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LECTURE 1: SECOND QUANTIZATION - HARMONIC OSCILLATOR

Consequences of indistinguishability
In quantum mechanics, identical particles are indistinguishable. In fact, even if we imagine
that originally all particles are numbered, if we observe a particle at some place after a
finite period of time, we cannot say with certainty which number it carries. This is because
in quantum mechanics the notion of particle trajectory loses its sense.

Because of this fundamentally new property, the wavefunction of a two-particle system,
ψ(1, 2) (where 1 and 2 are the coordinates -including spin- of particles 1 and 2) should be
physically equivalent to ψ(2, 1). This means the two wavefunctions may differ only by a
phase factor:

ψ(1, 2) = eiφψ(2, 1) = e2iφψ(1, 2), (1)

where in the second equation we have used the same argument once more. This means
in turn that e2iφ = 1, which can be realized in two ways: either eiφ = 1 or eiφ = −1.
It is an experimental fact that the first possibility is realized for particles with integer
spin (bosons), while the second possibility is realized for particles with half-integer spin
(fermions).

In condensed-matter physics, we consider electrons, protons, and neutrons as elemen-
tary particles. All of them have spin 1/2, i.e. they are fermions. So why do we speak
about bosons? At not too high energies, bound states of electrons, protons, and nucleons
can be considered as elementary. For instance, when dealing with liquid 4He at cryogenic
temperatures, we can safely neglect all the excited states of this atom. Now, since it
consists of an even number of fermions (2e+2p+2n), an exchange of two helium atoms
does not lead to a minus sign in the many body wavefunction, i.e. the atom 4He is a
boson. On the other hand, it is worth pointing out that the other stable isotope, 3He, is
a fermion, being composed of only five elementary particles (2e+2p+1n).

Harmonic oscillator
Another type of bosonic excitations dealt with in condensed matter physics are quanta
of various types of oscillations, like electromagnetic oscillations (the quantum, photon,
has spin S = 1), or lattice vibrations (the quantum, phonon, carries integer spin). Let
us therefore consider the simplest oscillator for the start, namely the harmonic oscillator
with mass m and spring constant K, whose Hamiltonian reads

H =
p2

2m
+

1

2
Kx2, (2)

where x is the coordinate and p = −ih̄d/dx is the canonically conjugate momentum.

Let us introduce the classical frequency ω =
√
K/m and a dimensionless coordinate ξ =

x
√
mω/h̄. Then the Hamiltonian can be written in the form H = 2−1h̄ω (−d2/dξ2 + ξ2).

Let us define furthermore the operators

a =
1√
2

(
ξ +

d

dξ

)
, (3)
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a† =
1√
2

(
ξ − d

dξ

)
. (4)

Note that a, a† are Hermitian conjugate operators. It is easy to show that the Hamiltonian
can be written

H =
h̄ω

2

(
a†a+ aa†

)
= h̄ω

(
a†a+

1

2

)
. (5)

In the second equation we have used the following commutation relation between the
operators a, a†,

[a, a†] = 1. (6)

In order to proceed further, let us show now that the energy in any wavefunction is
nonnegative:

〈ψ|H|ψ〉 =
∫
dx


 h̄2

2m

∣∣∣∣∣
dψ

dx

∣∣∣∣∣
2

+
1

2
Kx2|ψ|2


 ≥ 0.

Let us furthermore denote the state with lowest energy (ground state) as |0〉 and its energy
as E0, H|0〉 = E0|0〉. We claim that

a|0〉 = 0. (7)

In fact, if this was not true, then aH|0〉 = E0a|0〉 and making use of

[H, a] = −h̄ωa (8)

we obtain that Ha|0〉 = (E0 − h̄ω)a|0〉, i.e. the energy of the state a|0〉 is lower than E0,
in contradiction with our assumption that |0〉 is the ground state. Thus Eq. 7 must hold.

Evaluating H|0〉 making use of Eq. 7 we find that the energy of the ground state is
E0 = h̄ω/2. The wavefunction in x-respresentation satisfies the equation (ξ+d/dξ)ψ = 0,
from where ψ(ξ) ∝ exp(−ξ2/2).

Now let us consider the excited states of the oscillator. Let |n〉 be such a state with
energy En, H|n〉 = En|n〉. Then, making use of the commutator

[H, a†] = h̄ωa† (9)

one finds readily that Ha†|n〉 = (En + h̄ω)a†|n〉, i.e. the state a†|n〉 is an eigenstate with
an eigenvalue En + h̄ω.

EXERCISE Show by induction that the n-th normalized eigenvector (satisfying 〈n|n〉 = 1)
and the corresponding eigenvalue are, respectively

|n〉 =
1√
n!

(
a†

)n |0〉,

En =
(
n+

1

2

)
h̄ω. (10)

Hint. Show first by induction

[a,
(
a†

)n
] = n

(
a†

)n−1
. (11)
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Making use of Eqs. 10,11 one finds readily that

a†|n〉 =
√
n+ 1|n+ 1〉,

a|n〉 =
√
n|n− 1〉. (12)

Eqs. 10,12 can be interpreted in the following way: the spectrum of the harmonic
oscillator consists of states containing 0,1,2,. . . excitation quanta, each quantum being
equal to h̄ω. The operator a† acting on a given state adds to it one quantum of energy
and is therefore called a creation operator. The operator a removes one quantum of
energy and is therefore called annihilation operator. From Eq. 12 it also follows that
a†a|n〉 = n|n〉, which means that the operator a†a measures the number of quanta. In
what follows we talk interchangeably about particles and about the quanta.

The set of states {|0〉, |1〉, |2〉, . . .} forms an orthonormal basis of the Hilbert space
of the harmonic oscillator. Any physical operator acting in this Hilbert space should be
expressible in terms of the coordinate and momentum operators, which read

x =

√
h̄

2mω
(a+ a†),

p = i

√
mh̄ω

2
(a† − a). (13)

Since the action of a and a† is completely determined by Eqs. 12,7, also any matrix element
of a physical operator can be calculated easily making use of Eq. 13.

The representation of physical operators Eq. 13 in terms of creation and annihilation
operators and the interpretation Eq. 10 of the Hilbert space in terms of added quanta (or
particles) is called second quantization in the literature.

Schrödinger and Heisenberg pictures
So far we haven’t talked about the time dependence of observables. In the Schrödinger
picture we assume that the operators X of physical observables are independent of time,
whereas the states |ψ〉 are subject to time evolution governed by the time-dependent
Schrödinger equation,

ih̄
∂

∂t
|ψ〉 = H|ψ〉. (14)

As a result, the expectation value 〈X〉 of the observable X becomes time dependent,
〈X〉(t) = 〈ψ(t)|X|ψ(t)〉. For a time independent Hamiltonian the time evolution of |ψ〉
can be formally solved,

|ψ(t)〉 = e−iHt/h̄|ψ(0)〉,
and therefore the time dependence of the expectation value can equivalently be written
as

〈X〉(t) = 〈ψ(0)|eiHt/h̄Xe−iHt/h̄|ψ(0)〉 = 〈ψH |XH(t)|ψH〉, (15)

where in the last equation we have defined the operators and states in the so-called
Heisenberg picture: XH(t) = eiHt/h̄Xe−iHt/h̄ and |ψH〉 = |ψ(0)〉. The Heisenberg picture
Eq. 15 thus offers an alternative view of the time evolution of expectation values: the
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states do not evolve with time, but the operators do. By taking the time derivative of the
expression for XH(t) we find

d

dt
XH =

i

h̄
[H,XH ] +

(
∂X

∂t

)

H

, (16)

where the second term on the right-hand side vanishes for an operator which is not
explicitly time dependent (in the Schrödinger picture). Eq. 16 is called the equation of
motion for the operator X. Making use of [H,XH ] = [H,X]H and of Eqs. 9,8 in the
equations of motion for the creation and annihilation operators of a harmonic oscillator,
one finds readily that a†H(t) = a†eiωt and aH(t) = ae−iωt.

Coherent states
Eigenstates of the annihilation operator are called coherent states which are useful in
more advanced many body techniques. In what follows we show that the state

|z〉 = e−|z|
2/2eza†|0〉,

where z is a complex number, is a coherent state. Here the function eza† of a creation

operator should be understood in terms of its Taylor expansion, eza† =
∑∞

n=0(z
n/n!)

(
a†

)n
.

EXERCISES
1. If f(a†) is a function of the creation operator, show that

[a, f(a†)] =
df

da†
. (17)

Hint. Write down the (formal) Taylor expansion of f(a†) and make use of Eq. 11.
2. Making use of Eq. 17 show that |z〉 is a coherent state.
3. Show that the scalar product of two coherent states is

〈u|z〉 = e−(|u|2+|z|2−2u∗z)/2.

Thus the coherent states are not orthogonal to each other, but note that 〈z|z〉 = 1.
4. Show that the system of coherent states is complete,

∫ d2z

π
|z〉〈z| = 1.

5. Show that the time evolution of the expectation value of the coordinate and momentum
is (with a real z)

〈z|x(t)|z〉 =

√
2h̄

mω
z cosωt,

〈z|p(t)|z〉 =
√

2h̄mωz sinωt,

i.e. they satisfy the classical equations of motion with amplitude proportional to z.
6. Show that the expectation value of energy

〈z|H|z〉 = h̄ω(|z|2 + 1/2) =
〈p(t)〉2

2m
+

1

2
K〈x(t)〉2 + h̄ω/2,
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i.e. it is given by its classical value, up to a shift equal to the ground state energy.

