
Information Flow for Timed Automata

Flemming Nielson(B), Hanne Riis Nielson, and Panagiotis Vasilikos

Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Kongens Lyngby, Denmark

{fnie,hrni,panva}@dtu.dk

Abstract. One of the key demands of cyberphysical systems is that
they meet their safety goals. Timed Automata has established itself as
a formalism for modelling and analysing the real-time safety aspects
of cyberphysical systems. Increasingly it is also demanded that cyber-
physical systems meet a number of security goals for confidentiality and
integrity. Information Flow Control is an approach to ensuring that there
are no flows of information that violate the stated security policy.

We develop a language based approach to the modelling and analysis
of timed systems that allows to incorporate considerations of informa-
tion flow control. We define a type system for information flow that
takes account of the non-determinism and clocks of timed systems. The
adequacy of the type system is ensured by means of a non-interference
result.

1 Introduction

Motivation. Embedded systems are key components of cyberphysical systems
and are often subject to stringent safety goals. Among the current approaches to
the modelling and analysis of timed systems, the approach of Timed Automata [3]
stands out as being a very successful approach with well-developed tool support
– in particular the UPPAAL suite [16] of tools.
As cyberphysical systems become increasingly distributed and interconnected
through wireless communication links it becomes even more important to ensure
that they meet suitable security goals. This may involve safeguarding the confi-
dentiality (or privacy) of sensor data or ensuring the integrity (or authenticity)
of control commands; in both cases we need to limit the way information flows
through the program. Information Flow Control [9,17] is a key approach to
ensuring that software systems admit no flow of information that violate the
stated security policy for confidentiality and/or integrity.

Contribution. It is therefore natural to extend the enforcement of safety proper-
ties of Timed Automata with the enforcement of appropriate Information Flow
policies. It is immediate that the treatment of clocks will pose a challenge. It
turns out that the non-determinism inherent in automata poses another chal-
lenge. More fundamentally there is the challenge that Timed Automata is an

c© Springer International Publishing AG 2017
L. Aceto et al. (Eds.): Larsen Festschrift, LNCS 10460, pp. 3–21, 2017.
DOI: 10.1007/978-3-319-63121-9 1

4 F. Nielson et al.

automata based formalism whereas most approaches to Information Flow take a
language based approach by developing type systems for programming languages
or process calculi.

Consequently we take a language based approach to the study of timed sys-
tems. We adapt the Guarded Commands language of Dijkstra [10] to more closely
correspond to the primitives of the Timed Automata formalism – resulting in
the Timed Command language – and we show how to obtain Timed Automata
from programs in Timed Commands. We then develop a type system for enforc-
ing an Information Flow policy on programs in Timed Commands – the main
novelty being our treatment of non-determinism. We demonstrate the adequacy
of the type system by means of a non-interference result [17,18]. Throughout we
demonstrate the development on a simple voting protocol.

Related Work. There are other papers dealing with Information Flow on systems
with a notion of time. Discrete time is considered in [11] that develops a non-
interference property based on bisimulations of processes from a discrete time
process algebra. A somewhat different direction in taken in [2] where a transfor-
mational type system is used to remove discrete timing as a covert channel for
deterministic programs. Our contribution focuses on the challenges of continuous
time and guarded actions of Timed Automata.

Continuous time is considered in [6] and [7] that present a notion of a timed
non-interference for timed automata, while the work of [13] defines a notion of
timed non-interference based on bisimulations for probabilistic timed automata.
Our contribution considers a model closer to the Timed Automata of UPPAAL
[16] and the development of a type system. A somewhat different approach is
taken in [12] that studies the synthesis of controllers. Our key contribution is to
develop a type system that prevents unnecessary label creep (where the boolean
conditions passed exercise information flow to all variables subsequently used)
and that deals with non-determinism, non-termination and continuous real-time.

2 Timed Automata

A Timed Automaton [1,3] TA consists of a set of nodes Q, a set of annotated
edges E, and a labelling function I on nodes. A node q◦ ∈ Q will be the initial
node and a node q• ∈ Q will be the final node; often q• is intended not to be
reachable. The mapping I maps each node in Q to a condition (to be introduced
below) that will be imposed as an invariant at the node; we sometimes write
dom(I) for Q and TA = (E, I) or TA = (E, I, q◦, q•).

The edges are annotated with actions and take the form (qs, g → act: r, qt)
where act is given by

act:: = x :=e | publish e

and qs ∈ Q is the source node and qt ∈ Q is the target node. The action
g → x := e: r consists of a guard g that has to be satisfied in order for the
multiple assignments x :=e to be performed and the clock variables r to be
reset. We shall assume that the sequences x and e of program variables and

Information Flow for Timed Automata 5

1 2

...

...

3

...

4
cast

yes1 yesN

no1 noN

cntNcnt1

count publ

Invariants:
1 tt
2 t ≤ 50
3 t ≤ 30
4 tt

cast: → x1, ..., xN , y1, ..., yN , v1, ..., vN , c:=0: t
count: t = 50 → : t
publ: t = 30 → publish c: t

yesi: t < 50 ∧ xi = 0 → xi, vi:=1, 1:
noi: t < 50 ∧ xi = 0 → xi, vi:=1, 0:
cnti: t < 30 ∧ xi = 1 ∧ yi = 0 → yi, c:=1, c+ vi:

Fig. 1. The timed automaton VP (and the abbreviations used).

expressions, respectively, have the same length and that x does not contain any
repetitions. To cater for special cases we shall allow to omit the assignments
of g → x := e: r when x (and hence e) is empty; also we shall allow to omit
the guard g when it equals tt and to omit the clock resets when r is empty.
The action g → publish e: r is fairly similar, the main difference being that no
assignments are performed – the role of this action will become clear later when
we discuss the security policies.

It has already emerged that we distinguish between (program) variables x
and clock variables (or simply clocks) r. We write R for the set of clocks. The
expressions e, guards g and conditions c are defined as follows using boolean
tests b:

e :: = e1 opa e2 | x | n
b :: = tt | ff | e1 opr e2 | ¬b | b1 ∧ b2
g :: = b | r opc n | (r1 − r2) opc n | g1 ∧ g2
c :: = b | r opd n | (r1 − r2) opd n | c1 ∧ c2

The arithmetic operators opa and the relational operators opr are as usual. For
comparisons of clocks we use the operators opc ∈ {<, ≤, =≥, >} in guards and
the less permissive set of operators opd ∈ {<, ≤, =} in conditions.

