledného vyrazu pre § F' s vykladom v kapitole 8 vidime,
7e efektivnym modelom pre kondenzat je model XY so zovSeobecnenou tuhostou k.

Ked teraz pouZijeme Josephsonovu rovnicu (55) pre pocet castic v elemente R, dostaneme

. 1 OF Kkd
MR =77—=—>+ [(OrR+z + Or—2 — 20R) + (OR+g + Or—y — 20R) + (OR+: + OR—: — 20R)].
h 00r h
Pocet cCastic v elemente R sa teda meni v désledku teCenia pradu medzi R a Siestimi susednymi
elementmi, ktoré lezia v smeroch +%, +¢ a £2. Napriklad prud tecici z elementu R do elementu R+ &
je %(GR—H% — Or), preto zodpovedajtca pradova hustota je ji = ;%(QRﬁ: —0Rr) = %ag—?. Pre vektor
prudovej hustoty tak dostavame

j=3Vb.
Teda v stave s nehomogénnym rozdelenim faz tecie rovnovazny bezdisipativny prid! Analogickym
javom v pripade krystalov je bezdisipativny transport sily pri mechanickej deformécii krystalu, spomi-
nany v kapitole 8.
Ak naviac predpokladéame, Ze v elemente R je chemicky potencial pgr, potom z Josephsonovej
rovnice pre fazu dostavame hg = —pur. Preto h$(9R+5@ —0r) = —(uR+s — UR), COo opat moZno pisat
vo vektorovom tvare

d
Z(hV0) = V.

Ak v prave odvodenych Josephsonovych rovniciach pre kontinuum budeme veli¢inu AV#@ interpre-
tovat ako hybnost mv; Gastice s rychlostou v, a ak gradient chemického potencialu prepiseme ako silu

F = —Vu pdsobiacu na ¢asticu, dostaneme pre ne alternativne vyjadrenie
. MK
J=33Vs Vs = F.

Porovnanim prvej rovnice s predpovedou dvojkvapalinového modelu j = psvs dostaneme vyraz pre
2
tuhost fazy k = h#. Teda konecné hustota kondenzatu implikuje kone¢na tuhost fazy, ako sme aj
mali ¢akat. Druha Josephsonova rovnica sa nazyva akcelera¢nou, pretoZze ukazuje, ze pri pésobeni von-

kajsich sil sa tok kondenzatu zrychluje (bez trenial).

Makroskopicka vlnova funkcia a kvantovanie cirkulacie

Teraz ukazeme, Ze makroskopické vlastnosti supratekutiny mozno alternativne popisat na zéklade
pojmu makroskopickej vinovej funkcie 1) = |1|e??, ktora je rieSenim efektivnej Schrédingerovej rovnice
ih% = H s hamiltonidnom

p2

H=—
5 T H(T),
kde p = —iAV. Naozaj, prudova hustota a pohybova rovnica pre hybnost st v tomto modeli dané
vztahmi
. th h|y)? d 1
§= =5 WVY —yVyT) = — V0, op=—[p H] I

ktoré st v zhode s predpovedami na zaklade Josephsonovych rovnic, ak za amplitidu makroskopickej
vlnovej funkcie vezmeme |2 = p,. VInova funkcia 1 (r) teda efektivne popisuje koherentny stav, ktory
mé (kvaziklasicky) v danom mieste zaroven ostra hodnotu amplitady aj fazy.
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Popis pomocou makroskopickej vinovej funkcie umoziuje jednoducho analyzovat priestorovo zéavislé
tlohy. Napriklad v uzavretom prstenci pre lubovolnt uzavreta drahu C obopinajtcu otvor prstenca z
poziadavky jednoznacnosti vlnovej funkcie vyplyva podmienka fC VO - dr = 2mn, kde n je celé &islo.
Ak teraz vyuzijeme vztah AV = mv,, dostaneme tzv. kvantovanie cirkulécie

j{ v - dr = 27rhn‘
C m

Tento vysledok mozZzno pouzit na vysvetlenie experimentov o perzistentnom teceni: celé ¢islo n a teda
aj rychlostné pole je totiz raz a navzdy fixované v procese chladenia cez T, a pri zmenach teploty pod
T, sa dalej nemeni. Rychlost supratekutého pridenia totiz neméze ubiidat spojite, ale len prostrednic-
tvom kvantovych skokov. Takéto skoky vsak vyzaduji zmenu okrajovej podmienky pre vinova funkciu.
Zmena okrajove] podmienky je vSak moZna iba rozrusenim supratekutosti v makroskopicky velkom
objeme, ¢o je spojené s prekonanim (obvykle velkej) energetickej bariéry.

Cvicenia
1. Druhé kvantovanie pre bozony. a) Indukciou dokézte

[a, (a*)n] =n (af)n_l . (56)

b) Indukciou dokézte, ze nasledovny n-Casticovy stav je normalizovany, t.j. (n|n) = 1:

=)
ny=—1|\a 0). 57
m = ()" ) 7)
¢) Pomocou vztahov (56) a (57) ukazte, ze a'|n) = v/n + 1|n + 1) a a|n) = /n|n — 1).

d) Nech f(aT) je T'ubovol'na funkcia krea¢ného operatora, definovana svojim Taylorovym rozvojom. Pomocou (56) ukazte,
ze

df
[a, f(@")] = - (58)

2. Koherentné stavy.

a) Presvedéte sa, ze neexistuju vlastné stavy krea¢ného operatora.

b) Pomocou (58) ukazte, ze |z) = eilz|2/26”T|0) je koherentny stav.

c) Ukazte, Ze pre skalarny suc¢in dvoch koherentnych stavov plati (u|z) =
sice normované, (z|z) = 1, ale nie st navzajom ortogonalne.

e~ (41217 =2u"2)/2 Tedy koherentné stavy st
d) Ukazte, ze systém koherentnych stavov je tplny: [ ‘127"|z><z| = 1. Pomocka: pouzite rozvoj |z) do stavov |n) a podla
z integrujte v polarnych suradniciach.

3. Dokazte formulu (52). Pomocka: zaved'te odchylku od stredného poétu astic m = n— Np, pouzite Stirlingovu formulu
(pozri dodatok) a vyuzite tpravu (Taylorov rozvoj pre m < No)

In |~ No No\" N—m—z
n 2N0

4. Ukazte, ze plati <9\a$|9) = 2". Preto pri pésobeni na koherentny stav mozno operatory a07ag nahradit komplexne
zdruzenymi c-¢islami, ap — 2 a a}} — z%. V stave |6) dalej explicitne vypocitajte stredni hodnotu poctu Castic a jej

strednid kvadraticka odchylku.

12 Teoéria Bogol'ubova

V tejto prednaske zohl'adnime pritomnost nenulovych interakcii medzi ¢asticami tvoriacimi kondenzat.
V ramci tedrie Bogolubova?? pritom budeme predpokladat, Ze interakcie s slabé a skonstruujeme
poruchovt tedriu supratekutin. Takyto pristup samozrejme nemozno pouzit na kvantitativne stadium
excitacnych spektier He II. Stuvisom medzi tedriou Bogolubova a fyzikou hélia sa budeme zaoberat v
nasledujicej prednaske.

Teoreticky model

21,2
Skumajme systém N ¢astic so spinom S = 0, s energiami e, = }12—71; a so slabymi parovymi interakciami
s potencidlom V' (r). Predpokladajme, Ze teplota T' = 0. Nech castice sa hybu v skatuli s objemom V

33V anglickej literattre sa pouZiva transkripcia Bogoliubov aj Bogolyubov. My budeme pouzivat slovensku verziu.



45

a nech pre ne platia periodické okrajové podmienky. Ak zavedieme krea¢né a anihila¢né operéatory
a;r( a ay pre jednocasticové stavy (rovinné vlny indexované vlnovym vektorom k), potom hamiltonian

systému mozZno zapisat v nasledovnom tvare (pozri napr. I1.11):

H = Zskakak + —V Z V. ak+qaL ak’axk, (59)
kK .q

kde Vg = [ d®rV (r)e~aT je Fourierova transformécia interakéného potencialu. Budeme predpokladat),
ze V(r) = V(—r), preto Vq = V_q a Vg je redlne ¢islo. Pre konkrétnost budeme mat na mysli nasledovny
modelovy potencial s amplitidou U a dosahom a:

v _x*
V(I‘) - (27.(.)3/28 ’
a2q2

s Fourierovymi komponentami Vq = U ade” 2 (pozri cvifenia). Naviac budeme predpokladat, Ze
U > 0, t.j. Ze interakcie st odpudivé. Je preto zrejmé, ze tato teoria nemoze vysvetlit existenciu kva-
palného stavu, ktory je samoviazany (“mé staly objem”). 50 rokov po sformulovani tedrie sa v8ak objavili
systémy, ktoré mozno kvantitativne popisat (modifikovanou) Bogolubovovou teériou: ide o suprateku-
tost plynov, v literatire skér znamu ako Boseho-Einsteinovu kondenzaciu v plynoch. Na plyny v limite
T — 0 totiz moZno aplikovat tie isté tivahy ako na kvapaliny: entropia plynu musi vymiznuat. Priroda
tento problém riesi vznikom kondenzatu. Kedze podla BE teérie Tg o n?/? kde n = N/V je hustota
Castic, kritické teploty pre vznik kondenzatu v plynoch buda radovo nizsie nez v kvapalinach. Hlavnou
prekazkou pozorovania supratekutosti plynov bolo dosiahnutie dostato¢ne nizkych teplot. Této tloha
bola experimentalne vyrieSené len pomerne nedavno.

Hamiltonian pre ¢astice mimo kondenzatu

Ocakévame, Ze v slabo interagujicom systéme bude opét existovat kondenzéat, t.j. makroskopicky obsa-
deny stav s k = 0. Videli sme, ze v pritomnosti kondenzatu moézeme operatory ay, a% nahradit c-¢islami
ap =z = /Noe” a ao = 2*, kde Ny je pocet Castic v kondenzéte (t.j. makroskopicky velké ¢&islo) a 6 je
faza kondenzatu. Interakcny ¢len hamiltonianu (59) potom moZno rozvinit podla mocnin /Ny, podla
toho, kol'kokrat sa v iom vyskytuja operatory a:g, ao:

Z ank+qaL, Qg ~ VONO +2NoVp Z akak+2No Z Vkakak+N0 Z Vi( 27’96LLCLJr +e 20q_ KOk )-
k' ,q

V rozvoji sme ponechali ¢leny, ktoré st aspon rddu Ny, a ostatné ¢leny sme zanedbali. éiarky nad
sumami znamenaji, Ze sumy bezia iba cez stavy mimo kondenzatu, t.j. vylu¢ujeme z nich stav k = 0.

ZohTadnenim kondenzatu sa hamiltonidn pre ostatné ¢astice mimo kondenzatu zmenil: podet ¢astic
mimo kondenzatu N’ = Y} aTkak uz nie je zachovavajticou sa veli¢inou, pretoze pary castic s hybnos-
tami k a —k mozu vchadzat do kondenzatu, alebo naopak z neho vychadzat. Neustéle vSak musi platit
podmienka N = Ny + N’ fixujiica celkovy pocet Castic v systéme.?*

Ak v interakénom ¢lene hamiltonianu (59) ponechame iba ¢leny aspon radu Ny a okrajovi pod-
mienku fixujicu celkovy pocet Castic opiseme Lagrangeovym multiplikdtorom p, potom tu ¢ast hamil-
tonianu (59), ktora popisuje ¢astice mimo kondenzatu, mozeme prepisat ako

1 < & A ax 1
H(:U'vNO) = 52(@1{,&,1() ( Al:a; 511( ) < aTk ) + 55 2V 0 ng"i_,u N NO): (60)
" _

kde sme zaviedli intenzivne veli¢iny s rozmerom energie

27,9

Ak—nnge &:k:é“k—,u—l—’Ak’—i-|A0‘,

pri¢om ng = % je hustota Castic v kondenzate.

34Zaroven pritom plati, Ze ani pocet Gastic v kondenzate sa nezachovéva. To nam dava dalsi argument v prospech
popisu kondenzatu pomocou koherentného stavu.
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Vsimnime si, Ze hamiltonian H (u, Ny) parametricky zavisi od po¢tu ¢astic v kondenzate Ny a
od Lagrangeovho multiplikatora pu. Kedze plati p = 0H/0Ou, Lagrangeov multiplikdtor méa vyznam
chemického potencidlu ¢astic. Hodnoty parametrov Ny a p uréime po diagonalizéacii problému (60)
minimalizaciou energie zdkladného stavu.

Diagonalizacia hamiltonianu (60)

Hamiltonian (60) budeme diagonalizovat prechodom od bozonovych operatorov aL, ax, t.j. od operéa-
torov splitajacich kanonické komutaéné vztahy [ak,a;r(,] = Ok a [ak,ax] = [aL,aL,] = 0, k novym
operatorom aL, ay, podobne ako v prednaske 4:

[ )=CE ) (8 ) o

Aby dolny riadok bol konzistentny s hornym riadkom tejto maticovej rovnosti, musime predpokladat,
7e plati u_y = ux a v_x = vk. Naviac ziadame, aby |uy|? — |vk|? = 1. Pri splneni tychto podmienok
spliiajii aj nové operéatory bozoénové komutaéné vztahy [ak,aL,] = Ok a ok, o] = [aLaL,] =0,
pozri cvicenia. Pre tuplnost uvadzame aj inverznu transformaciu:

ak . Uk —Ui'; ok
aik o\ o g aik '

Transformac¢nt maticu zvolime tak, aby transformovany problém bol diagonélny, t.j. Ziadame

up  —Ug €k  Ag ue —vg \ _ [ Ex O
—vx Uk Af &k —Uk U N 0 Eyx /)’

Treba si v8imnuat, Ze tu nejde o obvykla diagonaliziciu pomocou ortogonalnych matic. Tri nezname
Ey, uy a v teda maju spliat nasledovny systém troch rovnic

Ajug + Agvp = 28ux vk, Ex(Jurc* + vk |*) — Agupvr — Afuvy = F, luk|? — |u|* = 1,

kde sme pre uplnost pridali aj poslednt rovnicu. Lahko overime (pozri cvifenia), Ze rieSenim je

N 5k + Ek ENk — Ek Ak
E pr— 2 — A 2’ 2 pr— 7’ 2 pr— 7’ * p— —_—
k= /6~ A [l 2By [ 2By Uk = o

Posledna rovnica definuje relativnu fazu koeficientov uy a vgx. Obvykle volime redlne a kladné wy.
Potom plati vy, = |v|e™%?. Ina vol'ba by znamenala int relativnu fazu medzi operatormi ay a og. A
posteriori Tahko nahliadneme, Ze vSetky volby veda k takym istym vysledkom pre meratelné veli¢iny.

Teda hamiltonian (60) sme transforméciou k novym operatorom previedli na hamiltonian nezavis-
lych bozénov so spektrom Fy:

!/
H = Y Exalox+ Ecs(p, No), (62)
k
1« 1
Ecs(u,No) = = (B — &) + 5 N5 Vo + u(N — No), (63)
2 4 2V

kde Egs(p, No) je energia zékladného stavu.

Vol'ba p a Ny

Na skompletizovanie rieSenia potrebujeme eSte urcit parametre p a Ny. Vedlajsiu podmienku N =
Ny + N’ zreprodukujeme, ak budeme Zziadat splnenie rovnice dEgs/dpu = 0. Pri derivovani energie
E¢s(p, No) podla p si pritom treba uvedomit, ze &y aj Fy zavisia od u. Takto dostaneme explicitny
vyraz pre pocet ¢astic mimo kondenzatu N':

!/

N’:—;¥<1+%E;‘>zéz;:<2‘;—1>. (64)
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V&imnime si, Ze derivovanim podla p sme nasli pocet ¢astic v kondenzate Ng = N — N'.
Podobne pri minimalizovani energie Egs(u, No) podla Ny si treba uvedomit, ze &, aj Ey zavisia
od Ny cez Ay. Z rovnice 0Egs /0Ny = 0 takto dostaneme vyraz pre chemicky potenciél

/

10

— A =
p=| 0|+26N0 .

(Bx — éx) -

D4 sa ukdzat, ze druhy ¢len na pravej strane mozno zanedbat.?> Ak potom dosadime hodnotu p = |Ag|

do vyrazu pre £y, dostaneme &y = ey + |Ag|. Preto pre energiu kvézicastic dostavame vysledok

Fi = Vex(ex + 2/A]). (65)

Podl'a teorie Bogolubova teda excita¢né spektrum supratekutiny pozostédva z plynu nezéavislych bo-
zonovych Castic s energiami (65). Pomocou hamiltonianu (63) mozno jednoducho pocitat akékolvek
fyzikdlne vlastnosti supratekutiny pri 7' = 0.

Zakladny stav v teorii Bogol'ubova
Zakladny stav hamiltonianu (63) oznacme |¥q). Poéitajme najprv strednt hodnotu poctu ¢astic mimo
kondenzatu N'. Ak operatory ax, a; vyjadrime pomocou o, oz;r{, dostaneme

/ !/

/
N’ = (Wolajax| o) = D (Pl (—vwoc + uoy) (uene — vpal, ) [ Wo) = D o,
k k k

kde v poslednom kroku sme vyuzili, Ze stav |¥() je vikuom pre nové Castice oy, t.j. pre vSetky k plati
x| o) = 0. Ak teraz vyuzijeme explicitny tvar koeficientu |vy|?, zreprodukujeme vysledok (64), ktory
sme dostali z termodynamickych tvah.

Teraz explicitne skonStruujme vlnovi funkciu zakladného stavu supratekutiny. Vieme uZ, Ze obsa-
denie stavu s k = 0 je popisané koherentnym stavom [0) = e_%ezagm), kde |0) je vakuum, t.j. stav
bez holych ¢astic. Otéazka je, ako vyzera zvysok vlnovej funkcie popisujtci obsadenie stavov s k # 0.
UkazZeme, Ze normalizovani vinovi funkciu zakladného stavu mozno pisat v tvare

Ng .t 1 —Yalal
(W) = e 2 e [ | =—e "7 |0), (66)
oo |l

kde symbol k > 0 znamen4, Ze kazda dvojica k, —k je v stucine zastupena iba raz.
Najprv ukdZeme, Ze vlnova funkcia |¥g) je vakuom pre vSetky operatory ay. Pri vypocte ay|¥g)
si sta¢i uvedomit, Ze oy nekomutuje iba s jedinym zo stéinitelov, a vyuzit operatorova identitu®

Uk ot Ul ot Ve ot
——s%a,a ——%a,a" ——=a,a"
age "k KK = (u;ak—i—vf‘(aik)e Rl A T

Lahko nahliadneme, Ze skuto¢ne plati ay|¥o) = 0, pretoze stav |0) je vakuom pre operatory ay.
Pri vypoéte normy vlnovej funkcie |Wy) je uzitoéné pouzit rozvoj do Taylorovho radu

*

_UflfaLaT_k = 1 —Uii " Tt > _Ult "
0 = Y (SR Gedalro) = 3 (SE) )

n=0 n=0 k

35V nasledujiicej prednaske totiz ukdZeme, Ze pocet Gastic mimo kondenzatu N’ je radu U3/, Vsetky vypocty, ktoré
budeme prezentovat, platia iba do tohto radu. Napriklad vo vyraze pre Ax budeme zanedbavat rozdiel medzi n a no,
pretoZe to sposobuje nepresnost radu U®/2. Podobne energia >k (Ex — &) je radu U?, pozri cvicenia k nasledujicej
prednaske, preto korekciu k p v konzistentnom rozvoji do daného radu treba ignorovat. Z rovnosti p = |Ag| okrem iného
vyplyva, ze Fx — 0, ked k — 0. Existuje vSak krajsi argument (pochéadzajtci od Hohenberga a Martina) vyloZeny
napriklad v Rickayzenovej knihe, ktory zaru¢i vymiznutie energie Ex v dlhovinnej limite.

36Pri zamene poradia operatorov oy a exponenty eiﬁaz‘alk treba vyuzit, Ze operator aJr_k komutuje s exponentou.
Komutator operatora ax s exponentou mozno poéitat pomocou vztahu (58).



48 13 TEORIA BOGOLUBOVA A SUPRATEKUTE HELIUM

kde |n)x je normovany stav s n Casticami v stave k. KedZe koherentny stav |#) je normovany, odtialto
priamo plynie normovanost stavu |Wo):

I =/ |ue*\" 1
(Wo|Wp) = H [“k’27;]<\|ut‘\2> ] - H e 12(1 — Loy =1L

k>0 k>0 | lul*( Iuk|2)

Vsimnime si, Ze vinova funkcia (66) pozostava z koherentnej superpozicie stavov s roéznymi po¢tami
parov castic v stavoch k a —k. To je prirodzeny vysledok: ak by sme vlnovt funkciu |¥y) hladali
pomocou poruchovej teorie podla Vi, neporusenym zakladnym stavom by bol stav

N) = —=(al)/0).

Posobenim nediagonalnych ¢lenov v (60) postupne pridavame k tejto vinovej funkcii pary castic k, —k.
Treba si vSak uvedomit, Ze vlnovu funkciu |[¥y) nedostaneme z neporuseného zakladného stavu |N) v
kone¢nom rade poruchovej tedrie a napriklad prekryv medzi stavmi |Wg) a |N) je nulovy. Naozaj:

1/2
t 1 , NN eNo 2Fy
(N|Wg) = e /2N e 00) [] - = ( Il ==
k>0 8 N k>0 Ex + &k

a v termodynamickej limite, kedy sa pocet stcinitelov k blizi do nekone¢na, sa prekryv blizi k nule,
pretoze je suc¢inom nekonecného poctu sucinitelov, z ktorych kazdy je mensi nez 1 (kedze Fy < £x).

Cvicenia

1. Vychadzajic z modelu pre potencial V(r), odvod'te vyraz pre Vg.

2. Ukazte, ze transformécia od operatorov ay, aL k operatorom o, aL je kdnonicka, t.j. zachovava komutacné vztahy.

3. Overte vysledky pre Fx, ux a vk uvedené v texte.

4. Vypoéitajte strednt hodnotu (¥o|a_kax|¥o) pre k # 0.

5. VInovu funkciu excitovaného stavu a};\\llo> reprezentujte pomocou operatorov aL a ak. Explicitnym vypoctom sa
presvedcéte, Ze ide o normovani vinovu funkciu.

6. Metodou Bogolubova najdite excitatné spektrum pohybujtceho sa kondenzatu. Predpokladajte, Ze makroskopicky

je obsadeny jednocasticovy stav s hybnostou 2Aq.

13 Teoria Bogolubova a supratekuté hélium

V tejto prednéagke najprv preskimame excita¢né spektrum v ramci teérie Bogolubova a oblast plat-
nosti tejto teorie. V druhej ¢asti prednasky sa budeme zaoberat stivisom medzi teériou Bogolubova a
fyzikou skuto¢ného hélia.

Excita¢né spektrum v teorii Bogol'ubova
Disperzny zakon (65) pre elementarne excitécie supratekutiny so slabymi interakciami budeme skiimat
v limitnych pripadoch pomeru energii ek a |Ag|. VSimnime si najprv, Ze ek rastie s vlnovym vektorom
k, kym |Ag| v nasom modeli s vlnovym vektorom k klesa. Preto pripad ex < |Ag| sa realizuje v
dlhovlnnej limite, kym ey > |Ag| nastava v kratkovlnnej limite.

V dlhovlnnej limite dostavame Ey =~ hvk, teda disperzny zakon je kvalitativne zmeneny oproti
spektru volnych ¢astic: energia Fjy rastie s k linearne s rychlostou

\/|A0| UTLoCLS
v = = s
m m

kde ng je hustota Castic v kondenzéite. VSimnime si, Ze energia excitécii Fy sa pre k — 0 blizi k
nule. Ide o dalsi priklad Goldstoneovho médu, v supratekutine je totiZ spontanne narusené (spojita)
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globalna kalibratné symetria (50). Pretoze v dlhovinnej limite plati uf ~ vl ~ ‘2%?]'?, krea¢ny operator

pre elementarne exciticie ma tvar

| Ao
2hvk

oy ~ (af, + a ).
Znamena to, ze elementarnu excitaciu s vlnovym vektorom k vytvorime koherentnym zlozenim dvoch
procesov: kreacie holej Castice s hybnostou #ik, alebo anihilacie holej castice s hybnostou —hk. Z
explicitného tvaru vlnovej funkcie zékladného stavu |¥y) vidno, Ze po anihilacii ¢astice s hybnostou
—hk bude v excitovanom stave pritomné nesparend Castica s hybnostou 7k, teda obidva procesy st do
istej miery podobné. Z pribliznej rovnosti ui ~ U12< d'alej vyplyva, Ze elementarne excitacie v dlhovinnej
limite v priemere nemenia pocet Castic v systéme. Naviac sa d& ukazat (pozri cvicenia), ze rychlost v
je totozné s predpovedou makroskopickej tedrie pre rychlost zvuku. Preto je prirodzené elementérne
excitacie v dlhovlnnej limite stotoznit s kvantami zvukovych vin.

V kratkovlnnej limite sa disperzny zékon zjednodusi na tvar Eyx = ¢k, t.j. je rovnaky, ako v ne-
interagujicom systéme. To je prirodzeny vysledok: rychle Castice st slabym rozptylovym potencialom
iba mélo ovplyvnené. TomU}r zodpoved4 aj vysledok pre krea¢ny operédtor pre elementarne excitacie v

kratkovlnnej limite: a;r( N ay.

g
B J"IA

Obr. 7: VIavo: excitacné spektrum podla tedrie Bogolubova. Vpravo: experimentalne spektrum He. Medzidlhovinnou
oblastou zvukovych vin a kratkovlnnou oblastou volnych Gastic sa nachadza tzv. roténové minimum.

Charakteristicky vinovy vektor kg rozdelujuci dlhovlnnu a kratkovlnnia oblast dostaneme porovna-

2
nim disperznych zékonov Ey v oboch limitach: hAvky = ﬁ . Tak dostaneme

hko = 2mv = 24/ mUnga?.

Stoji za povSimnutie, Ze vlnovy vektor kg rastie so silou interakcie, pricom kg o Uiz,

Oblast platnosti teérie Bogolubova
Teoéria Bogolubova je konzistentné, ak pocet ¢astic mimo kondenzéatu je malym zlomkom vsetkych
castic, t.j. ak N'/N < 1. Prechodom od sumy k integralu vo vyraze (64) dostaneme

N’ _ 2 /m 3/2/ \[&t—i— \Ak] e(e + 2|Agl) - kg
N mn 2h2 e(e + 2|AL]) 24m2n’
kde n je hustota castic. V pribliznej rovnosti sme pre jednoduchost predpokladali, ze kga < 1. V
takom pripade totiZz moZzeme v relevantnej oblasti vinovych vektorov k ~ ko funkciu |Ag| povazovat za
konstantu, |Ag| =~ |Ag|, a integraciu mozno explicitne vykonat.