LECTURE 2: SECOND QUANTIZATION - ’REAL’ PARTICLES

In the previous lecture we have seen that excited states of an oscillator can be thought
of as particles. In case of electromagnetic oscillations (photons) or lattice oscillations
(phonons) these are very real particles which can be observed by numerous experimental
means. Yet, at least in condensed matter physics, electrons, protons, and neutrons are in
a sense more real, since their numbers we take as conserved, whereas photons and phonons
can be created or annihilated, e.g. when an electron falls down from an excited state of
an atom to its ground state. In this lecture we will concentrate on systems of many ’real’
particles.

Consider first that in the system of interest there is only one particle. (For definiteness,
we can think of a particle in a box L× L× L with periodic boundary conditions, ϕ(x+
L, y, z) = ϕ(x, y, z) and similarly in the y and z directions.) All possible states of this
particle form a Hilbert space. Let {|a〉, |b〉, . . .} be an orthonormal basis of this Hilbert
space. In the x-representation, the corresponding wavefunctions are ϕa(x), ϕb(x), . . .

For a system with only one particle it is irrelevant, whether the particle is a boson or
a fermion. Now consider that we have many identical particles in the system. In Lecture
1 we have seen that the cases of fermions and bosons should be treated separately. We
have chosen to start with bosons.

Bosons
Consider first a system with two bosons in two different states |a〉 and |b〉. Then it is
easy to see that the normalised two-boson wavefunction (which must be symmetric under
exchange of the coordinates 1 and 2 of the first and second particle) reads

ψ1,1,0,...(1, 2) =
1√
2

[ϕa(1)ϕb(2) + ϕb(1)ϕa(2)] ,

where the index 1, 1, 0, . . . denotes that states |a〉 and |b〉 are populated with one particle
each, whereas all other one-particle states are empty. Now consider a general sytem of
N bosons with N1 particles in the state |a〉, N2 particles in the state |b〉, etc. Then the
N -boson wavefunction which is symmetric under exchange of any two particles reads

ψN1,N2,...(1, 2, . . . , N) =

√
N1!N2! . . .

N !

∑

{P}
ϕP1(1)ϕP2(2) . . . ϕPN

(N), (18)

where P1, P2, . . . , PN is a permutation of N1 indices a, N2 indices b, etc. The sum is to be
taken over all different permutations. It is obvious that, once the basis of single-particle
states is fixed, the many-body states are completely determined by specifying the numbers
of particles occupying the single-particle states. Therefore instead of the wavefunction
ψN1,N2,...(1, 2, . . . , N) in x-representation we can talk about the state |N1, N2, . . .〉. Let us
show now that Eq. 18 is a normalised wavefunction:

〈N1, N2, . . . |N1, N2, . . .〉 =
N1!N2! . . .

N !

∑

{P,P ′}

∫
d1ϕ∗P ′1(1)ϕP1(1) . . .

∫
dNϕ∗P ′N (N)ϕPN

(N)
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=
N1!N2! . . .

N !

∑

{P,P ′}
δP1,P ′1 . . . δPN ,P ′N = 1,

since the number of permutations is N !/N1!N2! . . .
Any N -boson state can be written as a linear superposition of states of the type Eq. 18

which are seen to form a complete orthonormal basis of the Hilbert space of N -particle
states.

From Eq. 18 one can see that the formula for the many-body wavefunction in x-
representation representation is quite cumbersome, although the physical content is sim-
ple: the wavefunction contains N1 particles in state |a〉, N2 particles in state |b〉, etc. In
what follows we introduce an equivalent and simpler language for the description of many
boson states:

• Let |0〉 be the vacuum state, i.e. a state without particles.

• Let ai and a†i be creation and annihilation operators for the single-particle state i
which satisfy the following (canonical) boson commutation relations:

[ai, a
†
j] = δij,

[ai, aj] = [a†i , a
†
j] = 0. (19)

• Since the vacuum state contains no particles, we require that ai|0〉 = 0 for all
single-particle states i.

Making use of the techniques introduced in Lecture 1, one finds readily that

|N1, N2, . . .〉 =
1√

N1!N2! . . .

(
a†a

)N1
(
a†b

)N2

. . . |0〉

is a normalized N -particle state describing the same physics as Eq. 18.

Fermions
Let us consider now systems of many fermions. For two particles in one-particle states
|a〉 and |b〉, the wavefunction can be written

ψa,b(1, 2) =
1√
2

[ϕa(1)ϕb(2)− ϕb(1)ϕa(2)] ,

with notations similar as in the boson case. Note that, unlike in the boson case, if the
states |a〉 and |b〉 are equal, the wavefunction vanishes. This implies the famous Pauli
principle that two fermions can’t occupy the same quantum state. It should be stressed at
this point that the symbol 1 for the coordinates of the first particle should be understood
as a shorthand for both the spatial and the spin coordinate, 1 = (x1, σ1) (and similarly
for other particles).

In other words, the Pauli principle implies that the sequence of occupation numbers
N1, N2, . . . (where the ordering of the one-particle states is fixed once forever) may contain
only the numbers 0 and 1. One verifies easily that the general N -particle wavefunction
which is antisymmetric under exchange of any two coordinates reads

ψa1,a2,...,aN
(1, 2, . . . , N) =

1√
N !

∑

{P}
(−1)PϕP1(1)ϕP2(2) . . . ϕPN

(N), (20)
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where ψa1,a2,...,aN
means that only the one-particle states |a1〉, |a2〉, . . . , |aN〉 are occu-

pied and the remaining states are empty. P1, P2, . . . , PN is a permutation of the states
|a1〉, |a2〉, . . . , |aN〉, and the factor (−1)P equals 1 and -1 for those permutations, which
can be arrived at after even and odd numbers of pair exchanges, respectively.

EXERCISE Show that the wavefunction Eq. 20 is normalized.
In what follows we adapt the method of second quantization to the case of fermions.

We start with the following definitions:

• Let |0〉 be the vacuum state, i.e. a state without particles.

• Let ci and c†i be creation and annihilation operators for the single-particle state i
which satisfy the following (canonical) fermion anticommutation relations:

{ci, c†j} = δij,

{ci, cj} = {c†i , c†j} = 0. (21)

(The anticommutator is defined as {X, Y } = XY + Y X.)

• Since the vacuum state contains no particles, we require that ci|0〉 = 0 for all single-
particle states i.

In what follows we will show that the basis states of the N -fermion Hilbert space,
Eq. 20, can be written in the following second-quantized form

|ψa1,a2,...,aN
〉 = c†a1

c†a2
. . . c†aN

|0〉.
In fact, N -particle states in which the fermions occupy different sets {a1, a2, . . . , aN} and
{b1, b2, . . . , bN} of single-particle states are orthogonal to each other. To see this, let us
assume that the state b is contained in the set {b1, b2, . . . , bN} but not in {a1, a2, . . . , aN}.
We find

〈ψb1,b2,...,bN
|ψa1,a2,...,aN

〉 = 〈0|cbN
. . . cb2cb1c

†
a1
c†a2

. . . c†aN
|0〉 = 0,

since the annihilation operator cb can be moved to the right so that it is the rightmost
one of the 2N creation and annihilation operators (with possibly changing the sign of the
overlap), but cb|0〉 = 0. On the other hand, we find

〈ψa1,a2,...,aN
|ψa1,a2,...,aN

〉 = 〈0|caN
. . . ca2ca1c

†
a1
c†a2

. . . c†aN
|0〉

= 〈0|caN
. . . ca2(1− c†a1

ca1)c
†
a2
. . . c†aN

|0〉
= 〈0|caN

. . . ca2c
†
a2
. . . c†aN

|0〉
= . . .

= 〈0|0〉 = 1,

i.e. the state |ψa1,a2,...,aN
〉 is normalized. We have used that [c†a1

ca1 , c
†
aj

] = 0 for j 6= 1. Note
that all states a1, a2, . . . , aN must be different, otherwise |ψa1,a2,...,aN

〉 = 0 (since from the
anticommutation relations it follows c†ac

†
a = 0), i.e. the Pauli principle is satisfied. Finally,

let us note that if the set {b1, b2, . . . , bN} is a permutation of {a1, a2, . . . , aN}, then

〈ψb1,b2,...,bN
|ψa1,a2,...,aN

〉 = ±1,
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the plus (minus) sign obtaining for an even (odd) permutation. Thus, the order of oper-
ators is not irrelevant as in the case of bosons.

EXERCISE Show that c†aca|ψa1,a2,...,aN
〉 = na|ψa1,a2,...,aN

〉, where na = 1 if the state a is
among the states a1, a2, . . . , aN and na = 0 otherwise. Thus the operator c†aca measures
the number of particles in the single-particle state a.

One-particle operators
Having defined the many-particle states in the language of second quantization, let us
discuss now how to express the operators in terms of creation and annihilation operators.
Let us start with the so-called one-particle operators F , which can be written as

F =
N∑

i=1

fi,

where the sum runs over all particles in the system and fi is an operator acting on the
i-th particle. The kinetic energy, total momentum, z-component of the total spin, etc.
are examples of such operators.

Let us consider that basis of one-particle states |a〉, |b〉, . . . which diagonalizes the one-
particle operators f , 〈a|f |b〉 = faδab. It is obvious that in this basis the total quantity
F can be calculated by summing over all states and counting how many particles occupy
them,

F =
∑
a

fac
†
aca =

∑

ab

〈a|f |b〉c†acb

where for definiteness we have assumed the fermion case, but the boson case has the same
form. The second equation, although at first sight unnecessarily complicated, will be used
later.