Example 1. To illustrate our development we shall consider the voting protocol
given by the timed automaton VP of Fig. 1. The protocol has N voters and three
phases: casting (all edges leading to node number 2), counting (all edges leading
to node number 3) and publishing (the edge leading to node number 4). For the
casting phase a voter can choose to vote either yes (vi = 1) or no (vi = 0), or not
to vote at all; xi indicates whether or not the voter has voted. In the counting
phase the votes are being counted using the variable c; here yi indicates whether
the vote has been counted or not. Finally at the end of the counting phase the
result is published. The clock t bounds the duration of the different phases of
the protocol as expressed by the invariants of the nodes.

To specify the semantics of timed automata let σ be a state mapping vari-
ables to values (which we take to be integers) and let δ be a clock assignment
mapping clocks to non-negative reals. We then have total semantic functions [[·]]
for evaluating the expressions, boolean tests, guards and conditions; the values

6 F. Nielson et al.

of the expressions and boolean expressions only depend on the states whereas
that of guards and conditions also depend on the clock assignments.
The configurations of the timed automata have the form 〈q, σ, δ〉 and we have
transitions of two forms. Whenever (qs, g → act: r, qt) is in E we have the instant
rule:

〈qs, σ, δ〉 −→ 〈qt, σ
′, δ′〉 if

⎧
⎨

⎩

[[g]](σ, δ) = tt,
σ′ = [[act]]σ, δ′ = δ[r 	→ 0],
[[I(qt)]](σ′, δ′) = tt

Whenever q is in Q we have a delay rule:

〈q, σ, δ〉 −→ 〈q, σ, δ′〉 if
{∃ d > 0 : δ′ = λr. δ(r) + d,

[[I(qs)]](σ, δ′) = tt

The instant rule ensures that the guard is satisfied in the starting configuration
and updates the mappings σ and δ and finally it ensures that the invariant is
satisfied in the resulting configuration. Here the semantics of actions is given by
[[x := e]]σ = σ[x 	→ [[e]]σ] (using the notation ·[· 	→ ·]) whereas [[publish e]]σ =
σ. The delay rule only modifies the clock assignment with a delay d while ensuring
that the invariant is satisfied in the resulting configuration. Initial configurations
assume that all clocks are initialised to 0 and have the form 〈q◦, σ, λr.0〉 where
[[I(q◦)]](σ, λr.0) = tt.

Trace Behaviour. We do not want to admit Zeno behaviours nor do we want to
admit systems that delay forever. We therefore combine the instant and delay
rules into a joint rule that effectively first performs a number of delay rules
(possibly none) and then an instant rule. So whenever (qs, g → act: r, qt) is in
E we have:

〈qs, σ, δ〉 =⇒ 〈qt, σ
′, δ′〉 if ∃ d ≥ 0 :

⎧
⎨

⎩

[[g]](σ, (δ + d)) = tt,
σ′ = [[act]]σ, δ′ = (δ + d)[r 	→ 0],
[[I(qs)]](σ, δ + d) = tt, [[I(qt)]](σ′, δ′) = tt

where δ + d abbreviates λr. δ(r) + d. Here we use that it suffices to test the
condition at the beginning and at the end of the periods of delay, because a
condition c satisfies that if [[c]](σ, δ) and [[c]](σ, δ + d + d′) for d, d′ ≥ 0 then also
[[c]](σ, δ + d).
We define a trace from 〈qs, σ, δ〉 to qt in a timed automaton TA to have one of
three forms. It may be a finite “successful” sequence

〈qs, σ, δ〉 = 〈q′
0, σ

′
0, δ

′
0〉 =⇒ · · · =⇒ 〈q′

n, σ′
n, δ′

n〉
such that {n} = {i | q′

i = qt ∧ 0 < i ≤ n}.

in which case at least one step is performed. It may be a finite “unsuccessful”
sequence

〈qs, σ, δ〉 = 〈q′
0, σ

′
0, δ

′
0〉 =⇒ · · · =⇒ 〈q′

n, σ′
n, δ′

n〉
such that 〈q′

n, σ′
n, δ′

n〉 is stuck and qt �∈ {q′
1, · · · , q′

n}

Information Flow for Timed Automata 7

where 〈q′
n, σ′

n, δ′
n〉 is stuck when there is no joint action starting from 〈q′

n, σ′
n, δ′

n〉.
Finally, it may be an infinite “unsuccessful” sequence

〈qs, σ, δ〉 = 〈q′
0, σ

′
0, δ

′
0〉 =⇒ · · · =⇒ 〈q′

n, σ′
n, δ′

n〉 =⇒ · · ·
such that qt �∈ {q′

1, · · · , q′
n, · · · }.

We may summarise the trace behaviour [[TA : qs 	→ qt]](σ, δ) of all traces from
〈qs, σ, δ〉 to qt in the timed automaton TA by defining:

[[TA : qs 	→ qt]](σ, δ) =
{(σ′, δ′) | a successful trace from 〈qs, σ, δ〉 to qt in TA ends in 〈qt, σ

′, δ′〉}
∪ {⊥ | there is an unsuccessful trace from 〈qs, σ, δ〉 to qt in TA}

The only behaviour not accounted for by this definition is the potential delay in
qt and the potential joint actions starting from qt.

3 Information Flow

We envisage that there is a security lattice expressing the permissible flows [9].
Formally this is a complete lattice and the permitted flows go in the direction
of the partial order. In our development it will contain just two elements, L (for
low) and H (for high), and we set L � H so that only the flow from H to L is
disallowed. For confidentiality one would take L to mean public and H to mean
private and for integrity one would take L to mean trusted and H to mean
dubious. A more general development might consider a richer security lattice
encompassing the Decentralized Label Model [14].

Example 2. Returning to the voting protocol of Example 1 we shall assume that
the variables xi (indicating whether or not the i’th participant has voted) and
yi (indicating whether or not the vote of the i’th participant has been counted)
are public whereas the variables vi (the actual vote of the i’the participant) and
c (the result of the voting) are private. We shall consider it natural to let the
clock t be public as well.

A security policy is then expressed by a mapping L that assigns an element of the
security lattice to each program variable, clock variable, and node (i.e. program
point). An entity is called high if it is mapped to H by L, and it is said to be
low if it is mapped to L by L.

Example 3. Returning to the voting protocol of Examples 1 and 2 we shall let the
security policy L map the variables xi and yi and the clock t to the low security
level (L), while it maps vi and c to the high security level (H). Furthermore, L
maps all nodes to the low security level (L).

To express adherence to the security policy we use the binary operation �
defined on sets χ and χ′ (of variables, clocks and nodes):

χ � χ′ ⇔ ∀u ∈ χ : ∀u′ ∈ χ′ : L(u) � L(u′)

8 F. Nielson et al.

This expresses that all the entities of χ may flow into those of χ′; note that if
one of the entities of χ has a high security level then it must be the case that all
the entities of χ′ have high security level.