Teoéria Bogolubova teda plati, t.j. ak je splnend podmienka kS’ < n. Ak hustotu odhadneme po-
mocou strednej vzdialenosti medzi Casticami rg vztahom n ~ 7y 3 dostaneme odtialto podmienku
korg < 1. Ak dalej pouzijeme explicitny vysledok pre kg, dostaneme napokon podmienku aplikability

teorie Bogolubova:
R2r
U< —.
ma
Teoria teda plati pre slabé interakcie U — 0, pre riedky plyn rqg — oo, alebo pre kratkodosahové inte-

rakcie a — 0. Mohla by vzniknut namietka, Ze naSa zjednodusena verzia teodrie plati iba pre kga < 1,
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Realisticky model pre ‘He

V ramci teérie Bogolubova sme skiimali hamiltonian (59) so slabou odpudivou parovou interakciou V (r)
s Fourierovou transformaciou V. Cisto odpudivy model by vSak neumoznoval existenciu kvapalného
(t.j. viazaného) stavu. Realistickejsim modelom pre hélium je

Zv2+ LS V- ), (67)

i#]

kde V(r) je interakénéa energia dvojice atébmov vo vzdialenosti r, povedzme typu van der Waalsovej-
Londonovej vazby. Takyto model v8ak nemozno skiimat metédami z predoslej prednasky, okrem iného
preto, Ze neexistuje Fourierova transformécia Vg (pozri cvicenia). Stoji tiez za zmienku, Ze model (67)
nie je presnym modelom pre systém atéomov hélia. PribliZzenie spociva v tom, Ze atomy *He st zloZené
z jadier a elektronov, ich suradnice v8ak v modeli (67) nefiguruja. Model (67) je teda d'alsim prikladom
efektivneho modelu. Ponechali sme v fiom iba interakcie dvojic atémov so stradnicami tazisk r; a
(okrem iného) sme zanedbali interakcie n-tic s n > 3.

Feynmanove vety o zakladnom stave ‘He
Pre vlnova funkciu ¥o(ry,...,ry) zédkladného stavu systému (67) platia nasledovné vety:

1. Vlnovu funkciu Wo(ry, ..., ry) mozno zvolit ako ¢isto redlnu. Dokaz vyuziva, zZe hamiltonian (67)
je redlny, H = H*, podobne ako v prednaske 3.

2. Reélna vinova funkcia zékladného stavu nemoédze menit znamienko. Idea dokazu sporom je na-
sledovna. Nech zakladny stav je popisany redlnou vinovou funkciou ¥y = fe'#, kde faza o(ry,...,ry)
nadobuda po Castiach hodnoty 0 a 7 a nie je konstantna. Najprv ukaZeme, Ze nezdporné vinova funkcia
Uy = f méa rovnaki energiu ako Wq, t.j. (Vo|H|¥o) = (V1|H|¥;). Naozaj, integraciou per partes podla
r; lahko nahliadneme, ze [d®r; ... [dPryVE(—ViVo) = [dPry ... [ dPry|V;Po|?, preto

h2
<\I/0|H\\I/0>:/d3r1.../d3rN %Zm%y? ;V i — 1) W2 | = (U |H|Ty).
2 1F]

Druh4 rovnost je dosledkom toho, Ze |¥g|? = f2 = |¥;|%. Okrem toho sme vyuzili, ze |V;¥o|? =
(Vif)? + f2(Vip)? = (Vif)? = |Vi¥|?, kedZe gradient ¢ je nenulovy len tam, kde f = 0. Teda
energia vinovej funkcie ¥; so §picmi je rovnaké ako energia vinovej funkcie ¥y. V dalsom kroku sa
argumentuje, Ze odstranenie Spicov zniZi energiu, t.j. Yo nemohla byt vlnovou funkciou zékladného
stavu.

3. AZ na fazovy faktor je normalizovana vlnova funkcia zékladného stavu jednoznac¢né. Dokaz
sporom: nech ¥; a Wy st dve rézne kladné normované vlnové funkcie zdkladného stavu, pri¢om
HY;, = Ey¥,; pre i = 1,2. Potom musi platit H(¥; — ¥9) = Eyg(¥; — ¥y). Ale podla vety 2 ne-
smie vlnova funkcia ¥; — ¥y menit znamienko. Potom v8ak ¥ a ¥y nemozu byt obidve normované.
Tym je dokaz hotovy.

Penroseov-Onsagerov odhad vel'kosti kondenzatu v ‘He

V ramci teorie Bogolubova sme ukazali, Ze v dosledku interakénych efektov nemézu vietky atomy tvorit
kondenzat. Ocakavame, Ze aj pocet ¢astic Ny v kondenzate skutoéného hélia bude redukovany, ale vel-
kost Ny nie je mozné kvantitativne urcit pomocou teérie Bogolubova. V tomto odstavci prezentujeme
zjednodugent verziu Penroseovho-Onsagerovho odhadu Ny v *He pri teplote T = 0.

V naSom zjednoduSenom pristupe budeme hélium modelovat mriezkovym modelom zavedenym v
odstavci o ODLRO. Budeme $tudovat kubickt mriezku s N mriezkovymi bodmi a s periodickymi
okrajovymi podmienkami, na ktorej sa pohybuje N < A atémov. Ealej budeme predpokladat, Ze
atémy na susednych mriezkovych bodoch neinteraguji, kym odpudivé interakcie medzi atémami na
tom istom bode mriezky su tak velké, ze kazdy mriezkovy bod moéZe byt obsadeny nanajvys jednym
atémom. StlaCanie hélia si pritom predstavime ako odoberanie mriezkovych bodov pri fixovanom pocte
N atémov a pri fixovanej mriezkovej konstante. V momente, kedy sa pocet mriezkovych bodov vyrovné
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s po¢tom atomov, hélium strati schopnost tiect. Teda pri N'= N hélium skrystalizuje. KedZe v limite
nizkych teplot sa experimentalna hustota kvapaliny pri zvySeni tlaku z hodnoty p ~ 0 na krystaliza¢ny
tlak p ~ 2.5 x 10% Pa zvy&i iba o zhruba 20%, ocakavame, Ze v celej kvapalnej faze méa bezrozmerna
koncentracia ¢ = N/N hodnotu vi¢siu ako zhruba 0.8.

Mnoho¢asticovi vlnova funkciu zakladného stavu |¥o) odhadneme nasledovne. Najprv zavedieme

pojem konfiguracie atémov na mriezke C = (iy,...,in), t.j. N-tice bodov, ktoré sit obsadené atémami
4He. Za vlnovu funkciu zakladného stavu zoberieme
1
Vo) = ———— F oyl o),
‘ > Z(N’N);wzl sz’ >

kde |0) je vakuum, t.j. stav bez Castic, a

206 = (% ) = viv -

je poCet roznych konfiguracii N atomov na mriezke s N' bodmi. Vimnime si, Ze vlnova funkcia |¥)
je normalizovana, t.j. (¥o|¥o) = 1, a naviac splia vety 1 a 2. Analogicku vlnova funkciu (ale pre
kontinuum) skumal aj Feynman.

Pocet ¢astic v kondenzate budeme pocitat pomocou vztahu

1
No = (olafao| o) = 1= > (Polw]v;| Vo).
ij

Fixujme preto dva rozne mriezkové body i a j a pocitajme (‘Ifo\ijﬂ\Ifo}. K maticovému elementu
prispeju len tie konfiguracie v rozvoji vinovej funkcie |¥q), v ktorych je bod j obsadeny a bod i je
neobsadeny. Takychto konfiguracii je Z(N — 1, N'—2), pretoZe mame rozmiestnit N —1 atémov (okrem
atomu v bode j) a k dispozicii mame AN — 2 mriezkovych bodov (vSetky okrem i a j). Kazda takato
konfiguracia |C) = w; . ..wl-TN\O> prispeje do maticového elementu (\I/0|1/J;r1/1j|‘110> jednotkou, pretoze
stav ijﬂC) je niektorou z povodnych Z(N, N') konfiguracii. Preto

Z(N-1,N~2) NWN-N) _

(Roltfv;1¥0) = =7 37— = v— ~ oL

kde sme uvazili, ze N' > 1. KedZe maticovy element <\P0|¢j¢j\\l’g) nezéavisi od 7,7, pre pocet Castic v
kondenzate tak dostaneme odhad N
0
—~1-c

N

Kedze v kvapalnom héliu ocakéavame ¢ > 0.8, v kondenzate sa nachadza len maly zlomok vSetkych
atéomov. Penrose a Onsager v presnejsej teorii odhadujt, ze No/N ~ 0.08.37

Upozornujeme vsak, Zze hustota normalnej zlozky pri teplote T' = 0 je p, = 0 aj napriek tomu,
7e No/N < 1.3 Hustotu normalnej a supratekutej zlozky treba totiz chapat ako parametre funkcif
odozvy a nie ako vlastnosti rozdelenia ¢astic. Tito tému pekne analyzuji napriklad Noziéres a Pines.

Adiabaticka kontinuita

Podl'a Bogolubova mozno supratekutinu opisat ako kvapalinu s kondenzatom. Penroseov-Onsagerov
vypocet ukazuje, Ze hoci kvantitativne tedria Bogolubova nepredpoveda spravny podet holych &astic v
kondenzate, samotné pritomnost kondenzatu v héliu zostava zachovana aj v tejto presnejsej teorii. To
naznadcuje, Ze teéria Bogolubova je kvalitativne spravna a veri sa, Ze Startujuc z tejto tedrie mozno tzv.

3"Detailné numerické simulacie zédkladného stavu hélia s Lennardovymi-Jonesovymi interakciami (spolu s odkazmi na
experimentéalne data) mozno najst v praci P.A. Whitlock, D.M. Ceperley, G.V. Chester and M.H. Kalos, Phys. Rev. B
19, 5598 (1979). Podla tejto prace sa zlomok No/N meni medzi hodnotami 11% pre p = 0 a 6% pre krystalizacny tlak.

38 Ak by sme nastojili na vysvetleni pomocou rozdelenia Gastic, tejto poznamke treba rozumiet nasledovne. N&3 vypocet
sa tykal rozdelenia “holych atomov”, t.j. atomov, aké by boli vo vakuu. Atémy v médiu vS8ak svojou pritomnostou
toto médium deformuji a stavaju sa “obleCenymi atémami”, priCom “obleCeny atém”="holy atém”+’oblak deformécii”.
Keby sme poéitali pri nulovej teplote rozdelenie takychto obleGenych atémov, mali by sme vidiet, Ze vSetky obsadzuju
kondenzat.
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adiabaticky dospiet k presnému opisu hélia. Mame tu na mysli, Ze spojitd zmena interakcii od modelu
Bogolubova po realistické interakcie v *He sa prejavi v hladkej zmene koncentracie kondenzatu.

Dalsim vysledkom teérie Bogolubova je, Ze excitacie v dlhovlnnej limite majt charakter zvukovych
vin a st popisané linearnym disperznym zakonom. Tento vysledok zostava v platnosti aj v presnejsej
teorii Feynmana a je v zhode s experimentom (hoci vel'kost rychlosti zvukovych vin je potrebné upravit).
Aj v tomto pripade sa veri, Ze excitacné spektrum sa adiabaticky vyvija pri zmene interakcii.

Anderson sformuloval vieobecny princip adiabatickej kontinuity, podla ktorého moZno popis vlast-
nosti konkrétnych fyzikalnych systémov redukovat na dve podilohy:

1. identifikdciu jednoduchého modelového systému s rovnakymi symetriami ako symetria skiima-
ného systému (napr. Bogolubovova supratekutina, ale aj normélny kov, pasovy izolant, Heisenbergov
feromagnet, supravodi¢ BCS, atd.); vyrieSenie tejto tlohy poskytne kvalitativny popis systému,

2. aplikaciu vhodnej poruchovej tedrie s modelovym systémom ako Startovacim bodom, ak st po-
trebné kvantitativne predpovede.

Cvicenia
1. Predpokladajte, ze ako < 1 a ukéazte, ze do druhého radu v U pre energiu zakladného stavu (63) plati

Fas _ lUnag’ 1_ 1 ma?U
N 2 dmy/m h?
Dalej ukazte, Ze tento vysledok Bogolubovovej teorie je v zhode s druhym radom poruchovej teérie podla U.

2. Najdite stavovti rovnicu p = p(n) a makroskopickt rychlost zvuku v2 = %g—z v tedrii Bogolubova. Vysledok pre v,

porovnajte s dlhovlnnou rychlostou bogolubonov v. Navod: pouzite vysledok pre energiu Fgs do prvého radu podla U.
3. Ukazte, ze Fourierova transforméacia van der Waalsovho-Londonovho potencidlu neexistuje.

4. K druhej Feynmanovej vete. Presvedcte sa, Ze ak funkciu f(z) = z, ktora na intervale (—1,1) men{ znamienko, na-
hradime funkciou vz2 + a2, ktora nemeni znamienko, potom “kinetické energia” f_ll dx(8f/0x)? Klesne o Elen tmerny
a, kym “potencidlna energia” fjl dxU(x) f(x) narastie iba o ¢len imerny a®. Preto pre malé a celkova energia klesne.
5. Skiimajte tzv. Jastrowovu vlnovi funkciu Wo(ry,...,rn) = [[,_; f(ri —r;) pre zékladny stav hélia s variacnou fun-
kciou f(r). Aké vlastnosti musi mat funkcia f(r), aby o(r1,...,ry) bola symetricka pri permutaciach Castic a zaroven

splitala Feynmanove vety o zakladnom stave?

14 Supravodivost: zakladné fakty

V tejto prednéske poddme tvodnud informéciu o supravodivosti. UkdZeme, Ze supravodivost mozno ché-
pat ako supratekutost Cooperovych parov a nacrtneme najjednoduchsi popis magnetickych vlastnosti
supravodic¢ov. Podrobny vyklad supravodivosti podavaju tri autoritativne knihy: Tinkham (fenomeno-
logia), Schrieffer (mikroskopicka teoria) a de Gennes (odvodenie Ginzburgovej-Landauovej tedrie).

Supravodivost ako nova termodynamicka faza

Vo vigsine kovov vznika pri nizkych teplotach nova termodynamické faza, ktord nazyvame supravodi-
vou. Teplota prechodu medzi normélnym kovom a nizkoteplotnou fazou sa nazyva kriticka teplota 7.
Jej typické hodnoty st uvedené v tabulke 1.

Al Nb NbgGe Mng HgBaQCaQCu;;Og

T, (K) 11 95 23 39 135
235 37 42 4 5 az 10

A(nm) 50 44 90 120° 130*

¢ (nm) 1600 38 3 6.5% 1.3*

Tabulka 1: Kriticka teplota T., podiel 2T—A, hibka vniku A a rozmer Cooperovho paru & vybranych supravodicov. V
hexagonalnom materiali MgB2 a v tetragon(élnych vysokoteplotnych supravodi¢och vnika magnetické pole rovnobezné s
krystalografickou osou ¢ inak ako pole kolmé na os c¢. Hviezdi¢kou st oznacené data pre pole rovnobezné s osou c¢. Podobne
vlnové funkcie Cooperovych parov nemaju tvar gule, ale disku. Hviezditkou st oznacené polomery (a nie hribky) disku.
Data pre vysokoteplotné supravodide (posledny stipec) sa tykaji tzv. optimalne dopovanych materialov.



93

Rekordné teplota prechodu sa realizuje v tzv. vysokoteplotnych supravodic¢och, ktorych vlastnosti
sa v mnohom odlisuji od nizkoteplotnych supravodic¢ov. Nas§ vyklad bude zamerany na nizkoteplotné
supravodice, ktorych spravanie je v hrubych rysoch pochopené.

E
2 T, -
o A - i,
G 1 5 A |k >
| I - | // F e
_..-'! -__/"'//’ | / |
/L | 7 [
| il |
>, 5
/ = i
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Obr. 8: VTavo: teplotna zavislost (v limite nizkych teplot) prispevku elektronov cy k mernému teplu supravodica.
Bodkovana ¢iara znazoriuje data pre cy v normélnom stave. Takéto data mozno ziskat bud extrapolaciou dat pre
T > T., alebo rozrusenim supravodivosti - napriklad silnym magnetickym polom. V strede: teplotna zavislost entropie
S = S(T') uréena integrovanim dat pre cy. Vpravo: teplotna zavislost volnej energie F' = F(T') urcena integrovanim dat
pre entropiu.

V nulovom aplikovanom magnetickom poli je fazovy prechod do supravodivého stavu druhého druhu,
t.j. nie je spojeny s existenciou skupenského tepla premeny. To znamena, Ze pri T, je entropia supra-
vodivej fazy S rovnaka ako entropia normalnej fazy Sy. V bode prechodu sa vsak 1i8i merné teplo pri
konstantnom objeme ¢y oboch faz.3° V normalnom kove je merné teplo ¢y linearnou funkciou teploty.
V supravodiéi je merné teplo cy pri T' < T, omnoho mensie. Integrovanim experimentalnych dat pre
cy (T) mozno uréit entropiu supravodivej fazy:*°

S(T) = /0 ' dT’CVJ(f/).

Porovnanim s entropiou Sy vypocitanou analogickym postupom, ale z dat pre merné teplo extrapolo-
vanych z normalnej fazy, vidno, ze S < Sy, t.j. novd fdza je usporiadanejdia ako normdlny kov. Kedze
pri T, st volné energie oboch faz rovnaké, dalgou integraciou vyrazu dF = —SdT mozno urcit rozdiel
volnych energii oboch faz:

Te
F(T)—- Fn(T) = / ar’ [S(T') — SN(T’)} .
T
Takato analyza experimentalnych dat ukazuje, Ze volna energia v supravodivej faze je niZSia nez v
normalnej faze a ich rozdiel pri nizkych teplotach prepocitany na jeden elektron je radu T2 /. Tento
vysledok interpretujeme tak, Ze v novej fize nastala reorganizacia elektronového spektra v blizkosti
Fermiho plochy, pri ktorej zlomok T./er zo vSetkych elektronov znizil svoju energiu zhruba o 7.

Nekoneéna vodivost a Meissnerov jav
V obyc¢ajnych kovoch je spad napétia V' na drote priamo timerny pridu I te¢ticemu cez drot, V = RI,
kde R je odpor drotu. So znizovanim teploty odpor klesad a pri prechode do supravodivého stavu,
t.j. pri teplote T, sa odpor dréotu meni skokom z koneénej hodnoty na nemeratelne mala hodnotu.
Supravodivy stav je teda stavom s nulovim odporom.

Najpresnejsie mozno odpor supravodic¢a urcit pomocou merania tzv. perzistentnych pradov. Sku-
majme masivny prstenec, cez ktory pretekd magneticky tok ®.(t) = ®; budeny vonkajsimi cievkami.
V ¢ase t = 0 vypnime prud v cievkach, teda pre ¢ > 0 nech ®.(t) = 0. Podla Faradaya sa v prstenci

39V tomto odstavci pre jednoduchost zanedbavame mala teplotni roztaznost kovov a experimentalne data pre merné
teplo, ktoré s obvykle ziskavané pri konstantnom tlaku, interpretujeme ako déata pri konstantnom objeme. Okrem toho
mame na mysli iba prispevok elektronov k mernému teplu. Naviac predpokladame, Ze Studovany kov sa nachadza v
nulovom magnetickom poli.

19Pouzili sme vztah cy = T% a tiez tretiu termodynamicku vetu, podl'a ktorej je entropia pri nulovej teplote S(0) = 0.
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indukuje napétie U(t) = —dg;‘i = ®;4(t). Ak odpor prstenca ozna¢ime R a jeho indukénost L, potom
prad I(t) v prstenci bude spliiat rovnicu
dl
U(t)=RI + LE’ (68)

ktora ma rieSenie I(t) = Ioe t/7 s Gasovou konstantou 7 = %. Pre uvazovany delta-funkény napétovy
pulz ma pociatoény prad velkost Iy = %, ako sa lahko presved¢ime integrovanim rovnice (68) cez
infinitezimélny ¢asovy interval okolo ¢ = 0. Teda z merania ¢asovej zavislosti pridu mozno urcit odpor
supravodica. Ako vSak mozno merat priad v uzavretej slucke? Rovnicu (68) pre prud v uzavretej slucke
moZno po uvazeni Faradayovho zédkona pre U(t) zapisat v tvare

d
—(®, + LI) = —RI.
5 (%e+LI)

To znamena, %e v materidloch s R = 0 musi byt celkovy magneticky tok cez prstenec ® = &, + LI
konstantny. Experimenty ukazuja, Zze v masivnych supravodivych prstencoch je pokles toku & neme-
ratelne maly.*!

TRANSPORTNY PRUD
TECIE Po POVRCHL

SUPRAVIDIZA

A

Obr. 9: Vravo: Supravodivy prid tedie po povrchu drétu a odtiefiuje vnitro supravodida od magnetického pola B.
MoZno nahn teda nazerat ako na rovnovazny Meissnerov priad. Vpravo: rozloZenie prudu v priereze drotu.

Supravodi¢ sa v slabych externych magnetickych poliach sprava ako idedlny diamagnet, t.j. vnatri
masivneho supravodica je magnetické pole nulové (tzv. Meissnerov jav). Inymi slovami, po povrchu
masivneho supravodi¢a vloZeného do externého magnetického pola te¢t rovnovazne povrchové pridy,
ktoré odtienia externé pole tak, aby vnitri supravodic¢a bola splnenéd podmienka B = 0. Tieniace
prady pritom te¢t vo vrstve s hriibkou A, ktorti nazyvame hibkou vniku magnetického pola. Jej typickée
hodnoty st uvedené v tabulke 1.

Meissnerov jav povazujeme za zékladnt vlastnost supravodi¢a. Napriklad transport naboja bez
energetickych strat mozno chépat ako dosledok Meissnerovho javu. Naozaj: obvykle nazerame na drot,
ktorym preteka prud I, ako na zdroj magnetického pola. Ak sa vSak na ten isty drot pozrieme ako na
drot vlozeny do magnetického pola, potom transportny prud I bude tiect kvoli Meissnerovmu javu:
vdaka tomu, Ze vo vrstve hribky X tecie prad pozdlz drotu, je vnatro drotu odtienené od magnetic-
kého pola (pozri obrazok 9). Je podstatné si uvedomit, Ze tento prad je rovnovazny, a teda bezstratovy.

Supravodivost a supratekutost

Bezdisipativny transport naboja v supravodiCoch je zjavnym analégom bezdisipativneho transportu
hmotnosti v supratekutinach. Supravodivost sa v8ak tyka elektronovych stupiiov volnosti kovov, preto
sa od supratekutosti He II podstatne 1i§i dvomi aspektmi:

1. vzniké vo fermiénovom systéme

2. vznika v systéme nabitych castic.

Ako moéze fermionovy systém vytvorit kondenzéat, t.j. makroskopicky obsadeny stav? Vznik supra-
vodivosti pri chladeni kovu moZno pochopit ako dvojkrokovy proces: najprv vzniknu dvojelektronové
“molekuly”, tzv. Cooperove pdry, ktoré st bozénmi, a v druhom kroku Cooperove pary vytvoria kon-
denzat.?? Kedze elektrony st velmi lahké, v suvislosti so supravodivostou obvykle hovorime o bez-
disipativnom transporte naboja (ndboj Cooperovho paru je —2e), ale malokedy o bezdisipativhom
transporte hmoty.

4IPrstenec treba vlozit do magnetického pola pri teplote vyssej, nez je kriticka, a aZ potom ho schladit pod Te.
42y konvenénych supravodicoch je teplota, pri ktorej vznikaju Cooperove pary, obvykle neodligitelna od teploty,
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Predstava o Cooperovych paroch je konzistentna s meraniami optickej vodivosti ¢/(w), pozri pred-
nagku 19: V nesupravodivom kove mozno vytvorit excitaciu s Tubovolne nizkou excita¢nou energiou
vytvorenim Casticovo-dierového paru, v ktorom sa diera nachédza tesne pod Fermiho plochou a Castica
tesne nad fiou, preto v limite nizkych frekvencii je vodivost ¢’(w) nenulova. V supravodivom stave (v
limite nizkych teplot) je v8ak vodivost ¢/(w) nulova pre vsetky konecné frekvencie aZz po frekvenciu
2A/h. Teda v excitatnom spektre supravodica existuje zakdzany pds okolo chemického potencialu so
sirkou 2A. Tento vysledok moZno interpretovat ako désledok vzniku Cooperovych parov s vézbovou
energiou 2A, pricom 2A ~ T, pozri tabulku 1. Jednou z klacovych otazok teorie supravodivosti je
otazka o povode sil, ktoré viazu elektrény do Cooperovych parov. Tejto otézke sa budeme venovat v
nasledujiicej prednaske. Vznik Cooperovych péarov pritom ovplyviiuje iba rozloZenie tych elektronov,
ktorych energia sa nachadza v intervale sirky ~ 7T, okolo Fermiho plochy, t.j. zlomku ~ T./ep zo
vSetkych elektronov, v silade s analyzou termodynamickych veli¢in. Typické velkosti & Cooperovych
pérov su uvedené v tabulke 1.

Podl'a kvantovej mechaniky moze celkovy spin Cooperovho paru (t.j. sastavy dvoch spinov S = %)
nadobudat hodnoty S = 0 alebo S = 1. Experimenty ukazuji, Ze spinovd magnetickd susceptibilita
vacsiny supravodicov pri teplotdch mensich nez T, klesa a pri nulovej teplote vymizne. Tento vysle-
dok vysvetlujeme tym, Ze celkovy spin Cooperovych péarov je obvykle S = 0 a Cooperove pary st
nemagnetické. Supravodi¢e s S = 0 sa v literatire nazyvaja singletné. Pripad S = 1 (tzv. tripletna
supravodivost) sa realizuje iba v malom poécte supravodi¢ov, pravdepodobne napr. v UPt3.43

D4 sa ocakavat, ze pri nenulovej teplote a/alebo pri nenulovych aplikovanych poliach bude ¢ast
Cooperovych péarov rozbita. Elektrony z rozbitych parov, tzv. normélna zlozka, spolu s kondenzatom
parov teda tvoria dve elektréonové “kvapaliny”, podobne ako v pripade supratekutého hélia.

N

X\

Al 5

U T -
C 1

Obr. 10: Teplotna zavislost podielu ns/n elektréonov v kondenzéte. Casto pre hu zhruba plati Gorterova-Casimirova
empiricka formula ng/n =1 — (T/T:)*.

Makroskopicka vlnova funkcia
Budeme predpokladat, Ze kondenzat mozno popisat (podobne ako v pripade supratekutého “He) mak-
roskopickou vlnovou funkciou 1 (r), kde r je stiradnica taziska Cooperovho paru. Funkcia ¢ (r) je pritom
normovand tak, aby |1 (r)|? bola koncentracia Cooperovych parov v okoli bodu r. Vlnova funkcia 1 (r)
hra ulohu parametra usporiadania, podobne ako napr. vektor magnetizacie m je parametrom usporia-
dania v pripade feromagnetu. KedZze kazdy Cooperov par v kondenzate obsadzuje ten isty kvantovo-
mechanicky stav imerny v (r), o¢akavame, Ze 1 (r) splha oby¢ajnii Schrédingerovu rovnicu pre jednu
Casticu
in2Y -
at  2m**

kde m** = 2m* je hmotnost Cooperovho paru, —2e je jeho naboj a U je jeho potencialna energia.*

(—ihV + 2eA)%) + U, (69)

4

kedy vznikd kondenzéat (ize supravodivost). Jednou z pri€in zrejme je, Ze rozmer Cooperovych parov £ je v tychto
supravodi¢och obvykle omnoho va&si ako typickd vzdialenost medzi susednymi elektronmi ro. Cooperove pary sa teda
silno prekryvaju, ¢o pravdepodobne podporuje tvorbu kondenzétu.

Vo vysokoteplotnych supravodi¢och vSak existuje Siroky interval teplot, v ktorom podla jednej triedy teodrii existuju
Cooperove pary bez fazovej koherencie. Tato interpretacia experimentov je konzistentna s podstatne mengou hodnotou
pomeru £/rg vo vysokoteplotnych supravodi¢och oproti konvenénym supravodic¢om, avSak nie je vSeobecne akceptovana.

43Povodne bol za tripletny supravodi¢ povazovany aj material SroRuOg4. Najnovsie experimenty vSak tuto interpretaciu
spochybiuj.

