
SECOND QUANTIZATION

Consequences of indistinguishability

In quantum mechanics, identical particles are indistinguishable. In fact, even if we imagine
that originally all particles are numbered, if we observe a particle at some place after a
finite period of time, we cannot say with certainty which number it carries. This is because
in quantum mechanics the notion of particle trajectory loses its sense.

Because of this fundamentally new property, the wavefunction of a two-particle system,
ψ(1, 2) (where 1 and 2 are the coordinates -including spin- of particles 1 and 2) should be
physically equivalent to ψ(2, 1). This means the two wavefunctions may differ only by a
phase factor:

ψ(1, 2) = eiφψ(2, 1) = e2iφψ(1, 2), (1)

where in the second equation we have used the same argument once more. This means
in turn that e2iφ = 1, which can be realized in two ways: either eiφ = 1 or eiφ = −1.
It is an experimental fact that the first possibility is realized for particles with integer
spin (bosons), while the second possibility is realized for particles with half-integer spin
(fermions).

In condensed-matter physics, we consider electrons, protons, and neutrons as elemen-
tary particles. All of them have spin 1/2, i.e. they are fermions. So why do we speak
about bosons? At not too high energies, bound states of electrons, protons, and nucleons
can be considered as elementary. For instance, when dealing with liquid 4He at cryogenic
temperatures, we can safely neglect all the excited states of this atom. Now, since it
consists of an even number of fermions (2e+2p+2n), an exchange of two helium atoms
does not lead to a minus sign in the many body wavefunction, i.e. the atom 4He is a
boson. On the other hand, it is worth pointing out that the other stable isotope, 3He, is
a fermion, being composed of only five elementary particles (2e+2p+1n).

Let us start by considering the case when, in the system of interest, there is only one
particle. (For definiteness, we can think of a particle in a box L × L × L with periodic
boundary conditions, ϕ(x+L, y, z) = ϕ(x, y, z) and similarly in the y and z directions.) All
possible states of this particle form a Hilbert space. Let {|a〉, |b〉, . . .} be an orthonormal
basis of this Hilbert space. In the x-representation, the corresponding wavefunctions are
ϕa(x), ϕb(x), . . .

For a system with only one particle it is irrelevant, whether the particle is a boson or
a fermion. Now consider that we have many identical particles in the system. We have
seen that the cases of fermions and bosons should be treated separately.

Bosons

Consider first a system with two bosons in two different states |a〉 and |b〉. Then it is
easy to see that the normalised two-boson wavefunction (which must be symmetric under
exchange of the coordinates 1 and 2 of the first and second particle) reads

ψ1,1,0,...(1, 2) =
1√
2

[ϕa(1)ϕb(2) + ϕb(1)ϕa(2)] ,

where the index 1, 1, 0, . . . denotes that states |a〉 and |b〉 are populated with one particle
each, whereas all other one-particle states are empty. Now consider a general sytem of
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N bosons with N1 particles in the state |a〉, N2 particles in the state |b〉, etc. Then the
N -boson wavefunction which is symmetric under exchange of any two particles reads

ψN1,N2,...(1, 2, . . . , N) =

√

N1!N2! . . .

N !

∑

{P}

ϕP1
(1)ϕP2

(2) . . . ϕPN
(N), (2)

where P1, P2, . . . , PN is a permutation of N1 indices a, N2 indices b, etc. The sum is to be
taken over all different permutations. It is obvious that, once the basis of single-particle
states is fixed, the many-body states are completely determined by specifying the numbers
of particles occupying the single-particle states. Therefore instead of the wavefunction
ψN1,N2,...(1, 2, . . . , N) in x-representation we can talk about the state |N1, N2, . . .〉. Let us
show now that Eq. 2 is a normalised wavefunction:

〈N1, N2, . . . |N1, N2, . . .〉 =
N1!N2! . . .

N !

∑

{P,P ′}

∫

d1ϕ∗
P ′

1

(1)ϕP1
(1) . . .

∫

dNϕ∗
P ′

N
(N)ϕPN

(N)

=
N1!N2! . . .

N !

∑

{P,P ′}

δP1,P ′

1
. . . δPN ,P ′

N
= 1,

since the number of permutations is N !/N1!N2! . . .
Any N -boson state can be written as a linear superposition of states of the type Eq. 2

which are seen to form a complete orthonormal basis of the Hilbert space of N -particle
states.