Information flow control enforces a security policy by imposing constraints
of the form {y} � {x} whenever the value of y may somehow influence (or flow
into) that of x. Traditionally we distinguish between explicit and implicit flows
as explained below.

As an example of an explicit flow consider a simple assignment of the form
x:=e. This gives rise to a condition fv(e) � {x} so as to indicate that the explicit
flow from the variables of e to the variable x must adhere to the security policy: if
e contains a variable with high security level then x also must have high security
level.

For an example of an implicit flow consider a conditional assignment
g → x:=0 where x is assigned the constant value 0 in case g evaluates to true.
This gives rise to a condition fv(g) � {x} so as to indicate that the implicit flow
from the variables of g to the variable x must adhere to the security policy: if g
contains a variable with high security level then x also must have high security
level. (If used indiscriminately this gives rise to label creep where variables tend
to have to be given the high security classification.)

In this paper we develop an approach to ensuring that the security policy is
adhered to by the Timed Automaton of interest. The key idea is to ensure that
{x} � {y} whenever there is an explicit flow of information from x to y (as illus-
trated above) or an implicit flow from x to y; traditionally, implicit flows arise
because of testing guards and conditions, but we shall see that the highly non-
deterministic nature of Timed Automata provide yet another contribution. We
shall say that we prevent information flows from high variables to low variables.

To overcome the vagueness of this explanation we need to define a semantic
condition that encompasses our notion of permissible information flow. We begin
by defining (σ, δ) ≡ (σ′, δ′) to indicate that the two pairs are equal on low
variables and low clocks:

(σ, δ) ≡ (σ′, δ′) iff ∀x : L(x) = L ⇒ σ(x) = σ′(x) ∧
∀r : L(r) = L ⇒ δ(r) = δ′(r)

To cater for the ⊥ behaviour produced by the trace behaviour we shall allow
to write ⊥ ≡ ⊥ and take it for granted that ⊥ �≡ (σ, δ) and (σ, δ) �≡ ⊥. It is
immediate that this definition of ≡ gives rise to an equivalence relation.

We next lift the operation ≡ to work on sets:

Γ ≡ Γ ′ iff ∀γ ∈ Γ : ∃γ′ ∈ Γ ′ : γ ≡ γ′ ∧
∀γ′ ∈ Γ ′ : ∃γ ∈ Γ : γ ≡ γ′

Here γ ranges over pairs (σ, δ) as well as ⊥, and it is immediate that this defin-
ition of ≡ gives rise to an equivalence relation.

Information Flow for Timed Automata 9

We can now express our semantic condition for when a Timed Automaton TA =
(E, I) satisfies the Information Flow security policy by the condition:

(σ, δ) ≡ (σ′, δ′) ∧ [[I(q◦)]](σ, δ) ∧ [[I(q◦)]](σ′, δ′)
⇓
[[(E, I) : q◦ 	→ q•]](σ, δ) ≡ [[(E, I) : q◦ 	→ q•]](σ′, δ′)

It says that if we consider two initial configurations that only differ on high
variables and clocks then the final configurations are also only allowed to differ
on high variabels and clocks; it is immediate that the final configurations (except
⊥) also satisfy I(q•). In other words, there is no information flow from the initial
values of high variables and clocks to the final values of low variables and clocks.
The fact that the trace behaviour produces a set of configurations means that
we take due care of non-determinism, and the fact that the trace behaviour may
contain ⊥ means that we take due care of non-termination (be it because of
looping or because of getting stuck).

This semantic condition is more involved than in classical papers like [17] due
to the highly non-deterministic nature of Timed Automata. As an example of
the difficulties of treating non-determinism, the previous attempt of [5] is flawed
because a command may terminate as well as loop – this was pointed out in
[17, Sect. 7] which therefore performs a development for deterministic programs
only. For another example, illustrating one of the problems solved by our type
system, consider the program y > 0 → skip [] tt → x := 0 making a non-
deterministic choice between two guarded actions. Writing x �� y to indicate
that y does not depend on x, the type system of [5] allows to establish

�1 {x �� y, y �� x} y > 0 → skip [] tt → x := 0 {y �� x}
which is unsound. To see this note that for σ1 = [y 	→ 1, x 	→ 2] the final values
of x can be 0 and 2, while for σ2 = [y 	→ 0, x 	→ 2], the final value of x can only
be 0.

4 Timed Commands

The semantic condition for Information Flow is undecidable in general. To obtain
a sound and decidable enforcement mechanism, the traditional approach is to
develop a type system for a suitable programming language or process calculus.
To this end we introduce the language TC of Timed Commands. It is strongly
motivated by Dijkstra’s language of Guarded Commands [10] but is designed so
that it combines guards and assignments in the manner of Timed Automata.
The syntax is given by:

TC :: = begin[c◦] C [c•]end
C :: = g → act: r | C1;[c]C2 | doT1 [] · · · [] Tn od [] Tn+1 [] · · · [] Tm

T :: = g → act: r | T ;[c]C

A timed command TC specifies a condition c◦ that must hold initially and a
condition c• that must hold if the command terminates. The command C itself

10 F. Nielson et al.

can have one of three forms. One possibility is that it is an action of the form
g → act: r. Another possibility is that it is a sequence of commands and then
the condition c must be satisfied when moving from the first command to the
second. The third possibility is that it is a looping construct with a number of
branches T1, · · · , Tn that will loop and a number of branches Tn+1, · · · , Tm that
will terminate the looping behaviour. In case n = 0 and m > 1 we allow to
dispense with the do od. Here T is a special form of command that starts with
an action and potentially is followed by a number of commands. Conditions,
guards and expressions are defined as in Sect. 2.

Example 4. Using the abbreviations of Fig. 1 the voting protocol of Example 1
is given by the following timed command:

begin[tt] cast;[t≤50]

(do yes1 [] . . . [] yesN [] no1 [] . . . [] noN od [] count) ;[t≤30]

(do cnt1 [] . . . [] cntN od [] publ)
[tt]end

The first line performs the initialisation for the casting phase which happens
in the second line; the third line expresses the counting of the votes and their
publication. The timing constraints are expressed in the superscripts.