4V rovnici (69) sme predpokladali, Ze Cooperov par v mieste r interaguje s vektorovym potencidlom A(r). Ale
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Ak sa obmedzime na skiimanie homogénneho supravodiéa s chemickym potencidlom pre elektrény 1,

-----

volit U = 2pu.

Londonova rovnica a Meissnerov jav

V tomto odstavci ukdZeme, Ze systém s nenulovym kondenzatom popisanym vinovou funkciou ¢ (r)
bude vykazovat Meissnerov jav. Najprv odvodime vyraz pre hustotu supravodivého pridu. Rovnica
komplexne zdruZena k rovnici (69) ma tvar

o

—th——
ot 2m**

(ihV + 2eA)*y* + Uy*.

Vynéasobme teraz rovnicu (69) vlnovou funkciou ¢* a komplexne zdruzenu rovnicu vynasobme vinovou
funkciou 1. Rovnice od¢itajme a po uprave dostaneme (pozri cvicenia)

0. 9 th e
— — Vi —pVy* =0.
SO+ V|-tV - V) +
KedZe nabojova hustota kondenzéatu je dana vztahom ¢ = —2el||?, tito rovnicu mozno chapat ako
rovnicu kontinuity pre naboj 0p/dt + V - j = 0 s pradovou hustotou
. deh 2¢2A
j=g (V- 9VYT) = Sl (70)
m*
Ak vlnovi funkciu parametrizujeme v tvare 9 (r) = |¢)(r)|e"™), potom vyraz pre pridovi hustotu
mozno ekvivalentne zapisat ako (pozri cvi¢enia)
j= A+ EV@ (71)
I= 2e ’

Teda supravodivy prud tecie ako odozva na vektorovy potencial A a/alebo gradient fazy makroskopicke;j
vlnovej funkcie.*> Tento vysledok je zovieobecnenim prednagky 11 na pripad nabitého kondenzatu.

V slabych poliach mézeme v prvom priblizeni zanedbat zavislost |1|?> od magnetického pola a
koncentraciu Cooperovych parov mézeme brat ako priestorovo konstantni a zavisiacu len od teploty.
Za tohto predpokladu namiesto (71) dostaneme tzv. Londonovu rovnicu

) 1 h
ji= Tz (A—i— V9> (72)
kde sme zaviedli oznatenie j3 = 2“’06 )2 ]

Teraz ukazeme, Ze Londonova rovnica vysvetluje Meissnerov jav a Ze A je hlbka vniku. Naozaj,
rotacia Londonovej rovnice mé tvar AV x poj = —B a s uvazenim Maxwellovej rovnice v statickom
pripade j0j = V x B ju preto mozno pisat v tvare A2V x (V x B) + B = 0. Ak teraz pouzijeme vztah
z vektorovej analyzy V x (V x B) = V(V - B) — V2B a uvéazime, ze V - B = 0, dostaneme rovnicu

2
VB—ﬁB

Tato rovnica popisuje Meissnerov jav s hlbkou vniku A: napriklad do polonekone¢ného supravodi¢a v
polpriestore & > 0 totiZ vnikd magnetické pole By rovnobezné s povrchom supravodica podl'a vztahu*®
B(z) = Boe %/

Cooperov par je nelokalny objekt s typickym rozmerom £. Preto rovnica (69) moze popisovat elektromagnetické vlastnosti
supravodicov, iba ak hodnota A(r) je v celom objeme Cooperovho paru konstantna, t.j. ak A > & Pre A < £ musime
elektromagnetické vlastnosti supravodi¢ov popisovat tzv. nelokdlnou teoériou: silové pdsobenie na Cooperov par v mieste
r zévisi od vektorového potencidlu v objeme ~ &3 okolo r.

45 Kedze prud je fyzikdlne pozorovatelna veli¢ina, jeho velkost neméze zéavisiet od vyberu kalibracie pre vektorovy
potencial. Preto kalibraénu transforméciu elektromagnetického pola A — A + Vyx treba kompenzovat kalibra¢nou
transformaciou makroskopickej vlnovej funkcie podla predpisu 6 — 6 — %X-

46predpokladame, Ze v oblasti z < 0 je vakuum. V tomto pripade mozno zvolit konstantna amplitadu vinovej funkcie
||, pozri nasledujici odstavec.
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Napokon preskimame teplotni zéavislost Londonovej hibky vniku A. Oc¢akévame, ze pri nulovej

teplote tvoria vSetky elektrény kondenzat, preto v tejto limite [¢|> = 2 a /\—12 = “%152. Tento odhad je

v radovom stlade s experimentalnymi hodnotami hibky vniku. S rastiicou teplotou koncentracia elek-
tronov v kondenzate ng = 2|1)|? klesa. Preto hibka vniku rastie a napokon pri T, diverguje: supravodic

prestava vykazovat Meissnerov jav.

Okrajovd podmienka pre makroskopicki vlnovd funkciu

Pre supravodi¢ kone¢nych rozmerov je potrebné Schrédingerovu rovnicu pre vlnova funkciu riesit s vhodne zvolenou
okrajovou podmienkou. éastym pripadom je poziadavka, aby normalova zlozka supravodivého pridu na povrchu vzorky
bola nulova. Supravodivy prud zapiSme v tvare

J= == [ (—ihV + 2eA)) + B(ihV + 2eA)p*] = —%Re (" (—ihV + 2eA)p] .

2m

Okrajovii podmienku n - j = 0, kde n je vektor normély k povrchu, preto moZno pisat v tvare
. ih
n - (—ihV + 2eA)p = e (73)
kde b je realna kon&tanta s rozmerom dlzka. Hodnota b zavisi od typu rozhrania a mozno ju uréit pomocou mikroskopicke;

tedrie. D4 sa ukazat, ze pre rozhranie supravodi¢-izolant (napr. vakuum) mozno volit b — oo, pre rozhranie supravodic¢-
magnet b — 0 a pre rozhranie supravodi¢-norméalny kov nadobiida b kone¢nti hodnotu.

;'/ = *
3 s |
. F
— T KVANTOVANIE TDARL
e i e 53 -
g a5, | TAE OF+ SEAFDNANU TLOCH([
¥ 2 { !
1 | I | r’.'. - ;f‘. T
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b ; /
, s i s
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Obr. 11: Magneticky tok ® = fEB - dS prechadzajuci cez Tubovolni plochu ¥ s okrajom na ¢iare C hlboko vnutri
masivneho supravodivého prstenca nadobtuda kvantované hodnoty.

Kvantovanie magnetického toku

Skimajme masivny supravodivy prstenec a v hom drahu C, ktora obopina dieru v prstenci a lezi dostato¢ne d'aleko od
povrchu prstenca. V takom pripade mozno pozdlz C' meissnerovské tieniace prady zanedbat a plati — fc po%j - dr = 0.
Na druhej strane, z Londonovej rovnice (72) vyplyva

—%uo)\gjdr:j{A-dr—FE%VG-dr:¢—£27rk,
c c 2e Jo 2e

kde @ je magneticky tok prechadzajici cez (aktukol'vek) plochu s okrajom v &iare C a k je celé &islo. Pri odvodent sme
pouzili predpoklad, Ze vlnova funkcia supravodic¢a je jednoznaé¢né, a preto sa jeho faza pri obehnuti ¢iary C' moéze zmenit
iba o nasobok 27. AvSak podla predpokladu plati — fc 1oA%j - dr = 0, preto magneticky tok ® musi splitat podmienku
® = kdg, kde sme zaviedli tzv. kvantum magnetického toku ako kombinédciu fundamentalnych kon$tént s rozmerom
magnetického toku:

Oy = % = 2.0678 x 107 % Tm?.

Ukazali sme teda, ze magneticky tok uvizneny v masivnom supravodivom prstenci musi byt nasobkom ®y. Tento
vysledok nam pomoze vysvetlit stabilitu perzistentnych pradov: Stavy s réoznymi hodnotami k totiZz nesu rézne perzis-
tentné prady. Stavy s nenulovymi pradmi st sice metastabilné, ale zniZenie pradu vyzaduje zmenu celej makroskopickej
vlnovej funkcie. To je ale obvykle spojené s nutnostou prekonat obrovski energetickii bariéru, a preto pokles prudu je

na laboratoérnej Casovej Skale extrémne nepravdepodobny.

Cvicenia

1. Presved¢te sa, ze hustota supravodivého pradu je dana vztahmi (70) a (71).

2. Vypoditajte tlak, ktorym posobi kondtantné magnetické pole By na polonekoneény supravodié s hibkou vniku A. Pole
nech je rovnobezné s povrchom supravodi¢a. Navod: Objemovéa hustota sily pésobiaca na prud s pradovou hustotou j je
f=jxB.

3. Skiimajte supravodivii platni¢ku s hibkou vniku X\ a hribkou 2L v magnetickom poli By rovnobeznom s povrchom
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platni¢ky. Najdite priebeh magnetického pola v platnicke a vypoéitajte priemerné magnetické pole B v platnicke. Vypo-
¢itajte magnetizaciu platnicky M = ;Tlo(E — By) a susceptibilitu definovant vztahom x = poM/Bo.

4. Skimajte dva masivne homogénne supravodi¢e s chemickymi potencidlmi g1 a po, ktoré si spojené tenkym supra-
vodivym drétikom s prierezom S a dizkou L. Predpokladajte, Ze masivne supravodice si popisané vlnovymi funkciami
P1(t) = [y |12 a4y (£) = [ha|e™P2 722t/ M Ukaiite, Ze:

(a) v pripade p1 = po v drotiku teie jednosmerny prad tmerny sin(2 — 01) (tzv. jednosmerny Josephsonov jav)

(b) v pripade pu1 # p2 v drotiku teéie striedavy prad s frekvenciou hiw = 2(ua — p1) (tzv. striedavy Josephsonov jav)
Néavod. Zanedbajte magnetické polia generované prudmi, ako aj pripadné nabijanie oboch supravodi¢ov. Pre vlnova

funkciu v drotiku pouZite ansatz ¥(z,t) = LZ’”wl (t) + $42(t) a prud pocitajte zo znamej vlnovej funkcie v (x,t) po-
mocou (70). V pripade pu1 = u2 ukédZte, Ze ansatz je rieSenim jednorozmernej Schrédingerovej rovnice (69) pre drotik.

Pripad p1 # pe je zlozitejsi, pretoze v drotiku nemozno definovat chemicky potencial.

15 Supravodivost: efektivna interakcia

V tejto prednaske sa venujeme otézke o povode pritazlivej interakcie medzi elektronmi. Vychadzajic z
predstavy o zviazanom systéme elektrénov a fonénov odvodime efektivny hamiltonian v elektréonovom
sektore a pomocou neho skonstruujeme modelovy hamiltonidn BCS.

Izotopicky jav

Je dobre zname, Ze chemické vlastnosti prvkov dominantne zavisia od proténového ¢&isla atémov a
takmer vobec nezavisia od atémovej hmotnosti izotopu. V supravodivych prvkoch sa vSak kriticki
teplota meni pri zmene priemernej hmotnosti izotopu M podla vztahu T, « M~Y2. Da sa preto
oCakévat, ze hoci supravodivost je novou fazou elektrénov, pri formovani supravodivého stavu hraji
rolu aj kmity mriezky. Medzi energetickymi Skalami charakterizujicimi supravodi¢ platia nerovnosti

T. € hwy < e,

pretoze teplota prechodu v nizkoteplotnych supravodi¢och je radovo 1 K, t.j. 1074 eV, charakteristicka
energia kmitov mriezky fwg je radovo 1072 ¢V a Fermiho energia ep je radovo 1 eV.

Model Zelé s deformovatelnym pozadim
Tvorba Cooperovych parov, t.j. viazanych stavov elektron-elektron, bude zrejme mozné, iba ak medzi
elektronmi existuje efektivna pritazliva interakcia. V prednaske I1.16 sme ukézali, Ze rozptyl dvojice
elektrénov s pociatoénymi hybnostami k a p do kone¢nych stavov s hybnostami k+q a p — q sa moze
uskutoc¢nit vymenou virtualneho fonénu. V tomto odstavci budeme prezentovat zjednoduSeny argu-
ment, kde v jednotnom formalizme zahrnieme coulombovské interakcie medzi elektronmi aj interakcie
elektronov s fonénmi. VSeobecnejsiu tedriu popisujeme v IV.n.

Zalnime sktimanim efektivnej interakcie medzi elektronmi v kove. Pre jednoduchost sa obmedzime
na Studium tzv. modelu zelé, ale s deformovatel nym iénovym pozadim. Coulombovski interakciu medzi
elektronmi popisuje hamiltonian

1 3 3 e 62 e 1 e e
87eo /d I‘/d r'p (f)mp (r') = ﬁzvqpqp—cp
q

HCoulomb =

kde p®(r) je hustota elektronov. Druhti rovnost dostaneme zavedenim Fourierovej transformacie p€(r) =

%Zq PG exp (iq - r) v systéme s objemom V a s periodickymi okrajovymi podmienkami. Zaviedli sme
2
€

5.

tiez Fourierovu transforméciu coulombovskej interakcie, Vg = v

Dielektrickd konstanta

Je dobre zname, Ze akykolvek naboj externe vlozeny do elektronovej kvapaliny bude rychlo obklopeny
kompenzujicim nahromadenim néaboja elektréonov a i6nov, ktoré povedie k odtieneniu tzv. holej in-
terakcie V. V nasledujticom vyklade zovSeobecnime vysledky elementarnej tedrie tienenia z I1.12 na
pripad, kedy mame do &inenia s dvomi polarizovatelnymi médiami: elektrénovym plynom a iénovym
pozadim.
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Predpokladajme, Ze do elektronovej kvapaliny je zavedend malé externd nabojova hustota v tvare
rovinnej vlny doq exp(iq - r — iwt). 4T Dosledkom bude vznik tieniacich ndbojovych hustét elektrénov
0g exp(iq-r —iwt) a idnov Qfl exp(iq-r—iwt). Preto celkova nabojova hustota bude oq exp(iq-r —iwt),
kde oq =9 gq—l—gfl—i—gﬁl. Celkovy potencial generovany externym nabojom preto bude ¢q exp(iq-r—iwt),
kde ¢4 je dané Poissonovou rovnicou,

Oq 5Qq

(b = = .
1 e eoe(q,w)g?

Prvé rovnica popisuje ¢4 ako dosledok celkovej nabojovej hustoty oq, kym druhé rovnica berie do tvahy,
ze potencidl ¢q je povodne generovany externou nabojovou hustotou doq, ale v médiu s dielektrickou
konstantou €(q,w) = doq/0q, ktora moze zavisiet od vlnového vektora a frekvencie. Pre malé externé
naboje ocakavame, Ze tieniace naboje linedrne zavisia od celkového ndboja o, t.j. 0§ = —a(q,w)oq a
0y = —a'(q,w)oq, kde sme definovali tzv. polarizovatelnosti a®*(q,w) elektronov a iénov. Dielektricka
konstanta potom bude dané vztahom

e(q,w) =14 a(q,w) + o' (g, w).

Elektronova polarizovatelnost v dlhovinnej limite ¢ < kp a fiw < ep sme pocitali v 11.12, kde sme

ukazali, ze
2

“p

TR —wwr i)

a(q,w)

. , . , s e L 2
kde w, je plazmova frekvencia elektronov s koncentraciou n a hmotnostou m, pricom wg = gfeo,

vs = vp/V/3 je rychlost zvuku v (hypotetickom) nenabitom elektrénovom plyne a v = 1/7, kde 7 je
relaxaény Cas elektronov. Elektronovi polarizovatelnost a(¢,w) moZno presnejsie pocitat pomocou
mikroskopickej teodrie, pozri IV.n.

Pre i6nova polarizovatelnost o¢akavame analogickt formulu, ale s i6novymi parametrami. Ak pred-
pokladédme, Ze i6ny nest naboj Ze a majua hmotnost M, potom idénova plazmova frekvencia bude

2 . .. . cs o h . . ., ,
QZQ) = ”A?Eeo . Kedze w, > ,, a posteriori mozno overit, ze pre relevantné frekvencie mozno iénovi
susceptibilitu aproximovat jej vysokofrekvenénou limitou, a'(g,w) = —Qg Jw?.

Kolektivne mddy
Zviazany systém elektronov a fonénov moze vykonédvat spontanne pozdlzne oscilacie pri frekvencii w,
ktora riesi rovnicu €(q,w) = 0, pozri 1.21. V dlhovlnnej limite ¢ — 0 existuju dve rieSenia tejto rovnice.
Prvé rieSenie je vysokofrekvenéné, w > vsq,v. V tejto limite mame af(q,w) =~ —wg /w? a riesenim je
w R wp, t.j. obycajny plazmoén. Pomer modulacii ionovej a elektrénovej hustoty v plazmoéne je
. A )
04 a'(q,w
% = e(q ) ~ 7127 < 1’
0 of(qw) Wi
teda plazmové kmity stt dominantne kmitmi elektronov (i6ny nestihaji kmitat).
Druhé rieenie sa realizuje v nizkofrekvenénej limite w < vsq, kedy a®(q, w) ~ k2 /q?, kde ks = wy/vs

je prevratena hodnota tieniacej dlzky. Toto rieSenie ma tvar wq = Qpq// ¢ + k2, ktory sa v dlhovlnnej
limite redukuje na w, = vq. Ide teda o pozdlznu zvukova vlnu s rychlostou

v Zm
vp  V 3M°

Tento vysledok sa nazyva Bohmova-Staverova formula a je v dobrej kvalitativnej zhode s experimentom.
Vsimnime si, ze v < vg, teda fonény st pomalé v porovnani s elektronmi. Pomer modulacii iénovej a
elektréonovej hustoty vo zvukovej vine je

Oy _ a'(g,w)
0 af(q,w)

%

_1,

4TPouzivame pritom nasledovni konvenciu. Symbolmi p oznaujeme hustoty castic, kym symboly o = gp oznaluju
ndbojové hustoty generované Casticami s nabojom gq.
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teda celkova modulécia nabojovej hustoty je mala, ga + 04 ~ 0. Inymi slovami, v tomto méde sa hybu
celé (neutralne) atomy. To je zéaroveit dovodom, preco frekvencia zvukovych vin méze byt mala.

Obr. 12: VTavo: efektivna interakcia Veg(q,w) ako funkcia w pri fixovanej hodnote . Vpravo: pri rozptyle elektrénov z
okolia Fermiho plochy do okolia Fermiho plochy je energia hw prenesena v zrazke malé, ale prenesena hybnost ig moZze
byt velka.

Efektivny hamiltonian
Pre frekvencie w porovnatelné s fonénovymi frekvenciami, t.j. pre w < vsq, mé efektivna interakcia
medzi dvomi nabojovymi hustotami v tvare rovinnych vin tvar

Ve e? 1 e? w?
‘/eff(qa W) = 4 = 2 2 = 2 2 1 + 2 4 2
e(q,w)  e0q*q + Zé _ % eo(q? + k2) w? — wyg

Posledné rovnica ukazuje, Ze efektivnu interakciu moZno reprezentovat ako sucet dvoch prispevkov:
tienenej Coulombovskej interakcie m a efektivnej elektromn-elektronovej interakcie sposobenej
B

. . , . w, . . , . P .
interakciou s fonénmi )quz. Pri fixovanej hodnote vlnového vektora ¢ je celkova interakcia
q

62
co(q?+k3
pritazliva pri w < wy a odpudiva pri w > wy, pozri obrazok 12.

Po uvazeni tienenia preto mozno efektivny hamiltonian pre systém elektronov zapisat v tvare

_ f 1
Het = ; €Kiy Cho + 535 Zq: Vet (4, W) pgr g
a

kde prvy ¢len predstavuje grandkanonicku kinetickid energiu, t.j. kinetickd energiu znizend o chemicky

potencial. Teda na Fermiho ploche plati rovnost ex = 0.*® Ak teraz operatory hustoty elektrénov
zapiSeme vo formalizme druhého kvantovania (pozri 11.13), dostaneme

1
Hest = Z Ekcifwckg + v Z Z Vert (q, CU)CL+qo_Cka—CI)_qO_,CpO-I.
ko

q kopo’

Ked teraz uvazime, Ze operator CL +qoCko ma pre neinteragujice elektrony v Heisenbergovom obraze
casovy vyvoj eHEk+a—ew)t/h (pozri cviCenia), frekvenciu w vo vyraze pre Heg identifikujeme ako hw =
€k — €k+q- Na druhej strane vSak tiez plati ch_ qo'Cpo’ X ¢iep—a—ep)t/h g by indikovalo volbu Aw’ =
€p —Ep—q- Ale ak budeme predpokladat zachovanie energie v zrazke, potom plati exq—ex = —(€p—q—
ep) = Ae. Ak dalej uvazime, ze V(q,w) = V(q, —w), potom obidve volby st ekvivalentné a efektivny
hamiltonian pre systém elektrénov mozno prepisat do tvaru

1
Het = Z EkCTknga + ﬁ Z Z ‘/éff(q7 Ag)CTk+qacL—qU’CpglckU’
ko q kopo’

kde sme naviac pouZili tzv. norméalne usporiadanie, t.j. kreaéné operatory sme pisali nalavo od ani-
hila¢nych, aby sme vyludili nefyzikdlnu interakciu elektrénu samého so sebou, pozri napr. 11.13. Stoji

48pripominame, Ze Fermiho plocha je definovana pomocou singularity obsadzovacej funkcie elektrénov pri T = 0.
V IV.n ukizeme, ze takito definicia ma zmysel aj pre interagujice systémy.
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za zmienku, Ze Heg je efektivnym hamiltonidnom v zmysle kapitoly 1, pretoZe po odstraneni fonénov
z teodrie sa interakcia medzi elektronmi zmenila. Striktne vzaté, disperzny zékon ey by mal zéroven
zohladnovat zmenu spektra elektronov popisant v prednaske I11.16. V dalsom vyklade budeme pred-
pokladat, Ze tato zmena je uz vo vyraze pre £ zahrnuta.

Modelovy hamiltonian BCS

Z predchadzajuceho vykladu vyplyva, Ze (ak je energia Ae prenesené v zrazke dostato¢ne mald) ampli-
tuda rozptylu dvoch elektronov Veg(q, Ae) popisuje pritazliva silu. V dalsom vyklade budeme skimat
vplyv malej pritazlivej interakcie na systém elektronov. Pri rieSeni tejto tlohy nebudeme skiimat realis-
ticky hamiltonian Heg,*® ale tlohu si zjednodusime zavedenim nasledovného modelového hamiltonianu
BCS, ktory zhruba reprodukuje hlavné ¢rty hamiltonianu Heg:

/ / /
1
Hpes = E EkCLUCka -y E E ka'CLTCT_uC*kak'T' (74)
ko k K

Hamiltonian (74) si vyzaduje dlhsie zdovodnenie:

Po prvé, ¢iarky nad sumami cez k a k/ znamenajt, Ze sa obmedzujeme iba na hybnosti vnutri
energetickych Supiek |ex| < hwp a |ew| < hwo v tesnej blizkosti Fermiho plochy, pozri obrazok 13. Za
energetickn §kalu hwg pritom berieme typickt energiu fonénov (t.j. energiu radu Debyeovej energie), ¢ize
hwy < ep. Hamiltonian (74) teda popisuje iba pritazlivi ¢ast Heg (pozri obrazok 12) a odpudiva ¢ast
je uplne ignorovana. Stavy s hybnostami mimo spominanej energetickej Supky okolo Fermiho plochy
mozno (v principe) eliminovat pomocou tzv. renormaliza¢nej procedury, o ktorej sa letmo zmienime v
nasledujticej prednaske. V8imnime si tieZ, Ze v interakénej ¢asti hamiltonianu (74) sme pouzili opaéni
znamienkovu konvenciu, nez je obvyklé: pritazlivé interakcie zodpovedaju Vi > 0.

Obr. 13: Vravo: energeticka supka v k-priestore, pre ktort konstruujeme modelovy hamiltonian (74). Hrubka supky
je nadhodnotend, aby bola viditelna. Realistickejsie by bolo prirovnat Fermiho gulu k Zemeguli a Supku k atmosfére.
Vpravo: rozptylové procesy ponechané v hamiltoniane (74). Tieto procesy sa nazyvaju rozptylmi v Cooperovom kanali
alebo jednoducho Cooperovymi rozptylmi.

Druhym podstatnym zjednodusenim je, Ze interakéné ¢ast hamiltonianu (74) popisuje iba rozptyly
(Cooperovych) parov elektronov s celkovou hybnostou k + p = 0. VSeobecny interakény ¢len v Heg
vSak obsahuje rozptyly parov so vSetkymi moZnymi celkovymi hybnostami k + p. Obmedzenie na
rozptyl parov s nulovou celkovou hybnostou mozno zddévodnit nasledovne. KedZe supravodivost je
nizkoteplotnou nestabilitou kovov, supravodivy stav moze zasadne ovplyvnit len rozlozenie elektrénov
v tesnej blizkosti Fermiho plochy. Ak v8ak Ziadame, aby elektrony v stavoch k,p lezali v blizkosti
Fermiho plochy, potom po¢et procesov, pri ktorych aj rozptylené elektrony k + q, p — q (pozri vyraz
pre Heg) lezia v blizkosti Fermiho plochy, bude maximalny v pripade p = —k. Preto pary elektronov
s nulovou hybnostou mozu najlepsSie vyuzit existenciu pritazlivej interakcie a staci sa obmedzit iba na
ne. D4 sa tiez argumentovat, Ze tedria s nulovou hybnostou Cooperovych parov popisuje supravodic¢ so
stojacim kondenzatom, t.j. termodynamicky rovnovazny stav.

Nakoniec pripojme eSte technicki poznamku. Aby bol hamiltonian (74) hermitovsky, musime
ziadat, aby amplitida rozptylu Cooperovho paru (k/ 1,—k’ |) do paru (k 1, —k |) mala symetriu
Vi = Vi Naviac budeme Zziadat Vi = Vk_w = V_i, aby sme interakény c¢len mohli zapisat

19K tejto tlohe sa vratime v IV.n.
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pomocou kreaénych a anihilaénych operatorov pre singletné pary, t.j. pary s celkovym spinom S = 0:
/ /
1 it tot
y Z Z Viawegel g coaerowy = 1 > Vi (CkTC—ki B Ckﬁ—k?) (c-wsewr = coioerey) -
k k k Kk
Bezné supravodice, véitane vysokoteplotnych, maji totiz singletné Cooperove pary. Teoéria sa vSak dé
rozsirit aj na popis supravodicov s tripletnymi parmi.

Cvicenia

1. Ukazte, zZe v modeli neinteragujicich elektrénov pre operator X = cL +qoCko Vv Heisenbergovom obraze plati X (t) =

e'Erta=et/h X (), Navod: vyuzite, Ze aactk = %eth/h[H, aJe R,

2. Pri vypocte efektivnej interakcie Veg sme predpokladali, Ze jeden naboj generuje tienené pole a druhy (uZz netieneny)
ﬁ Zdovodnite,

pre¢o by bol takyto vypocet efektivej interakcie chybny. Navod: Skimajte doskovy kondenzétor s dielektrikom s rela-

naboj s tymto polom interaguje. Keby obidva naboje boli tienené, muselo by platit Veg(q,w) =

tivnou permitivitou er a s plosnym nabojom 4o na kovovych doskach. Porovnajte tri vypocty energie kondenzatora:
i) pomocou makroskopickej elektrostatiky (polia E a D), ii) pomocou mikroskopickej elektrostatiky - iba pole E - pre
nabojové hustoty na doskach o/er a —o (tento vypocet zahfiia tienenie raz), iii) pomocou mikroskopickej elektrostatiky
pre nabojové hustoty na doskach +o/er (tienenie zahrnuté dvakrat).