From Eq. 2 one can see that the formula for the many-body wavefunction in x-
representation representation is quite cumbersome, although the physical content is sim-
ple: the wavefunction contains N1 particles in state |a〉, N2 particles in state |b〉, etc. In
what follows we introduce an equivalent and simpler language for the description of many
boson states:

• Let |0〉 be the vacuum state, i.e. a state without particles.

• Let ai and a†i be creation and annihilation operators for the single-particle state i
which satisfy the following (canonical) boson commutation relations:

[ai, a
†
j] = δij,

[ai, aj] = [a†i , a
†
j] = 0. (3)

• Since the vacuum state contains no particles, we require that ai|0〉 = 0 for all
single-particle states i.

Making use of the techniques introduced in Lecture 1, one finds readily that

|N1, N2, . . .〉 =
1√

N1!N2! . . .

(

a†a
)N1

(

a†b
)N2

. . . |0〉

is a normalized N -particle state describing the same physics as Eq. 2.
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Fermions

Let us consider now systems of many fermions. For two particles in one-particle states
|a〉 and |b〉, the wavefunction can be written

ψa,b(1, 2) =
1√
2

[ϕa(1)ϕb(2) − ϕb(1)ϕa(2)] ,

with notations similar as in the boson case. Note that, unlike in the boson case, if the
states |a〉 and |b〉 are equal, the wavefunction vanishes. This implies the famous Pauli
principle that two fermions can’t occupy the same quantum state. It should be stressed at
this point that the symbol 1 for the coordinates of the first particle should be understood
as a shorthand for both the spatial and the spin coordinate, 1 = (x1, σ1) (and similarly
for other particles).

In other words, the Pauli principle implies that the sequence of occupation numbers
N1, N2, . . . (where the ordering of the one-particle states is fixed once forever) may contain
only the numbers 0 and 1. One verifies easily that the general N -particle wavefunction
which is antisymmetric under exchange of any two coordinates reads

ψa1 ,a2,...,aN
(1, 2, . . . , N) =

1√
N !

∑

{P}

(−1)PϕP1
(1)ϕP2

(2) . . . ϕPN
(N), (4)

where ψa1,a2,...,aN
means that only the one-particle states |a1〉, |a2〉, . . . , |aN〉 are occu-

pied and the remaining states are empty. P1, P2, . . . , PN is a permutation of the states
|a1〉, |a2〉, . . . , |aN〉, and the factor (−1)P equals 1 and -1 for those permutations, which
can be arrived at after even and odd numbers of pair exchanges, respectively.

EXERCISE Show that the wavefunction Eq. 4 is normalized.
In what follows we adapt the method of second quantization to the case of fermions.

We start with the following definitions:

• Let |0〉 be the vacuum state, i.e. a state without particles.

• Let ci and c†i be creation and annihilation operators for the single-particle state i
which satisfy the following (canonical) fermion anticommutation relations:

{ci, c†j} = δij,

{ci, cj} = {c†i , c†j} = 0. (5)

(The anticommutator is defined as {X, Y } = XY + Y X.)

• Since the vacuum state contains no particles, we require that ci|0〉 = 0 for all single-
particle states i.

In what follows we will show that the basis states of the N -fermion Hilbert space,
Eq. 4, can be written in the following second-quantized form

|ψa1,a2,...,aN
〉 = c†a1

c†a2
. . . c†aN

|0〉.

In fact, N -particle states in which the fermions occupy different sets {a1, a2, . . . , aN} and
{b1, b2, . . . , bN} of single-particle states are orthogonal to each other. To see this, let us
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assume that the state b is contained in the set {b1, b2, . . . , bN} but not in {a1, a2, . . . , aN}.
We find

〈ψb1,b2,...,bN
|ψa1,a2,...,aN

〉 = 〈0|cbN
. . . cb2cb1c

†
a1
c†a2

. . . c†aN
|0〉 = 0,

since the annihilation operator cb can be moved to the right so that it is the rightmost
one of the 2N creation and annihilation operators (with possibly changing the sign of the
overlap), but cb|0〉 = 0. On the other hand, we find

〈ψa1,a2,...,aN
|ψa1,a2,...,aN

〉 = 〈0|caN
. . . ca2

ca1
c†a1
c†a2

. . . c†aN
|0〉

= 〈0|caN
. . . ca2

(1 − c†a1
ca1

)c†a2
. . . c†aN

|0〉
= 〈0|caN

. . . ca2
c†a2

. . . c†aN
|0〉

= . . .