Finally, let us change the basis set of one-particle states to |α〉 =
∑

a Uαa|a〉 (the old
basis states are denoted by latin and the new ones by greek letters). The hermitian
conjugate equation reads 〈α| = ∑

a U
∗
αa〈a| and therefore

δαβ = 〈α|β〉 =
∑

ab

U∗αaUβb〈a|b〉 =
∑
a

U∗αaUβa =
∑
a

Uβa

(
U †

)
aα

=
(
UU †

)
βα
.

Thus a transformation between orthonormal bases needs to be unitary, UU † = 1 or U † =
U−1. From here it follows that U †U = 1 or

∑
a U

∗
aαUaβ = δαβ. The inverse transformation

from the new basis to the old one therefore reads

∑
α

U∗αa|α〉 =
∑

αb

U∗αaUαb|b〉 =
∑

b

δab|b〉 = |a〉.

Since the wavefunctions can be thought of as a result of the action of creation operators
on the vacuum, we have the following transformation rules

c†a =
∑
α

U∗αac
†
α,

ca =
∑
α

Uαacα. (22)
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Inserting Eq. 22 into the expression for F we find

F =
∑

ab

〈a|f |b〉c†acb =
∑

ab

∑

αβ

U∗αa〈a|f |b〉Uβbc
†
αcβ =

∑

αβ

〈α|f |β〉c†αcβ, (23)

which is the general expression for one body operators, valid both for bosons and fermions.

EXERCISES
1. Consider electrons (fermions with spin 1/2) whose complete one-particle basis set
consists of states |α ↑〉 and |α ↓〉, where |α〉 is a complete set of orbital states and | ↑〉 and
| ↓〉 are the two possible projections of the electron spin on a fixed chosen spin quantization
axis. Let us define the operators

S+ =
∑
α

c†α↑cα↓,

S− =
∑
α

c†α↓cα↑. (24)

a) Compute Sz from the expression Sz = [S+, S−]/2.
b) Show that [Sz, S+] = S+ and [Sz, S−] = −S−.
c) What is the physical meaning of the operators Sx = (S+ + S−)/2, Sy = (S+−S−)/2i,
and Sz?
2. Let us define the operator S2 = (Sx)2 + (Sy)2 + (Sz)2 and let us denote its eigenvalues
as S(S + 1). Show that the following two-electron states are eigenstates of S2 and Sz.
Compute the eigenvalues S and Sz for these states.

|ψ〉 =
1√
2
(c†α↑c

†
β↓ − c†α↓c

†
β↑)|0〉,

|χ1〉 = c†α↑c
†
β↑|0〉,

|χ0〉 =
1√
2
(c†α↑c

†
β↓ + c†α↓c

†
β↑)|0〉,

|χ−1〉 = c†α↓c
†
β↓|0〉.

3. Show that the states from exercise 2 form a complete orthonormal basis in the Hilbert
space of two-electron states built from two orbitals |α〉 and |β〉.

LECTURE 3: TWO-ELECTRON SYSTEMS

Two body operators
In what follows we seek an expression for a general two-body operator

G =
1

2

∑

i6=j

gij,

where the sum is over all pairs of particles (we exclude the interaction of a particle with
itself) and gij is an operator acting on particles i and j. The most commonly met example
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of a two-body operator is the interaction energy of a system with two-body interactions,
e.g. the Coulomb energy of charged particles. We will frequently make use of the matrix
element

〈ab|g|cd〉 =
∫
di

∫
dj ϕ∗a(i)ϕ

∗
b(j)gijϕc(i)ϕd(j). (25)

Note that 〈ab|g|cd〉∗ = 〈cd|g|ab〉. Moreover, for even operators gij = gji, we also have
〈ab|g|cd〉 = 〈ba|g|dc〉. These two properties imply that the matrix elements 〈ab|g|ab〉 and
〈ab|g|ba〉 are both real.

Let us consider that basis of single-particle states which diagonalizes the interaction
function g, 〈ab|g|cd〉 = δacδbd〈ab|g|ab〉. In this case also the two-body operator G remains
diagonal in the basis Eq. 20 of the N -fermion Hilbert space (or, for N -boson states, in
the basis Eq. 18). Therefore the operator G can be expressed as

G =
1

2

∑

ab

〈ab|g|ab〉Pab,

where Pab is an operator counting the number of particle pairs. If |a〉 6= |b〉 then Pab = nanb

(where na is the operator of the number of particles), whereas for |a〉 = |b〉 we have
Paa = na(na− 1). Combining the two cases, we can write Pab = nanb− δabna. In terms of
creation and annihilation operators we thus obtain Pab = c†acac

†
bcb − δabc

†
aca and therefore

in our one-particle basis we can write

G =
1

2

∑

ab

〈ab|g|ab〉(c†acac†bcb − δabc
†
aca) =

1

2

∑

abcd

〈ab|g|cd〉(c†accc†bcd − δcbc
†
acd).

Now we observe that making use of canonical commutation (anticommutation) relations
we can write c†accc

†
bcd−δcbc†acd = c†ac

†
bcdcc, an expression valid both for fermions and bosons.

If we perform the transformation Eq. 22 to a general basis, making use of

∑

abcd

U∗αaU
∗
βbUδdUγc〈ab|g|cd〉 = 〈αβ|g|γδ〉

we find the final result for a two-particle operator (valid both for fermions and bosons)

G =
1

2

∑

αβγδ

〈αβ|g|γδ〉 c†αc†βcδcγ. (26)

Atom of carbon - Hund’s rules
The total Hamiltonian of an atom can be written as H = H0 + V , where H0 contains
the kinetic energy of the electrons and the Coulomb interactions between the electrons
and the nucleus. On the other hand, V describes the Coulomb repulsion between the
electrons, V = 2−1 ∑

i6=j vij. The energy levels of the H0 part of the Hamiltonian of
a multielectron atom can be classified by the same quantum numbers as the hydrogen
atom. The electronic configuration of the carbon atom is therefore 1s22s22p2. There are
three p orbitals, whose angular dependence is

p1(θ, φ) = −
√

3

8π
sin θeiφ,
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p0(θ, φ) =

√
3

4π
cos θ,

p−1(θ, φ) =

√
3

8π
sin θe−iφ.

This means that the 2p shell is only partially filled. There are 6!/(2!(6−2)!) = 15 ways in
which the two electrons can be distributed among 6 available one-particle states (3 orbital
states × 2 spin states). In other words, one can construct 15 states of the type c†aσc

†
bσ′|0〉,

where a, b are arbital indices and σ, σ′ are spin indices.
We ask the question which of these 15 two-particle states minimizes the total energy

of the atom. In order to answer this question, in what follows we calculate the first
order correction to energy with respect to the perturbation V . If we attempt to solve
this question by brute force, we need to diagonalize a matrix 15×15. In search of an
analytical solution, we look for symmetries of the problem which help us to reduce the
dimensionality of the problem. To this end let us define the following set of operators

Lz =
∑
σ

(c†1σc1σ − c†−1σc−1σ),

L+ =
√

2
∑
σ

(c†0σc−1σ + c†1σc0σ),

L− =
√

2
∑
σ

(c†−1σc0σ + c†0σc1σ). (27)

EXERCISES
1. Show that [L+, L−] = Lz and [Lz, L±] = ±L±. This means that L = (Lx, Ly, Lz)
(where Lx = (L+ +L−)/2 and Ly = (L+−L−)/2i) is the operator of orbital momentum.
2. Show that [Li, Sj] = 0, where the spin operator S has been defined in Eq. 24.

Since the Hamiltonian V is independent of spin and rotationally invariant, we must
have [V, Li] = [V, Si] = 0. This means that the eigenstates of V can be chosen so as to
simultaneously diagonalize the commuting set of operators L2, Lz,S2, Lz.

Let us start by constructing the state L = 2, Lz = 2. There is only 1 such state, in
which both electrons are placed in the same orbital |p1〉. By subsequent application of
the lowering operator L− to this state we obtain the following 5 states:

|D2〉 = c†1↑c
†
1↓|0〉,

|D1〉 = 2−1/2(c†1↑c
†
0↓ + c†0↑c

†
1↓)|0〉,

|D0〉 = 6−1/2(c†1↑c
†
−1↓ + 2c†0↑c

†
0↓ + c†−1↑c

†
1↓)|0〉,

|D−1〉 = 2−1/2(c†0↑c
†
−1↓ + c†−1↑c

†
0↓)|0〉,

|D−2〉 = c†−1↑c
†
−1↓|0〉. (28)

One can show easily that S2|D2〉 = 0. Since S2 commutes with L−, all states |Di〉 have
S = 0 (they are spin singlets). On the other hand, by construction we have Lz|Di〉 = i|Di〉
and L2|Di〉 = L(L+ 1)|Di〉 with L = 2.

Next we construct all states with S = 1 and Sz = 1. This requires that both electrons
have spin up and there are three such states:

|P11〉 = c†1↑c
†
0↑|0〉,
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|P01〉 = c†1↑c
†
−1↑|0〉,

|P−11〉 = c†0↑c
†
−1↑|0〉. (29)

The notation in Eq. 29 is chosen so that the first index n in |Pnm〉 measures Lz, Lz|Pnm〉 =
n|Pnm〉, whereas the second index measures Sz, Sz|Pnm〉 = m|Pnm〉. By subsequent
application of the spin lowering operator S− to each of the three states Eq. 29, we obtain
in total 9 states of the type |Pnm〉, where n = −1, 0, 1 and m = −1, 0, 1. Moreover, one
can easily show that all |Pnm〉 states have L = 1 and S = 1.