3. Vysledok pre Veg(q,w) porovnajte s alternativnym vyrazom z I1.16.

4. Ukazte, ze maticovy element Vi v hamiltoniane (74) je zhruba nezéavisly od izotopickej hmotnosti M.

16 Cooperova nestabilita a renormaliza¢na grupa

V tejto prednaske najprv ukadZeme, Ze normalny kov s pritazlivymi interakciami medzi elektréonmi je
nestabilny voéi tvorbe viazanych stavov parov elektréonov. Ten isty vysledok odvodime aj alternativ-
nym postupom: metédou renormaliza¢nej grupy.

Cooperova nestabilita
V ramci modelového hamiltonianu BCS (74) budeme najprv skamat nasledovni zjednodusena talohu.
Budeme studovat plne zaplnené neinteragujice Fermi more (t.j. v8etky stavy s k& < kp budd plne
obsadené) a budeme sa pytat, ¢o sa stane dvom dodato¢nym elektronom pridanym k takémuto systému.
Budeme pritom predpokladat, Ze Fermiho more je inertné a jeho jedinou tlohou je zabranit rozptylu
sktmanych elektrénov do stavov s k < kp.

Cooperov par opiseme nasledovnou vinovou funkciou s nulovou celkovou hybnostou:

%) Y Z wpcpchN’F‘S 21; Z Up ( pTc pl chichpT> |1£S),
p>kp p>kp
kde |F'S) je plne obsadené Fermiho more. V druhej rovnici sme predpokladali, ze ¢p = ¢_p. Této
rovnica explicitne ukazuje, ze Cooperov par je v singletnom stave s celkovym spinom S = 0.
Nagou tlohou bude hladat riesenie Schrédingerovej rovnice Hpcs|) = E|v), pricom predpokla-
dame, ze hamiltonian Hpcg neposobi na |F'S). Schrodingerova rovnica tak nadobudne tvar
/ 1 / /
> (2ep — E)ipel el |FS) — ¥ D7 Viptpclacl  |FS) =0

p>kp p>kp k>kp
Ak teraz na lavej strane vymenime sumacné indexy k a p v druhom ¢lene a vezmeme skalarny sicin
s vektorom (F'S|c_p|cpt, dostaneme sadu rovnic pre koeficienty 1p:

(2ep — E)pp = % Z Vok¥k.

k>kp

Aby sme d'alej zjednodusili diskusiu, budeme predpokladat, ze Vpx = V, ¢o sa ukazuje ako celkom dobra
aproximacia pre jednoduché supravodice. V takomto pripade ni¢ nezavisi od uhlovych premennych a ak
sa obmedzime na hl'adanie rieseni s energiou E = —|E| < 0, ktoré popisuji viazané stavy elektréonov,”®

500krem nich samozrejme existuje kontinuum rozptylovych stavov pri energiach E > 0.
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sumy moZeme zamenit za integraly: % Z;€>kp = N(0) fohwo dey.. Tak dostaneme integralnu rovnicu

A o
=" d
wp 2€p + ‘E‘ A 5k¢k7

kde sme zaviedli bezrozmernii vizobna konstantu A = N(0)V. Integrovanim foh “0de, oboch stran
dostaneme rovnicu pre vlastnd energiu E:

1 (w0 ge L o +E|/2
X\ _/0 21 |E] 2 |E|)2
V limite slabej vizby A < 1, ktora je relevantna pre vacsinu klasickych supravodicov, pre energiu E
viazaného stavu napokon dostaneme vysledok E = —2hwge™2/*. Kedze energia Cooperovho péru je
nizsia nez energia paru neinteragujtcich elektronov na Fermiho ploche (ktoré je rovna 0), zrejme bude
energeticky vyhodné vyberat elektrony z Fermiho mora a vyrabat z nich Cooperove pary zo stavov
nad Fermiho plochou. Fermiho more teda bude nestabilné voéi tvorbe parov.

Stoji tiez za zmienku, Ze nestabilita vznika pri lubovolne slabej pritazlivej interakcii A > 0 a Ze
vazobnéa energia je neanalytickou funkciou A. To naznacuje, Ze parovaci prechod nebude mozné popisat
kone¢nym rddom poruchovej tedrie a supravodivy stav treba popisat neporuchovou teériou.

Cooperova nestabilita: renormaliza¢na grupa

V tomto odstavci ukdzeme alternativny argument ukazujici nestabilitu voc¢i tvorbe parov v systémoch
s pritazlivymi interakciami. Ako bonus ukazeme, Ze (za istych okolnosti) je supravodivost mozna do-
konca aj v systémoch s ¢isto odpudivymi interakciami. N4S alternativny argument bude vyuZivat tzv.
met6édu renormalizacnej grupy. Ide o velmi uZitoént teoreticktt metédu s mnohymi aplikdciami napr. v
kvantovej teorii pola a $tatistickej fyzike. V tomto texte stru¢ne vylozime zakladné idey tejto metddy,
ako sa pouziva vo fyzike kondenzovanych latok.

Renormalizacnd grupa

Hlavnym problémom pri teoretickom popise makroskopickych systémov je obrovsky pocet stupiiov
volnosti. Obvykle nas vSak zaujimaju iba stupne volnosti s velkymi vinovymi dlzkami a s malymi
frekvenciami, pretoZe tieto stupne volnosti st zodpovedné za makroskopické vlastnosti.’! Renormali-
zafné grupa je metoda, ktora umoziuje postupne znizovat pocet stupiiov volnosti studovaného modelu
sériou infinitezimalnych krokov, pricom v kazdom kroku sa eliminuji najnepodstatnejie stupne vol-
nosti. Ziadame viak pritom, aby spravanie ponechanych stuphov volnosti po renormalizacnom kroku
bolo také isté, ako pred tymto krokom. Tuto podmienku ¢asto mozno splnit nasledovne. Nech model
pred renormalizaénym krokom je popisany sadou (vektorom) parametrov g = (91,92, ...,9N)- Casto sa
stane, Ze spravanie ponechanych stupiiov volnosti po renormaliza¢nom kroku je také isté ako pred nim,
ak po renormaliza¢nom kroku zmenime parametre modelu na g’. Teérie, ktoré maju ttuto vlastnost,
nazyvame renormalizovatelné. Ide o velmi netrividlnu vlastnost: mohlo by sa stat, Ze proces eliminacie
stupfiov volnosti by sme museli kompenzovat novymi, ¢oraz komplikovanej$imi ¢lenmi v hamiltoniane.
V takomto pripade by metdéda renormaliza¢nej grupy nebola uzito¢na.

Obvykle mozno jednotlivé renormalizacné kroky charakterizovat jedinym spojitym parametrom. V
priklade, ktory o chvilu preskiimame, to bude excitacna energia jednocasticovych stavov A: po danom
kroku budi stavy s energiou vicSou nez A eliminované. Pred zaciatkom renormaliza¢nej procediry
ma A velkost najvicsej pripustnej excitacnej energie. V procese renormalizacie budeme hodnotu A
postupne zniZovat.

Preco hovorime o grupe? Pri zmene 8kaly Ay — Ao a pri sicasnej zamene parametrov g; — g2
sme nezmenili spravanie ponechanych stupiiov volnosti, teda transformacia {Aj,g1} — {A2, g2} je
operéaciou symetrie. Podobne transformacia {A2,g2} — {As, g3} je (pre ponechané stupne volnosti)
operaciou symetrie. Ak v mnoZine operacii symetrie budeme nasobenie definovat pomocou skladania

transformécii, lahko ukdZeme, Ze mnoZina operacii symetrie tvori “grupu”.®?

5'Peknn diskusiu &itatel najde napriklad v knihe Callena.
52V skuto¢nosti ide iba o semigrupu, pretoze k Ziadnemu prvku (okrem identity) neexistuje inverzny prvok: stupne
volnosti vieme eliminovat, ale neexistuje univerzalna procedura na ich pridavanie.
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Aktualnu hodnotu 8kily A je vyhodné parametrizovat bezrozmernym parametrom t: A(t) = Age™".
Pri takejte vol'be zodpoveda ¢ = 0 povodnému modelu so 8kalou Ag. Parameter ¢ popisuje zmenu $kaly.
Vsimnime si, Ze postupné zmeny $kaly o t; a to moZno popisat jedinou zmenou o t1 + to, pretoZe
e Motz — o—(t1t+t2)

Ak predpokladame, Ze parametre modelu g st spojitymi funkciami parametra ¢, potom je prirodzené
ocakavat, Ze vektor g(t) bude riesenim diferencialnej rovnice

g _

& — b(g) (75)

s pociatotnou podmienkou g(0) = gp, kde parametre gg charakterizuju povodny, nerenormalizovany
hamiltonian. Vektorova funkcia §(g), tzv. beta funkcia, je kli¢ovym objektom tedrie. VSimnime si,
7e B(g) je iba funkciou aktualnych parametrov g. Ak pozname beta funkciu, rovnicu (75) mozeme
integrovat (prinajhorSom numericky). Zaujima nas pritom spravanie g(t) v limite t — oo, t.j. spravanie
dlhovinnych, nizkoenergetickych stupiiov volnosti. Ak v tejto limite niektora zo zloZiek g; — 0, potom
prislusny proces bude irelevatny v dlhovinnej limite. Ak naopak ¢g; — oo, potom v dlhovlnnej limite
bude zodpovedajici proces natolko dodlezity, Ze ho nebude mozné popisat poruchovou teériou a bude
potrebné ho zahrniut do neporuseného hamiltonidnu. Tretia moznost g; —const # 0 sa nazyva margi-
nalnou, pretoZe sa realizuje medzi popisanymi dvomi jednoduch§imi limitami.

Cooperov problém a renormalizacnd grupa
Teraz ukazeme, ako funguje metdda renormalizaénej grupy v jednoduchom kontexte Cooperovho prob-
lému. Budeme teda sktimat par elektréonov p 1, —p | pridanych k zaplnenému Fermiho moru, pri¢om
hamiltonian (74) budeme chapat ako sacet Ho + Hip. Hilbertov priestor pozostava zo vSetkych péarov
pT,—pl s p > pr, ktorych energia je mensia nez 2Ag = 2fwwy (v jednotkach, v ktorych elektron na Fer-
miho ploche mé energiu =0). Pre jednoduchost budeme predpokladat, ze vSetky rozptylové procesy st
popisané jedinym parametrom: Vi x = Vp. Renormalizacia sa bude realizovat postupnym znizovanim
energetickej skaly A z pociato¢nej hodnoty Ag, t.j. v danom kroku budu eliminované Cooperove pary s
energiou via¢Sou nez 2A. Budeme pritom Zziadat, aby sa nemenila amplitada % pre rozptyl Cooperovho
paru z nizkoenergetického stavu p 1, —p | do iného nizkoenergetického stavu k 1, —k |, pocitand do
druhého radu poruchovej teérie podla Hine. Uvidime, Ze I' sa v procese renormalizicie nemeni, iba ak
pri zmene 8kaly A zmenime aj parameter V. Takato procedura sa nazyva poruchovou renormalizaciou.
Predpokladajme, Ze renormaliza¢ny proces pokrocil do bodu, kedy energetickd skidla ma hodnotu
A a interakéna energia méa hodnotu V. Podla kapitoly 1 je vSeobecny vztah pre % do druhého radu
poruchovej tedrie dany vztahom

r 1

5 = (kT, —k| [Him|p T, —pd) + k1, —k| \Hintm

V Hint’p/[\v _p\L>

Ak vyuzijeme, Ze pre tplny systém stavov plati ) o |[KT, —K|)(K1,-K || =1, dostaneme odtialto

r _ . <kT)_k\HHlnt|KT)_K\L><KT7 _K\L‘Hint|pTa _p\l/>
y = (Kt -kl HwlpT,—pl) + ZKJ T e
Vi  (Va)? 1 1 2/A ds
-= —= S - N S
V+<V) ZQsp—25K+iO V[ Va+ NOVy 0 2ep—2e+10

K

Preto do druhého radu poruchovej teorie pre amplitadu rozptylu I'(A) na skéle A plati

T'(A) = Vi + N(0)V2 /A o

- AJo 2ep—2e 40
Podl'a predpokladu sa vSak veli¢ina I' nemé pri zmene A zmenit, t.j. ma platit % = 0. Explicitnym
derivovanim formuly pre I'(A) tak dostaneme podmienku

av 1 N(O)WVE N0V

- = A » X — ~ ,
dA 1—2N(0)Va [, m 2A —2¢g 2A
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kde v pribliZznej rovnosti sme sa obmedzili iba na ¢leny do radu VA2 a predpokladali sme, Ze ep < A,
kedZe skiimame rozptyl parov v tesnej blizkosti Fermiho plochy.

Ak teraz pouZijeme parametriziciu energetickej skaly A = Age™! a zavedieme bezrozmernt vizobnii
funkciu A\(¢) = N(0)V (), potom rovnicu pre funkciu A = A(t) modzeme zapisat v tvare konzistentnom
so vSeobecnou rovnicou (75):

N

dat -~ 27

teda beta funkcia pre Cooperov problém je B(\) = %)\2.

RieSenie diferencialnej rovnice pre A(t) splhajtice pociatocnt podmienku A\(t = 0) = Ao mé tvar

Ao

At) = —F—.
() 1— 3ot

(76)

Zaujima néas spravanie funkcie A(¢) pri rasticom t. Za¢nime pripadom, kedy interakcie st odpudivé, t.j.
Ao < 0. V tomto pripade v limite ¢ — oo dostaneme A — 0, teda odpudivé interakcie v Cooperovom
kanali st v nizkoenergetickej limite irelevantné.

V pripade pritazlivych sil A\g > 0 vSak cooperovské interakcie so znizovanim energetickej Skaly A
rasti a diverguju pri t* = 2/\g. Energeticka 3kala zodpovedajica t* je A* = Age ™" = hwge™2/*. Tato
skala je rddovo totozné s vizbovou energiou Cooperovych parov.

Zahrnutie coulombovského odpudzovania

Napokon ukazeme jeden netrividlny dosledok rovnice (76). Na§ modelovy vypocet efektivnej elektron-
elektréonovej interakcie Vg ukazuje, Ze tato pozostédva z dvoch prispevkov: z odpudivej tienenej cou-
lombovskej interakcie V, < 0 a z pritazlivej interakcie Ve, > 0 v dosledku interakcie s fonénmi. Pripo-
miname, Ze v tejto predniske mame opacni znamienkovii konvenciu ako obvykle: pritazlivé interakcie
su kladné. Je to ekonomické, lebo hovoriac o supravodivosti, musime Studovat pritazlivé interakcie.

Pri nulovej prenesenej energii iw = 0 v modeli Zelé dostavame V. + V), = 0, teda nastava delikdtna
rovnovaha oboch interakcii. KedZe model Zelé je velmi hrubym modelom tuhej latky, je teda na mieste
otazka, ¢i supravodivost prezije aj v pripade, kedy V.. 4+ V,, < 0.

Bogolubov si uvedomil, Ze interakcia V, je pritomna medzi vietkymi elektréonmi, t.j. jej 8kdla A, je
dané sirkou vodivostného péasu, v beznych kovoch obvykle niekolko eV. Na druhej strane, interakcia
Vep je pritazliva len pod energetickou skalou Agp ~ Fuwg.>3

Ak teda budeme studovat readlny kov, mozeme najprv metdédou renormalizacnej grupy eliminovat
stupne volnosti medzi A, a Acp. Po zavedeni bezrozmernej elektron-fonénovej viazobnej funkcie A =
N(0)Vgp a bezrozmernej elektron-elektronovej vézobnej funkcie po = N(0)V, pre vyslednt bezrozmerna
efektivnu vézobnu funkciu Acg na skale A, dostaneme Aeg = A — p*, kde

W= H
l—i-%uln(/{\e;)

Teda coulombovské odpudzovanie je na Skale A, renormalizované na hodnotu p*, pricom p* < pu.
Kritériom supravodivosti teda nie je A > pu, ale iba slabsia podmienka A > p*. Toto kritérium moze
byt splnené aj v systémoch, v ktorych interakcie na povodnej skale st zakazdym odpudivé.

Separécia energetickych 8kal hwg < A, je teda na jednej strane dobra pre supravodivost, kedze
vedie k potla¢eniu coulombovského odpudzovania, na druhej strane primala skala hwg znizuje energiu
viazaného stavu Cooperovho paru.

Cvicenia

1. Ako zavisi vézobna energia Cooperovho paru E od izotopickej hmotnosti? Ak predpokladame, ze E je radu T,
vysvetluje Cooperova nestabilita experimentalne pozorovany izotopicky jav? Navod: pouzite Bohmovu-Staverovu formulu
a vysledok cvi¢enia 14/4.

53Nad touto skalou je elektron-fonon-elektronova interakcia odpudivé, preto ju mozno traktovat podobne, ako coulom-
bovské odpudzovanie.



66 17 TEORIA BCS

2
. pocCitajte rozmer ooperovho paru = O e e relativna vzdialenost eleKtronov tvoriacich par. avod:
2. Vypoditajt C ho paru &2 %Lflw‘;“ kde R je relati dialenost elektrénov tvoriacich par. Navod

najprv ukézte, ze P(R) =3 PpeP R kde ihp o m Pouzite tiez vztah

[ areE ® -3 > [ R (T ) v (V) = > Vi Vot [ a'reerom =V Vel

kde v druhom kroku sme integrovali per partes podla p a k.

3. Vyrieste Cooperov problém pre dvojicu dier vnutri inertného Fermiho mora.

4. Da sa ukézat, ze v mnohocasticovom formalizme ma beta funkcia tvar B(A) = A%. V tomto jazyku mozno divergenciu
A interpretovat ako supravodivi nestabilitu. a) Najdite skdlu A*, pri ktorej A diverguje. b) Ako sa zmeni vyraz pre p*?

¢)* Presktimajte zavislost A* od wo v modeli, v ktorom efektivna interakcia na skale fiwp ma hodnotu A — p*.

17 Teoéria BCS

V tejto prednéske najprv identifikujeme parameter usporiadania pre supravodivost a symetriu, ktora je
v supravodiéi spontanne narusena. Potom prezentujeme teoriu Bardeena, Coopera a Schrieffera (BCS),
t.j. diagonalizaciu hamiltonianu (74) metodou stredného pola.

Parameter usporiadania pre supravodic

Cooperov par s nulovou celkovou hybnostou je kreovany operatorom af = Dk wkckTC K- Ocakavame,
ze supravodi¢ je kondenzatom takychto Cooperovych parov. Preto vlnova funkcia zékladného stavu
supravodica (t.j. pri teplote 7' = 0) bude imerna koherentnému stavu:

+
e* |0) = exp [ZZwRCLTCikil 0) = HeXp [ZwkCLTCT_kJ 10),
k k

kde v druhej rovnosti sme vyuzili, Ze operatory CLTCT—k | S roznymi hybnostami k navzajom komutuja.>*
Ak dalej vyuZzijeme, ze vdaka Pauliho principu plati (CLTCT_k ¢)2 = 0, vlnovt funkciu zédkladného stavu
mozeme zapisat v tvare [], exp [ZwkCLTCT—kJ 10) = [k [1 + z?/JkCLTC]:kJ |0). Vlnova funkcia, ktora

sme dostali, zatial nie je normovana. BCS tito vinovi funkciu zapisali v jednoducho normalizovatelnom
tvare

[Wo) = [ [ + vieferely)10)- (77)
k

Budeme pritom Zziadat, aby pre vSetky k platila nasledovna podmienka:
luke|? + ok ? = 1. (78)

Pri tejto vol'be plati (Wo|¥o) = [T, (0] (ui + vic—ipcier) (uf, + viefre! 1 )10) = Tl (Juscl® + [oxf?) =1
teda vlnova funkcia |¥() je normované. Stredny pocet elektronov v stave |¥g) je definovany vztahom

(N) = Zk<\110|(cLTckT + cikic_k¢)|\lfo>7 z ktorého vyplyva

(N) = Z<0|(Uk + Ukc_k¢CkT)(CLTCkT + CT_MC—RU(UI*( + ”liCITcTCT—k¢)|O> =2 Z ||
k k

V makroskopickom systéme je teda veli¢ina (N) timerna objemu. Viimnime si, 7e |vi|? je pravdepodob-
nost obsadenia dvojice stavov k1, —k |. KedZe supravodivost je nizkoteplotnou nestabilitou Fermiho
plochy, oakavame, Ze |vk|? sa lii od rozdelenia elektréonov iba v tesnej blizkosti Fermiho plochy. Inymi
slovami, predpokladame, Ze |vg| — 1 hlboko vnutri Fermiho mora a |vx| — 0 pre stavy vysoko nad
Fermiho plochou.

54Pre komutujtce operatory A a B totiz plati eAt? = e?e®. Naozaj, kedze vtedy (4 + B)" Z] —0 Fin J),A" ipi,

A+B oo 1 gk goo A B
potom e 5= n= On'(A+B Zn OEJ 0 j!(n— J)‘An ‘B = Zk:o EA Jj= OJI'BJ =ee
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Obr. 14: Koeficienty |vk|* a |ux|* ako funkcie vlnového vektora. Rozdelenie elektronov v supravodivom stave sa od
rozdelenia v normélnom stave podla teorie BCS 1isi len pre elektrony s excitaénou energiou e ~ A, t.j. v Supke okolo

Fermiho plochy s hrubkou 6k ~ %, kde £ ~ h”AF je tzv. (Pippardova) koherenéna dizka.

KedZe vinova funkcia |¥y) nie je vlastnym stavom operatora poétu elektrénov, vypocitajme aj
strednti kvadratick odchylku poétu elektronov /(N — (N))2) = /(N2) — (N)2. Dostaneme

(N?) = > lefwenr + el e (ehiept + el e p)) + D (el + ¢y eci)?)
k#p k
= 4> JuPloplr + 4 o = 4> oPlop P+ 4 (ol = ekl -
k#p k kp k

Preto v makroskopickych systémoch je stredné kvadratickd odchylka poctu elektrénov zanedbatelna,
(N —(N))2) = 2¢/> 1 [okc2[uk|? oc V'V. Tento vysledok je samozrejme plne analogicky vysledkom
pre koherentné stavy, pozri kapitolu 11.
Lahko nahliadneme, Ze v stave popisanom vlnovou funkciou BCS plati

bk = <\I/0’C,k¢CkH\I/0> = ukvii. (79)

Pre vlnové vektory v blizkosti Fermiho plochy o¢akavame, Ze vy aj uy st nenulové (pozri obr. 14), a
teda bk # 0. Na druhej strane, v norméalnom (nesupravodivom) stave oCakavame, ze by = 0. Veli¢ina
bk je teda parametrom usporiadania pre supravodi¢: supravodivy kov je v stave s nediagonélnym
d'alekodosahovym usporiadanim (ODLRO), podobne ako atémy hélia v supratekutom stave.

Zostava nam vyjadrit sa k otazke, aka symetriu naraga supravodivy stav charakterizovany nenulo-
vym parametrom usporiadania bx. Podobne ako pri diskusii o supratekutosti, aj modelovy hamiltonian
BCS (74) je invariantny voci globélnej (t.j. pre vSetky stavy k rovnakej) kalibracnej transformécii

c;f( — e_“PcL, cx — e"%ex.

Teda pohybové rovnice nezavisia od volby globalnej fazy. Na druhej strane sa vsak vlnova funkcia (77)
pri takejto transformacii zmeni na fyzikalne intt vinovia funkciu (nejde pritom iba o zmenu celkovej fazy
vlnovej funkcie). Teda supravodivy stav popisany vinovou funkciou (77) si spomedzi vSetkych pripust-
nych faz jednu vybral a “zmrzol” v nej, podobne ako spiny magnetu pod kritickou teplotou zmrzna v
jednom z pripustnych smerov.

Teob6ria BCS

Supravodi¢ opiSeme grandkanonickym modelovym BCS hamiltonidnom (74). Pripominame, Ze napr.
v modeli Zelé plati e = % — i, t.j. v energii ¢ je zahrnuty aj chemicky potenciil a na Fermiho
ploche plati ex = 0. Nasim ciefom bude nahradit tento komplikovany mnohocasticovy hamiltonién
jednoduchs8im hamiltonidanom.

Pre operator c_g| cxr moézeme napisat identitu c_y cxy = bk + (c_x |kt — bx). Zmyslom identity je,
ze akikol'vek veli¢inu moZeme zapisat ako stcet jej strednej hodnoty a fluktuacie okolo strednej hod-
noty. Dosadme teraz tuto identitu (a tiez identitu k nej hermitovsky zdruzent) do hamiltonianu (74).
Predpokladajme dalej, ze fluktuécie operatorov c_g cky okolo ich strednych hodnot st malé, a preto
zanedbajme ¢leny typu (fluktuédcia)?. PribliZenie, pri ktorom zanedbavame fluktuacné efekty, sa nazyva

pribliZenim stredného pola.’® Takto dostaneme tzv. redukovany BCS hamiltonian

/ / /
1 * *
Hred = Z €k <CLTCkT +1-— Ck¢CTk¢) - 9 Z Z ka/ <CI(TCT—k¢bk/ + bkc_klick/T — bkbk’) s
k k Kk

55Na rozdiel od magnetickych systémov, kde je toto pribliZzenie velmi nepresné, v pripade supravodivosti je priblizenie
stredného pol'a obvykle velmi dobrym pribliZenim, pozri cvicenia.
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kde sme kinetickd energiu prepisali do tvaru, ktory bude neskér vyhodny. Definujme teraz doéleziti
energeticka §kalu (tzv. funkciu energetickej medzery)

1 /
Ay = v ; Vi by (80)

KedZe podla predpokladu Vi = V_yy, funkcia energetickej medzery je parna, Ay = A_g. Pomocou
funkcie Ax mozno redukovany BCS hamiltonidn zapisat v kompaktnom tvare

!/ /
ex  —Ag Cit *

Hred = (cT c_ )( > + b Ak + €x). 81

red Zk: kKt C—kl LA e £ Zk:( KAk + £k) (81)

Hamiltonian (81) je hfadanym zjednodusenym hamiltonidnom. V§imnime si, Ze jeho prvy ¢len je kvad-

raticky v krea¢nych a anihila¢nych operatoroch, kym druhy ¢len je oby¢ajnou konstantou, ktorej hod-

nota bude délezita pri definovani tzv. kondenza¢nej energie. Vdaka tomu moze byt hamiltonian (81)
jednoducho diagonalizovany.

Diagonalizicia hamiltonidnu (81).
Podobne ako v kapitolach 4 a 12, diagonalizaciu zrealizujeme transforméciou od holych elektrénov k
novym kvézic¢asticiam s krea¢nymi operatormi VIZT a 711 %

Yt - ( U —Up ) Ckt
Viki Uk Uk Ciki '
Tato transformécia je kanonickou, t.j. transforméaciou od fermiénovych operatorov k fermiénovym

operatorom (pri¢om obidve sady operatorov splhaja kanonické komutaéné vztahy), ak transformacéné
matica je unitarna, t.j. ak plati (78). Lahko overime, Ze spitna transformacia ma tvar

Ckt _< Uk vﬁ) Yt
CT_kJ, —Vk ul*{ 7ik¢ )

Transformacni maticu vyberieme tak, aby hamiltonian v novych premennych bol diagonalny, t.j.

ul*{ —Uf; €k —Ak Uk Ult . Ek 0
Vk Uk —Aik{ —Ek —Vk uik( - 0 —Ek ’
Vyuzili sme pritom, ze vlastné hodnoty matice (81) si £Fy, kde Ex = /e + |Ag|?. Prva vlastni

hodnotu sme zvolili kladnt a druhu zapornu. Lahko moZno overit, Ze tato volba je nevyhnutna, ak
zékladny stav supravodi¢a ma byt vakuom pre ¢astice 7 (tzv. bogolubény). Vysledny diagonalizovany
hamiltonian mé tvar

/

Hyed > By + Eas, (82)
ko
/

Egs = Z(bl*(Ak + ek — Ek). (83)
k

To znamena, Ze v priblizeni stredného pola moZno supravodi¢ chapat ako plyn volnych fermionov s
disperznym zakonom Fjy. Zakladny stav tohto plynu mé energiu Egs a vinova funkcia zékladného
stavu |¢) musi spliat podmienky Yiet|t)) = i [1)) = 0 pre vietky k. Lahko mozno overit, Ze vlnova
funkcia (77) splha tieto podmienky, pozri cvicenia.