Transformational Semantics. We shall define the semantics of a timed command
by mapping it into a timed automaton. Consider begin[c◦] C [c•]end and let q◦
and q• be two disctinct nodes; they will be the initial and final node of the
resulting timed automaton and we shall ensure that I(q◦) = c◦ and I(q•) = c•.
Additional nodes will be created during the construction using a judgement of
the form:

�qt
qs C : E, I

�qt
qs

g → act: r : {(qs, g → act: r, qt)}, []

�q
qs

C1 : E1, I1 �qt
q C2 : E2, I2

�qt
qs

C1;
[c]C2 : E1 ∪ E2, I1 ∪ I2 ∪ [q �→ c]

where q is fresh

∧n
i=1 �qs

qs
Ti : Ei, Ii

∧m
i=n+1 �qt

qs
Ti : Ei, Ii

�qt
qs

doT1 [] · · · []Tn od []Tn+1 [] · · · []Tm :
⋃

i Ei,
⋃

i Ii

�q•
q◦ C : E, I

� begin[c◦] C [c•]end : E, I′, q◦, q•
where

{
I′ = I[q◦ �→ c◦; q• �→ c•]
q◦, q• are fresh

Fig. 2. From timed commands to timed automata.

Information Flow for Timed Automata 11

Here C is a timed command, qs and qt are nodes, E is a set of edges, and the
judgement will introduce additional nodes whose invariants are given by the
labelling function I. This defines a timed automaton with initial node qs, final
node qt, edges E, and labelling function I.

The judgement is specified by the axioms and rules of Fig. 2. In the axiom
we simply create the edge (qs, g → act: r, qt) starting in qs and ending in qt and
indicating the action to be performed; the resulting labelling function is empty
as no new nodes are created in the construct.

In the first rule we create a fresh node q to be used to glue the timed automata
for C1 and C2 together; the node q has the invariant c and is used as target node
for C1 as well as source node for C2. The resulting set of edges is the union of the
two sets; the two branches will create disjoint sets of nodes so the two mappings
I1 and I2 will have disjoint domains and we write union for their combination.

In the rule for the looping construct we achieve the looping of the branches
T1, · · · , Tn by using qs as source as well as target node, whereas for Tn+1, · · · , Tm

we use qt as target node. The overall set of edges are obtained as the union of
the edges Ei and as in the previous case the domains of the mappings Ii will be
disjoint so the mappings are easily combined.

Recall that T is a special form of timed command and hence timed automata
can be constructed using the judgements of Fig. 2. The timed automata con-
structed from T always have exactly one edge leaving the initial node and do
not contain any edge back to the initial node unless the initial and final nodes
coincide. The timed automata constructed from C may have more than one edge
leaving the initial node and may contain edges back to the initial node even when
the initial and final nodes are distinct.

For the overall timed command begin[c◦] C [c•]end we can now obtain a timed
automaton with initial node q◦, final node q•, and edges E, and labelling function
I′ given by the last inference rule of Fig. 2.

Example 5. The transformation applied to the timed command of Example 4
gives rise to the timed automata of Fig. 1.

5 Type System

The information flow type system is specified using judgements of the form

�[qt:ct]
[qs:cs]

C : E, I&χ

This is an extension of the judgements �qt
qs C : E, I of the previous section for

constructing timed automata from commands. The new judgements maintain
information about the invariants cs and ct associated with the nodes qs and qt

and a set χ of latent variables and nodes that influence the termination of the
command; the influence of χ on qt remains to be enforced. The type system is
specified in Fig. 3 and explained below.

Assignment. Consider the first axiom of Fig. 3. The second line of the side condi-
tion expresses all the explicit flows from components of the vector of expressions

12 F. Nielson et al.

�[qt:ct]
[qs:cs]

g → x := e: r : {(qs, g → x := e: r, qt)}, [] &

{qs} ∪ fv(cs ∧ g ∧ ct[e/x][0/r])

if {qs} � {qt,x, r}∧
i fv(ei) � {xi}

fv(cs ∧ g ∧ ct[e/x][0/r]) � {x, r}

�[qt:ct]
[qs:cs]

g → publish e: r : {(qs, g → publish e: r, qt)}, [] &

{qs} ∪ fv(cs ∧ g ∧ ct[0/r])

if {qs} � {qt, r}
fv(cs ∧ g ∧ ct[0/r]) � {r}

�[q:c]
[qs:cs]

C1 : E1, I1 &χ1 �[qt:ct]
[q:c] C2 : E2, I2 &χ2

�[qt:ct]
[qs:cs]

C1;
[c]C2 : E1 ∪ E2, I1 ∪ I2 ∪ [q �→ c] &χ2

if q is fresh
fv(c) ∪ {q} � R ∪ {q}
χ1 � {q}

∧n
i=1 �[qs:cs]

[qs:cs]
Ti : Ei, Ii &χi

∧m
i=n+1 �[qt:ct]

[qs:cs]
Ti : Ei, Ii &χi

�[qt:ct]
[qs:cs]

doT1 [] · · · []Tn od []Tn+1 [] · · · []Tm :
⋃

i Ei,
⋃

i Ii & {qt}
if {qs} � {qt}∧n

i=1 χi � {qs}
ΦT1,··· ,Tn

Tn+1,··· ,Tm
[qt:ct
qs:cs

] ⇒ ∧m
i=n+1 χi � {qt}∧

i,j|i�=j,sat(fst
ζi
cs (Ti)∧fst

ζj
cs (Tj))

χi � ass(Tj)

where ζl is cs if l ≤ n and ζl is ct if l > n∧m
i=n+1 (∀r ∈ fv(fstct

cs
(Ti)) ∩ R : L(r) = L ∧∧m

j=n+1 fstct
cs
(Ti) ⇔ fstct

cs
(Tj)

)

�[q•:c•]
[q◦:c◦] C : E, I&χ

� begin[c◦] C [c•]end : E, I′, q◦, q•
where

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

I′ = I[q◦ �→ c◦; q• �→ c•]
fv(c◦) ∪ {q◦} � R ∪ {q◦}
fv(c•) ∪ {q•} � R ∪ {q•}
χ � {q•}
L(q•) = L
q◦, q• are fresh

Fig. 3. Type system for timed commands.

to corresponding components of the vector of variables. The first line of the side
condition expresses that the modifications of variables and clocks as well as the
termination relies on having started the action. The third line of the side con-
dition expresses our knowledge that cs holds and the implict flows arising from
testing the guard g in the pre-state and the condition ct in the post-state before
performing the modifications of variables and clocks. (We are using the insight

Information Flow for Timed Automata 13

from Hoare logic [4] that evaluating ct in the post-state is the same as evaluating
ct[e/x][0/r] in the pre-state.) Rather than also expressing the implicit flow for
termination (in the form of a side condition fv(cs ∧ g ∧ ct[e/x][0/r]) � {qt})
we produce the latent set of variables and nodes {qs}∪ fv(cs ∧ g ∧ ct[e/x][0/r])
as listed after the ampersand in the axiom. (We shall see the flexibiliity offered
by this approach shortly.)