So far, we have constructed 5 states |Di〉 and 9 states |Pnm〉. In order to proceed,
we need to find the last linearly independent combination of the states c†aσc

†
bσ′|0〉. In

order to find it, let us note that there exist 3 combinations of a, b and σ, σ′ which lead
to Sz = Lz = 0, namely c†1↑c

†
−1↓|0〉, c†0↑c†0↓|0〉, and c†−1↑c

†
1↓|0〉. On the other hand, so

far we have constructed only 2 states with Sz = Lz = 0, namely |D0〉 and |P00〉 =
2−1/2(c†1↑c

†
−1↓ + c†1↓c

†
−1↑)|0〉. The remaining linearly independent state with Sz = Lz = 0

is easily found to be

|S〉 = 3−1/2(c†1↑c
†
−1↓ − c†0↑c

†
0↓ + c†−1↑c

†
1↓)|0〉 =

√
2

3
|α〉 −

√
1

3
c†0↑c

†
0↓|0〉, (30)

where |α〉 = 2−1/2(c†1↑c
†
−1↓ − c†1↓c

†
−1↑)|0〉. One finds easily that the |S〉 state is chacterized

by L = S = 0.
Summarizing, a basis of the (15 dimensional) Hilbert space can be found, in which

every basis vector has different quantum numbers L,Lz, S, Sz. Therefore the Hamiltonian
V in this basis is diagonal. Moreover, since the energy should not depend on the directions
of the spin and orbital momenta, one of the levels (corresponding to the |S〉 state) will
be nondegenerate, one five-fold degenerate (the |Di〉 states), and one nine-fold degenerate
(the |Pnm〉 states). Therefore it is sufficient to calculate three matrix elements in order to
determine the full spectrum of the problem.

EXERCISE Show that

E(S) = 〈S|V |S〉 =
2

3
〈α|v|α〉+

1

3
〈00|v|00〉 − 2

3
(〈00|v|1− 1〉+ 〈00|v| − 11〉) ,

E(P ) = 〈P11|V |P11〉 = 〈10|v|10〉 − 〈10|v|01〉,
E(D) = 〈D2|V |D2〉 = 〈11|v|11〉,

where 〈α|v|α〉 = 〈1− 1|v|1− 1〉+ 〈1− 1|v| − 11〉.
Making use of the techniques of atomic physics, one can show

〈00|v|00〉 = 〈11|v|11〉+ 〈10|v|01〉,
〈10|v|10〉 = 〈11|v|11〉 − 〈10|v|01〉,

〈1− 1|v| − 11〉 = 2〈10|v|01〉,
〈1− 1|v|1− 1〉 = 〈11|v|11〉,
〈00|v|1− 1〉 = 〈00|v| − 11〉 = −〈10|v|01〉.

This enables us to express the energies E(S), E(P ), and E(D) in terms of only two matrix
elements, 〈11|v|11〉 and 〈10|v|01〉,

E(S) = 〈11|v|11〉+ 3〈10|v|01〉,
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E(D) = 〈11|v|11〉,
E(P ) = 〈11|v|11〉 − 2〈10|v|01〉. (31)

For repulsive interactions which decay with increasing distance between the particles (like
Coulomb interactions) we expect 〈ab|v|ba〉 > 0. This can be shown explicitly for contact
interactions, where v(x− y) = V δ(x− y):

〈ab|v|ba〉 =
∫
d3x

∫
d3yϕ∗a(x)ϕ∗b(y)v(x− y)ϕb(x)ϕa(y) = V

∫
d3x|ϕa(x)|2|ϕb(x)|2 ≥ 0.

This then means that Eq. 31 is completely consistent with Hund’s rules:

• The ground state of an atom with an incomplete shell has the maximal total spin.
(In our case the states |Pij〉 with S = 1.)

• Within the subspace with a given total spin, energy is minimized by the state with
the maximal orbital momentum. (In our case, within the subspace with S = 0, the
states |Di〉 with L = 2 have lower energy than the state |S〉 with L = 0.)

The reason why spin is maximized in the ground state is the following. When two electrons
have a parallel spin, due to Pauli’s principle they try to avoid being close to each other.
This lowers their Coulomb interaction energy.

Hydrogen molecule
As another example of a two-electron system, let us consider now the hydrogen molecule.
Within the simplest model, we can restrict the Hilbert space of one-particle states to two
orthogonal orbitals, one of them centered at the atom 1 and an identical one centered
around the atom 2. We consider the following model of the hydrogen molecule

H = −t∑
σ

(c†1σc2σ + c†2σc1σ) + U(n1↑n1↓ + n2↑n2↓), (32)

where the first term describes hopping of electrons between states |1〉 and |2〉 (parametrized
by the hopping amplitude t) and the second term (in which naσ = c†aσcaσ) originates in
the Coulomb repulsion between the electrons. Note that the full Coulomb interaction
V (x− y) would include also other matrix elements Eq. 25 besides

U =
∫
d3x

∫
d3y|ϕ1(x)|2|ϕ1(y)|2V (x− y) =

∫
d3x

∫
d3y|ϕ2(x)|2|ϕ2(y)|2V (x− y),

but all of them are neglected in the so-called Hubbard model Eq. 32, because they are
much smaller.

There are two electrons in the hydrogen molecule. The Hilbert space of two-particle
states consists of 4!/(2!(4 − 2)!) = 6 states of the type c†aσc

†
bσ′|0〉. Thus, in order to

find the ground state of the hydrogen molecule, we need to diagonalize the Hamiltonian
matrix 6 × 6. Making use of the symmetries of the problem, this task can be performed
completely.

EXERCISE Show that the Hamiltonian Eq. 32 commutes with the total spin operator,
[H,S2] = [H,Sz] = 0.

13



Next we define a parity operator P . Its physical meaning is to interchange sites 1
and 2. Therefore we require P 2 = 1, Pc†1σP = c†2σ, and Pc1σP = c2σ. The vacuum state
does not change under interchange of 1 and 2, i.e. P |0〉 = |0〉. One verifies easily that
[H,P ] = 0 and [P,S2] = [P, Sz] = 0.

Now we construct linear combinations of the basis states c†aσc
†
bσ′|0〉 which are simulta-

neous eigenstates of P , S2, and Sz. We start with the state S = 1, Sz = 1 and apply the
spin lowering operator S− to it:

|T1〉 = c†1↑c
†
2↑|0〉,

|T0〉 = 2−1/2(c†1↑c
†
2↓ + c†1↓c

†
2↑)|0〉,

|T−1〉 = c†1↓c
†
2↓|0〉.

One finds readily that the parity of these so-called triplet states is P = −1. On the other
hand, the state orthogonal to |T0〉,

|S1〉 = 2−1/2(c†1↑c
†
2↓ − c†1↓c

†
2↑)|0〉,

has quantum numbers S = Sz = 0 and P = 1. The two remaining states involve doubly
occupied orbitals 1 and 2:

|S2〉 = 2−1/2(c†1↑c
†
1↓ + c†2↑c

†
2↑)|0〉

has quantum numbers S = Sz = 0 and P = 1, whereas

|S3〉 = 2−1/2(c†1↑c
†
1↓ − c†2↑c

†
2↑)|0〉

is characterized by S = Sz = 0 and P = −1.
Note that all of the above states, except for the pair of states |S1〉 and |S2〉, have

different quantum numbers and therefore all off-diagonal matrix elements of H in this
new basis vanish, except for 〈S1|H|S2〉 and its hermitian conjugate.

EXERCISE Find the ground state (and the corresponding ground-state energy) of the
hydrogen molecule described by the Hubbard model Eq. 32.

The Hartree-Fock method
The hydrogen molecule example shows that the ground state of a many particle system
is seldom a single Slater determinant (in this section we restrict our discussion to the
fermion case). Nevertheless, usually a good first approximation to the ground state can
be obtained, if we look for that Slater determinant, which minimizes the ground state
energy within the subspace of Slater-determinant states. The crucial step is to find the
corresponding set of single-particle states, out of which the Slater determinant is built.
This method is called the Hartree-Fock method after its inventors.

Let us assume that the wavefunctions ϕασ(r) form the optimal single-particle basis
we are looking for. Let furthermore |Ψ〉 be the Slater determinant formed making use of
ϕασ(r). Then the expectation value of the interaction energy in the Hartree-Fock state
|Ψ〉 reads

〈Ψ|Hint|Ψ〉 =
1

2

∑

αβγδ

∑

σσ′
〈αβ|V |γδ〉〈Ψ|c†ασc

†
βσ′cδσ′cγσ|Ψ〉

=
1

2

∑

αβ

∑

σσ′
(〈αβ|V |αβ〉nασnβσ′ − 〈αβ|V |βα〉nασnβσ′δσσ′) ,
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since the same states which were annihilated by cδσ′cγσ have to be restored back by c†ασc
†
βσ′ .