Aby sme tplne ukoncili diagonalizaciu, potrebujeme néjst funkcie uy a vx ako rieSenia rovnic

(]uk|2 — ]vk\z)ek + uk v A + ug vk Ax = F, QUK VKEK + vﬁAk — uIQ{Ai'; =0.
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RieSenim tychto rovnic (s funkciou uy zvolenou ako €isto reélna) je

1 Ek A¥ 1 9
k k
ug =4/= 1+ —= V= ——/=1——=—.
2 < Eyx)’ Akl | 2 Ey
Vsimnime si, Ze ux = u_k a vx = V_x, kedZe ex a Ay st parne funkcie. Naviac, naSa volba déava

hlboko vniitri Fermiho mora |vg|? = 1, kym vysoko nad Fermiho energiou je |ux|?> = 1, v stlade s
poziadavkami kladenymi na vlnovt funkciu |¥g), pozri obr. 14.56

Self-konzistentnd rovnica pre parameter usporiadania
Doteraz sme vyjadrili vietky veli¢iny pomocou funkcie Ay, ktori sme vSak nepoznali. Teraz zostrojime
(tzv. self-konzistentni) rovnicu pre Ag. Zafneme s vypoctom strednej hodnoty

b = eyt = ((—vinly + wmera) (wena + vir ) = mevie [1= () = 617

kde v poslednej rovnici sme vyuzili, Ze vo vSetkych vlastnych stavoch hamiltonianu (83) existuje presne
dany pocet bogolubdnov a preto zmieSané ¢leny neprispievaji. Naviac, kedZze bogolubény tvoria ne-
interagujtci plyn, ich pocet je dany Fermiho-Diracovym rozdelenim:”

1

i _ _
ey M) = frc = exp(B/T) + 1

Ak naviac vyuzijeme explicitny tvar funkcii ux a vy, lahko overime, Ze uxvy = ZATIL Po dosadeni do
vyrazu pre by tak dostaneme vysledok

Ay Ay Ey
= Sk 9f] = 2K tanh [ oX
b = 5p, 1~ 2] = 55 tan <2T>’

ktory mozno chapat ako zovSeobecnenie vyrazu (79) na pripad kone¢nych teplot. Ak tento vysledok
dosadime do defini¢ného vztahu (80), dostaneme napokon

/

1 Ay By
Ak = V%:ka/ k tanh< k > . (84.)

2Fy

Rovnica (84) sa nazyva rovnicou pre energetickii medzeru. Ide o tzv. self-konzistentnd rovnicu, ¢im
sa mysli to, Ze funkciu Ay na pravej strane treba zvolit tak, aby tato volba bola konzistené s lavou
stranou. Rovnica (84) je tstrednou rovnicou BCS teorie, pretoZe na jej zaklade vieme rozhodnit, kedy
sa v danom systéme realizuje supravodivost.

Cvicéenia

1. V pribliZeni stredného pol'a na operator cIL(TcT_kl posobi pole % E;(, Vi’ by namiesto presného vyrazu % Z;{, Vik’ C_x’ | Ci/+-
Akej velkej chyby sa pritom dopustime, ak predpokladame, Ze fluktuacie operatorov c_ys cy/4+ okolo hodnét by, st pre
rozne hodnoty k' navzajom nezévislé?

2. Ukazte, Ze vlnova funkcia (77) je vakuom pre operatory ke -

3. Overte, Ze plati vztah kaickTchTciu] =1- CLTCkT - cikic,ki. MozZno operator cLTcJLM doslovne povazovat za
kreatny operator bozénu? Dalej ukéite, 7e plati [kaickm CLTCkT:| =C_yCkt A [CLTCJLkL, CLTCkT} = —cLTcikl.

4. Pomocou cvicenia 3 ukazte, ze ak za (kdnonicky) hamiltonidn supravodi¢a vezmeme Hyed = Hred + tNe1, kde Hyed je
grandkanonicky hamiltonian (81) a Nei je operator poctu elektronov, potom pre ¢asovy vyvoj operatorov plati

0

zhac,mcm = [e_wiCkr Hred] = 2pc i cir + [QEkc,kickT —Ax(1— CLTCkT — ctkic,u)} ,
0 «
zhacbcm = [CLTCkT, Hred] = AkC_k|Crt — AkCL¢Cik¢~

56Presnejsie by sme mali hovorit iba o Supke medzi er — fiwo a eF + hwo, v ktorej je hamiltonian (74) definovany.
Neskor vsak uvidime, ze A < hwp. Preto privlastok “hlboko” mé dobry zmysel, aj ked sa obmedzime iba na stavy vnitri
tejto Supky.

57Stoji za zmienku, Ze kedze E)x > 0, v supravodivom stave pri teplote T = 0 je fx = 0, t.j. v zékladnom stave nie s
Castice v pritomné. Dalsie dolezité pozorovanie je, ze energia Fx je grandkdnonickou excitaénou energiou meranou voci
chemickému potencialu, ktory je obsiahnuty v definicii energie k.
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Dalej ukazte, ze pre Casovy vyvoj strednych hodnét bk = (c_y i) a Ny = <CIT(TCkT> v BCS rieseni plati ih%bk =2ubx a
ihgmier = 0, &ize bi(t) = e "21t/Mpy (0) a niq (t) =konstanta. Rovnako sa da ukazat, Ze n_y, (t) =konStanta. Porovnajte
tieto vysledky s Josephsonovymi rovnicami v kapitole 11. Aky je fyzikdlny dévod pre vysledok nk.(t) =konstanta? Aka
je energia Cooperovho paru?

5. Alternativne odvodenie teérie BCS pomocou variaénej metody. V takomto pristupe nahrad'te hamiltonian (74) efek-

tivnym hamiltonidnom
I

Ho = Z [EkCLTCkT + gkctkicfki — AkCLTCJLkJ, — A;;kaJ,CkT] R
Kk
kde Ak, Aj; chapte ako varia¢né parametre. Minimalizéciou odhadu vel'kého termodynamického potencialu Fo+(H — Ho)o

podla Ak, Ay odvodte self-konzistentna rovnicu pre parameter usporiadania (84).

18 Termodynamika supravodicov

V tejto prednaske najprv odvodime vysledky BCS pre kriticka teplotu 7. a energetickii medzeru A.
Potom preskiimame kondenza¢na energiu, entropiu a merné teplo supravodicov.

Riesenie self-konzistentnej rovnice

Sktimajme rieSenia rovnice pre energetickit medzeru (84) pre jednoduchy modelovy potencial Vi = V.
Ukazuje sa, Ze takyto potencial dava dobré vysledky pre konvencéné supravodicCe, v ktorych pritazliva
interakcia vznika v doésledku interakcie elektronov s mriezkou. V tomto pripade musime A zvolit ako
konStantu nezavisli od k. Ak naviac vezmeme A &isto redlne, dostaneme

1 hwo e . <\/52 T A2>

- oT

— ——F——tan
)y VErar

kde A = N(0)V je viazbova konstanta. V8imnime si, ze A(T') je funkciou teploty 7'. Rovnicu explicitne
vyriesime v limitach 7' = 0 a T — T¢. Funkcia A(T") je spojita a nenulova medzi tymito teplotami,
preto hra rolu parametra usporiadania.

Pri teplote T' = 0 sa prava strana redukuje na tabulkovy integral. Tak dostavame presny vysledok
A(0) = sinl}?{ﬁ ~ 2hwpe Y, kde druha rovnost plati v limite slabej vizby A < 1.

V limite T — T, o¢akavame, Ze parameter usporiadania A je infinitezimalne maly. Kriticka teplotu
T, preto moZno pocitat z rovnice

o hwq
1 / 0 de tanh € /2Tc d tanh x ) 1.13Awq
— = — tan = €T ~n|—
)\ 0 g 2TC 0 x TC ’
kde priblizna rovnost plati v limite Aiwg > T.. Po invertovani odtialto dostdvame vztah pre kriticka

teplotu T, ~ 1.13hwpe~/*, ktory plati v limite A < 1. Porovnanim hodnoét T, a A(0) dostavame
A(0)

C

~ 1.76,

teda podla BCS teorie je podiel energetickych skal T, a A(0) dany univerzalnym ¢islom nezavislym od
materidlovych parametrov wg a A. Tato netrividlna predpoved je v dobrej zhode s experimentalnymi
datami pre nizkoteplotné supravodice so slabou véizbou, pozri tabulku 1.

Obr. 15: Typicka zavislost parametra usporiadania A od teploty T

Teéria BCS naviac dokéze prirodzene vysvetlit izotopicky jav. K tomu si staéi uvedomit dve veci.
Po prvé, Debyeova frekvencia skaluje s hmotnostou ionov nasledovne: wo oc M~2. Po druhé, vizbova
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konStanta A v pripade slabzej vazby nezavisi od M, ako moZno lahko overit napr. pre model Zelé, v
ktorom A = N(0)V ~ 2 7 tychto dvoch vysledkov vyplyva pozorované zavislost T, oc M—1/2.58

EF eok‘g '

Termodynamika supravodi¢ov v magnetickom poli

Experimenty ukazuju, Ze dostatoCne silné magnetické polia rozrusuju supravodivost. V tomto odstavci
ukézeme, ako mozno z magnetiza¢nych merani urcit tzv. kondenzaéni energiu definovana ako rozdiel
volnych energii normalneho a supravodivého stavu. Kondenza¢ni energiu teda mozno ur¢it bud z
merani merného tepla (pozri prednasku 14), alebo z magnetizacnych merani, ¢o umoziuje krizova
kontrolu vysledkov.

Skumajme nasledovni jednoduchu experimentalnu konfiguraciu. Magnetické pole nech je budené
dlhym solenoidom dizky L s N zavitmi, nestcim prad I. Magnetické pole vnitri solenoidu potom
bude H = NI/L. Do solenoidu je umiestnend homogénna kovova vzorka v tvare dlhého valca, ktora
vyplia cely objem solenoidu. Objem vzorky ozna¢me V = LS, kde S je prierez solenoidu. Nech M
je magnetizacia vzorky a B = puoH + poM je magnetickd indukcia vo vzorke. Helmholtzovu volnu
energiu vzorky v magnetickom poli definujeme vztahom F(T,B) = Fo(T) +V fOB HdB. Definujeme
tieZ objemovi hustotu Helmholtzovej volnej energie f(T, B) = fo(T) + fOB HdB.

Sktiimajme premenu vzorky zo stavu 1 s magnetizaciou M; a Helmholtzovou volnou energiou Fj
do stavu 2 s magnetizaciou Ma a volnou energiou Fy. Pri infinitezimélnej zmene magnetizacie o dM sa
magneticky tok cez jeden zavit solenoidu zmeni o d® = pugSdM. Vdaka tomu zmena vzorky indukuje
na zavite napéatie U = —d®/dt. Teda v procese transforméacie vzorky zo stavu 1 do stavu 2 vzorka
koné préacu A na N zévitoch solenoidu, prifom A = N [UIdt = —NI [d® = —NIpoS(My — My).>
Ak vyuZijeme vztah pre pole H vnttri solenoidu, mézeme pisat A = —Vyuo(My — M) H.

Stavy 1 a 2 budu v termodynamickej rovnovahe, ak sa celkovéi energia systému “vzorka + cievka” v
procese premeny nezmeni, t.j. ak plati F5 + A = F;. Tuto podmienku mozno alternativne zapisat ako
Fy — VugHMs = Fy — VuogHM; alebo, po odé&itani konstanty VugH? od oboch stran, v tvare

Fy, —VHBy =F, — VHB;.

Ak zavedieme novy (Gibbsov) termodynamicky potencidl G(T,H) = F(T,B) — VHB, potom pod-
mienku rovnovahy stavov 1 a 2 vo vonkajSsom aplikovanom poli H méZeme pisat ako rovnost Gibb-
sovych volnych energii Go(T, H) = G1(T, H), pripadne ako rovnost prislusnych objemovych hustot
g2(T,H) =g1(T,H), kde g(T, H) = fo(T) + fOB HdB — HB. Ak teraz budeme predpokladat, ze (rov-
novazna) funkcia B = B(H) monoténne rastie a naviac plati B(0) = 0, potom porovnanim prislusnych
ploch v grafe funkcie B = B(H) Tahko overime (pozri obrazok), ze fOB HdB—HB = — fOH BdH . Preto
pre objemovu hustotu Gibbsovej volnej energie plati

H H
9T H) = D)~ [ Bt = fo1) - PH 4 [ (-dan

& A
#H L
23S = | 8 L3
|® 7 HB= (H4B + (BAH
1 /@‘ 5o J
iy & ‘@

B B

Obr. 16: K Legendreovej transforméacii od Helmoltzovej volnej energie F(B) ku Gibbsovej volnej energii G(H).

Experimenty ukézali, Ze v silnych aplikovanych magnetickych poliach supravodice prechadzaji do
normélneho kovového stavu. Predpokladajme, Ze supravodiva a normélna faza st v rovnovahe pri kritic-
kom magnetickom poli Hyax. Objemové hustoty (Helmholtzovej) volnej energie v nulovom aplikovanom
poli v normalnom a supravodivom stave oznac¢me fxn(7T') a fg(7T) a prislusné magnetizicie oznac¢me

58V systémoch so silnym coulombovskym odpudzovanim sa viak pozoruju odchylky od vztahu T, oc M ~1/2

sposobené zavislostou renormalizovaného coulombovského odpudzovania p* od wo.
5%Pre AM = M, — M, > 0 je praca vykonané vzorkou na solenoide zaporna, pretoze A® > 0 a indukované napétie je
podla Lenzovho zakona orientované proti toku pradu 1.

, ktoré su
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Mn(T,H) a Mg(T,H). Ale v normalnom stave mozno obvykle zanedbat slabti magneticka odozvu,
t.j. mozno polozit My = 0. Podmienka rovnovahy gs(7', Hmax) = gn (T, Hmax) potom nadobudne tvar

Hmax
Mﬂ—mmzmA Ms(T, H)dH. (85)

Vysledok (85) ukazuje, Ze kondenza¢ni energiu supravodi¢a moZno uréit (aj) z magnetizaénych merani.
V tzv. supravodic¢och 1. typu oznac¢ujeme pole Hy,.y ako H.. V tychto supravodi¢och sa Meissnerov
jav realizuje pre v8etky polia H < H,, preto Mg = —H a v8eobecny vysledok (85) sa redukuje na tvar

Fo(T) ~ f(T) = ~ 5o HA(T). (56)

Tento tvar explicitne demonstruje, Ze volna energia supravodic¢a je nizsia ako normalneho kovu.5"
Termodynamika supravodi¢ov v teérii BCS

Termodynamické vlastnosti supravodi¢ov mozno jednoducho pocitat pomocou diagonilneho grandka-
nonického hamiltonianu (83). Prislugna vel'ka tatisticka suma je Z = Tre *red/T 3 velky termodyna-
micky potencial F(T,V, ) = —T'In Z ma (aZ na konstantu) tvar podobny vysledku pre volné ¢astice
F(T,V,n) = Egs — 2T . In (1 + e*Ek/T). Ak vyuzijeme explicitni formulu pre Egg, dostaneme
odtialto

/
Frvm=% [bl*(Ak tex— By —2TIn (1 + e—Ek/T)} .
k
Velky termodynamicky potencial suvisi s energiou F, entropiou S a poc¢tom elektrénov N vztahom
F=FE—-T8 — uN. Naviac plati dF = —pdV — SdT — Ndu, preto E, S a N moZno poc¢itat pomocou
parcidlnych derivacii, ako je v termodynamike obvyklé.

Pocet elektronov
Pre pocet elektréonov vo vyclenenej Supke okolo Fermiho plochy plati N = — (%%)TV’ preto po-

trebujeme skimat zmenu 0F velkého potencidlu pri zmene chemického potencialu éu. Komplikaciou
oproti skutocne volnym ¢asticiam je, Ze zmena du okrem zmeny dex = —du vyvold aj zmenu 0Ay, a
teda aj dbx a dFy. Pre zmenu velkého potencialu pri zmene chemického potencidlu preto dostavame
6F = Y1 [6bp Ax + bi0AK + dex — (1 — 2fi)0Ex]. Ak teraz uvazime, Ze 0Ex = [2exdek + SA; Ak +
dAKAL]/(2Ey), dostaneme

(=200, (1= 20094,

/
6F = |6bEAK + bioAy —
d g[ kB D05 2E) 2E)

€
Ay + dey — (1 — 2fk)k5€k:| .

Ex
D4 sa ukézat, Ze sucet prvych Styroch ¢lenov, ktoré pochadzaji od neexplicitnej zavislosti F od che-
mického potencialu, vypadne.! Tak dostaneme nasledovnii rovnicu pre pocet elektrénov

/

OF €k €k
N=--—"= 1— X 4op %],
op zk: [ Ey i Ey
Stoji za zmienku, Ze identicky vysledok dostaneme aj priamym vypoctom strednej hodnoty N = <N )
operatora poctu elektréonov N = Ziw cleckg, ak prejdeme k operatorom ~:
/

N = > [((Uii%T(T +veYokey) (Wi + U 1)) + (S + iy ) (Cords + wer—wy)
k

= 23 [lu®fic+ (1 = 0]
k

60V supravodicoch 2. typu su sice magnetizacné krivky komplikovanejsie, ale ak definujeme tzv. termodynamické
kritické pole H.(T) vztahom 3 H? = fOH"‘a“‘(—MS)dH7 vyraz (86) pre kondenzaénu energiu zostane v platnosti.

51Najprv si viimnime, Ze treti a Stvrty ¢len mozno zjednodusit s vyuzitim vztahu (1 — ka)QAT‘; = bx. Potom Tahko
nahliadneme, 7e druhy a treti ¢len sa vyrusia. V siéte prvého a stvrtého clena 3 [6bf Ak — bdAf] teraz nahradme A
a 0Ay pomocou defini¢nej rovnice (80). Ak pritom vyuZzijeme, Ze Vi nezéavisi od p a ze plati Vi = Viek, aj tieto ¢leny
sa vyrusia.
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Obvykle je koncentracia elektronov vo vzorke a priori znama. V takom pripade je rovnica N = N (u)
implicitnou rovnicou pre chemicky potencial. Vo vSeobecnosti je chemicky potencial v supravodivom
stave pgo rozny od chemického potencialu norméalneho kovu py. Jednoduchou analyzou vSak mozno
ukazat, ze ak A(e) = A(—¢) a ak hustotu stavov v blizkosti Fermiho plochy mozno v normalnom stave
povazovat za konStantnni, potom plati psc = py. Poznamenajme eSte, Ze pre nekonstantnu hustotu
stavov je chemicky potencial funkciou teploty aj v neinteragujicom Fermiho plyne, pozri napr. 1.12.

Kondenzacnd energia

Pod kondenza¢nou energiou pri teplote T = 0 rozumieme rozdiel (vztiahnuty na jednotkovy objem
supravodi¢a) medzi energiou zékladného stavu supravodica Egg = Zi{(bl’iAk + ex — Ex) + pseN,
pozri (83), a energiou (hypotetického) zakladného stavu normalneho kovu EYg = 37} (e — |ex|) +pun N:

1
§M0Hc2 =

1

Ak zanedbame zmenu chemického potencialu pri prechode do supravodivého stavu a vyuzijeme vztah
by = Ay /(2Ex), ktory plati pri teplote T' = 0, dostaneme

1 N |Ak[? 1 (B — lex])?
—uH? = = by — — == —_—
ot = 30 (Bl = ) = 3 2 e
V jednoduchom supravodic¢i s Ax = A moZno kondenza¢nu energiu explicitne vypoditat:

2 2
1 2 1 fiwro ( 62 + A2 B |€’) AZ > ( .%'2 + 1- :B) 1 A2
—ugH? = =N(0 de ~ N(0 dx = —-N(0 .
SHoH? = “/M — (0) / == 3N

V pribliZznom kroku sme hornd hranicu integrovania hwg zamenili za nekone¢no, pretoZe integrand pre
velké e spadé ako o< 73, Chyba, ktorej sa pritom dopustime, je zanedbatelna, kedze A < hwy.

Vysledok pre kondenza¢nii energiu mozno interpretovat nasledovne: v energetickej Supke sirky A
okolo Fermiho plochy vzniknii viazané stavy elektrénov - Cooperove pary. Vazbova energia tychto pé-
rov je radovo A a ich pocet v jednotkovom objeme je rddovo N(0)A. V modeli volnych elektrénov plati
N(0) = %%, kde n je koncentracia elektronov, preto kondenzacné energia pripadajica na 1 elektron
je A?/ep ~ T2 /ep, v zhode s experimentalnymi vysledkami.

Entropia a merné teplo
Entropiu mozno ziskat z velkého termodynamického potencialu podobne ako pocet elektronov derivo-

vanim, S = — (%)u - Pre zmenu velkého potencidlu pri zmene teploty 7 tentokrat dostavame

/
E
SF=Y [5bi§Ak + b0 Ak — (1 — 2fx)0 By — 26T In (1 + e—Ek/T) - 26Tfka] :
k

Identickym postupom ako pri vypocte poctu Castic mozno ukazat, ze prvé tri ¢leny, ktoré pochadzaju
z neexplicitnej zavislosti F od teploty, sa navzajom vyrusia. Preto pre entropiu supravodica dostavame
znamy vyraz pre entropiu volnych fermiénov

OF

S = 5T~ _22[(1_fk)ln(l_fk)+fklnfk]'

Numericky vypocet ukazuje, Ze entropia supravodivého stavu je nizsia nez entropia normalneho kovu
STN = %N (0)T'. Inymi slovami, supravodivy stav je usporiadanejsi nez normalny stav. V limite nizkych
teplot T' < A vieme tento vysledok ukazat pre konvenéné supravodice s A = A aj analyticky. Naozaj,
v tejto limite je fi ~ e Px/T <« 1, a preto

E—A

_A/T/Oo dFE o—ZF
A VE-A ’

SANE > fw L AN©) [ dEE? BT o 2N(O)A\/2Ae
VoV L fie T Ja VEZ-AZ T
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kde v poslednej rovnici sme vyuzili, Ze integral je dominovany energiami ¥ — A ~ T'. Posledny integral
dava v/«T, a preto

S [A AT
v 2v2rN(0)A T .

Tento vysledok explicitne ukazuje, Ze entropia supravodivého stavu je pri nizkych teplotdch omnoho
mensia nez Sy.
Zo znamej entropie mozno urcit elektrénovy prispevok k mernému teplu pri konstantnom objeme
pomocou vztahu cy = % (%)V' Pripominame, Ze ¢y je merné teplo vztiahnuté na jednotkovy objem.
62

Pri nizkych teplotach preto dostavame
AN 3/2
cy = 2V2rN(0)A <T) e AT

. , . ., . . .. . 2
¢ize merné teplo je exponencidlne potlacené oproti jeho hodnote v normélnom stave c{)f = %N (0)T.
Vsimnime si, Ze z merania teplotnej zavislosti ¢y mozno v principe urcit energeticki medzeru A.

Cvic€enia

1. Pri teplote T' = 0 najdite rozdiel kinetickej aj potencialnej energie medzi supravodivym stavom a normalnym stavom
modelu (74). Ktora energia stabilizuje supravodivy stav?

2.* Vypocitajte kriticka teplotu pre systém s nasledovnou interakciou medzi Cooperovymi parmi: Vip = ViFi(k,p) —
VaFs(k,p), kde Fi(k,p) = 1 pre |ex|, |ep| < hiw; a ina¢ Fy(k,p) = 0. Clen tamerny Vi opisuje prifazlivi interakciu s
maximalnou energiou hwi, kym V2 je odpudiva interakcia s maximalnou energiou hws > hw;. Takyto model realistic-
kejsie popisuje tienené coulombovské interakcie. Navod: predpokladajte, ze pre |ex| < Fuwi plati Ax = Aq, kym pre
hwi < |ex| < hws plati Ak = As.

3." Supravodi¢ modelujme Hubbardovym modelom s pritazlivou interakciou U = —|U|. Ukazte, Ze v limite silnej vizby
|[U| > t st pri nizkych teplotach T" <« |U| mriezkové body alebo obsadené dvojicou elektréonov so spinmi 1, ] (t.].
lokalnym Cooperovym parom), alebo prazdne. Odhadnite kriticka teplotu Tt takéhoto systému, ak koncentracia elek-
tréonov n = % < 1. Navod: najprv analogickym postupom ako pri konstrukcii efektivneho spinového modelu Heg pre
U > t v kapitole 1 ukazte, Ze amplituda tunelovania medzi susednymi mriezkovymi bodmi pre lokdlne Cooperove pary je
teft = %2' Tento vysledok interpretujte pomocou efektivnej hmotnosti meg. Kriticka teplotu odhadnite pomocou formuly
pre Boseho-Einsteinovu kondenzaciu. Ukazte, ze T, < |U|, t.j. existuja tri teplotné rezimy: (i) ak 7" > |U|, mame plyn
fermionov; (ii) ak T, < T' < |U|, mame nesupravodivy plyn bozoénov; (iii) ak 7' < T, mame supravodi¢.

4." Ukazte, ze v termodynamickej limite je pribliZenie stredného pola pre hamiltonidn (74) presné.

19 Spektroskopia supravodicov

V tejto prednéske sa venujeme otazke, ako mozno overit teériu BCS experimentalne. Podrobne ana-
lyzujeme predpovede BCS pre fotoemisné a tunelové experimenty a bez ddkazu popiSeme aj optickil
spektroskopiu.

Excitované stavy supravodica

Redukovany hamiltonian BCS teorie (81) sa rozpada na neinteragujice sektory dvojic jednoc¢asticovych
stavov k1T a —k /. V kazdom z tychto sektorov mozno skonstruovat 4 mnohoelektréonové stavy: 1 stav
bez elektronov, 2 stavy s jednym elektréonom a 1 stav s dvomi elektréonmi. Zakladny stav je tvoreny
linearnou superpoziciou stavov bez elektronov a s dvomi elektrénmi. Lahko nahliadneme, Ze zvysné tri

52Pri derivovani treba v principe zapo¢itat aj teplotna zavislost energetickej medzery A(T). D4 sa v8ak ukazat, ze tato
je v konvenénych supravodi¢och pri nizkych teplotach exponencidlne malé. Preto ju mozno zanedbat.
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mnohocasticové stavy mozno skonstruovat ako nasledovné excitované stavy BCS:

MlWo) = el [T (g +vpefyel ,I0),
p#k
7T-k¢|‘1’0> = ¢ k¢H Up + Vpc pT pi)m)
p#k
’YL{Yik¢|‘1’0> = (v —“kCLTCT—kﬂ H(“;""”;CLTC pl )[0).
p#k

V8imnime si, Ze excitované stavy 71T<T|\II0> a yik l|\I’0> maju presne definovany pocet elektronov v sektore
k 1,—k | - obsahuji po jednom elektrone - a ich (grandkanonickd) energia je Egg + Ex. Odtialto
vyplyva, Ze zo zakladného stavu sa do excitovanych stavov 71T(T|¢BCS> a wik ¢|¢BCS> moZeme dostat iba
prostrednictvom procesov, ktoré menia pocet elektronov. Treba si vSak uvedomit, Ze napriklad stav
7£T|\I'0> moZe zo zakladného stavu vzniknit dvomi sposobmi: bud pridanim elektrénu v stave k 1,
alebo odstranenim elektrénu v stave —k |.

