
Main()

public static void main(String[] args) {

 System.out.println("Hello World");

}

Premenna

type variable = value;

String - stores text, such as "Hello". String values are surrounded by double quotes

int - stores integers (whole numbers), without decimals, such as 123 or -123

float - stores floating point numbers, with decimals, such as 19.99 or -19.99

char - stores single characters, such as 'a' or 'B'. Char values are surrounded by single quotes

boolean - stores values with two states: true or false

Arithmetic Operators

Operator Name Description Example

+ Addition Adds together two values x + y

- Subtraction Subtracts one value from another x - y

* Multiplication Multiplies two values x * y

/ Division Divides one value from another x / y

% Modulus Returns the division remainder x % y

++ Increment Increases the value of a variable by 1 ++x

-- Decrement Decreases the value of a variable by 1 --x

Comparison Operators

Comparison operators are used to compare two values:

Operator Name Example

== Equal to x == y

!= Not equal x != y

> Greater than x > y

< Less than x < y

>= Greater than or equal to x >= y

<= Less than or equal to x <= y

Logical Operators

Logical operators are used to determine the logic between variables or values:

Operator Name Description Example

&& Logical and Returns true if both statements are true x < 5 && x < 10

|| Logical or Returns true if one of the statements is

true

x < 5 || x < 4

! Logical not Reverse the result, returns false if the

result is true

!(x < 5 && x < 10)

If Statements

Java supports the usual logical conditions from mathematics:

Less than: a < b

Less than or equal to: a <= b

Greater than: a > b

Greater than or equal to: a >= b

Equal to a == b

Not Equal to: a != b

if (condition) {

 // block of code to be executed if the condition is true

} else {

 // block of code to be executed if the condition is false

}

if (condition1) {

 // block of code to be executed if condition1 is true

} else if (condition2) {

 // block of code to be executed if the condition1 is false and condition2 is true

} else {

 // block of code to be executed if the condition1 is false and condition2 is false

}

Syntax – skrateny zapis if-u, pouzivat, len ked chces byt fancy a mas jednoduchy kratky if

variable = (condition) ? expressionTrue : expressionFalse;

Instead of writing:

int time = 20;

if (time < 18) {

 System.out.println("Good day.");

} else {

 System.out.println("Good evening.");

}

While Loop

The while loop loops through a block of code as long as a specified condition is true:

Syntax

while (condition) {

 // code block to be executed

}

In the example below, the code in the loop will run, over and over again, as long as a variable (i) is

less than 5:

Example

int i = 0;

while (i < 5) {

 System.out.println(i);

 i++;

}

For Loop

When you know exactly how many times you want to loop through a block of code, use

the for loop instead of a while loop:

Syntax

for (statement 1; statement 2; statement 3) {

 // code block to be executed

 }

Statement 1 is executed (one time) before the execution of the code block.

Statement 2 defines the condition for executing the code block.

Statement 3 is executed (every time) after the code block has been executed.

The example below will print the numbers 0 to 4:

for (int i = 0; i < 5; i++) {

 System.out.println(i);

}

Break – patri k loopom, da sa pouzit rovnako aj vo while cykle

You have already seen the break statement used in an earlier chapter of this tutorial. It was used

to "jump out" of a switch statement.

The break statement can also be used to jump out of a loop.

This example jumps out of the loop when i is equal to 4:

for (int i = 0; i < 10; i++) {

 if (i == 4) {

 break;

 }

 System.out.println(i);

}

Continue – patri k loopom, da sa pouzit rovnako aj vo while cykle

The continue statement breaks one iteration (in the loop), if a specified condition occurs, and

continues with the next iteration in the loop.

This example skips the value of 4:

for (int i = 0; i < 10; i++) {

 if (i == 4) {

 continue;

 }

 System.out.println(i);

}

Methods - funkcie

public class MyClass {

 static void myMethod(String fname, int age) {

 System.out.println(fname + " is " + age);

 }

 public static void main(String[] args) {

 myMethod("Liam", 5);

 myMethod("Jenny", 8);

 myMethod("Anja", 31);

 }

}

// Liam is 5

// Jenny is 8

// Anja is 31

Metod with return value

public class MyClass {

 static int myMethod(int x, int y) {

 return x + y;

 }

 public static void main(String[] args) {

 System.out.println(myMethod(5, 3));

 }

}

// Outputs 8 (5 + 3)

ZHRNUTIE

Premenna
typy:

Integer – cele cisla

String – retazce v tvare napr. “ahoj“

Double – desatinne cisla

Boolean – true/false

Char – jediny znak v tvare napr. ‘a‘

type variable = value;

Print – skratka sout

System.out.println("Hello World");

If

if (condition) {

 // block of code to be executed if the condition is true

} else {

 // block of code to be executed if the condition is false
}

For

for (statement 1; statement 2; statement 3) { //for (int i = 0; i < 10; i++)

 // code block to be executed
 }

While

while (condition) {

 // code block to be executed
}

ArrayList

import java.util.ArrayList; // import the ArrayList class

ArrayList<String> cars = new ArrayList<String>(); // Create an ArrayList
object

cars.add("Volvo");
cars.get(0);

cars.set(0, "Opel");

cars.remove(0);

cars.clear();
cars.size();