It is worth to emphasize that the operators c†ασ and cασ create and annihilate the states
ϕασ(r). If we used another basis for the creation and annihilation operators, the result for
〈Ψ|Hint|Ψ〉 would not be that simple. Making use of the definition of the matrix elements
〈αβ|V |γδ〉 and adding the kinetic energy H0 we can write the total energy E[Ψ] of the
state |Ψ〉 as

E[Ψ] =
∑
ασ

∫
d3xϕ∗ασ(x)H0ϕασ(x)

+
1

2

∑

αβσσ′

∫
d3x

∫
d3yϕ∗ασ(x)ϕ∗βσ′(y)V (x− y) [ϕβσ′(y)ϕασ(x)− δσσ′ϕασ(y)ϕβσ′(x)] ,

where the sums are to be taken over occupied states. Let us minimize now E[Ψ] with
the boundary condition

∫
d3xϕ∗ασ(x)ϕασ(x) = 1, the latter being described by a Lagrange

multiplier εασ. We obtain

H0ϕασ(x) +
∑

βσ′

∫
d3yϕ∗βσ′(y)V (x− y) [ϕβσ′(y)ϕασ(x)− δσσ′ϕασ(y)ϕβσ′(x)] = εασϕασ(x),

(33)
which is the Hartree-Fock equation for the optimal one-electron orbitals. Note that if
βσ′ = ασ, the interaction term vanishes. This means that a particle does not interact with
itself. Eq. 33 can be written in the form of an ordinary Schrödinger equationHHFϕασ(x) =
εασϕασ(x), where εασ can be interpreted as the Hartree-Fock energy of the single-particle
state ϕασ(x). The effective Hamiltonian HHF acts on a wavefunction ϕσ(x) as follows:

HHFϕσ(x) = [H0 + VH(x)]ϕσ(x)−
∫
d3yVσ(x− y)ϕσ(y).

The potentials VH(x) and Vσ(x − y) are called the Hartree and the exchange potential,
respectively. What makes the solution of Eq. 33 difficult is the fact that these potentials
are not a priori known, but they rather depend on the functions ϕασ(x) to be determined,

VH(x) =
∫
d3yV (x− y)

∑
ασ

|ϕασ(x)|2 ,

Vσ(x− y) =
∑
α

ϕ∗ασ(y)V (x− y)ϕασ(x),

where the sums are to be taken over occupied states. The Hartree potential is easily seen to
describe the (classical) average potential created by all the particles in the system, whereas
the exchange potential (which depends on the spin orientation in general) represents a
quantum mechanical correction discovered by Fock. Note that the exchange potential
is a non-local object, which greatly complicates the solution of Eq. 33. Usually the
Hartree-Fock equations can be solved only numerically by an iterative method: first try
a set of orbitals, then calculate the potentials, then solve for the new orbitals using these
potentials. The calculation can be stopped when the old and new orbitals do not differ
any more.

EXERCISE Show that HHF is a hermitian operator.
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Since HHF is hermitian, its eigenvectors can be chosen orthogonal to each other,
thereby forming an orthonormal set of states.

Taking the integral of Eq. 33, one finds readily that the single-particle energies can be
written as

εασ =
∫
d3xϕ∗ασ(x)H0ϕασ(x)

+
∑

βσ′

∫
d3x

∫
d3yϕ∗ασ(x)ϕ∗βσ′(y)V (x− y) [ϕβσ′(y)ϕασ(x)− δσσ′ϕασ(y)ϕβσ′(x)] .

Note that there is no factor 1/2 in the term coming from interactions. This means that
the total energy of the system is not a simple sum of the single-particle energies εασ, but
rather

E =
∑
ασ

εασ − 1

2

∑
ασ

∑

βσ′
(〈αβ|V |αβ〉 − δσσ′〈αβ|V |βα〉),

where the sums are once again taken over the occupied states.
As a simple example of the Hartree-Fock method, consider the hydrogen molecule ’in

an external field’, described by the Hamiltonian

H = −t∑
σ

(c†1σc2σ + c†2σc1σ) + U(n1↑n1↓ + n2↑n2↓) + ∆(n2 − n1). (34)

The new term proportional to ∆ describes the action of the electric field: the energy at
site 2 is +∆, whereas at site 1 it is −∆. This new term breaks the symmetry of the
system with respect to parity, and therefore the exact solution (in the singlet sector)
would require diagonalization of a 3× 3 matrix. (Let us note in passing that the energy
of the triplet states is not changed by the ∆ term.)

In order to proceed, let us assume that |Ψ〉 = d†↑d
†
↓|0〉 is the Slater determinant we are

looking for. In other words, we assume that both the up-spin and the down-spin electrons
occupy the same orbital d†|0〉 = ϕ1c

†
1|0〉+ ϕ2c

†
2|0〉, i.e. site i is occupied with probability

amplitude ϕi. Obviously, ϕ1 and ϕ2 play the role of the wavefunction in our model.

EXERCISE Write down the Hartree-Fock equations for ϕ1 and ϕ2. Solve the equations
in the limits U = 0 and U → ∞. Calculate the difference δ of average occupations at
sites 2 and 1. How does δ change under increasing U? Why?

LECTURE 4: JELLIUM MODEL-GROUND STATE PROPERTIES

Jellium model
Now we are in the position to discuss the physics of many body systems. Let us start with
the simplest model of a metal, the jellium model. This is a model of a metal in which the
positive ion charge is smeared homogeneously in the volume of the crystal. The average
charge densities of electrons and ions are equal in magnitude and of opposite sign, so as
to make the crystal electrically neutral. The Hamiltonian of the system

H =
N∑

i=1

p2
i

2m
+

1

2

∑

i6=j

e2

4πε0|ri − rj| +Hei +Hii
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consists of a sum of kinetic energies of the electrons and of the Coulomb interaction
energy among the electrons. The last two terms describe electron-ion and ion-ion Coulomb
interactions, respectively.

We have an infinite system in mind, but in order to keep a countable basis set, we
consider N electrons in a large box L × L × L with periodic boundary conditions. We
take the system of plane waves |k〉 as our complete orthonormal set of one-particle (or-
bital) wavefunctions. In x-representation this basis reads ϕk(x) = L−3/2 exp ik · x. The
wavenumber k can take on the values (l,m, n)2π/L, where l,m, n are integers. The single-
electron basis consists of a direct product |kσ〉 of the orbital basis and the spin basis |σ〉,
the latter consisting of two states | ↑〉 and | ↓〉.

Transforming the Hamiltonian to the second quantized form, we first note that it does
not depend on spin and therefore both nontrivial terms are diagonal in the spin index.
Furthermore we note that 〈k|p2/2m|k′〉 = εkδk,k′ with εk = h̄2k2/2m and

〈k1k2| e2

4πε0|ri − rj| |k3k4〉 =
1

Ω
δk1+k2,k3+k4Vk1−k3 ,

where Ω = L3 is the volume of the system and Vq =
∫
d3r(e2/4πε0r) exp iq · r is the

Fourier transform of the Coulomb potential. Therefore the Hamiltonian reads

H =
∑

kσ

εkc
†
kσckσ +

1

2Ω

∑

k,k′

∑

q6=0

∑

σ,σ′
Vqc

†
k+qσc

†
k′−qσ′ck′σ′ckσ. (35)

Note that the Coulomb interaction energy does not contain the term with q = 0. More-
over, neither Hei nor Hii enter Eq. 35. This is because the q = 0 term contributes an
additive constant V0N(N − 1)/(2Ω) ≈ V0N

2/(2Ω) (the latter expression is valid if we
consider only terms which are proportional to the volume of the system). This constant
is precisely cancelled by the Coulomb interactions with (and within) the background.

EXERCISE Show that Vq = e2/(ε0q
2). Hint. Making use of contour integration, show

that ∫ d3q

(2π)3

e−iq·r

(q2 + k2
s)

=
e−ksr

4πr
(36)

and take the limit ks → 0.

Free electron gas
In what follows we treat the jellium model Eq. 35 within perturbation theory. We take the
kinetic energy as the unperturbed part of the Hamiltonian and the Coulomb interaction
term is considered as a small perturbation. We will see that this perturbative approach
is justified in the limit of a dense electron gas.

We start with the unperturbed Hamiltonian corresponding to a noninteracting electron
gas. Due to the Pauli principle, not all electrons can occupy the lowest energy state with
k = 0. Rather, the electrons fill all |kσ〉 states with k < kF , where kF is the so-called
Fermi wavevector. The occupied region of k-space is called the Fermi sea and the surface
dividing the occupied and unoccupied regions is called the Fermi surface. The ground
state wavefunction can be written

|FS〉 =
∏

|k|<kF

c†k↑c
†
k↓|0〉. (37)
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For the sake of simplicity, we assume that N satisfies the so-called closed-shell condition,
which states that if there are several |k〉 vectors with the same energy, all of them are
either simultaneously full, or simultaneously empty. Under these conditions the ground
state is unique and its total spin S = 0 and total momentum P = 0.

The Fermi surface encloses a volume (4/3)πk3
F , inside of which there is a grid of

occupied |k〉 states. Each of these states has an associated volume (2π/L)3 and is occupied
with two electrons, one with spin up and the other with spin down. Therefore the total
number of electrons is equal to k3

F Ω/(3π2). Equating this number with N we find an
expression for the Fermi wavevector, kF = (3π2n)1/3, where n = N/Ω is the density of
electrons. Therefore the maximal energy of occupied states (the so-called Fermi energy)
is εF = h̄2k2

F/(2m).

EXERCISE Show that the total ground state energy of a noninteracting Fermi gas is
E0/N = (3/5)εF . Hint. In the limit of a large system L→∞, sums over k-space can be
approximated by integrals, Ω−1 ∑

k → (2π)−3
∫
d3k.

It is useful to associate with each electron a ball with radius r0 such that n =
[(4/3)πr3

0]
−1. Then the typical distance between nearby electrons is of the order r0.