Na druhej strane, zakladny stav |¥() a k nemu ortogonélny stav WlTVT,k ¢|\II0> nemaju presne de-
finovany pocet elektronov v sektore k1,—k | - st lineArnymi kombinéciami stavov s 0 a 2 elektrénmi.
Teda excitacné procesy, ktoré nemenia pocet elektréonov, musia pri nulovej teplote vybudit asponi dva
bogolubény - na prechod do stavu 'le*yik i\\Ilo) je potom potrebné energia 2F),.

Alternativny pristup

Spektrum v sektore jednocasticovych stavov k1 a —k | moZno skonstruovat aj explicitnou diagonali-
zaciou vo Fockovom podpriestore, ktorého baza pozostava zo stavu bez ¢astic |0), z dvoch jednocasti-
covych stavov CLT|O> a cT_k¢|0) a z plne obsadeného stavu CLTCJr_k¢|O>. V tejto baze je hamiltonian (81)
reprezentovany nasledovnou maticou 4 x 4:

0 0 0 —A
0 e 0 0
0 0 e O
Ak 0 0 2

V tomto pristupe je ocividné, Ze stavy clT(T|0> a cT_k¢|O> st vlastnymi stavmi s presne jednym elek-
tronom a s energiou ei. Zvy$né dva stavy su linedrne superpozicie bezcasticovych a dvojcasticovych
stavov. Zakladnym stavom je linedrna kombinacia uy|0) + vltcLTch_k ¢|O> s energiou € — Fy a najvyssim

excitovanym stavom je ortogonéalna kombinécia vy|0) — ukcLTcik 110) s energiou ex + Ek.

Spektralna funkcia elektrénu
Vo zvysku tejto prednésky sa venujeme popisu fyzikalnych vlastnosti supravodi¢ov. Za¢nime popisom
experimentov, pri ktorych sa meni pocet ¢astic v systéme. Pre jednoduchost sa pritom obmedzime na
pripad T = 0. Naviac budeme pracovat v kdnonickom stibore a budeme predpokladat, Ze zdkladny stav
|Wg) obsahuje N elektronov a jeho energia je EJ.

Ak do systému v stave |Up) pridame elektron v jednocasticovom stave ko, vysledkom bude stav
c;r{ -1 Wo) systému s N +1 elektronmi. Tento stav mozno rozlozit do bazy vlastnych stavov |n) systému s

N +1 elektréonmi, ktorych energie si EXN 1. Pravdepodobnost toho, Ze stav c;rw|\110> mé energiu ENTL

2
je ‘(n\cLU]\I/())‘ . Definujme nasledovnii spektralnu funkciu pre pridavanie elektronov:

4306, B) = 3| tnlel, 0|6 [ — () — B,

Funkcia A7 (k, E) meria vahu, s ktorou elektron pridany do jednocasticového stavu ko zvysi energiu
systému o E. Tuto funkciu mozno (aspoit v principe) merat pomocou tzv. inverznej fotoemisie.%

53Uvodnt informéaciu o fotoemisnej spektroskopii ¢itatel najde napr. v I11.24. Inverzna fotoemisia je v ¢ase obrateny
proces fotoemisie.
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Viimnime si, ze kedze EY 1 — EY > EéVH — EY = p, spektrélna funkcia A2 (k, E) méZe byt nenulové
iba pre energie E > u. V §pecialnom pripade neinteragujicich elektronov moze byt funkcia A (k, F)
nenulova iba pre k > kp. V tomto pripade k nej prispieva iba stav |n) = CLO\\IIO) s energiou EN*t! =
EY +ex + p.

Definujme tiez spektralnu funkciu pre odoberanie elektréonov:

AF(k,E) = |(nfews| o) |* 6 [E — (Ey — EN 1],

kde |n) st tentoraz vlastné stavy systému s N — 1 elektronmi, ktorych energie st EN~'. Funkcia
A5 (k, E) meria vahu, s ktorou elektron odobrany z jednocasticového stavu ko znizi energiu systému
o E a mozno ju merat pomocou fotoemisnych experimentov. Kedze EY — EN-1 < BV — g/~ =
w, spektralna funkcia A5 (k, E) moze byt nenulova iba pre energie £ < pu. V §pecidlnom pripade
neinteragujucich elektronov moze byt funkcia AS(k, E) nenulova iba pre k < kp. V tomto pripade k
nej prispieva iba stav |n) = ¢k, |¥o) s energion EY 1 = EY — e — p.

Ak definujeme celkovu spektralnu funkciu vztahom

Ay (k,E) = A> (k, E) + AZ(k, ),

potom pre neinteragujice elektrony dostavame A, (k, E) = §[E — (1 + ex)], kde p + ek je kdnonicka
energia stavu k. Teda vkladanie alebo vyberanie elektrénu do stavu ko je v neinteragujicom systéme
mozné pri jedinej, presne definovanej energii. V $pecidlnom pripade neinteragujucich elektrénov je pre
k > kp nenulova iba funkcia A7 (k, E), kym pre k < kp je nenulova iba funkcia A5 (k, F).

Spektralna funkcia v supravodivom stave
Teraz preskimame spektralnu funkciu elektronu A_ (k, E') v supravodivom stave. Maticovy element

2
)<n|c;rm\\llg)‘ lahko vypocitame prechodom k bogolubonovym operatorom. Jediny excitovany stav,
ktory da nenulovy prispevok, je [n) = fylt 5 |Wo) s grandkanonickou energiou Egs + Ex, preto v pripade
vkladania elektrénov mame ‘<’I’L|CL U|\Ifo>‘ = |uy|?®. V grand-kanonickej formulacii nepozname presné
pocty elektronov v stavoch |n) a |¥g), ale vieme, Ze v pripade vkladania elektrénov je v stave |n) o
jeden elektron viac ako v stave |Wg). Preto rozdiel energii F,, — Ey pozostava z dvoch prispevkov: z

narastu grand-kanonickej energie H o Fy a z prispevku od zmeny poctu elektronov pAN = u, Gize
E, — Ey = p+ Ey. Preto A2 (k, E) = |uy|*§ [E — (1 + Ex)].

I I /

W+A . 4
m
w wor = é
<

wA 1

/ | 1 I
3 2 1 0 1 2 3

g /A

Obr. 17: Mapa spektralnej funkcie elektronu A(k, E) v rovine (ex,E) pre vinové vektory k v tesnej blizkosti Fermiho
plochy. Tmavé oblasti zodovedajt velkym hodnotam A(k, E). (F. Horvath)

Podobne v pripade odoberania elektréonov jediny excitovany stav, ktory d& nenulovy prispevok, je
|n) = 'yT_k_U]\II()) s grandkénonickou energiou Egg+Fy. Pre maticovy element dostaneme | (n]exq | Wo)|? =
|v|2. Rozdiel energii E,, — Ey pozostava z narastu grand-kédnonickej energie H o Ey a z prispevku od
zmeny poctu elektronov AN = —pu, preto E, — Eg = By — p a AS(k, E) = |vk|?6 [E — (u — Ex)].
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Pre spektralnu funkciu elektréonu v supravodivom stave A, (k,e) teda dostavame vysledok
Ao (k, E) = [ui|*8 [E = (n+ Ex)] + [oi|*8 [E — (1 — Ex)] . (87)

Teraz preskiimame niekolko délezitych désledkov vysledku (87). Za¢nime s pozorovanim, Ze spektralna
funkcia (87) nezavisi od projekcie spinu o, ktort odteraz nebudeme uvadzat. Ide o désledok predpokladu
o singletnom péarovani (spin Cooperovho paru S = 0). V tripletnych supravodi¢och (spin S = 1)
spektralna funkcia moze, ale nemusi, zavisiet od o.

Dalej si vSimnime, Ze pre fixovand hybnost k v blizkosti Fermiho plochy v supravodivom stave
existuje nenulovad vaha pre vkladanie a zarovenn pre odoberanie elektréonu. Sucet oboch vah je kon-
Stantny, lebo |uy|? + vk |? = 1. V limite A — 0 spektrilna funkcia spojito prejde na spektralnu funkciu
neinteragujicich elektrénov, pretoze vahy |uy|? pre k < kr a |vk|? pre k > kp vymizni.

Podobne pri fixovanej energii E k spektréilnej funkcii prispievaji dve hybnosti, jedna pod a jedna
nad Fermiho plochou. Spektralna vaha je vSak striktne nulova v tesnej blizkosti Fermiho plochy, a sice
v intervale medzi p — A a p + A. Z tohto dévodu hovorime o A ako o energetickej medzere.

Tunelova hustota stavov

V niektorych pripadoch (napr. pri skimani diftzneho tunelovania) nas zaujima iba celkovy pocet
elektronovych stavov s danou energiou E, bez ohlTadu na hybnost elektronov. V takychto pripadoch je
uzitocné skimat tzv. tunelovi hustotu stavov supravodica,

No(B) = 53 As(k B),
k

kde Ag(k, E) je spektralna funkcia supravodic¢a. Téato definicia, ak ju aplikujeme na neinteragujtice
elektrony v normalnom kove so spektralnou funkciou A(k, F) = 0[E — (u+€k)], reprodukuje normalnu
hustotu stavov N(E) definovana v 1.12.

V dalsom vyklade sa (v silade s beznou praxou) od kénonickej energie E vratime ku grandka-
nonickej energii ¢ = F — p. Ak spektralna funkcia Ag(k, ) nezavisi od smeru hybnosti k, ale len od
energie £, potom je vyhodné sumu cez k nahradit integralom, % Yk = ffooo dei N (). Naviac, pretoze
funkcia Ng(g) nas zaujima iba pre energie |g| ~ A, t.j. v tesnej blizkosti Fermiho plochy, hustotu stavov
v normélnom stave mozno povazovat za konstantna, N(e) ~ N(0), a pre tunelovaciu hustotu stavov
dostaneme

]]\\7}?((06)) ~ /OO depAs(eg, €) = /OO dey [|ul?0(e — Ex) + |vk]?6(e + Ey)] -

—0oQ
Pre energie € > 0 preto plati

Ng(e)_ ° Ei + e B _ o B 9 5\ _ €
N ) —/ dgkiQEk d(e Ek)—/o d€k5<5 \/€x +A? | =Re TEAT|

o

kde sme v druhom kroku vyuZili, Ze Ej je parna funkcia ;. Analogickym vypoc¢tom Tahko overime, Ze
pre € < 0 plati Ng(e) = Ng(—¢), teda hustota stavov je parna funkcia.

Vsimnime si, Ze sme opét dostali vysledok, podl'a ktorého pre energie |e| < A v systéme neexistujiu
stavy, do ktorych mozno vlozit elektron. Stoji za zmienku, ze absencia stavov pre |e| < A je kompen-
zovand nahromadenim stavov (divergenciou Ng(e)) pri energiach tesne nad energiou A a Ze celkovy
polet stavov [deN(g) zostava nezmeneny. Pre nizkoteplotné supravodice je predpoved tedrie BCS
pre tunelova hustotu stavov v dobrom sthlase s experimentalnymi vysledkami ziskanymi na tzv. tune-
lovych spojoch medzi obycajnym kovom a supravodicom. Tieto experimenty ndm obvykle poskytuji
jedno z najpresnejSich merani parametra A.

Opticka spektroskopia

Informéciu o energetickej medzere mozno ziskat aj pomocou experimentov, ktoré nemenia pocet Castic
vo vzorke. Ako priklad takéhoto typu experimentov v tomto odstavci kvalitativne popiSeme predpovede
teodrie BCS pre optickil vodivost o(w), ktortt mozno ur¢it napriklad z merania odrazivosti, pozri 1.22.
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Podla najjednoduchsieho (tzv. Drudeho) modelu moZno prispevok vodivostného pasu k frekven¢ne
zévislej vodivosti normalneho kovu oy (w) = o'y (w) + io’ (w) popisat vztahmi

a0 ’

oNWw) =——,  on(w)

_ g0 ,,( ) oowWT
1 —iwt’

T 1+ (wr)?’ NI =TT (wr)?’

kde 7 je doba Zivota elektréonov a oq = ne?r/m* je statickd vodivost, pozri 1.22. Drudeho model ¢asto
dobre popisuje optické vlastnosti normalnych kovov. Dévody st aspon tri:

Po prvé, on(w) ako funkcia komplexnej frekvencie w je analyticka v hornej polrovine. Tato vlastnost
musi byt splnenéa, ak odozva systému mé byt kauzalna, pozri 1.21.

Po druhé, v limite vysokych frekvencii komplexné vodivost klesa k nule, on(w) — 0. V tejto limite
m"ii, t.j. vodivost nezéavisi od doby Zivota elektronov a je totozné s
vysledkom pre neinteragujice elektréony. Tak to vS8ak aj mé byt, pretoze pri vysokych frekvenciach
elektrony nestihna vykonat zrazky, teda vysokofrekven¢ny vyraz pre o (w) je presny.

Po tretie, redlna cast optickej vodivosti splita nerovnost oy (w) > 0, ako aj ma byt, pretoze o'y (w)
meria straty elektromagnetickej energie v systéme, ktoré nemoézu byt zaporné.

Z prvych dvoch vlastnosti vyplyva, Ze on(w) splita Kramersove-Kronigove vztahy. Drudeho formula
naviac spliia exaktné tzv. suma¢né pravidlo pre vodivost

pritom naviac plati oy (w) =

2

ee T ne
dwo' (W) = =—, 88
| o) = 5 (58)
ktoré musi platit vzdy, teda nielen v normélnom, ale aj v supravodivom stave - preto pri ¢/(w) nepiSeme
index N. Naozaj: suma¢né pravidlo (88) vyplyva z Kramersovho-Kronigovho vztahu pre ¢”(w), ak ho

pouZijeme v limite vysokych frekvencii, kde pozname presny tvar o’ (w) = m"fi:
1 * dvo'(v ne 1 > dvo'(v
o'//(w) = P/ ( ) wmreo = / A
T Joo W—V miw T W

Vo vysledku stac¢i pouzit, ze funkcia ¢/(w) je parna (pozri 1.21) a sumacéné pravidlo (88) je dokazané.

A(0)t = 0.1
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Obr. 18: Realna ¢ast optickej vodivosti on(w) v normalnom stave (&ierna) a osc(w) v supravodivom stave pri nulovej
teplote (Cervena). Vodivost osc(w) je nulova pri nizkych (ale koneénych) frekvenciach hw < 2A. Pri nulovej frekvencii je
vodivost osc(w) nekonetna. Jej vahu D moZeme uréit z chybajicej plochy: D = 2 [ dw[oly (w) — 01eg (w)]. (F. Herman)

V supravodivom stave sa obmedzime na analyzu reélnej ¢asti vodivosti o (w), ktora meria ab-
sorpciu pri frekvencii w. Naviac budeme pre jednoduchost predpokladat, Ze teplota T' = 0. Kedze
pri absorpcii nedochadza k zmene poctu Castic, ocakdvanad minimalna energia, pri ktorej supravodic¢
moze absorbovat Ziarenie, je iw = 2A. Explicitny vypocet, ktory tu nebudeme reprodukovat, toto
ocakavanie potvrdzuje, pozri obrazok 18. Z tohto obrazku je zrejmé, ze v supravodivom stave moze byt
sumacné pravidlo (88) splnené, len ak o'y~ (w) obsahuje dodato¢ny prispevok, ktory bude kompenzovat
zlto vyznacenu chybajicu plochu. Takyto prispevok skutocne existuje: vodivost supravodica je totiz
pri frekvencii w = 0 nekonec¢né, preto moZzeme pisat

Ug‘C(w) - WD(S(CU) + Jll"eg(w)v
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/

kde prvy (singularny) ¢len popisuje nekone¢nii vodivost a oy, (w) je tzv. regularny prispevok k o'go(w).

) A o w2 . 2 0 p ) - )
Vahu D moéZzeme uréit zo sumaéného pravidla: D = 2& — 2 [ dwoe,(w). Dé sa ukizat, ze vaha D

suvisi s hlbkou vniku A pomocou vztahu D = pozri cvicenia.

1
A2
Cvic¢enia

1. Ukazte, ze podsobenie externého pola, ktoré narisa symetriu voéi otoc¢eniu ¢asu, potlaca supravodivost. Navod: najprv
uvazte, ze ¢asovo invertované stavy k1 a —k | budi mat v pritomnosti pola rozne energie, povedzme ekt = ek + 0k a
€k = €k — 0kx. Potom pocitajte spektrum supravodica v sektore jednocasticovych stavov k1 a —kJ. Cim je dani energia
0k pre magnetické pole? Uvazte, Ze magnetické pole pdsobi na orbitalny, ale aj na spinovy stupeii volnosti elektronov.
2. Ukézte, ze zakladny stav (uy + UﬂcLTcik¢)|0> v sektore jednocasticovych stavov k1 a —k | nie je vlastnym stavom
operatora spinu. Presvedéte sa vSak, ze zakladny stav (uy + vacLTcT_kl)(u*_k + Uich_chLﬂO) v sektore generovanom
jednocasticovymi stavmi kT, k|, —k1T a —k| je spinovy singlet, ak plati u_xvx = uxv_x.

3. Ukazte, ze plati D = lez’ kde A je hibka vniku. Navod: najprv dokazte, Ze imaginarna &ast prislichajica k singularnej
redlnej vodivosti 0%, (w) = TDS(w) je 0ling(w) = 2. Potom ukéite, Ze vyraz pre singularny prad jsing = i0lns(w)E sa
da prepisat v tvare Londonovej rovnice (72), pretoze E = iwA.

n62
m*

4. Pomocou sumad¢ného pravidla a obrazku 18 ukazte, Ze pri teplote T'= 0 v tzv. &istej limite A > /7 plati D = ,

A

kym v tzv. $pinavej limite A < /7 plati D = ’:n—ej -

20 Topologické defekty

V tejto prednaske ukazeme, Ze viry a antiviry zavedené v prednaske 8 st Speciadlnym pripadom topo-
logickych defektov - t.j. defektov, ktorych stabilita vyplyva z topologickych tvah. PopiSeme fyzikalne
dosledky, ku ktorym vedie pritomnost takychto defektov.

Defekty parametra usporiadania

Pri spontannom naruSeni symetrie lokdlny parameter usporiadania nadobida niektord z viacerych
moznych dovolenych hodndt. Symetria, ktora bola narusend, pritom prevadza (ota¢a) dovolené hodnoty
z jednej na druha. Napriklad v pripade feromagnetického stavu Heisenbergovho modelu sa (pri danej
teplote) pripustné vsetky natocenia magnetizicie m s fixovanou dlzkou |my|, pri¢om prechod medzi
dvomi dovolenymi hodnotami m; a m, je realizovany vhodnym otoc¢enim v spinovom priestore.

V tejto prednéaske budeme pripustné hodnoty parametra usporiadania nazyvat m, ale budeme mat
pritom na mysli nielen pripad trojrozmerného vektora magnetizécie, ale akykol'vek parameter usporia-
dania, povedzme fazu supratekutiny 6. Priestor dovolenych hodno6t parametra usporiadania oznacme
ako M. Stavom s najnizSou (volnou) energiou je obvykle stav s priestorovo homogénnym parametrom
usporiadania m(x) = m, ale v désledku posobenia externych poli (alebo v procese narusenia symetrie
vo fazovom prechode®®) moézu vzniknut aj konfiguréacie s priestorovo zavislym parametrom usporiadania
m(x). Veli¢inu m(x) budeme pritom definovat priemerovanim cez objemy AV, ktoré st velké oproti
mriezkovej konstante a zaroven malé vo¢i makroskopickym rozmerom, vdaka ¢omu modZeme polohu x
povaZovat za spojitil premennii. Obmedzime sa pritom na sktimanie takych hladko sa meniacich konfi-
guracii m(x), ktoré nemozno odstranit spojitou deforméciou pola m(x). Takéto konfiguracie nazveme
(topologicky) stabilnymi.

Singuldrne konfigurdcie

Ukazuje sa, ze nekonstantné stabilné konfiguracie pola m(x) zakazdym obsahuju singularne body, ¢iary
alebo plochy, v ktorych sa parameter usporiadania prudko meni. Prikladom konfiguracie so singularnym
bodom st viry a antiviry sktimané v prednaske 8, singularnymi ¢iarami st napriklad dislokacie v
tuhych latkach alebo viry v supravodic¢och, kym singuldrnymi plochami st napriklad doménové steny
vo feromagnetoch.

54T ato alternativa je zaujimava aj pre kozmologov. V kontexte fyziky tuhych latok je typickym prikladom polykrystal,
ktorého existencia je dosledkom nuklea¢ného mechanizmu: v réznych zarodkoch je symetria spontanne narusena roéznym
sposobom. Inym prikladom je pritomnost termodynamicky nerovnovaznej koncentracie dislokécii v krystaloch, ktora je
désledkom rychlejsieho rastu krystalov v pritomnosti dislokacii.
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Pre kazdua singularnu konfiguraciu (odteraz budeme hovorit o defekte) definujme tzv. obopinajuci
priestor P, t.j. vhodne zvoleny uzatvoreny geometricky ttvar maximélnej moznej dimenzie, ktory vo
velkej vzdialenosti obopina singularitu. Typ obopinajiceho priestoru je uréeny rozmernostou defektu
a priestorovou rozmernostou D problému, pozri tabulku 2.

sing. bod sing. ¢iara sing. plocha

D=1 So - -
D=2 S So -
D=3 So S So

Tabulka 2: Obopinajuce priestory P pre singularne konfiguracie problémov s réznou rozmernostou: Sy je dvojica bodov,
S1 je uzavretd Ciara - napr. kruznica, So je uzavretd plocha - napr. povrch gule.

Priestor parametrov usporiadania

Budeme predpokladat, Ze teplota skiimaného systému je daleko od kritickej teploty. Ocakavame, Ze
v takomto pripade mozno zanedbat fluktuacie velkosti parametra usporiadania |m| a sta¢i zohladnit
priestorovi zavislost jeho “natoCenia”. Priestory pripustnych parametrov usporiadania M pre magne-
tické systémy potom sa: Sy pre Isingov model, jednorozmernéa sféra S; pre model XY a dvojrozmerna
sféra Sy pre Heisenbergov model. V supratekutinach a supravodi¢och sa v priestore moze menit faza,
preto podobne ako modeli XY v tychto systémoch M = S;. Vo zvysku tohto odstavca preskimame
dva fyzikilne systémy s odliSnymi priestormi M.

Nematické kvapalné krystaly si tvorené molekulami v tvare pali¢iek. Taziska pali¢iek nemaju (po-
dobne ako v oby¢ajnej kvapaline) fixované polohy, ale natocenie pali¢iek v priestore ma preferenény
smer n. KedZe palicky nemaju hlavu a chvost, smery n a —n st fyzikilne totozné. Priestor M je v
takomto pripade tvoreny hemisférou P, so stotoznenymi protilahlymi bodmi.

Obr. 19: VIavo: fyzikalne rozlisitelné dvojrozmerné vektory posunutia krystalu vytvaraja rovnobeznik u = za; + z2as,
kde 0 < z1,2 < 1, s periodickymi okrajovymi podmienkami. Hranice s rovnakymi po¢tami $ipok treba stotoznit. V strede:
po stotozneni vertikdlnych hranic vznikne valec. Vpravo: po stotozneni horizontalnych hranic vznikne torus 75.

Sktmajme napokon dvojrozmerny krystal s elementarnymi vektormi a; a as. Pripustme, Ze v okoli
bodu x je krystal posunuty voéi referenénému krystalu o vektor u(x). Treba si pritom uvedomit, Ze
posunutie o vektor u je fyzikalne ekvivalentné posunutiam o u+a;j alebo u+as. Teda priestor fyzikilne
rozlisitelnych posunuti u vytvara dvojrozmerny torus Ts, pozri obrazok 19.

Homotopia a homotopické triedy
V kazdom bode x obopinajuceho priestoru P nadobtda parameter usporiadania hodnotu m(x) z
mnoziny pripustnych hodndt M, teda kazdému defektu mozno priradit zobrazenie P — M. Podla
tabulky 2 ide o zobrazenia F : S,, — M, kde n je 0,1 alebo 2. Pripad n = 0 zodpoveda tzv. doménovym
stenam (v 1D systémoch st to body, v 2D ¢iary a v 3D plochy) a bude diskutovany osve neskor.
Spojita deformécia pola m(x) vedie na spojiti deforméciu zobrazenia F. V topologii sa takato
deformacia nazyva homotopiou a dve zobrazenia zviazané homotopiou nazyvame homotopické. Ak ski-
many defekt mé byt stabilny, potom nim definované zobrazenie F nesmie byt homotopické s identickym
zobrazenim, ktoré vSetkym bodom obopinajtuceho priestoru S, priradi ten isty bod m z priestoru M.
Mnozinu v8etkych zobrazeni F mozno zjavne rozdelit na homotopické triedy, pricom vsetky prvky
danej triedy st navzajom homotopické.
Pre n = 1 moZno zobrazenie F reprezentovat ako uzavretu orientovana ¢iaru v priestore parametrov
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usporiadania M. Napriklad pre bodovy defekt v dvojrozmernom modeli XY, v ktorom je priestor M
totozny s kruznicou Si, st zobrazenia F reprezentované ¢iarami obiehajicimi tuto kruznicu. Jednotlivé
homotopické triedy teda mozno zjavne charakterizovat poétom obehov kruZnice, t.j. celym &islom ¢q. V
modeli XY toto ¢islo popisuje prirastok fazy fP dr - VO = 2mq pozdlz drahy P. Homotopicka trieda s
q = 0 zodpoveda magnetu bez defektov,% triedy s ¢ = 41 popisuju viry a antiviry z prednasky 8, kym
ostatné defekty zodpovedaju viacnisobne “nabitym” virom, pozri cvi¢enia. KedZe nenulové celé &islo ¢
nemozno spojito vynulovat, topologické stabilita defektov s ¢ # 0 je zrejma.

Homotopické grupy

Nech g1, go st homotopické triedy pre zobrazenia typu S; — M. Najprv definujme nasobenie pre
triedy nasledovnym spoésobom. Nech zobrazenia F; : S — M a Fy : 51 — M sa dve zobrazenia
(orientované ¢iary v priestore M), ktoré patria do tried g1, g2 a prechadzaji cez aspon jeden spolo¢ny
bod.% Skonstruujme orientovani &iaru, ktora najprv obehne ¢aru Fj a potom &iaru Fy. Vysledna
Giara definuje nové zobrazenie F : S7 — M, ktoré patri do niektorej homotopickej triedy g. Tito
triedu nazveme suc¢inom tried g1 a go, t.j. g2 * g1 = ¢. Fyzikdlne mozno defekt F interpretovat ako
sucet defektov F; a Fo.

D4 sa nahliadnut, Ze mnozina homotopickych tried spolu s takto definovanou operéaciou nasobenia
tvori grupu.®” Tito grupu nazyvame tzv. prvou homotopickou grupou 71(M). Pojem homotopickej
grupy mozno roz8irit aj na zobrazenia F : Sy — M, ktorym priradime homotopickta grupu mo(M). Ak
je homotopicka grupa 7, (M) trividlna (s jedinym prvkom), potom vSetky zobrazenia F : S, — M
st homotopickeé s identitou a stabilné defekty neexistuja. Ak je v8ak grupa 7, (M) netrividlna, potom
takéto defekty mozu existovat. V topologii sa napriklad ukazuje, ze

71'n(Sn) = Z,
Tn(Sm) = 0, m > n, (89)

kde Z je grupa celych ¢isiel s operaciou s¢itania a 0 je trividlna grupa s jedinym prvkom.