Example 6. Consider the action cnti of Fig. 1. It will be the case that qs = qt = 3
and cs = ct = t ≤ 30. The type system imposes the following constraints on the
flows:

{3} � {3, yi, c}, { } � {yi}, {c, vi} � {c}, {t, xi, yi} � {yi, c}
It is easy to check that they are fulfilled for the security assignment of Example 3.
The latent set of variables is {3, t, xi, yi}.

Publish. The second axiom of Fig. 3 is a simplification of the first axiom in
that the values computed are “published” but not recorded in the state. (The
main purpose of this rule is to “bypass” the security policy in that we allow the
publication of expressions even when they contain high variables.)

Example 7. For the action publ of Fig. 1 we have qs = 3, qt = 4, cs = t ≤ 30
and ct = tt. The type system impose the contraints {3} � {4, t} and {t} � {t}
which clearly hold with the security assignment of Example 3.

Sequence. The first inference rule of Fig. 3 deals with the sequential composition
of two commands. The second line of the side condition expresses the explicit
flow possible due to the delay at the node q separating the two commands; here
R is the set of all clock variables and it is included to mimick the effect of the
potential delay. The third line of the side condition takes care of imposing the
latent effect of the first command on the node q following immediately after it.

Example 8. Let us consider the sequencing construct ;[t≤30] between the two
loops of the command of Example 4. The latent set of variables from the first
loop will simply be {3} and the two constraints will amount to {t, 3} � {t, 3}
and {3} � {3} which are satisfied for the security assignment of Example 3.

Auxiliary Operations. Before approaching the last inference rule in Fig. 3 we
shall introduce three auxiliary operations.

The auxiliary operation ass(C) overapproximates the set of variables and
clocks modified by the command (ignoring any initial and final delays):

ass(g → x :=e: r) = {x, r}
ass(g → publish e: r) = {r}

ass(C1;[c]C2) = ass(C1) ∪ ass(C2) ∪ R

ass(
(
doT1 [] · · · [] Tn od
[] Tn+1 [] · · · [] Tm

)

) =
{

ass(T1) ∪ · · · ∪ ass(Tm) ∪ R if n > 0
ass(T1) ∪ · · · ∪ ass(Tm) if n = 0

where R is the set of all clocks and it is included to mimick the effect of the
potential (internal) delays of the loop.

14 F. Nielson et al.

Fact 1. If �qt
qs C : E, I and if (σ′, δ′) ∈ [[(E, I[qs 	→ cs][qt 	→ ct] : qs 	→ qt]](σ, δ)

then ∃d ≥ 0 : {x | σ(x) �= σ′(x)} ∪ {r | δ(r) + d �= δ′(r)} ⊆ ass(C), where d
corresponds to the initial delay.

The auxiliary operation fstctcs(T) determines the initial guard and the condi-
tion immediately following it (in the manner of the rule for assignment):

fstctcs(g → x := e: r) = cs ∧ g ∧ ct[e/x][0/r]
fstctcs(g → publish e: r) = cs ∧ g ∧ ct[0/r]

fstctcs(T ;[c]C) = fstccs(T)

The inclusion of cs is so as to get the strongest information for use in the rule
for the looping construct in Fig. 3.

We shall need the auxiliary predicate ΦT1,··· ,Tn

Tn+1,··· ,Tm
[qt:ctqs:cs] that must be true

whenever it is possible that the construct doT1 [] · · · [] Tn od [] Tn+1 [] · · · [] Tm

does not terminate from a state satisfying cs; we return to this below.

Looping. We can now explain the inference rule in Fig. 3 for looping. The first
line in the side condition expresses that the termination relies on having started
the action as we saw in the axiom for assignment. The second line in the side
condition takes care of imposing the latent effect χi of the looping commands
on the loop header qs.

The third line in the side condition takes care of imposing the latent effect of
the terminating commands on the final node qt. However, by using the predicate
ΦT1,··· ,Tn

Tn+1,··· ,Tm
[qt:ctqs:cs] we allow to dispense with imposing this latent effect in case

termination of the looping construct is guaranteed. As an example this means
that the type system will allow the following Timed Command

(
(h = 0 → h:=h:) [] (h �= 0 → h:=h:)

)
;[tt]tt → l:=l:

that would otherwise be disallowed (assuming that h is a high variable and l is
a low variable). Indeed it is in order to accomodate this kind of behaviour that
the type system makes use of latent variables and nodes. This is essential for
preventing unnecessary label creep where programs operating on high data too
often end up in a high control point.

Using the notation of Fig. 3 we can now clarify our demands on the auxiliary
notation ΦT1,··· ,Tn

Tn+1,··· ,Tm
[qt:ctqs:cs] used in the third line:

⊥ ∈ ⋃
(σ,δ)|[[cs]](σ,δ)[[(∪iEi,∪iIi[qs 	→ cs][qt 	→ ct]) : qs 	→ qt]](σ, δ)

⇓
ΦT1,··· ,Tn

Tn+1,··· ,Tm
[qt:ctqs:cs]

The subscript (σ, δ) | [[cs]](σ, δ) is intended to let (σ, δ) range over all possibilities
that satisfy [[cs]](σ, δ). Note that we do not require to capture non-termination
precisely but will allow any over-approximation.

Before explaining the fourth line in the side condition it is helpful to establish
the following property of the type system as stated in Fig. 3.

Information Flow for Timed Automata 15

Lemma 1. If �[qt:ct]
[qs:cs]

C : E, I&χ then we have that {qs} � ass(C) ∪ {qt} and
∀χ′ : (χ � χ′) ⇒ ({qs} � χ′).

If �[qt:ct]
[qs:cs]

T : E, I&χ then ∀χ′ : (χ � χ′) ⇒ ({qs} ∪ fv(fstctcs(T)) � χ′) and
{qs} ∪ fv(fstctcs(T)) � ass(T), and {qs} � {qt}.
(Note that the lack of reflexivity of � means that we need to write slightly
complex formulae like ∀χ′ : (χ � χ′) ⇒ ((· · ·) � χ′) because the formula
((· · ·) � χ is in general incorrect.)

Proof. We prove the first statement by induction on �[qt:ct]
[qs:cs]

C : E, I&χ using
that � is transitive.