In what follows we will sometimes characterize the electron gas by a dimensionless ratio
rs = r0/aB and measure lengths in units of the Bohr radius aB = 4πε0h̄

2/(me2) and
energy in units of EB = h̄2/(2ma2

B). In these units the ground state energy of the Fermi
gas reads E0/(NEB) = 2.21/r2

s . Note that E0 ∝ k2
F ∝ r−2

s .

Perturbation theory: first order
Next we discuss the first-order correction to the ground-state energy E = E0 + E1 + . . .,

E1 =
1

2Ω

∑

k,k′

∑

q6=0

∑

σ,σ′

e2

ε0q2
〈FS|c†k+qσc

†
k′−qσ′ck′σ′ckσ|FS〉,

where |FS〉 is the unperturbed ground state. The matrix element yields a finite contri-
bution only if the operator c†k+qσc

†
k′−qσ′ creates the same two single particle states which

were annihilated by the operator ck′σ′ckσ. Since q 6= 0, this is possible only if k = k′ − q
and σ = σ′. Therefore E1 simplifies to

E1 =
1

2Ω

∑

k′ 6=k

∑
σ

e2

ε0(k′ − k)2
〈FS|c†k′σc†kσck′σckσ|FS〉 = − 1

Ω

∑

k′ 6=k

e2

ε0(k′ − k)2
fkfk′ ,

where we have denoted the occupation number of the one-particle state |kσ〉 in the many
particle wavefunction Eq. 37 as fk. (Note that we have made explicit use of the fact that
c†kσckσ|FS〉 = fk|FS〉, irrespective of the value of σ.) Also note that fk is a simple step
function, fk = 1 for |k| < kF and fk = 0 otherwise. Changing the summation variables
and replacing the sums by integrals we obtain

E1 = − 1

Ω

∑

q6=0,k

e2

ε0q2
fkfk−q = − Ωe2

ε0(2π)3

∫ d3q

q2
F (q), (38)

where we have introduced F (q) = (2π)−3
∫
d3kfkfk−q. The function F (q) can be inter-

preted as the volume of the intersection of two identical Fermi spheres displaced by q, see
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Fig. 1. One finds readily that

F (q) =
3n

4

[
2

3
− q

2kF

+
1

3

(
q

2kF

)2
]

for q = |q| < 2kF and zero otherwise.

0

0.5

1

0 1 2 3 4 5 6

g(
R

)

RkF

Figure 1: Left: the region in k-space whose volume defines the function F (q). Right: the
correlation function g(R).

The integration over q in Eq. 38 can be performed trivially in spherical coordinates.
Summarizing we find that the ground state energy is, to first order in interaction energy,

E

N
=

3

5

h̄2k2
F

2m
− 3

16π2

e2kF

ε0
,

E

NEB

=
2.21

r2
s

− 0.916

rs

. (39)

From the second form of Eq. 39 one can see that in the low-density limit rs ¿ 1, the
kinetic energy per one particle is much larger than the interaction energy. It is therefore
in this limit where our perturbative calculation is valid. Before proceeding it is worth
pointing out that for electrons in simple metals, rs lies in the range between 1.8 and 5.6.
The applicability of perturbation theory to metals is therefore highly nontrivial.

Correlations within the Fermi sea
The fact that E1 < 0 indicates that already within the wavefunction Eq. 37, the electrons
avoid each other, which lowers the energy of the system. In order to clarify this issue,
let us first define the density operator in point r, ρ(r) =

∑N
i=1 δ(r− ri). Alternatively, in

second quantization we can write ρ(r) = Ω−1 ∑
k,q,σ exp(iq·r)c†k−qσckσ. Note that, making

use of this second quantized form, the expectation value of ρ(r) in the Fermi sea is easily
seen to be 〈FS|ρ(r)|FS〉 = N/Ω = n, proving explicitly the translational invariance of
the system.

Let us compute the function g(R) defined as

n2g(R) = 〈FS|ρ(0)ρ(R)|FS〉 − nδ(R) =
1

Ω

∫
d3r〈FS|ρ(r)ρ(r + R)|FS〉 − nδ(R), (40)

where in the second equation we have made use of the translational invariance of the
system. Note that for large R one expects that the density at point r+R is not affected by
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its value at r and therefore 〈FS|ρ(r)ρ(r+R)|FS〉 ≈ 〈FS|ρ(r)|FS〉〈FS|ρ(r+R)|FS〉 = n2.
In other words, at large distances the function g(R) ≈ 1.

In order to clarify the physical meaning of g(R), let us insert for ρ(r) its first quantized
definition and perform the integral over r. Then we find

n2g(R) =
1

Ω

∑

i6=j

〈FS|δ(rj − ri −R)|FS〉,

showing explicitly that g(R) is proportional to the probability of finding two electrons
at a relative distance R. Functions of the type Eq. 40, where expectation values of
local quantities at different points are considered, are called correlation functions in the
literature.

The correlation function Eq. 40 can be evaluated by going over to second quantization,
which way we find n2g(R) = n2 − 2(2π)−3

∫
d3qF (q)eiq·R. Note that the same function

F (q) enters both, the first-order correction to energy and the correlation function.

EXERCISE: Performing the q integration in spherical coordinates, show that

g(R) = 1− 9

2

[
cos kFR− (kFR)−1 sin kFR

(kFR)2

]2

.

The function g(R) is plotted in Fig. 1. Note that the probability to find two different
electrons at the same point is one half of the probability to find them far apart from each
other. This is a consequence of the Pauli principle: one half of all electrons (namely that
half which has the same spin as the chosen electron) is repelled from the test electron,
while the other half (with opposite spin) does not feel the presence of the test electrons.
The suppression of g(R) extends to distances ∼ k−1

F , i.e. it is on the order of a typical
electron-electron spacing r0. This suppression is called the exchange hole in the literature.

Low electron densities: the Wigner crystal
In the limit of small electron densities, the potential energy is expected to dominate
over the kinetic energy and, as pointed out long ago by Wigner, the electron gas should
crystallize. In what follows we give a crude estimate of the ground state energy in this
phase.

The crystal is a periodic collection of sites, around which the electron is localized.
Each lattice site we view as a spherical region (with radius r0), within which there is one
electron moving in a homogeneously distributed charge |e|. Outside this spherical region,
there is an uncharged background (from the point of view of the chosen electron), see
Fig. 2.

The ground state energy per electron can be estimated as a sum of the Coulomb
energy of the ionic background εii and of the energy ε of an electron moving in the
potential generated by the background, E/N = εii + ε.

EXERCISE Show that the electrostatic potential generated by a homogeneously charged
sphere (with total charge |e| and radius r0) is φ/φ0 = (3 − r2/r2

0)/2 for r < r0 and
φ/φ0 = r0/r for r > r0, where φ0 = |e|/(4πε0r0). Hint: calculate the electric field E at
radius r (using Gauss’ law) and make use of E = −∇φ.
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Figure 2: Left: the spherical cavity of positive charge inside an uncharged background
(shaded region). Right: The electrostatic potential of a homogeneously charged sphere.

The ion-ion energy can be calculated as εii = (|e|/2)
∫
d3rφ(r)n, from where we obtain

in atomic units εii/EB = 6/(5rs). On the other hand, the electron is described by the
Hamiltonian

H = − h̄2

2m
∇2 − |e|φ(r),

which can be thought of as a sum of harmonic oscillators in x, y, and z directions.
Therefore ε = 3h̄ω0/2 − 3e2/(8πε0r0), where ω0 = e/(4πε0r

3
0m)1/2. In atomic units we

can write ε/EB = 3/r3/2
s − 3/rs and therefore the total energy per electron in the Wigner

crystal phase is
E

NEB

=
3

r
3/2
s

− 1.8

rs

.

In Fig. 3 we compare the energy of the Wigner crystal with that of the electron gas,
Eq. 39. As was to be expected, the energy in the crystalline phase is lower at large rs.

-0.1

-0.05

0

2 4 6 8 10

E
/N

E
B

rs

Figure 3: Comparison of the ground-state energies of the jellium model. Solid line: Eq. 39.
Dashed line: energy of the Wigner crystal.

EXERCISE The Wigner crystal is stable as long as the mean deviation of the harmonic
oscillator is much less than r0. Show that this is equivalent to the criterion rs À 1.
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LECTURE 5: JELLIUM MODEL-ELEMENTARY EXCITATIONS

Quasiparticle excitations
Now we turn to the discussion of elementary excitations of the jellium model. First let us
consider a state with an added extra electron with momentum K > kF ,

|ψ〉 = c†Kα|FS〉.

The momentum of this state is h̄K, spin S = 1/2, and Sz = α. These quantum num-
bers are identical to those of an electron in vacuum, but, due to the interactions with
filled Fermi sea, the excitation energy of this state, i.e. the difference ε̃K = 〈ψ|H|ψ〉 −
〈FS|H|FS〉 is different from the energy of an electron in vacuum, εK. In fact,

〈ψ|H|ψ〉 = εK − 1

2Ω

∑

k6=k′

∑
σ

Vk−k′〈ψ|c†k′σck′σc†kσckσ|ψ〉,

= εK − 1

2Ω

∑

k6=k′

∑
σ

Vk−k′(fk + δkKδσα)(fk′ + δk′Kδσα).

From here one finds easily that

ε̃K = εK − 1

Ω

∑

k

VK−kfk = εK − e2

ε0

∫

|k|<kF

d3k

(2π)3

1

K2 + k2 − 2K · k .