Viry a virové ciary
Vysledok 71(S1) = Z znamen4, Ze defekty F : S; — S; su stabilné a skladaju sa ako celé ¢isla. V
Specialnom pripade 2D modelu XY je tento vysledok ocividny: nech 6; o(r) st konfiguréacie spinov v
(izolovanych) viroch 1 a 2 s nabojmi ¢ 2. Potom 6(r) = 6;(r) +62(r) je konfiguracia spinov pre dvojicu
virov a plati fp dr - V0 = fP dr - V0 + fp dr - V03, teda naboj dvojice virov je ¢ = q1 + ¢2.
Homotopicka grupa m1(S1) = Z sa okrem bodovych defektov 2D modelu XY realizuje aj v ¢iaro-
vych defektoch trojrozmernych systémov s priestorom parametrov usporiadania M = 57, t.j. napriklad
v supratekutinach a supravodi¢och, v ktorych st tzv. virové ¢lary stabilné. KedZe plati mo(S1) =0, v
trojrozmernych systémoch s M = S vSak neexistuju stabilné bodové defekty.

Unik do tretieho rozmeru

PodTla (89) pre m > n plati 7, (S,,) = 0, a preto v tomto pripade neexistuju stabilné defekty s obopina-
jucim priestorom P = S, a priestorom dovolenych hodndt M = S,,. Podla tohto vysledku napriklad
v 2D Heisenbergovom modeli (na rozdiel od modelu XY) neexistuja stabilné bodové defekty (viry),
pretoZe v tomto pripade plati M = Sy, P = S1 a m1(S2) = 0. Tento vysledok moZno interpretovat
velmi jednoducho: viry v 2D Heisenbergovom modeli st nestabilné, pretoZze napr. spiny na obrazku 3
sa mozu spojito natoc¢it do konfigurécie, v ktorej st vSetky spiny kolmé na rovinu obrézka - ide o tzv.
“nik do 3. rozmeru”. Alternativne mozno tento vysledok vysvetlit tak, Ze uzavretu ¢iaru na sfére So
mozno spojito stiahnut do bodu (t.j. do trividlnej konfiguracie).

Jezko
V trojrozmernom Heisenbergovom modeli s M = Sy vdaka vysledku mo(S2) = Z existuju stabilné

55Treba si pritom uvedomit, Ze v triede ¢ = 0 nie je iba trividlna konstantna konfiguracia spinov, ale aj vietky
nekonstantné konfiguracie, ktoré mozno dostat jej hladkymi deformaciami. Klasifikicia moznych defektov si teda vyzaduje
klasifikdciu moznych homotopickych tried.

56 Ak by taky bod neexistoval, potom jedno zo zobrazeni spojito deformujeme tak, aby tato podmienka bola splnena.

5"Napriklad inverzny prvok k F dostaneme obehnutim &ary pre F v opa¢nom zmysle.
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bodové defekty. Najjednoduchsia konfiguracia s ndbojom ¢ = 1 ma tvar m(x) = mx, kde m = |m| a
X je jednotkovy vektor v smere x. Tento defekt sa nazyva jeZ a jeho stabilita sa interpretuje tym, Ze
“jez sa neda ucesat”. Bohuzial, v prirode sa nevyskytuje, pretoze jeho energia je timernd linedrnemu
rozmeru systému, pozri cvicenia.

Disklindcie

KedZe parameter usporiadania v nematickych kvapalnych krystaloch (neorientovany smer) je podobny
parametru usporiadania pre Heisenbergov model, mohlo by sa zdat, Ze v 3D nematikéch nie si mozné
stabilné ¢iarové singularity. Nie je to vS8ak pravda, pretoze plati

T (P2) = Za,

kde Zs je cyklicka grupa s dvomi prvkami: identitou e a prvkom g, pricom plati gxg = e. V nematikach
teda okrem trividlnej konfigurécie existuju ¢iarové defekty, tzv. disklinacie (pozri obrazok 20). Existuje
vSak len jeden typ defektov: vSetky disklinacie mozno spojito transformovat jednu na druhi, ako vidno
v Tavej Casti obrazka. Na rozdiel od virov, zloZenie dvoch disklinacii v8ak neda dvojnasobne nabitii
disklinéciu, ale trividlnu konfiguraciu, pozri cvicenia.

& ) ¢ )/5 \) A\
///A? A O ke :} ® L;
) P =
Cy C,

Obr. 20: VTavo: priestor parametrov usporiadania P, pre nematicky kvapalny krystal. V strede: konfiguracia molekul v
disklinécii v rovine kolmej na os viru (bodka v strede obrazku). Na lavom obrazku je tato disklindcia popisana uzavretou
orientovanou &arou C1, ktora spaja bod A so s nim totoZznym bodom A’. Stabilita disklin4cie vyplyva z pozorovania, Ze
tato ¢iaru nemoZno spojito stiahnut do bodu. Vpravo: to isté ako v strede, ale pre disklinaciu popisanu ¢iarou Cy z A
do A’.

Dislokdcre
Dislokécie su c¢iarové defekty 3D krystalov podobné virovym ¢iaram a disklindciam. Ide o Struktirne
defekty, preto priestorom parametrov usporiadania je priestor fyzikalne rozliitelnych hodnoét vektora
posunutia u. V 2D krystaloch, kde M = T5, sa dislokacie redukuju na bodové defekty. Z matematiky
vieme, ze

71’1(T2) =7 X Z,

kde Z je grupa celych ¢isel s operaciou séitania. Teda 2D dislokécie st charakterizované dvomi celymi
¢islami g1 a ¢o. Tento vysledok mé jednoduchu interpretaciu: navinutie uzavretej ciary F : S; — Th
na torus treba popisat poétom navinuti ¢; pozdlz prvého (dlhého) &vu v obrazku 19, ale aj poctom
navinuti g pozdlz druhého (kratkeho) svu.

Podla standardnej teorie mozno dislokacie charakterizovat tzv. Burgersovym vektorom b, defino-
vanym ako stéet prirastkov posunutia du krystalu pozdlz uzavretej krivky C' obopinajtcej dislokaéni
Ciaru, b = fC du. Ale Burgersov vektor b musi byt mriezZkovym posunutim, preto v dvojrozmernom
krystali dostaneme b = g1a; + goag, v stilade s topologickou argumentaciou.

Doménové steny

Striktne vzaté, pripad s obopinajicim priestorom P = Sy nie je topologickym defektom, ale doménovou
“stenou” s rozmerom D — 1. Oblasti na opacnych stranach steny navzéjom komunikuja iba cez stenu,
preto v pripade so spojitym priestorom M moZzno doménovu stenu spojito odstranit, pozri cvicenia.
Doménové steny st preto stabilné iba v systémoch s diskrétnym priestorom M: napriklad pre magnety
s konenym poc¢tom osi Tahkej magnetizacie (napr. Isingov model).

Fyzikalna stabilita defektov
Striktne hovoriac, topologicka a fyzikalna stabilita defektu nie st totozné pojmy. Fyzikilne mozno
defekt odstranit dvomi sposobmi: (i) vytlacit ho von zo systému, (ii) alebo ho “rozobrat”. Moznost
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(i) sa bez aplikicie vonkajsich sil deje difiziou a v nekoneénom systéme trva nekonecne dlho. Moz-
nost (ii) znamena nutnost prekonat energeticka bariéru a preskimame ju pre 2D viry v XY modeli.
Predstavme si povedzme, Ze vir na obrazku 3 rozrezeme pozdlZ zapornej osi x a zafixujeme orientéciu
spinov tesne pod rezom. Potom budeme Ziadat, aby sa spiny pri obchédzani kruznic so stredom v jadre
viru postupne otécali o Goraz mensi uhol. Tym sa postupne zniZuje hodnota (Vm)?2, ale za cenu skoku
natocenia spinov naprie¢ cez rez. Tento skok stoji energiu timerni linedrnemu rozmeru systému, ¢o je
omnoho viac ako energia pévodného viru - teda vir je stabilny, pozri cvicenia.

Fyzikalne do6sledky topologickych defektov

Pritomnost topologickych defektov zniZuje zovSeobecnent tuhost systému so spontanne naruSenou
symetriou. Napriklad v prednéske o Kosterlitzovom-Thoulessovom prechode sme explicitne ukazali,
ze aplikacia gradientu fazy vytlaca viry von zo vzorky, ¢o vedie k zniZeniu aplikovaného rozdielu faz
naprie¢ vzorkou.

V supravodicoch tiez dochédza k silovému poésobeniu transportného prudu na virové ¢iary. Pohy-
bujtice sa virové Giary vS8ak spdsobuji ohmické straty, t.j. zanik bezdisipativneho transportu naboja.
Podobne aplikicia Smykového napétia sposobuje pohyb dislokacii a néasledne plasticki deforméaciu, t.j.
stratu tvarovej paméti tuhej latky.

Strate zovSeobecnenej tuhosti a s ou asociovaného bezstratového transportu mozno predist za-
medzenim pohybu topologickych defektov. Casto pouzivanym spoésobom, ako dosiahnut tzv. kotvenie
tychto defektov, je zavedenie nepohyblivych bodovych defektov do systému.

Cvicenia

1. Nadrtnite singularne konfiguracie spinov v 2D modeli XY pre ¢ = +2.

2. Ukazte, ze v 3D Heisenbergovom modeli je energia jeza, t.j. konfiguracie m(x) = mx, kde m = |m| a X je jednotkovy
vektor v smere x, imerna lineArnemu rozmeru systému.

3. Ukazte, ze disklinacie Cy a Cs na obrazku 20 moZno spojito deformovat jednu na druht. Dalej ukéite, 7e zlozenim
dvoch disklinacii dostaneme trivialnu konfiguréciu.

4. Preco musi byt Burgersov vektor b mriezkovym vektorom? Névod: pouzite Volterrovu konstrukciu.

5. Odhadnite hrubku doménovej steny L v magnetoch. Navod: nech z je siradnica naprie¢ stenou a 6(x) nech je natocenie
parametra usporiadania v rovine yz. Plosna hustota energie doménovej steny nech je

o= /da: [A(d0/dz)* + K sin® 0] .

(Aky je fyzikdlny vyznam parametrov A a K?) Predpokladajte, ze 6(—L/2) = 0, 8(L/2) = 7w a ze 6(x) je linearnou
interpolaciou medzi tymito bodmi. Minimalizaciou o (L) najdite optimalnu hodnotu L.

6. Odhadnite energiu “viru s rezom” v 2D modeli XY, v ktorom sa spiny skrutia pri obehnuti okolo jadra o uhol o < 27r.

21 Topologické izolanty

Tradi¢na klasifikicia latok z hladiska elektrickych vlastnosti rozoznavala kovy, polovodice a izolanty.
Tato klasifikdcia vychadzala z obsadenia energetickych hladin elektronov vo vnuatri materialov. V tejto
prednaske ukazeme, Ze takato klasifikicia je netplné, pretoze neprihliada na topologické vlastnosti faz.
Pre jednoduchost sa pritom obmedzime na javy, ktoré mozno popisat v ramci jednocasticovej teorie.

Chernove izolanty

Objav kvantového Hallovho javu v roku 1980 ukézal, Ze v silnych magnetickych poliach moézu byt ma-
terialy hlboko vo svojom vnutri nevodivé, ale zaroven na ich povrchu mozu existovat dokonale vodivé
stavy. Dnes chapeme kvantovy Hallov jav ako Specialny (a historicky prvy) priklad tzv. Chernovych
izolantov - ¢iZze istych Specialnych dvojrozmernych materidlov, v ktorych absentuje symetria vzhladom
na otocenie ¢asu. V dalom vyklade explicitne ukdZzeme, Ze kvantovanie Hallovej vodivosti v Cherno-
vych izolantoch mé topologicky pévod.

Pasova struktara vo formalizme LCAO
Sktimajme pasova struktiru krystalu v jednoelektronovom pribliZeni. Za bazové stavy pritom vezmime
ortogonalizované atomarne stavy |R,j), ktoré vznikli z péovodnych atoméarnych stavov j v bunke R
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krystalu. O spinovom stupni volnosti pre jednoduchost neuvazujme. Predpokladajme, Ze baza stavov
IR, j) je ortonormélna. Hamiltonian pre elektron v krystali mozno v tejto baze pisat v tvare

H=- Z Z tij(R - RI)CRiCle,
ij R,R/
kde t;;(R—R’) je amplitada preskoku zo stavu |R/, j) do stavu |R, i) a s€itujeme cez vSetky usporiadané
dvojice stavov v krystali. Z hermitovskosti H pritom vyplyva, Ze t;;(R) = t,(—R).
Podla Blochovej vety jednocasticové vlastné stavy elektronov v krystaloch parametricky zavisia
od vInového vektora k. Metodou LCAO mozno tieto stavy hladat ako linearne superpozicie stavov®®

k,j) = =Y g ¢*RIR, j), ktorych kreaéné operatory st ch = \/LN >R eik'RcJﬁ’j. Hamiltonidn pre

N
elektron v krystali H = ), H (k) sa potom da vyjadrit ako sucet od k zéavislych hamiltonianov

H(k) =Y Hij(k)ef ;e
ij

s maticovymi elementmi H;j(k) = — Y g ti;(R)e ™R, pre ktoré plati H? (k) = H;j(k). Nech [n(k))
st normalizované od k zavislé vlastné stavy hamiltonianu H (k) z péasu n, t.j. nech |n(k)) sa rieSe-
niami Schrédingerovej rovnice H (k)|n(k)) = e (k)|n(k)). Da sa ukazat (pozri cvicenia), ze operator
rychlosti elektronu vy v podpriestore s fixovanym vlnovym vektorom ma tvar vy = %%—H Pre rychlost
elektronu vo vlastnom stave |n(k)) potom podla Feynmanovej-Hellmannovej vety dostavame vysledok
(n(k)|vg|n(k)) = %%(n(k)\f[(k)\n(k)) = %aeglgk), v zhode s kvaziklasickym vyrazom pre grupovii
rychlost.

Chernovo ¢éislo
Skumajme dvojrozmerny krystal so Stvorcovou Bravaisovou mriezkou a mriezkovou konstantou a. V

takom pripade lezia vektory k v Brillouinovej zéne k € (=7, %) x (=7, 7}, ktora je vdaka periodi¢nosti

a’a
hamiltonianu H (k) ekvivalentna s dvojrozmernym torusom 7T». Po¢itajme zmenu fazy Ay stavu |n(k))

pri infinitezimélnej zmene k — k 4+ Ak:
(n(k)|n(k + Ak))

iAp
= () (ke + AK)[ (%0)

Taylorovym rozvojom do 1. rddu podla Ak dostaneme |n(k + Ak)) = |n(k)) + Ak - |[Vin(k)). Ak
vyuzijeme, Ze stavy |n(k)) st normované, Tahko nahliadneme, Ze maticovy element (n(k)|Vgn(k)) je
rydzo imaginarny (pozri cvicenia). Preto do 1. radu podla Ak plati |[(n(k)|n(k + Ak))| = 1, odkial
vyplyva Ay = Ak - A(k), kde sme zaviedli tzv. Berryho konexiu

A(k) = —i(n(k)[Vin(k)) = Im [(n(k)|Vin(k))] (91)

Rozdiel faz A samozrejme zavisi od volby faz vinovych funkcii |n(k)): pri kalibra¢nej transformacii
In(k)) — e?®|n(k)) sa Ap zmeni na Ap+0(k+Ak)—60(k). Pomocou veliciny Ap dalej definujme tzv.
Berryho fazu v = )~ Ay ako zmenu fazy pri prenose pozdlz uzavretej Giary C' v k-priestore. Lahko
nahliadneme, Ze tato veli¢ina uz od volby faz nezéavisi (pozri cvicenia) a dostaneme pre fiu vysledok

y = qu dk - A(k). (92)

7 jednoznac¢nosti vinovej funkcie pritom vyplyva, ze v = 27v, kde v je celé ¢&islo. Nenulové hodnoty
parametra v s pritom moZné iba v pripade, ked sa vnutri oblasti ohrani¢enej ¢iarou C' nachadzaja
singularne konfiguracie pola A (k), ktoré obsahuju viry.

Ak za krivku C' vezmeme hranicu Brillouinovej zény 0BZ, potom integralnu charakteristiku v
studovaného pasu nazyvame Chernovym ¢islom. Chernovo ¢islo budeme poéitat z rovnice (92) pomocou
Stokesovej vety

1%

L[ e [8Ay an} 1

_ 1 _ _ L 2
N 2w BZ 8]4355 8/€y 2w /;Zd kB(k)7 (93)

58 Takymto sposobom sme napriklad v prednéaske I1.2 skamali pasovi struktiru kremika.
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kde integrujeme cez celt Brillouinovu zénu. Zaviedli sme pritom tzv. Berryho krivost B(k), pri¢om

on | On on | On
Bk)=—1 — ) —( = .
(k) ' [<akw 6ky> <8ky Oky >}
Berryho krivost méa nenulovii hodnotu iba v jadrach virov Berryho konexie.

Dvojrozmerné izolanty s nenulovou hodnotou v v niektorom z pasov nazyvame Chernove izolanty.
D4 sa ukazat, Ze pripad v # 0 nemodze nastat v systémoch, ktoré si symetrické pri otoceni casu.

Hallova vodivost

Pomocou poruchovej tedrie teraz vypocitame prispevok plne obsadeného pasu dvojrozmerného mate-

rialu k Hallovej (prie¢nej) vodivosti op a ukadZeme prekvapivy vysledok, ze oy nemusi byt nulové.
Predpokladajme, Ze v systéme existuje elektrické pole E v smere osi y a pocitajme prudovi hustotu

72 v smere osi x. Elektrické pole posobi na elektrony poruchovym potencidlom V = eFy, v pritomnosti

ktorého sa vinové funkcie |n(k)) do 1. rddu zmenia na

[n(k) = [n(k)) + = (K

mK

kde ¢iarka nad sumou vyluc¢uje prispevok mK = nk. Nech skiimany systém mé rozmery L x L. Potom
(jednoelektronové) operatory pridu a pridovej hustoty v smere osi st I, = —ev, /L a j, = —ev, /L?.
Prispevok plne obsadeného pasu k priadovej hustote v priecnom elektrickom poli preto je

() = = gz S0l

Ak teraz vyuzijeme explicitny tvar vlnovych funkcii |7~I1?)> a uvazime, ze pre F = 0 v systéme prad
netecie, dostaneme vysledok (j,) = ogF, kde pre Hallovu vodivost op plati

Vg |lm m(K)|y|n(k n(k)|y|m(K)) (m(K)|v, |n(k
oy = L2ZZ[ k)| | ()><()\y|()>+<()|y\ (K)) (m(K)|ve|n(k))

kX K (k) — em(K) en(k) —em(K)

V dalgom vyklade ukdZzeme, ze Hallova vodivost oy je tmernd Chernovmu ¢éislu v skimaného pésu.
V prvom kroku si uvedomime, Ze pre operator rychlosti plati v =x = #[X, H], preto

(n(k)|v|m(K)) = %m(k)\X!m(K» [em (K) = en(K)],

kde sme vyuzili, ze stavy |m(K)) a |n(k)) st vlastné stavy hamiltonianu H. Ak pomocou tejto identity
vyli¢ime maticové elementy operatora suradnice z vyrazu pre og, dostaneme vysledok

ihe? i~ () s m (K)) (m (K)o, [n(k)) — (n(k)[v, m(K)) (m(K)|vs|n(k))
L2 Zk:; [en (k) — em (K)]?

Ak dalej pouzijeme identity%?

(m(K)|vi|n(k)) = %[an(k)—fm(K)] (m(K)|Vin(k)),
(n(k)[vim(K)) = %[%(k)—sm(K)] (Vien(k)|m(K)),

vyraz pre priecnu vodivost mézeme prepisat do tvaru

o= ST ) (] ) () (o] )]

k mK
%9Vychadzajme z rovnice H(k)|n(k)) = en(k)|n(k)) a zlava na fiu aplikujme operator 3 Vi. Vysledkom tejto operécie
je Vin(k)) + 3+ H|Vin(k)) = va(k)[n(k)) + 1 &n (k)| Vin(k)). Pouzili sme pritom, Ze Vi = 1VkH( ) je operator rychlosti
(pozri cvidenia) a v, (k) = 3 Vken(k) je rychlost elektrénu v stave |n(k)). Ak si uvedomime, Ze [m(K)) je vlastnym
stavom operatora H, nasobenim zlava vyrazom (m(K)| odtialto dostaneme prvu identitu. Druhé identita vyplyva z
prvej identity a z pozorovania, Ze operator vk je hermitovsky, kedZe aj hamiltonian H (k) je hermitovsky.
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Teraz si vSimnime, Ze sumu cez mK mozno doplnit o stav |m(K)) = |n(k)), ktory k sume aj tak
neprispieva, kedze maticovy element (n(k)|Vgn(k)) je rydzo imaginarny a ¢leny v hranatej zatvorke
sa navzajom vyru$ia. Ak dalej vyuZijeme tplnost stavov mK a prejdeme od sumécie cez k k integracii,
dostaneme napokon

_621 k_€2 22k k_€2

UH_hLQZk:B()_%h BZ B()—%V,

kde v je Chernovo ¢islo (93) studovaného pasu. To vS8ak znamend, Ze priena vodivost Chernovho
izolantu s plnymi pasmi je nenulova, pricom jej velkost je celo¢iselnym nasobkom fundamentéalnej
vodivosti €2 /h, presne ako pri kvantovom Hallovom jave!

Vypocet, ktory sme prezentovali, predpoklada, Ze Studovanéd dvojrozmerna vzorka nema povrch,
t.j. je zvinuta do torusu. D4 sa vSak ukazat, Ze aj vo fyzikalne relevantnejSom pripade konec¢nej vzorky
s povrchmi je prieéna vodivost kvantovana. V takom pripade tento vysledok mozno vysvetlit, presne
ako pri kvantovom Hallovom jave, pritomnostou dokonale vodivych stavov v blizkosti rozhrani medzi
Chernovymi izolantmi s réoznym v. gpecialnym pripadom takychto rozhrani je rozhranie medzi Cher-
novym izolantom a vakuom (ktoré je trvidlnym izolantom s v = 0).

Priklad: jednoduchy dvojpasovy model
Skumajme dvojpésovy model pre elektrony na stvorcovej mriezke, pricom v kazdom bode R sa nachidza
dvojica atomérnych orbitalov 1/117; = (¢Rr, xr). Hamiltonian modelu nech ma tvar

Hyr = mrTs¥r + To¥Raa + TJ VR0 + TyUray + T, Ry, (94)

kde sme zaviedli oznacenie

1 0 1/ 1 —i 1/1 -1
75_(0 —1)’ 75”‘2(—1' —1)’ 75_2(1 —1)'

V jednoduchom translacne invariantnom pripade s mg = m st rieSenim Schrédingerovej rovnice
(SchR) Hir = eypr rovinné viny ¢§ = (¢, x)e’* R s vlnovym vektorom k a SchR nadobudne tvar

() (5)

kde od k zavisly hamiltonian ma tvar H(k) = h(k) - o, pricom o? = (¢%,0Y,0%) st Pauliho matice
a h(k)T = (sin kg, sin k,, m + cosk; + cosky). Vlastné energie problému potom st £(k) = £|h(k)| a
parametricky zavisia od hodnoty parametra m. Lahko nahliadneme (pozri cvifenia), Ze medzi pasmi

zakazdym existuje kone¢na energetickd medzera, okrem pripadov m = —2, m = 0 a m = 2, kedy me-
dzera v spektre neexistuje. Explicitny vypocet ukazuje (pozri cvicenia), Ze pre —2 < m < 0 nadobuda
Chernovo ¢islo dolného pasu hodnotu v =1 a pre 0 < m < 2 je v = —1, kym pre ostatné hodnoty m

plati v = 0. K zmene Chernovho ¢isla teda prichadza pri tych hodnotach parametra m, pri ktorych sa
energetickd medzera zatvara.

Povrchové stavy

Sktimajme dalej ten isty model (94), ale s pomaly a monotonne sa meniacim parametrom mg, ktory
zavisi od stradnice z. Predpokladajme pritom, Ze pre x — —oo plati mr < —2, ¢o zodpovedi Cher-
novmu ¢islu v = 0. Podobne pre z — +00 nech —2 < mg < 0, ¢o zodpoveda Chernovmu ¢islu v = 1.
KedZe zmena Chernovho ¢isla v je mozné, len ak medzera v spektre neexistuje, v okoli mg ~ —2, t.j.
na rozhrani oblasti s r6znymi Chernovymi ¢islami, o¢akavame existenciu povrchovych stavov s energiou
~ 0. D4 sa nahliadnut, Ze tieto stavy su chirélne, t.j. beZiace iba jednym smerom, podobne ako hranové
stavy pri kvantovom Hallovom jave. Tieto stavy prispievaji k Hallovej vodivosti a st dokonale vodivé.

Topologické izolanty

7 hl'adiska pasovej tedrie sit Chernove izolanty obycajné izolanty, avSak topolédgia ich pasovej struktury
(kone¢né Chernovo ¢islo v) zabezpecuje, Ze na rozhraniach medzi Chernovymi izolantmi a topologicky
trividlnymi materialmi (napr. vakuom) existuji dokonale vodivé povrchové stavy. Kvalitativne podobné
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spravanie - t.j. konecné energetickd medzera v spektre vnitri materidlu a excitécie s nulovou excita¢nou
energiou v blizkosti povrchov - sa realizuje v celej triede novych materialov, tzv. topologickych izolan-
tov. Ich nazov zohl'adnuje, Ze podobne ako pri Chernovych izolantoch, méa toto vynimoc¢né spravanie
topologicky pdvod.

Cvicenia
1.* Ukéite, ze vic = +VicH (k) je operator rychlosti v podpriestore stavov typu LCAO s vinovym vektorom k. Navod:

Najprv ukazte, Ze %(ckicm) #[ckicm, H| = 3" g/; jri,r/j- Preto operéator

JRi R/ = % |:tij (R—R)ch,crj — ti;(R— R')ck,jcm}
mozno interpretovat ako pravdepodobnost preskoku z orbitalu R’j do orbitédlu Ri za jednotku ¢asu. Operétor rychlosti
definujte vztahom v = 55 > rir; Jrirj(R — R'), pretoze preskoky medzi orbitdlmi R'j a Ri maju dizku R — R’;
faktor 2 v menovateli zohladhuje skutoc¢nost, ze kazda dvojica orbitilov je zapoc¢itana dvakrat. Prechodom do k-priestoru
napokon ukézte, ze plati v =+ >, Vi H(k), &b.t.d.

2. Nech |n(k)) st normalizované stavy zavislé od parametra k. UkaZte, Ze maticovy element (n(k)|Vin(k)) je rydzo
imaginarny.

3. Ukazte, ze Berryho faza definovana vztahom (92) nezéavisi od volby kalibracie.

4. Skimajte model (94) v homogénnom pripade mg = m.

a) Ukazte, ze spektrum neobsahuje energetickti medzeru, iba ak m = —2, m =0 a m = 2.

b)* Najdite tvar Berryho konexie pre dolny pas a vypoéitajte Chernovo &islo ako funkciu m.

22 Zaver

V tomto kurze sme vylozili zékladné myslienky tzv. Landauovej-Andersonovej paradigmy. V poslednej
prednagke najprv struéne zrekapitulujeme kltacové body tejto paradigmy a na zaver sa zmienime o
niektorych novych javoch, ktoré idd nad jej rdmec.