We prove the second statement by induction on �[qt:ct]
[qs:cs]

T : E, I&χ. It is imme-
diate for the two axioms for actions because {qs}∪fv(fstctcs(T)) = χ. In the rule for
composition for T ;[c]C observe that {qs} ∪ fv(fstctcs(T ;[c]C)) = {qs} ∪ fv(fstccs(T))
and that the induction hypothesis gives that {qs} ∪ fv(fstccs(T)) � {q} because
χ1 � {q}. We have {qs} ∪ fv(fstccs(T)) � ass(T) from the induction hypothesis,
{q} � R from the rule, and {q} � ass(C) from the previous result, and then
get {qs} ∪ fv(fstctcs(T ;[c]C)) � ass(T ;[c]C). Next suppose χ = χ2 � χ′; from the
previous result we have {q} � χ′ and hence {qs} ∪ fv(fstctcs(T ;[c]C)) � χ′.

This lemma shows that we have already taken care of the so-called block
labels of [9] and thereby take care of the implicit flows due to testing guards
and conditions in the manner of [17]. However, the language considered in [17] is
deterministic and the presence of non-determinism in Timed Commands poses
a complication as illustrated by the following command:

tt → l:=0: ;[tt]
(
(h = 0 → h:=h:) [] (tt → l:=1:)

)

Here the final value of l will be 1 if h �= 0, but the final value of l may be either
0 or 1 if h = 0. This presents a violation of our semantic conditions for adherence
to the Information Flow security policy.

The purpose of the fourth line in the side condition is to take care of this
possibility and this is a novel contribution with respect to [5,9,17] as discussed
in Sect. 3. The notation sat(· · ·) is intended to express the satisfiability of the · · ·
formula. We are considering all terminating branches in the looping construct
and whenever there are two branches that are not mutually exclusive (that is,
where sat(fstζics(Ti) ∧ fstζjcs(Tj))) we make sure to record the information flow
arising from bypassing the branch that would otherwise perform an assignment.
This is essential for dealing with non-determinism and non-termination.

Before explaining the fifth condition let us consider the following command
operating on a low clock l and a high clock h:

tt → : l;[tt]
(
do od [] h ≥ 100 → :

)

Here we have that (σ, δ[h 	→ 110]) ≡ (σ, δ[h 	→ 90]) but running the command
from (σ, δ[h 	→ 110]) might produce (σ, δ[h 	→ 110]) ifself whereas running the
command from (σ, δ[h 	→ 90]) can only produce (σ, (δ[h 	→ 90]) + d) for d ≥ 10
in which case (σ, δ[h 	→ 110]) �≡ (σ, (δ[h 	→ 90]) + d).

16 F. Nielson et al.

The purpose of the fifth line in the side condition is to take care of this
possibility by enforcing that the terminating branches only test on low clocks
and that the conditions on clocks are the same. To this end we define g as follows

b = tt
r opc n = r opc n

(r1 − r2) opc n = (r1 − r2) opc n
g1 ∧ g2 = g1 ∧ g2

and we write g ⇔ g′ to express the equivalence of the guards g and g′. This is
essential for the type system to deal correctly with the continuous clocks.

Example 9. Returning to Example 4 let us consider the looping command of
the third line. Using the latent set of variables from Example 6 we obtain the
following constraints from the first two lines of the condition:

{3} � {4}, {3, t, x1, . . . , xN , y1, . . . , yN} � {3}

We have no contribution from the third side condition of the rule since termi-
nation of the loop is guaranteed. From the fourth side condition we get

⋃

i�=j

{3, t, xi, yi} � {yj , c}

and from the fifth line we get L(t) = L. It is easy to check that the above
conditions are fulfilled with the security assignment of Example 3.

Timed Commands. Consider the last inference rule in Fig. 3. The first and last
lines of the side condition are as in Fig. 2. The second and third lines of the side
condition express the explicit flow possible due to the delay at the node q◦ and
q• and is analogous to our treatment of sequencing. The fourth line of the side
condition takes care of imposing the latent effect of the command on the final
node qt and is analogous to our treatment of sequencing. The fifth line will allow
us to invoke Theorem 1 of the next section.

6 Adequacy

To prove the adequacy of the type system we shall establish some terminology.
A function like [[TA : qs 	→ qt]] mapping a pair of state and clock assignment to
a set of pairs of states and clock assignments and possibly the symbol ⊥ will be
called a semantic function. Whenever F is a semantic function we define

F |= cs 	→ ct iff ∀(σ, δ), (σ′, δ′) : (σ, δ) ≡cs (σ′, δ′)
⇓
F (σ, δ) ≡ct F (σ′, δ′)

Information Flow for Timed Automata 17

where (using ≡ as defined in Sect. 3)

(σ, δ) ≡c (σ′, δ′) abbreviates (σ, δ) ≡ (σ′, δ′) ∧ [[c]](σ, δ) ∧ [[c]](σ′, δ′)
Γ ≡c Γ ′ abbreviates Γ ≡ Γ ′ ∧

∀(σ, δ) ∈ Γ : [[c]](σ, δ) ∧ ∀(σ′, δ′) ∈ Γ ′ : [[c]](σ′, δ′)

The semantic condition for when a Timed Automaton TA = (E, I, q◦, q•) satisfies
the Information Flow security policy discussed in Sect. 3 then amounts to [[(E, I) :
q◦ 	→ q•]] |= I(q◦) 	→ I(q•). Finally, let us define the composition of two semantic
functions F1 and F2 as follows:

F1 � F2 = λ(σ0, δ0). (F1(σ0, δ0) ∩ {⊥}) ∪⋃
(σ1,δ1)∈F (σ0,δ0)\{⊥} F2(σ1, δ1)

Fact 2. If F1 |= c0 	→ c1 and F2 |= c1 	→ c2 then F1 � F2 |= c0 	→ c2.

We are then ready to state a non-interference result in the manner of [18]:

Theorem 1 (Adequacy of Commands). If �[qt:ct]
[qs:cs]

C : E, I&χ and χ � {qt}
and L(qt) = L and fv(cs) � {qs} then we have [[(E, I[qs 	→ cs][qt 	→ ct]) : qs 	→
qt]] |= cs 	→ ct.

Proof. We proceed by induction on �[qt:ct]
[qs:cs]

C : E, I&χ.