EXERCISE Making use of integration in spherical coordinates, show that

ε̃K = εK − e2kF

4π2ε0
F

(
K

kF

)
,

F (x) =
1− x2

2x
ln

∣∣∣∣
1 + x

1− x

∣∣∣∣ + 1.

If we define the Fermi velocity as vK = h̄−1∂ε̃K/∂K, and if we introduce a Fermi
velocity vF = h̄kF/m, then in the vicinity of the Fermi surface we can write

vK

vF

= 1 + Crs ln
2kF

|K − kF | ,

where C = π−1(4/9π)1/3. Note that in the limit of high densities rs ¿ 1, the correction
term is small, except very close to the Fermi energy, where it diverges.

Two lessons can be learned from this simple example. The first is that within a
correlated many body system, excitation energies of electrons are different from those
in the vacuum. This was to be expected, however: when an electron is added to the
electron liquid, it has to develop an exchange hole and the charge distribution in its
vicinity is altered. Therefore, obviously, the electron energy is renormalized. Also in
more advanced approximations we can usually talk about a particle and the deformation
of the background which it causes. This composite object (bare particle+deformation of
the reservoir) is called quasiparticle in the literature. Before proceeding let us point out
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that the ’bare particle’ in this scheme does not need to be an added particle. In fact, if
we remove an electron with K < kF from the Fermi sea,

|ψ′〉 = cKα|FS〉,

we can talk about a hole. The momentum of the state |ψ′〉 is −h̄K, its spin is S = 1/2,
and Sz = −α.

The second lesson to be learned regards first-order perturbation theory: within that
approximation, the quasiparticle velocity diverges at the Fermi surface, in gross disagree-
ment with experiments. This indicates that the apparent success of perturbation theory
for the ground state energy (at rs ¿ 1) does not carry over to quasiparticle properties.

Random phase approximation
One can verify easily that the breakdown of low-order perturbation theory for vK is
caused by the long range character of the Coulomb force and the associated divergence
of Vq at q → 0. What has gone wrong? In our calculation we have considered the
unperturbed wavefunction |ψ〉 in which it has not been taken into account that every test
charge introduced into the electron liquid (and therefore every electron) will accumulate
a screening charge of equal magnitude and opposite charge around itself, due to which
process at distances larger than the size of the screening cloud the electric field due to the
test charge is negligible. In what follows we therefore introduce a method which allows
us to take this screening into account.

Let us consider that into the electron liquid, we insert a small test charge density

e

Ω

[
ρext
q exp(iq · r− iωt) + ρext

−q exp(−iq · r + iωt)
]
.

The electron system will screen this test charge density. In what follows we will see that
if the perturbation is assumed to be small, the screening charge density will be given by

e

Ω
[ρq exp(iq · r− iωt) + ρ−q exp(−iq · r + iωt)] . (41)

Therefore the total charge density is given by

e

Ω

[
ρtot
q exp(iq · r− iωt) + ρtot

−q exp(−iq · r + iωt)
]
, (42)

where ρtot
q = ρext

q + ρq and ρtot
−q = ρext

−q + ρ−q, respectively.
Since the electrostatic potential is related to the charge density through the Laplace

equation, ∇2φ(r) = −ε−1
0 eρ(r), we can introduce three types of electrostatic potentials,

all of which can be written as

φi
q exp(iq · r− iωt) + φi

−q exp(−iq · r + iωt),

φi
±q = (ε0Ωq

2)−1eρi
±q and the upper index i discriminates the external, induced, and total

potentials. As usual in the theory of electromagnetism, we define now a dielectric function

ε(q, ω) =
φext

q

φtot
q

=
ρext
q

ρtot
q

= 1− ρq

ρtot
q

, (43)
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where we have shown explicitly the wavevector and frequency dependence of the dielectric
function. An alternative way of writing Eq. 43 is

1

ε(q, ω)
=
φtot

q

φext
q

=
ρtot
q

ρext
q

= 1 +
ρq

ρext
q

. (44)

The form Eq. 44 is useful in fully microscopic formulations of the screening problem,
which we do not attempt here.

So far, our treatment of screening was exact (in the limit of a vanishing ρext). Now we
introduce the so-called random phase approximation (RPA), according to which ε(q, ω)
is calculated from Eq. 43 where the ratio ρ/ρtot is approximated by the response of a
non-interacting electron gas to a perturbing charge density Eq. 42. The Hamiltonian for
the electron system is H = Hkin +H ′, where

H ′(t) = e
∫
d3rρ̂(r)φtot(r) =

e2

ε0Ωq2

[
ρ̂−qρ

tot
q e−iωt + ρ̂qρ

tot
−qe

iωt
]
eηt,

where, in order to distinguish expectation values and operators, we have introduced
hats for the latter. In particular, ρ̂(r) is the operator of electron density and ρ̂q =∑N

i=1 exp(−iq · ri) is its Fourier transform. We have introduced into H ′ also a factor
exp(ηt) where it is understood that η is small and will be set zero at the end of the
calculation. Its physical meaning is that it corresponds to a slow switching on of the
perturbation, since exp(ηt) = 0 for t→ −∞ and exp(ηt) = 1 for t = 0.

Let us solve now the time-dependent Schrödinger equation

ih̄
∂

∂t
|Ψ〉 = [Hkin +H ′(t)] |Ψ〉

making use of time-dependent perturbation theory, assuming that at t = −∞, the system
was in the ground state of Hkin. To this end, we expand |Ψ(t)〉 in a set of eigenstates |n〉
of Hkin,

|Ψ(t)〉 =
∑
n

an(t)e−iEnt/h̄|n〉,

where En is the energy of state |n〉. Note that |n〉 is a time-independent basis state in the
Heisenberg picture, whereas |Ψ(t)〉 is a state in the Schrödinger picture. The expansion
coefficients have to satisfy the boundary condition a0(−∞) = 1 and an(−∞) = 0 for all
excited states.

EXERCISE Show that standard time-dependent perturbation theory leads to the result
a0(t) = 1 and, for n 6= 0,

an(t) = − e2

h̄ε0Ωq2

[〈n|ρ̂−q|0〉ρtot
q

ωn0 − ω − iη
ei(ωn0−ω−iη)t +

〈n|ρ̂q|0〉ρtot
−q

ωn0 + ω − iη
ei(ωn0+ω−iη)t

]
,

where ωn0 = (En − E0)/h̄.
To first order in ρtot, the expectation value of ρ̂q in the state |Ψ(t)〉 reads

〈Ψ(t)|ρ̂q|Ψ(t)〉 = 〈Ψ(t)|ρ̂q|0〉e−iE0t/h̄ + 〈0|ρ̂q|Ψ(t)〉eiE0t/h̄

=
∑

n 6=0

[
an(t)e−iωn0t〈0|ρ̂q|n〉+ a∗n(t)eiωn0t〈n|ρ̂q|0〉

]
.
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Making use of the second-quantized form ρ̂q =
∑

kσ c
†
kσck+qσ, one can see readily that

〈n|ρ̂q|0〉 is finite only if the momentum of the state |n〉 is −h̄q. For this state obviously
〈n|ρ̂−q|0〉 = 0. Moreover, note that 〈0|ρ̂q|n〉 = 〈n|ρ̂−q|0〉∗. After a simple calculation we
find then

〈Ψ(t)|ρ̂q|Ψ(t)〉 = − e2

h̄ε0Ωq2
ρtot
q e−iωt+ηt

∑

n 6=0

[ |〈n|ρ̂−q|0〉|2
ωn0 − (ω + iη)

+
|〈n|ρ̂q|0〉|2

ωn0 + (ω + iη)

]
.

Thus the induced charge has precisely the same form as expected in Eq. 41 and we can
calculate the dielectric function making use of Eq. 43. We obtain

ε(q, ω) = 1 + Vqχ(q, ω), (45)

where the so-called polarization χ(q, ω) reads

χ(q, ω) =
1

h̄Ω

∑

n 6=0

|〈n|ρ̂q|0〉|2
[

1

ωn0 − (ω + iη)
+

1

ωn0 + (ω + iη)

]
.

In arriving at this expression we have assumed that the system is invariant by reflection.
In fact, the states |n〉 contributing to the sum in the first term of χ(q, ω) and the states
|n′〉 contributing to the second term are related by reflection symmetry. In a symmetric
system their energies are equal, En = En′ , and therefore the simplification is justified.

Finally, let us note that the states |n〉 which contribute to χ(q, ω) can be fully described
by specifying the wavevector k and spin σ of the state to be created. Therefore we have
|〈n|ρ̂q|0〉|2 = fk+q(1− fk) and

χ(q, ω) =
2

Ω

∑

k

fk+q(1− fk)

[
1

εk − εk+q − (h̄ω + ih̄η)
+

1

εk − εk+q + (h̄ω + ih̄η)

]
.

where the factor of two comes from summation over spins. By making the dummy variable
transformation k → −k−q in the second term and making use of the assumed reflection
symmetry εk = ε−k we finally find

χ(q, ω) =
2

Ω

∑

k

fk+q − fk
εk − εk+q − h̄ω − ih̄η

. (46)

Static screening of Coulomb interactions
Now we are in the position to discuss screening. We consider the static case, when ω = 0
and the susceptibility at small q reads

χ(q, 0) = − 2

Ω

∑

k

df

dε
=

2

(2π)3

∫
d3k δ

[
h̄2

2m
(k2 − k2

F )

]
=
mkF

π2h̄2 .