Paradigma Landaua-Andersona

Z mikroskopického hladiska si latku za beZnych laboratérnych podmienok moZno predstavit ako ob-
rovsky subor jadier a elektronov. Ak hmotnosti jadier a elektronov oznac¢ime m; a ich naboje ¢;, a ak
zohladnime iba elektrostatické interakcie medzi Gasticami, potom hamiltonian latky H ma tvar

_ 4g;
95
2ml Z dreo|x; — x5 (95)

Veri sa, ze model (95) predstavuje “velkt zjednotent teoriu” fyziky tuhych latok: vSetky pozorované
javy by malo byt mozné vysvetlit v ramci tohto modelu.”™ Ich fenomenolégia je pritom velmi bohata.
Pozorované bolo mnozstvo roznych faz, ktoré sa navzajom lisia fyzikalnymi vlastnostami, napriklad me-
chanickymi, elektrickymi, alebo magnetickymi. Ustrednou otézkou fyziky tuhych latok je, ako vznika
tato komplexna fenomenologia. Na tuto otdzku dava odpoved teoria, ktori nacrtol Landau a zavisil
Anderson.

Efektivne hamiltonidny a renormalizacnd grupa

Z hladiska termodynamiky sa jednotlivé fazy lisia spravanim v dlhovinnej a nizkoenergetickej limite.
Vlastnosti v tejto limite popisuji efektivne hamiltonidny, ktoré vznikaji postupnym eliminovanim
kratkovinnych a vysokenergetickych stupnov volnosti. Vieobecné procedira, ktorou mozno takéto od-
stranenie dosiahnut, sa nazyva renormaliza¢né grupa. Relevantné stupne volnosti pritom mozu zéavisiet
od energetickej skaly: napriklad Hubbardov model je efektivnym modelom pre jeden péas elektrénov
So spinom % a nadbojom —e. V limite silnych interakcii pri polovicnom zaplneni pasu je jeho nizko-

1

energetickym efektivinym modelom antiferomagneticky Heisenbergov model pre castice so spinom 3 a

OV mnohoelektrénovych atémoch, v ktorych je rychlost elektrénov porovnatelna s rychlostou svetla, viak treba
zohl'adnit relativistické korekcie. Podobne pri opise optickych javov je potrebné zahrnut vézbu elektréonov s prie¢nym
elektromagnetickym polom a pri §ttudiu magnetizmu hraja rolu aj interakcie spinov s magnetickym polom a/alebo s
orbitalnym pohybom.



88 22 ZAVER

nabojom 0, ktorého nizkoenergetickou limitou je zas model spinovych vin, t.j. nenabitych bozonov.

Klasifikdcia fdz

V ramci paradigmy Landaua-Andersona sa jednotlivé fazy odlisuju symetriami, ktoré mézu byt niZsie,
nez symetrie pohybovych zakonov. V takom pripade hovorime o spontdnnom narusen{ symetrie, ktoré
mozno kvantifikovat lokalnymi parametrami usporiadania, t.j. veli¢inami, ktoré mozno ur¢it meraniami
v kone¢nom okoli studovaného bodu. Parametre usporiadania sa spravaju ako klasické (nekvantové)
polia.

Fyzikdlne vlastnosti fdz

V stave s najnizSou volnou energiou obvykle jednotlivé fazy vykazuju aj tzv. usporiadanie na dlha
vzdialenost, t.j. symetria je naruSend rovnakym spésobom v celej vzorke. Ak bola naruSené spojita
symetria, potom nérast volnej energie spdsobeny (pomalou) priestorovou nehomogenitou parametra
usporiadania mozZno popisat pomocou zovseobecnenej tuhosti. Existencia kone¢nej zovieobecnenej tu-
hosti garantuje bezdisipativny transport veli¢iny zdruzenej s parametrom usporiadania. V excitacnom
spektre takychto systémov existuji nizkoleziace kolektivne mody s nulovou energiou v dlhovlnnej li-
mite, tzv. Goldstoneove mody.”t Pole parametra usporiadania moze obsahovat aj tzv. topologickeé
defekty, t.j. také nekonstatné konfiguracie parametra usporiadania, ktoré nemozno odstranit pomocou
spojitych deformacii. Takéto defekty podstatnym sposobom ovplyviuji zovieobecnent tuhost systému.

Adiabatickd kontinuita

Veri sa, ze efektivne modely s rovnakou symetriou mozno spojito (adiabaticky) deformovat jeden na
druhy. Preto je uzitotné v kazdej triede symetrie identifikovat jednoduchého reprezentanta tejto triedy
a vlastnosti ostatnych ¢lenov triedy dalej skiimat poruchovou teériou so zvolenym reprezentantom ako
Startovacim bodom.

Z00 pozorovanych faz
V tomto odstavei budeme klasifikovat fazy podla ich mechanickych, elektrickych a magnetickych vlast-
nosti. Nag vyklad vSak nem4 ambiciu podat vycerpavajuci prehlad vsetkych pozorovanych faz.

Z hladiska mechanickych vlastnosti je trividlnou fazou plyn, ktory sa od v8etkych ostatnych faz 1isi
tym, Ze nejde o viazany stav Castic. Plyny a kvapaliny (sthrnne tekutiny) sa zas od vSetkych ostatnych
faz liSia tym, Ze v nich nie st spontdnne naruSené Ziadne symetrie. Popis vybranych faz a ich vlastnosti
uvadzame v tabulke 3. V tabulke neuvadzame napr. kvapalné krystély, pretoZe na ich popis by bolo
potrebné zaviest dalsie pojmy.

7 hladiska elektrickych vlastnosti rolu plynu hraja izolanty, t.j. fazy bez volnych nabojov pri
teplote T' = 0. Ostatné fazy maja konetné nabojové hustoty. Izolanty a kovy st jedinymi stavmi bez
spontéanne naruSenej symetrie, na rozdiel od ostatnych faz, ktoré mozno vnimat ako kovy s narusenymi
symetriami. V tabulke 4 z takychto faz uvadzame iba supravodice, existuja vSak aj fazy, v ktorych
elektrony spontanne narisaju priestorové symetrie (translacie, rotacie) krystalickej mriezky.

Z hladiska magnetickych vlastnosti rolu plynu (alebo izolantu) hraju diamagnety, t.j. fazy bez
voInych magnetickych momentov pri teplote T' = 0. Ostatné fazy maju koneéné hustoty magnetickych
momentov. Diamagnety a paramagnety si jedinymi stavmi bez spontanne naruSenej symetrie, na
rozdiel od ostatnych faz, ktoré mozno vnimat ako paramagnety s naruSenymi symetriami. V tabulke 5
z takychto faz uvadzame len tie, o ktorych sme hovorili v tomto kurze. Vynechéavame teda napr. vSetky
magneticky usporiadané fazy kovov.

Klasifikdciu faz z hladiska elektrickych a magnetickych vlastnosti mozno zlacit. O obidvoch kla-
sifikdciach predovietkym plati, Ze sa zameriavaju vyluéne na elektronové stupne volnosti,”? opierajic
sa 0 Bornovu-Oppenheimerovu separaciu elektronovych a iénovych stupiiov volnosti. Podla (jedno-
elektronovej) pasovej teorie v8ak existuju iba dve moznosti: izolanty (ktoré st obvykle diamagnetické)

"I Toto tvrdenie plati iba pre dostatoéne kratkodosahové sily. Napriklad v nabitom supravodi¢i medzi elektrénmi poso-
bia dalekodosahové sily a v ich désledku v takomto systéme neexistuje Goldstoneov mod a kolektivne kmity kondenzatu
sa realizuju na (koneénej) plazmovej frekvencii - tento jav sa nazyva Andersonov-Higgsov mechanizmus.

"2Toto obmedzenie nie je celkom opodstatnené. Napriklad pri velmi nizkych teplotach boli pozorované aj magneticky
usporiadané fazy jadrovych spinov.
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a kovy (ktoré st obvykle paramagnetické). Vetky ostatné fazy z tabuliek 4 a 5 moZno chapat ako
nestability kovu. V pripade supravodivosti je to zrejmé z tohto kurzu, kym rézne magnetické izolanty
su nizkoteplotnymi fazami Mottovych-Hubbardovych izolantov.

Zovseobecnend tuhost jednotlivych faz, ako aj s fiou asociovany bezdisipativny transport, si po-
tla¢ené pritomnostou defektov. V tabulkach 3,4,5 uvadzame iba tie defekty, ktorych stabilita je garan-
tovana topoldgiou. Neuviadzame napriklad hranice zfn v polykrystéloch, hoci za beznych podmienok
st tieto defekty vd'aka pomalosti diftiznych procesov stabilné. V procese zihania vSak mozu velké zrna
rast na tkor malych, pretoze stabilita doménovych stien v krystaloch nie je kontrolovana topoléogiou.

Fazové prechody

Podla velkosti skoku entropie AS v bode fazového prechodu (alebo skupenského tepla prechodu)
fazové prechody delime na spojité, pri ktorych AS = 0, a nespojité, kedy AS # 0. Pri spojitych
fazovych prechodoch sa obvykle zucastnené fazy A a B liSia symetriou, pricom symetria fazy A s
nenulovym parametrom usporiadania je podgrupou symetrie fazy B. Bod fazového prechodu oddeluje
oblasti stability faz: na jednej strane prechodu je lokalne stabilné iba faza A, kym na opacnej strane
prechodu je lokalne stabilné iba faza B. Preto nemoze dochadzat k prehriatiu a podchladeniu, ani k
hysterézii. Pri priblizovani k bodu prechodu zo strany nesymetrickej fazy A v nej vznikaju oblasti s inac
nez majoritne orientovanym parametrom usporiadania, ktorych rozmer £_ rastie, az v bode prechodu
& — 00 a vSetky orientacie parametra usporiadania st rovnako pravdepodobné. Naopak na strane
symetrickej fazy B v nej vznikaju zarodky usporiadanej fazy A o velkosti &, pricom rozne zarodky
maju rozne orientovany parameter usporiadania. Pri priblizovani k bodu prechodu &, rastie, az v bode
prechodu &4 — oo a jedna z orientécii parametra usporiadania za¢ne dominovat. Korelacné dlzky &4
rastt ako mocniny vzdialenosti od fazového prechodu, napriklad pri teplotou kontrolovanom prechode
s kritickou teplotou T, plati £ o< |T' — T.|™", obvykle s tym istym exponentom v v oboch fazach A aj
B. Aj dalgie fyzikalne veli¢iny vykazuji podobné spravanie, napriklad merné teplo diverguje podla ¢
|T — T.|~®, susceptibilita (t.j. zavislost parametra usporiadania od vonkajsieho pola) diverguje podla
X  |T = T,|~" a velkost parametra usporiadania (v usporiadanej faze) sa meni podla m o (T, — T)P.
Bezrozmerné ¢&isla «, 8, a v sa nazyvaju kritické exponenty. Platia medzi nimi tzv. Skdlovacie vztahy,
napriklad v d-rozmernom systéme plati

vd=2—a=20++.

Hodnoty kritickych exponentov zavisia od priestorovej rozmernosti systému d a od rozmernosti pa-
rametra usporiadania, ale nie od jeho fyzikalnej povahy. Rovnaké exponenty sa napriklad pozoruja v
blizkosti kritického bodu prechodu kvapalina-plyn (pozri prednasku 1.3; v tomto pripade je paramet-
rom usporiadania rozdiel hustot pozdlz krivky nasytenych par) a pri T, feromagnetu s lahkou osou
magnetizacie MnFy. Fazové prechody teda vytvaraja triedy univerzality. Obidva spominané priklady
maji jednorozmerny parameter usporiadania, podobne ako Isingov model. Ich trieda univerzality je
teda tzv. 3D Isingovho typu s exponentami

a ~ 0.110, B8~ 0.326, v~ 1.237, v~ 0.630,

ktoré mozno najst napr. technikou renormaliza¢nej grupy. Tieto exponenty maji iné hodnoty ako
predpovede teorie stredného pola (alebo Ginzburga-Landaua)

1 1
aymr = 0, BMF = 2’ ymr = 1, VMF = 5

ktoré nezavisia ani od d, ani od rozmernosti parametra usporiadania.

Nespojité fazové prechody nazyvame aj prechodmi 1. druhu. V tomto pripade bod prechodu nie je
ni¢im vynimod¢ny ani pre fazu A, ani pre fazu B: napriklad na obidvoch stranach prechodu su lokalne
stabilné obidve fazy. Bod prechodu je vyznac¢ny iba tym, Ze sa v iom rovnaji volné energie faz A a B,
a teda na roznych stranach prechodu sa globalne stabilné rozne fazy. Pri prechodoch 1. druhu preto
moze dochadzat k prehriatiu a podchladeniu, ako aj k hysterézii. Kritické spravanie sa pri nespojitych
prechodoch nepozoruje: faza A sa premiefia na fazu B nuklea¢nym mechanizmom. O symetrii faz A,B
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nemozno vo vSeobecnosti ni¢ povedat, napriklad symetria jednej fizy nemusi byt podgrupou symetrie
druhej fazy™ - v takomto pripade sa neda hovorit o symetrickej a nesymetrickej faze.

V prirode sa obcas realizuju aj tzv. slabé prechody 1. druhu. V takomto pripade prechod vyzera
ako spojity, ak nie sme vo velmi tesnej blizkosti k bodu prechodu. Vel'mi blizko prechodu sa vSak rast
korelaénych dizok ¢ zastavi. V bode prechodu potom ¢ nadobtida koneéné hodnoty a existuje v fiom
maly, ale kone¢ny skok entropie AS.

Topologické fazy a topologické fazové prechody

V ramci paradigmy Landaua-Andersona st vlastnosti faz diktované narusenymi symetriami. Na pri-
klade 2D modelu XY sme v8ak videli, Ze nenulova tuhost je mozna aj v systéme bez spontanneho
naruSenia symetrie. V tomto pripade kone¢nu tuhost zabezpecuje absencia volnych topologickych de-
fektov (virov a antivirov) a prechod do tekutej vysokoteplotnej fazy s volnymi topologickymi defektmi
nazyvame topologickym fazovym prechodom.

Dal$im prikladom netplnosti paradigmy Landaua-Andersona je kvantovy Hallov jav, alebo vSeobec-
nejsie Chernove izolanty. 7 hladiska pésovej teorie ide o oby¢ajné izolanty, avSak kone¢nost Chernovho
¢isla (t.j. topologicka vlastnost) zabezpecéuje kvalitativne nové spravanie: existenciu dokonale vodivych
povrchovych stavov. Kvalitativne podobné spravanie - t.j. kone¢na energetickd medzera v spektre vnitri
materidlu a excitacie s nulovou excita¢nou energiou v blizkosti povrchov - sa realizuje v celej triede
novych materialov, tzv. topologickych izolantov. Ich nazov zohl'adiiuje, Ze podobne ako pri Chernovych
izolantoch, aj v tomto pripade mé pozorované vynimoc¢né spravanie topologicky povod.

"3Takato situacia méZe nastat napriklad pri truktirnom prechode medzi dvomi réznymi krystalickymi truktarami.
Inym prikladom je prechod z tuhého do supratekutého hélia.
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23 Dodatok

Priestorova Fourierova transformacia

Obvykle skimame systémy v tvare (velkého) rovnobeznostenu s objemom V a s periodickymi okrajo-
vymi podmienkami. Dovolené hodnoty vlnovych vektorov q st potom diskrétne a Fourierove transfor-
mécie pre ubovolna veli¢inu F(r) definujeme vztahmi

F(r) = % ) Fyelar,
q

Fourierovsky transformovant funkciu Fg teda obvykle oznacujeme tym istym pismenom ako pévodnu
funkciu F(r). Aby sme tieto dve rozne funkcie rozlisili, zavislost od vlnovych vektorov g piseme ako
index. Inverzna Fourierova transforméacia mé tvar:

F, :/d?’rF(r)eiq'r.

Casova Fourierova transformacia
K T'ubovolnej ¢asovo zavislej veli¢ine F(t) definujeme jej Fourierovu transforméciu F,, vztahom

© dw

F(t) = / — F e 1,

oo 2T

Inverzné Fourierova transformaéacia ma tvar:

F, = / dtF (t)e™".

—00

Stirlingova formula: pre n > 1 plati

Diagonalizacia hermitovskej matice 2x2

a b
n=( 50

prvky matice 2 x 2:

vlastné ¢isla:

vlastné vektory:
% _ L \/‘1 — A
X /)y V2 Ae™OVT+da )7

— — _ (cza)/2 i5 _
kde A = £1, a = e d ¢ b/|b|

Operator nabojovej hustoty
1. kvantovanie

p(r) = Zd(r —1j)

Fourierova transformaécia

Pq = E :e_zq'ri
i
druhé kvantovanie pre bezspinové Castice

Pa = Z aL—qak
Kk
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Operator pridovej hustoty pre ¢astice s hmotnostou m
1. kvantovanie

. 1
i(r) = o Z [Pid(r —1i) + 6(r — i) pi]
Fourierova transformacia )

druhé kvantovanie pre bezspinové castice

. h
ja= 5~ zk:(2k - q)aL_qak

Reprezentacia operatorov spinu pomocou elektrénovych operatorov
Nech S; a S; st operédtory spinu pre elektrony v ortogonalnych orbitaloch i a j. Pre tieto operatory
platia nasledovné komutacéné vztahy:

152, 87 = ieap0i;S].

Namiesto zloziek ST, S ¢asto pouzivame zvySovacie a zniZovacie operatory Sii =S¥ +14S?. Pre trojicu
operatorov S7, SijE platia komuta¢né vztahy:

[S7, 7] = £0;5S;7,  [S,S7] = 26,57

Na druhej strane, nech c}a a Cjq s krea¢né a anihila¢né operatory pre elektron v orbitali ¢ s priemetom
spinu «, a € (1, ), ktoré splhaju kianonické (anti)komutaéné vztahy:

{ciarcip} = {clpclgt =00 {ciarclg} = 6ijdas.
Pomocou c;ra a Cjo, MOZNo spinové operatory reprezentovat nasledovne:

1 _
Si = iczaaaﬂciﬁu S7,+ = C:IL'-TCLL’ Sl = Cchi)%

kde o = (0%,0Y,0%) je trojica Pauliho matic, ktorych explicitny tvar je

. (01 , [0 —i . (1 0
0_<10’ 7= \i o) 7 7\o0o 1)

identity pre Pauliho matice:

olo” +o"c" = 20,1

OaB " Oy5 = 25045557 — 5045575

skalarny sicin spinov:

1
Si-8; = 578} + 5 (SjS; + S;Sj*)

Atémové jednotky

dlzka: )
dmegh
ap = ——L — 05294
me
energia:
h? 1 e? 1 me?

=13.6eV

B = 2ma% - 2 4megag ) (4meph)?
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Statistickd mechanika: kanonicky stubor

kanonicky hamiltonian: H

kanonicka tatisticka suma: Z = Tre /T Z = Z(T,V, N)

rovnovazna matica hustoty: p = %e*H/ T

stredna hodnota veli¢iny X: (X) = TrpX

volna energia: = —TInZ; F = F(T,V,N)

logaritmovanie definicie p: —T'InZ =H +T'Inp

Statistickd fyzika: F' = —T'InZ = (H) + T(In p)

termodynamika: FF = E —TS

porovnanie Statistiky a termodynamiky: vnatorna energia E = (H), entropia S = —(lnp) = —Trplnp

OF oF oF
dF = —pdV — SdT + pdN; pz—() ; Sz—() ; ,uz()
NV )rn or )y y ON )1y

nech hamiltonian zavisi od parametra: H = H(\)
potom Z = Z(T,V, N, \) = Tre HN/T F = F(T,V,N,\) = =T In Tre /T
o0H

anal6g Feynmanovej-Hellmanovej vety: (g—f) = %Tr [%G_H(A)/T] ={ax

TV,N >T,V,N,/\

Statistickd mechanika: grandkanonicky stabor

grandkanonicky hamiltonidn: H = H — uN

grandkanonicka Statisticka suma: Z = Tre "/T;, 2 = Z (T,V, )

rovnovazna matica hustoty: p = %e‘H/T; preto —T'InZ=H — uyN +Tlnp

stredna hodnota velic¢iny X: (X) = TrpX

grandkanonicka volna energia: F = —T'InZ = (H)+T(Inp) — uw(N) = E - TS — uN
entropia: S = —(lnp) = —Trplnp

oOF OF OF
F=FT,V,u); dF =—pdV—SdT—Ndu; p=— <) ;7 S =-— <> i N=-— (>
wV)r, or)y, o) ry

nech hamiltonian zavisi od parametra: H(\) = H(A) — uN
anal6g Feynmanovej-Hellmanovej vety: (%\T)TV u = <%>TV A

veta o malych prirastkoch pri zmene 6H: (0F) 1y y = (6H)py y\ = (6H)py 5 = (0F )7y,

Feromagneticky Heisenbergov model

Sktmajme feromagneticky Heisenbergov model H = —J ) (i5) S;-S; pre spiny S = % na hyperkubickej
mriezke s A spinmi. Lahko nahliadneme, Ze za zakladny stav takéhoto modelu mozno vziat akykolvek
homogénny stav so spinmi spontanne zamrznutymi v smere n, napriklad stav |0) so v8etkymi spinmi 1,
kedy n = (0,0, 1). Zjavne ide o stavy so spontanne narusenou rota¢nou symetriou v spinovom priestore.
Stoji za zmienku, Ze feromagneticky Heisenbergov model v spontanne zmagnetizovanom stave v smere
n sice nie je symetricky vzhladom na vSetky otocenia, ale ma zbytkova spojitt symetriu: je totiz
symetricky voc¢i oto¢eniam okolo osi n.

Parametrom usporiadania pre feromagnet bude M = ﬁ > S, pricom bude platit (M) = n. Ked7Ze
[M, H] = 0, parameter usporiadania je zachovavajucou sa veli¢inou. Vdaka tejto skutocnosti kvantové
fluktuacie absentuji a pri teplote T = 0 dochadza (na rozdiel od antiferomagnetického modelu) k
spontdnnemu narusSeniu symetrie aj na jednorozmernej mriezke.

Celkovy spin zakladného stavu |0) a jeho priemet na os z si S = S, = N /2. V dalsom vyklade
sa ststredme na Sttdium stavov s projekciou celkového spinu S, = N/2 — 1. V tomto podpriestore
existuje N konfiguracii, ktoré dostaneme zo stavu |0) preklopenim jediného spinu v l'ubovolnom bode R
mriezky. Takéto konfiguracie ozna¢ime |R). KedZe hamiltonian komutuje s operatorom S, vysledkom
posobenia operatora H na konfiguraciu |R) musia byt konfiguracie z podpriestoru S, = N /2 — 1.
Explicitny vypocet ukazuje, ze

Z QZ '] — — ZJ J R
HR)=-J) SiS;IR) - 5 D (S8 + 87 SHIR) = <EO + 2) R) -3 > IR+ 7),
(ig) (i5) 7
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kde z je koordinac¢né ¢islo mriezky, t.j. pocet najblizsich susedov na mriezke,”* Ey je energia zédkladného
stavu |0) a 7 oznacuje z spojnic mriezkového bodu s jeho najblizsimi susedmi. Teda vdaka preklapaniu
spinov sa na stav |R) méZeme pozriet ako na ¢asticu pohybujicu sa cez mriezku. Ak predpokladdame
periodické okrajové podmienky, problém moZno diagonalizovat Fourierovou transformaciou:

) = \/ﬁv;ezk'f‘m HI = (B +adlkh k= -l me=1 3 e*7.
Vlastné stavy |k) nazyvame spinovymi vinami. N4 vysledok pre energiu spinovej viny e je identicky s
vysledkom klasického vypoctu pri T = 0.7 Spinové vina nesie kvazihybnost k, ktora je pozorovatelna
v rozptylovych experimentoch podobne ako pre fonény.”® V dlhovinnej limite & — 0 pre energiu
magnonov plati e — 0, ide teda o Goldstoneov mod.

Teraz ukazeme, Ze vysledok ¢x — 0 v dlhovlnnej limite je prirodzenym doésledkom naruSenia sy-
metrie. Naozaj, projekcia celkového spinu S, v stave |k) je o¢ividne S, = N'/2—1. Aky je vSak celkovy
spin v stave |k)? Z kvantovej mechaniky vieme, Ze spomedzi N stavov s S, = N /2 — 1 iba jeden stav
mé celkovy spin S = AN/2 a ostatné stavy majuo S = N /2 — 1. Stav s celkovym spinom S = N/2
dostaneme aplikiciou znizovacieho operatora celkového spinu S~ na stav |0). Lahko nahliadneme, ze
takto dostaneme “spinovi vinu” |k = 0). Ukéazali sme teda, Ze stav |k = 0) nie je excitovanym stavom.
V skutocnosti je to stav degenerovany so stavom |0), s tym rozdielom, Ze kym v stave |0) je S, = N/2,
v stave |k = 0) je to S, = N /2 — 1. Tym sme dokazali, Ze spinova vlna je Goldstoneov mod, podobne
ako v antiferomagnetickom modeli. Av8ak, na rozdiel od antiferomagnetického modelu, vo feromag-
netickom modeli so zachovavajicim sa parametrom usporiadania ma Goldstoneov méd v dlhovlnne;j
limite energiu ej, o< k2.

Dalsim posobenim znizovacieho operatora S~ na stav |k = 0) by sme dostali dalsi z degenerovanych
zékladnych stavov s celkovym spinom S = N/2 a projekciou S, = N /2 — 2, atd. Posledny stav, ktory
takto dostaneme, obsahuje vSetky spiny natofené nadol, teda S, = —N/2. Na druhej strane, stavy
k) s k # 0 maja kvantové ¢isla S = S, = N/2 — 1. Mézeme ich teda interpretovat ako pritomnost
Castice so spinom S = 1, tzv. magnénu. Krea¢né a anihila¢né operatory pre magnony mozno definovat
vztahmi

1 : 1 )
aL = \/—N ; e’k'RSﬁ; ax = \/—N ; e_’k'RS;E; [ak,aq] = [CLL, afq} =0
Komuta¢né vztahy pre magnoéonové kreacné a anihila¢né operatory sa podobaji na bozénové vztahy,
ale s jednou vynimkou:

[abag} _ % Z o~k R igR/ (S5, 5] = %Z cilaRgz %Z SC SR
R.R/ R R

kde sme vyuzili, ze [Sﬁ, Sﬁ,] = 0R,R/ Sk - Priblizné rovnost plati, iba ak mézeme operator Sg nahradit
¢islom 1/2, t.j. v zdkladnom stave a pre stavy s malym po¢tom magnonov.

Podobnym spésobom moZno postupovat pri stidiu sektorov s niz&imi S,. Napriklad pre S, =
N/2 — 2 dostaneme {N(N — 1) konfiguracii. Jeden stav ma celkovy spin S = N/2 a zodpoveda
dalgiemu z degenerovanych zakladnych stavov. N — 1 stavov s celkovym spinom S = N/2 — 1 do-
staneme aplikovanim znizovacieho operatora S~ na N — 1 spinovych vin; kedze agaum = aLa%]O),
mozeme tieto stavy povaZovat za (oto¢ené) jednomagnonové stavy. Zvy$né stavy maji celkovy spin
S = N/2—2 amozno ich povazovat za dvojmagnonové stavy. Magnony v tychto stavoch navzajom in-
teragujua, ¢o vedie ku koneénym dobam Zivota, ako aj k vzniku viazanych stavov. Podrobnejsiu diskusiu
o dvojmagnénovych stavoch ¢itatel najde napr. v Mattisovej knihe.

"Pre hyperkubické mriezky je z = 2D, kde D je rozmernost systému.
"5Pozri napr. 1.25.
"6Pozri napr. I1.8.
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