= 〈0|0〉 = 1,

i.e. the state |ψa1,a2,...,aN
〉 is normalized. We have used that [c†a1

ca1
, c†aj

] = 0 for j 6= 1. Note
that all states a1, a2, . . . , aN must be different, otherwise |ψa1,a2,...,aN

〉 = 0 (since from the
anticommutation relations it follows c†ac

†
a = 0), i.e. the Pauli principle is satisfied. Finally,

let us note that if the set {b1, b2, . . . , bN} is a permutation of {a1, a2, . . . , aN}, then

〈ψb1,b2,...,bN
|ψa1,a2,...,aN

〉 = ±1,

the plus (minus) sign obtaining for an even (odd) permutation. Thus, the order of oper-
ators is not irrelevant as in the case of bosons.

EXERCISE Show that c†aca|ψa1,a2,...,aN
〉 = na|ψa1 ,a2,...,aN

〉, where na = 1 if the state a is
among the states a1, a2, . . . , aN and na = 0 otherwise. Thus the operator c†aca measures
the number of particles in the single-particle state a.

One-particle operators

Having defined the many-particle states in the language of second quantization, let us
discuss now how to express the operators in terms of creation and annihilation operators.
Let us start with the so-called one-particle operators F , which can be written as

F =
N

∑

i=1

fi,

where the sum runs over all particles in the system and fi is an operator acting on the
i-th particle. The kinetic energy, total momentum, z-component of the total spin, etc.
are examples of such operators.

Let us consider that basis of one-particle states |a〉, |b〉, . . . which diagonalizes the one-
particle operators f , 〈a|f |b〉 = faδab. It is obvious that in this basis the total quantity
F can be calculated by summing over all states and counting how many particles occupy
them,

F =
∑

a

fac
†
aca =

∑

ab

〈a|f |b〉c†acb

where for definiteness we have assumed the fermion case, but the boson case has the same
form. The second equation, although at first sight unnecessarily complicated, will be used
later.
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Finally, let us change the basis set of one-particle states to |α〉 =
∑

a Uαa|a〉 (the old
basis states are denoted by latin and the new ones by greek letters). The hermitian
conjugate equation reads 〈α| =

∑

a U
∗
αa〈a| and therefore

δαβ = 〈α|β〉 =
∑

ab

U∗
αaUβb〈a|b〉 =

∑

a

U∗
αaUβa =

∑

a

Uβa

(

U †
)

aα
=

(

UU †
)

βα
.

Thus a transformation between orthonormal bases needs to be unitary, UU † = 1 or U † =
U−1. From here it follows that U †U = 1 or

∑

a U
∗
aαUaβ = δαβ. The inverse transformation

from the new basis to the old one therefore reads
∑

α

U∗
αa|α〉 =

∑

αb

U∗
αaUαb|b〉 =

∑

b

δab|b〉 = |a〉.

Since the wavefunctions can be thought of as a result of the action of creation operators
on the vacuum, we have the following transformation rules

c†a =
∑

α

U∗
αac

†
α,

ca =
∑

α

Uαacα. (6)

Inserting Eq. 6 into the expression for F we find

F =
∑

ab

〈a|f |b〉c†acb =
∑

ab

∑

αβ

U∗
αa〈a|f |b〉Uβbc

†
αcβ =

∑

αβ

〈α|f |β〉c†αcβ, (7)

which is the general expression for one body operators, valid both for bosons and fermions.

Two body operators

In what follows we seek an expression for a general two-body operator

G =
1

2

∑

i6=j

gij,

where the sum is over all pairs of particles (we exclude the interaction of a particle with
itself) and gij is an operator acting on particles i and j. The most commonly met example
of a two-body operator is the interaction energy of a system with two-body interactions,
e.g. the Coulomb energy of charged particles. We will frequently make use of the matrix
element

〈ab|g|cd〉 =
∫

di
∫

dj ϕ∗
a(i)ϕ

∗
b(j)gijϕc(i)ϕd(j). (8)

Note that 〈ab|g|cd〉∗ = 〈cd|g|ab〉. Moreover, for even operators gij = gji, we also have
〈ab|g|cd〉 = 〈ba|g|dc〉. These two properties imply that the matrix elements 〈ab|g|ab〉 and
〈ab|g|ba〉 are both real.