Case: Assignment. Assume that (σ0, δ0) ≡cs (σ′
0, δ

′
0) and that

γ ∈ [[({(qs, g → x := e: r, qt)}), [qs 	→ cs][qt 	→ ct]) : qs 	→ qt]](σ0, δ0)

In case γ = (σ1, δ1) it follows that there exists d ≥ 0 such that σ1 = [[x :=e]]σ0

and δ1 = (δ0+d)[r 	→ 0], and such that [[g]](σ0, (δ0+d)) = tt, [[cs]](σ0, δ0+d) = tt
and [[ct]](σ1, δ1) = tt. Defining γ′ = (σ′

1, δ
′
1) = ([[x :=e]]σ′

0, (δ
′
0 + d)[r 	→ 0])

ensures that [[g]](σ′
0, (δ

′
0 + d)) = tt, [[cs]](σ′

0, δ
′
0 + d) = tt and [[ct]](σ′

1, δ
′
1) = tt

because all variables and clocks tested are low and hence

γ ≡ct γ′ ∈ [[({(qs, g → x := e: r, qt)}), [qs 	→ cs][qt 	→ ct]) : qs 	→ qt]](σ′
0, δ

′
0)

In case γ = ⊥ it follows that there is no value of d ≥ 0 such that [[g]](σ0, (δ0+d)) =
tt, [[cs]](σ0, δ0 + d) = tt and [[ct]](σ1, δ1) = tt. Then there also is no value of d ≥ 0
such that [[g]](σ′

0, (δ
′
0 +d)) = tt, [[cs]](σ′

0, δ
′
0 +d) = tt and [[ct]](σ′

1, δ
′
1) = tt because

all variables and clocks tested are low and hence setting γ′ = ⊥ establishes that

γ ≡ γ′ ∈ [[({(qs, g → x :=e: r, qt)}), [qs 	→ cs][qt 	→ ct]) : qs 	→ qt]](σ′
0, δ

′
0)

The other direction is similar and this completes the assignment case.

Case: Publish. This case is analogous to the case for assignment.

Case: Sequence. We shall write

F = [[(E1 ∪ E2, I1 ∪ I2[qs 	→ cs][q 	→ c][qt 	→ ct]) : qs 	→ qt]]
F1 = [[(E1, I1[qs 	→ cs][q 	→ c]) : qs 	→ q]]
F2 = [[(E2, I2[q 	→ c][qt 	→ ct]) : q 	→ qt]]

18 F. Nielson et al.

and observe that F = F1�F2. The result then follows from the induction hypothe-
ses and Fact 2.

Case: Looping. We shall write

F = [[(
⋃

i Ei,
⋃

i Ii[qs 	→ cs][qt 	→ ct]) : qs 	→ qt]]

Fi =
{

[[(Ei, Ii[qs 	→ cs]) : qs 	→ qs]] whenever i ≤ n
[[(Ei, Ii[qs 	→ cs][qt 	→ ct]) : qs 	→ qt]] whenever i > n

and this gives rise to the equation

F = (
n⋃

i=1

Fi � F) ∪
m⋃

i=n+1

Fi

We shall consider two subcases, one where the condition ΦT1,··· ,Tn

Tn+1,··· ,Tm
[qt:ctqs:cs] is true

and one where it is false.

Subcase: Looping when ΦT1,··· ,Tn

Tn+1,··· ,Tm
[qt:ctqs:cs] is true. In this case (using the notation

of Fig. 3) all the variables and clocks in
⋃m

i=1 fv(fstcics(Ti)) are low. Assume that
(σ0, δ0) ≡cs (σ′

0, δ
′
0) and that γ ∈ F (σ0, δ0). This must be because of a trace as

considered in Sect. 2.

If this trace visits qs infinitely often we will be able to construct a sequence
k1, k2, · · · , ki, · · · such that each ki ≤ n and

∀i > 0 : (σi, δi) ∈ Fki
(σi−1, δi−1)

and γ = ⊥. By the induction hypothesis we can find (σ′
i, δ

′
i) such that

∀i > 0 : (σi, δi) ≡cs (σ′
i, δ

′
i) ∈ Fki

(σ′
i−1, δ

′
i−1)

and this establishes that ⊥ ∈ F (σ′
0, δ

′
0).

If the trace visits qs only finitely often we will be able to construct a sequence
k1, k2, · · · , kj such that ∀i < j : ki ≤ n and kj ≤ m and

∀i ∈ {1, · · · , j − 1} : (σi, δi) ∈ Fki
(σi−1, δi−1)

γ ∈ Fkj
(σj−1, δj−1)

By the induction hypothesis we can find (σ′
i, δ

′
i) and γ′ such that

∀i ∈ {1, · · · , j − 1} : (σi, δi) ≡cs (σ′
i, δ

′
i) ∈ Fki

(σ′
i−1, δ

′
i−1)

γ ≡ γ′ ∈ Fkj
(σ′

j−1, δ
′
j−1)

and this establishes that γ′ ∈ F (σ′
0, δ

′
0).

The other direction is similar and this completes the subcase.

Subcase: Looping when ΦT1,··· ,Tn

Tn+1,··· ,Tm
[qt:ctqs:cs] is false. In this case all the variables

and clocks in
⋃n+1

i=1 fv(fstcics(Ti)) are low but this is not necessarily the case for
those in

⋃m
i=n+1 fv(fstcics(Ti)); however, we do know that [[cs]](σ, δ) ⇒ ⊥ �∈ F (σ, δ).

Information Flow for Timed Automata 19

Assume that (σ0, δ0) ≡cs (σ′
0, δ

′
0) and that γ ∈ F (σ0, δ0). The assumptions of

the subcase ensure that γ �= ⊥.
We will be able to construct a sequence k1, k2, · · · , kj such that ∀i < j : ki ≤

n and kj > n and

∀i ∈ {1, · · · , j − 1} : (σi, δi) ∈ Fki
(σi−1, δi−1)

γ ∈ Fkj
(σj−1, δj−1)

By the induction hypothesis we can find (σ′
i, δ

′
i) such that

∀i ∈ {1, · · · , j − 1} : (σi, δi) ≡cs (σ′
i, δ

′
i) ∈ Fki

(σ′
i−1, δ

′
i−1)

There are now two scenarios for how to proceed.

Subcase scenario where all variables and clocks in fv(fstctcs(Tkj
)) are low. In this

case we can find γ′ ∈ Fkj
(σ′

j−1, δ
′
j−1) such that γ ≡ γ′.

Subcase scenario where at least one variable or clock in fv(fstctcs(Tkj
)) is high.

Then ass(Tkj
) cannot contain any low variable or clock and hence there is d ≥ 0

such that γ ≡ (σj−1, δj−1 +d) where the addition of d takes care of the potential
delay in qs. Next we use that ⊥ �∈ F (σ′

j−1, δ
′
j−1) to obtain k′

j , σ
′
j , δ

′
j such that

(σ′
j , δ

′
j) ∈ Fk′

j
(σ′

j−1, δ
′
j−1).