Here we have taken into account that the derivative of a step function is a Dirac delta
function. Inserting the expression for χ(q, 0) into the dielectric function, we find ε(q, 0) =
1 + k2

s/q
2, where k2

s = me2kF/(ε0π
2h̄2). Therefore the Fourier transform of the static

screened Coulomb interaction in the long-wavelength limit reads

V s
q =

e2

ε0q2ε(q, 0)
=

e2

ε0(q2 + k2
s)
.
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Note that this interaction is not any more singular at q → 0. Moreover, as Eq. 36 shows,
ks is the inverse screening length (the so-called Thomas-Fermi screening length). When
measured in units of kF , the inverse screening length reads

(
ks

kF

)2

= 4Crs,

where C is the same numerical constant which appeared in the renormalization of Fermi
velocity. This result means that in the high-density limit rs ¿ 1 the screening length
scales like k−1

s ∝ aB
√
rs, i.e. it is much longer than the average interparticle distance

aBrS.

LECTURE 6

Collective excitations: plasmons
Another interesting physical effect which can be discussed making use of the dielectric
function are the density oscillations of the electron gas, the so-called plasmons. Physically,
the existence of such collective excitations can be explained as follows. Imagine that at
some space-time point the density of the electrons diminishes for some reason. The
electron liquid will flow towards this region, in order to restore charge neutrality, but,
because of inertial effects, the screening electrons overshoot. Thus the initial charge
fluctuation is not screened and the process of screening starts again.

From the formal point of view, spontaneous oscillations of density are expected when-
ever ε(q, ω) = 0. This can be seen from Eq. 43 which can be written in the form
φtot = φext/ε(q, ω). This means that even if the external potential φext vanishes, there
can still be a finite total internal field φtot.

EXERCISE Show that in the limit when q → 0 and ω is finite,

χ(q, ω) = − 2

Ωh̄2ω2

∑

k

fk(εk+q + εk−q − 2εk) = − nq2

mω2
.

From here it follows that ε(0, ω) = 1− ω2
p/ω

2 where we have introduced ω2
p = ne2/(mε0).

Since the dielectric function vanishes for ω = ωp, one can see that ωp is the frequency of
spontaneous plasma oscillations. It is called plasma frequency in the literature.

Plasmons - alternative derivation
Note that in the formula for ωp there is no h̄. This is in agreement with the fact that the
notion of plasma oscillations can be derived also from purely classical considerations. In
fact, let us assume small density oscillations of the electron gas described by the electron
density ρ(r). The continuity equation reads

∂ρ

∂t
+∇ · j = 0,

where j = nv is the electron current density (note that since we keep only lowest-order
terms, we have written in the expression for j the average electron density n instead of
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ρ). Plasma oscillations will lead to appearance of an electric field E in the electron gas,
which will accelerate the electrons, ∂v/∂t = eE/m, and therefore

∂j

∂t
=
ne

m
E.

Now, let us take the time derivative of the continuity equation and the quantity ∂(∇·j)/∂t
express by taking the divergence of the acceleration equation. In the result let us make
use of the Maxwell equation ∇ · E = eρ/ε0. This way we obtain

∂2ρ

∂t2
+ ω2

pρ = 0, (47)

showing explicitly that the electron gas supports plasma oscillations.
In what follows we construct a quantum-mechanical analogue of the above quasi-

classical equations. This will be done by the method of equations of motion, i.e. from
now we work in the Heisenberg picture. Our goal is to find an equation of motion for a
long-wavelength density oscillation, which is described by the operator ρq.

Let us first calculate the time derivative of ρq,

dρq

dt
=
i

h̄
[H, ρq] = i

N∑

i=1

e−iq·ri

(
h̄q2

2m
− q · pi

m

)
. (48)

The calculation can be easily performed in the first-quantized form, since the Coulomb
energy obviously commutes with ρq. Therefore only the commutator of kinetic energy
with ρq has to be calculated. A useful identity enabling us to check Eq. 48 is

i

h̄

[
p2

i

2m
, e−iq·rj

]
= i

[
h̄q2

2m
− pi · q

m

]
δij.

Note that Eq. 48 is the Fourier transform of a quantum-mechanical continuity equation,
since it can be written as dρq/dt = −iq · jq, where

jq =
1

2

N∑

i=1

[
e−iq·rivi + vie

−iq·ri

]

is the current density operator and vi = pi/m is the one-particle velocity operator.
In analogy with the classical solution, in the next step we have to calculate the time

derivative of the operator dρq/dt:

d2ρq

dt2
=
i

h̄

[
H,

dρq

dt

]
= −

N∑

i=1

e−iq·ri

[
h̄q2

2m
− pi · q

m

]2

− 1

Ω

∑

Q 6=0

VQ
q ·Q
m

ρq−QρQ. (49)

The first term in Eq. 49 comes from the commutation with the kinetic energy. The second
term is a commutator with the Coulomb energy. This term is nonvanishing, because the
operator dρq/dt contains also single-particle momentum operators. In arriving at Eq. 49,
we have written the Coulomb interaction energy in the form

HCoul =
1

2Ω

∑

Q6=0

VQ(ρQρ−Q −N),
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which can be proven easily if one inserts the second quantized form of ρQ and compares
with Eq. 35. In the derivation of Eq. 49, the commutation relation [pi, ρQ] = −h̄Qe−iQ·ri

is useful.
Now we observe that on the right-hand side of Eq. 49 the first term is small in the limit

q → 0. Moreover, the second term on the right-hand side is dominated by the contribution
of Q = q, which yields ω2

pρq. This is because for the remaining Q vectors the wavevector
of the density dluctuation can’t be equal to zero (note that Q = 0 is not included in the
sum). Note that ρq=0 = N is a macroscopic number, whereas for nonzero wavevectors the
phases in ρq =

∑N
i=1 exp(−iq · i) vary randomly (for a high density electron gas, where the

kinetic energy dominates) and are therefore likely to nearly cancel each other. In other
words, ρq for a high density electron gas is expected to be small. Neglecting the small
terms we finally arrive at an equation for ρq of the same form as Eq. 47. Hence, we have
rederived the plasmon within a quantum-mechanical language.

Quasiparticle lifetime
Let us address the question whether, if we prepare a quasiparticle excitation with a given
momentum and energy, the quasiparticle state remains unchanged for an infinitely long
time. The answer to this question is obviuosly no, since e.g. a quasiparticle with k > kF

can scatter from kσ to k−qσ by exciting a particle from an originally occupied state pσ′

below the Fermi level to an originally empty state p + qσ′ outside the Fermi sea. The
resulting hole in the state pσ′ and the particle in the state p + qσ′ are called an excited
particle-hole pair.

Figure 4: Scattering process leading to a finite lifetime of the electron.

In what follows we determine the quasiparticle lifetime τk by means of the Fermi
golden rule,

h̄

τk
= 2× 2π

∑
q

(
V s

q

Ω

)2 ∑
p

fp(1− fp+q)(1− fk−q)δ(εk−q + εp+q − εp − εk).

The Fermi functions make sure that the state p is occupied and the states p + q and
k− q are empty, the delta function takes into account the conservation of energy in the
scattering process (note that momentum is conserved by definition), and the factor of 2
comes from a summation over σ′.

Let us consider only quasiparticles with low excitation energies, i.e. such which lie
close to the Fermi level. Then it is easy to see that all four momenta involved in the
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scattering process have to be close to the Fermi level and because of this restriction we
can replace the summations over momenta as follows

1

Ω

∑
p

=
1

(2π)3

∫
d3k =

1

(2π)3

∫
dkk2

∫
dSk ≈ N(0)

∫
dεk

∫ dSk

4π
,

where
∫
dSk is an angular integration in k-space and we have introduced the density of

states at the Fermi level (for one spin direction)

N(0) =
k2

F

2π2h̄vF

=
mkF

2π2h̄2 .

Introducing k′ = k+q and p′ = p−q we can write the golden rule as a triple sum over p,
p′, and k′, if we also introduce another three-dimensional delta function for momentum
conservation. This way we obtain

h̄

τk
= 4πN(0)3

∫ dSp

4π

∫ dSp′

4π

∫ dSk′

4π
(V s

k′−k)
2δ(k′ + p′ − k− p)

×
∫
dεp

∫
dεp′

∫
dεk′fp(1− fp′)(1− fk′)δ(εk′ + εp′ − εk − εp). (50)

EXERCISE Show that the energy integral in the second line of Eq. 50 equals (εk−εF )2/2.
Hint. First introduce instead of ε its deviation from the Fermi level, ξ = ε − εF . Then
show that the integral can be written as

∫ 0

−∞
dξp

∫ ∞

0
dξp′

∫ ∞

0
dξk′δ(ξk′ +ξp′−ξk−ξp) =

∫ ∞

0
dξp

∫ ∞

0
dξp′

∫ ∞

0
dξk′δ(ξp +ξp′ +ξk′−ξk).

Show that the last integral equals
∫ ξk
0 dξp

∫ ξk−ξp

0 dξp′ .
The angular integral in Eq. 50 can be shown to be finite. This then means that the

inverse lifetime of a quasiparticle varies as h̄/τk ∝ (εk−εF )2. Since, due to the Heisenberg
uncertainty principle, a finite lifetime of a particle means a finite uncertainty of its energy
δεk ∼ h̄/τk, Eq. 50 implies that at sufficiently small excitation energies εk−εF the energy
uncertainty of the quasiparticle becomes negligible with respect to the excitation energy
of the quasiparticle, and therefore the very concept of a quasiparticle is well defined.
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