Let us consider that basis of single-particle states which diagonalizes the interaction
function g, 〈ab|g|cd〉 = δacδbd〈ab|g|ab〉. In this case also the two-body operator G remains
diagonal in the basis Eq. 4 of the N -fermion Hilbert space (or, for N -boson states, in the
basis Eq. 2). Therefore the operator G can be expressed as

G =
1

2

∑

ab

〈ab|g|ab〉Pab,
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where Pab is an operator counting the number of particle pairs. If |a〉 6= |b〉 then Pab = nanb

(where na is the operator of the number of particles), whereas for |a〉 = |b〉 we have
Paa = na(na − 1). Combining the two cases, we can write Pab = nanb − δabna. In terms of
creation and annihilation operators we thus obtain Pab = c†acac

†
bcb − δabc

†
aca and therefore

in our one-particle basis we can write

G =
1

2

∑

ab

〈ab|g|ab〉(c†acac†bcb − δabc
†
aca) =

1

2

∑

abcd

〈ab|g|cd〉(c†accc†bcd − δcbc
†
acd).

Now we observe that making use of canonical commutation (anticommutation) relations
we can write c†accc

†
bcd−δcbc†acd = c†ac

†
bcdcc, an expression valid both for fermions and bosons.

If we perform the transformation Eq. 6 to a general basis, making use of
∑

abcd

U∗
αaU

∗
βbUδdUγc〈ab|g|cd〉 = 〈αβ|g|γδ〉

we find the final result for a two-particle operator (valid both for fermions and bosons)

G =
1

2

∑

αβγδ

〈αβ|g|γδ〉 c†αc†βcδcγ. (9)

The Hartree-Fock method

The ground state of a many particle system is seldom a single Slater determinant (in this
section we restrict our discussion to the fermion case). Nevertheless, usually a good first
approximation to the ground state can be obtained, if we look for that Slater determinant,
which minimizes the ground state energy within the subspace of Slater-determinant states.
The crucial step is to find the corresponding set of single-particle states, out of which the
Slater determinant is built. This method is called the Hartree-Fock method after its
inventors.

Let us assume that the wavefunctions ϕασ(r) form the optimal single-particle basis
we are looking for. Let furthermore |Ψ〉 be the Slater determinant formed making use of
ϕασ(r). Then the expectation value of the interaction energy in the Hartree-Fock state
|Ψ〉 reads

〈Ψ|Hint|Ψ〉 =
1

2

∑

αβγδ

∑

σσ′

〈αβ|V |γδ〉〈Ψ|c†ασc
†
βσ′cδσ′cγσ|Ψ〉

=
1

2

∑

αβ

∑

σσ′

(〈αβ|V |αβ〉nασnβσ′ − 〈αβ|V |βα〉nασnβσ′δσσ′) ,

since the same states which were annihilated by cδσ′cγσ have to be restored back by c†ασc
†
βσ′ .

It is worth to emphasize that the operators c†ασ and cασ create and annihilate the states
ϕασ(r). If we used another basis for the creation and annihilation operators, the result for
〈Ψ|Hint|Ψ〉 would not be that simple. Making use of the definition of the matrix elements
〈αβ|V |γδ〉 and adding the kinetic energy H0 =

∑

i h0(i) we can write the total energy
E[Ψ] of the state |Ψ〉 as

E[Ψ] =
∑

ασ

∫

d3
xϕ∗

ασ(x)h0ϕασ(x)

+
1

2

∑

αβσσ′

∫

d3
x

∫

d3
yϕ∗

ασ(x)ϕ∗
βσ′(y)V (x − y) [ϕβσ′(y)ϕασ(x) − δσσ′ϕασ(y)ϕβσ′(x)] ,

6



where the sums are to be taken over occupied states. Let us minimize now E[Ψ] with
the boundary condition

∫

d3
xϕ∗

ασ(x)ϕασ(x) = 1, the latter being described by a Lagrange
multiplier εασ. We obtain

h0ϕασ(x) +
∑

βσ′

∫

d3
yϕ∗

βσ′(y)V (x − y) [ϕβσ′(y)ϕασ(x) − δσσ′ϕασ(y)ϕβσ′(x)] = εασϕασ(x),

(10)
which is the Hartree-Fock equation for the optimal one-electron orbitals. Note that if
βσ′ = ασ, the interaction term vanishes. This means that a particle does not interact with
itself. Eq. 10 can be written in the form of an ordinary Schrödinger equationHσ

HFϕασ(x) =
εασϕασ(x), where εασ can be interpreted as the Hartree-Fock energy of the single-particle
state ϕασ(x). The effective Hamiltonian HHF acts on a wavefunction ϕσ(x) as follows:

Hσ
HFϕσ(x) = [h0 + VH(x)]ϕσ(x) −

∫

d3
yVσ(x − y)ϕσ(y).