It cannot be the case that k′
j ≤ n. To see this, assume by way of contradiction

that k′
j ≤ n. Then (σj−1, δj−1) would be a witness for sat(fstctcs(Tkj

)∧ fstcscs(Tk′
j
))

ensuring that fstctcs(Tkj
) � ass(Tk′

j
) so that ass(Tk′

j
) could not contain a low

variable or clock. It would follow that there would be d′ ≥ 0 such that (σ′
j , δ

′
j) ≡cs

(σj−1, δj−1 + d′) where the addition of d′ is due to the possibility of delay in qs.
But then we would be able to construct an infinite sequence (σ′

l, δ
′
l) for l > j

such that (σ′
l, δ

′
l) ∈ Fk′

j
(σ′

l−1, δ
′
l−1) and (σ′

l, δ
′
l) ≡cs (σ′

j−1, δ
′
j−1 + d′ would hold

for l ≥ j. But this would contradict the fact that ⊥ �∈ F (σ′
j , δ

′
j).

We are left with the case where k′
j > n. We must have that ass(Tk′

j
) cannot

contain any low variable or clock: either one variable or clock in fstctcs(Tk′
j
) is high

and it follows as in a case above, or all variables and clocks in fstctcs(Tk′
j
) are low

and it follows because (σj−1, δj−1 +d) is a witness for sat(fstctcs(Tkj
)∧ fstcscs(Tk′

j
))

and we could proceed as in a case above. Hence (σ′
j , δ

′
j) = (σ′

j−1, δ
′
j−1 + d′) for

some d′ ≥ 0.
It remains to show that d′ can be chosen to be d. For this we use that all

clocks in fstctcs(Tkj
) and fstcscs(Tk′

j
) are low and that fstctcs(Tkj

) = fstcscs(Tk′
j
).

The other direction is similar and this completes the subcase.

We can now establish our main result that the type system enforces a suffi-
cient condition for the absence of information flows violating the security policy.

Corollary 1 (Adequacy). If � begin[c◦] C [c•]end : E, I, q◦, q• then we have
that [[(E, I) : q◦ 	→ q•]] |= I(q◦) 	→ I(q•).

20 F. Nielson et al.

7 Conclusion

We have shown how to successfully merge Timed Automata with Information
Flow and Language Based Security through the introduction of the Timed Com-
mands language patterned after Dijkstra’s Guarded Commands. This has facil-
itated developing a type system that prevents unnecessary label creep and that
deals with non-determinism, non-termination and continuous real-time. The
type system has been proved adequate by means of a non-interference result
(with observable non-determinism).

We are exploring how to automate the analysis and in particular how to
implement (a sound approximation of) the ΦT1,··· ,Tn

Tn+1,··· ,Tm
predicate indicating the

lack of termination of the looping construct. One possible way, is to use exist-
ing methodologies that deal with time-lock (deadlock) freedom checks for timed
automata. The check of the predicate ΦT1,··· ,Tn

Tn+1,··· ,Tm
then amounts to check for

time-lock freedom (infinite loops) or time-locks that do not occur at the final
nodes (stack configurations) of the particular loop construct that the ΦT1,··· ,Tn

Tn+1,··· ,Tm

predicate refers too. The work of [8] presents a tool which is used in the con-
juction with UPPAAL and is able to detect possible sources of deadlocks in
timed-automata.

We are considering how to deal with more concepts from Timed Automata as
for example urgents actions. Our treatment of publish e could be extended to a
more general treatment of declassification and endorsement as permitted in the
Decentralized Label Model [14]; our flow based security condition should suffice
for expressing semantic correctness. To strengthen the security policies that can
be expressed we are contemplating incorporating the content-dependent policies
of [15].

A longer term goal is to allow policies to simultaneously dealing with safety
and security properties of cyberphysical systems.

Acknowledgment. The authors are supported in part by the IDEA4CPS Reseearch
Centre studying the Foundations for Cyber-Physical Systems and granted by the
Danish Research Foundation for Basic Research (DNRF86-10). We would like to thank
Ximeng Li for commenting upon a previous version.

References

1. Aceto, L., Ingolfsdottir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modelling,
Specification and Verification. Cambridge University Press, Cambridge (2007)

2. Agat, J.: Transforming out timing leaks. In: Proceedings of the POPL, pp. 40–53
(2000)

3. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

4. Apt, K.R.: Ten years of Hoare’s logic: a survey - part 1. ACM Trans. Program.
Lang. Syst. 3(4), 431–483 (1981)

5. Banâtre, J.-P., Bryce, C., Métayer, D.: Compile-time detection of information flow
in sequential programs. In: Gollmann, D. (ed.) ESORICS 1994. LNCS, vol. 875,
pp. 55–73. Springer, Heidelberg (1994). doi:10.1007/3-540-58618-0 56

http://dx.doi.org/10.1007/3-540-58618-0_56

Information Flow for Timed Automata 21

6. Barbuti, R., De Francesco, N., Santone, A., Tesei, L.: A notion of non-interference
for timed automata. Fundam. Inform. 51(1–2), 1–11 (2002)

7. Barbuti, R., Tesei, L.: A decidable notion of timed non-interference. Fundam.
Inform. 54(2–3), 137–150 (2003)

8. Bordbar, B., Okano, K.: Testing deadlock-freeness in real-time systems: a formal
approach. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
95–109. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31848-4 7

9. Denning, D.E., Denning, P.J.: Certification of programs for secure information
flow. Commun. ACM 20(7), 504–513 (1977)

10. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

11. Focardi, R., Gorrieri, R., Martinelli, F.: Real-time information flow analysis. IEEE
J. Sel. Areas Commun. 21(1), 20–35 (2003)

12. Gardey, G., Mullins, J., Roux, O.H.: Non-interference control synthesis for security
timed automata. Electr. Notes Theor. Comput. Sci. 180(1), 35–53 (2007)

13. Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Time and probability-based infor-
mation flow analysis. IEEE Trans. Softw. Eng. 36(5), 719–734 (2010)

14. Myers, A.C., Liskov, B.: A decentralized model for information flow control. In:
ACM Symposium on Operating System Principles, SOSP 1997, pp. 129–142. ACM
(1997)

15. Hanne Riis Nielson and Flemming Nielson: Content dependent information flow
control. J. Log. Algebr. Meth. Program. 87, 6–32 (2017)

16. UPPAAL. http://www.uppaal.com/index.php?sida=200&rubrik=95
17. Volpano, D.M., Smith, G., Irvine, C.E.: A sound type system for secure flow analy-

sis. J. Comput. Secur. 4(2/3), 167–188 (1996)
18. Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program

security. In: Proceedings of the CSFW, pp. 29–43 (2003)

http://dx.doi.org/10.1007/978-3-540-31848-4_7
http://www.uppaal.com/index.php?sida=200&rubrik=95

	Information Flow for Timed Automata
	1 Introduction
	2 Timed Automata
	3 Information Flow
	4 Timed Commands
	5 Type System
	6 Adequacy
	7 Conclusion
	References