The potentials VH(x) and Vσ(x − y) are called the Hartree and the exchange potential,
respectively. What makes the solution of Eq. 10 difficult is the fact that these potentials
are not a priori known, but they rather depend on the functions ϕασ(x) to be determined,

VH(x) =
∫

d3
yV (x − y)

∑

ασ

|ϕασ(x)|2 ,

Vσ(x − y) =
∑

α

ϕ∗
ασ(y)V (x − y)ϕασ(x),

where the sums are to be taken over occupied states. The Hartree potential is easily seen to
describe the (classical) average potential created by all the particles in the system, whereas
the exchange potential (which depends on the spin orientation in general) represents a
quantum mechanical correction discovered by Fock. Note that the exchange potential
is a non-local object, which greatly complicates the solution of Eq. 10. Usually the
Hartree-Fock equations can be solved only numerically by an iterative method: first try
a set of orbitals, then calculate the potentials, then solve for the new orbitals using these
potentials. The calculation can be stopped when the old and new orbitals do not differ
any more.

EXERCISE Show that Hσ
HF is a hermitian operator.

Since Hσ
HF is hermitian, its eigenvectors can be chosen orthogonal to each other,

thereby forming an orthonormal set of states.
Taking the integral of Eq. 10, one finds readily that the single-particle energies can be

written as

εασ =
∫

d3
xϕ∗

ασ(x)h0ϕασ(x)

+
∑

βσ′

∫

d3
x

∫

d3
yϕ∗

ασ(x)ϕ∗
βσ′(y)V (x − y) [ϕβσ′(y)ϕασ(x) − δσσ′ϕασ(y)ϕβσ′(x)] .

Note that there is no factor 1/2 in the term coming from interactions. This means that
the total energy of the system is not a simple sum of the single-particle energies εασ, but
rather

E =
∑

ασ

εασ − 1

2

∑

ασ

∑

βσ′

(〈αβ|V |αβ〉 − δσσ′〈αβ|V |βα〉),
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where the sums are once again taken over the occupied states.
As a simple example of the Hartree-Fock method, let us consider now the hydrogen

molecule. Within the simplest model, we can restrict the Hilbert space of one-particle
states to two orthogonal orbitals, one of them centered at the atom 1 and an identical one
centered around the atom 2. We consider the following model of the hydrogen molecule
’in an external field’,

H = −t
∑

σ

(c†1σc2σ + c†2σc1σ) + U(n1↑n1↓ + n2↑n2↓) + ∆(n2 − n1). (11)

The first term describes hopping of electrons between states |1〉 and |2〉 (parametrized
by the hopping amplitude t) and the second term (in which naσ = c†aσcaσ) originates in
the Coulomb repulsion between the electrons. Note that the full Coulomb interaction
V (x − y) would include also other matrix elements Eq. 8 besides

U =
∫

d3
x

∫

d3
y|ϕ1(x)|2|ϕ1(y)|2V (x − y) =

∫

d3
x

∫

d3
y|ϕ2(x)|2|ϕ2(y)|2V (x − y),

but all of them are neglected in the so-called Hubbard model Eq. 11, because they are
much smaller. The term proportional to ∆ describes the action of the electric field: the
energy at site 2 is +∆, whereas at site 1 it is −∆. This term breaks the symmetry of the
system with respect to parity.

In order to proceed, let us assume that |Ψ〉 = d†↑d
†
↓|0〉 is the Slater determinant we are

looking for. In other words, we assume that both the up-spin and the down-spin electrons
occupy the same orbital d†|0〉 = ϕ1c

†
1|0〉 + ϕ2c

†
2|0〉, i.e. site i is occupied with probability

amplitude ϕi. Obviously, ϕ1 and ϕ2 play the role of the wavefunction in our model.

EXERCISE Write down the Hartree-Fock equations for ϕ1 and ϕ2. Solve the equations
in the limits U = 0 and U → ∞. Calculate the difference δ of average occupations at
sites 2 and 1. How does δ change under increasing U? Why?
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