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In recent years there has been a considerable effort in optimising formal methods for application to
code. This has been driven by tools such as CPACHECKER, DIVINE, and CBMC. At the same time
tools such as UPPAAL have been massively expanding the realm of more traditional model checking
technologies to include strategy synthesis algorithms — an aspect becoming more and more needed
as software becomes increasingly parallel. Instead of reimplementing the advances made by UPPAAL
in this area, we suggest in this paper to develop a bridge between the source code and the engine
of UPPAAL. Our approach uses the widespread intermediate language LLVM and makes recent
advances of the UPPAAL ecosystem readily available to analysis of source code.

1 Introduction

Over 30 years of research in applying formal methods to program verification has resulted in a plethora of
tools [2, 3, 4, 7, 10, 13, 16] each being developed by different groups. We could write an entire paper just
about the differences of all these tools, but overall they can (very) roughly be divided into two categories
based on their input format: 1. tools that accept real source code, and 2. tools that use their own format
based on formal models (e.g. Finite Automata, Timed Automata and Petri Nets). In the former category
we find tools such as CPACHECKER [3], CBMC [13], DIVINE [2] and JavaPathfinder [18] focused
on locating programming errors while in the latter we find UPPAAL [16], TAPAAL [7], ALLOY [11],
TLA+ [5] PRISM [14, 15] and SPIN [10] focused on finding errors in the design of a system. The tools
in each of these categories are successful in their own right, but there is only little flow between the
groups. Two notable exception is DIVINE [2] that started its life as a general-purpose model checker and
now focused on verifying LLVM and Zaks and Joshi [19] utilising SPIN to verify LLVM programs.

In this paper we present our initial work to bridge the gap from automata-based UPPAAL models
to source-code analysis. We do this by interfacing LLVM-programs with UPPAAL using UPPAALs ex-
tendibility through dynamic link libraries [12]. In the dynamic link library resides an interpreter commu-
nicating with UPPAAL in regards to what happens with the discrete state-space while UPPAAL manages
the exploration algorithms and timed aspects of the state space. In this way, we allow reusing the very
efficient state exploration algorithms already implemented in UPPAAL but avoid mapping the entire ex-
pressivity of LLVM into UPPAAL. Furthermore, since an entire suite of tools is built around the UPPAAL

core we hope to leverage these tools in the future. We especially have high hopes for doing schedulability
analysis of concurrent programs in the future, and for using the statistical model checking (SMC) engine
of UPPAAL to not only speed up the search, but also as a strategy for finding programming errors in a
similar way as Chockler et al. [6] used SMC for the satisfiability problem. The usage of simulation-based
techniques should also alleviate the scalability issue that hampered previous attempts at reusing model
checking tools for software verification techniques.
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Another potential advantage of integrating source code analysis into UPPAAL is that environmental
behaviours are easily modelled with the stochastic hybrid automata formalism used by UPPAAL. There-
fore we can easily change the analysis of a program source code in shifting environments by changing
model parameters.

2 Program Model

In our work we are concerned with mapping LLVM code to UPPAAL, but we implement the integration
to UPPAAL using our own intermediate representation called UL (Uppaal LLVM). The main reason for
this is two-fold: firstly the LLVM language is huge and trying to cover it entirely is beyond the scope
of this paper, and secondly by basing our translation on our own intermediate representation makes the
translation independent of the input formalism, and we can — in principle — perform analysis for any
input format with UPPAAL. From a maintenance point of view it also makes sense to define the analysis
on your own internal representation as it makes the analysis independent of the input format: if we
used LLVM directly we (potentially) have to modify large parts of our infrastructure for new releases of
LLVM whereas we by having our own UL “just” need to modify our LLVM loading mechanism.

Types In UL we have four different integer types (i8,i16,i32 and i64). Like in LLVM integer types
are finite width bit vectors with no interpretation in regards to signedness. Instead each instruction of
UL decides whether it interprets the bit pattern as being 2s-complement encoded signed number or an
unsigned binary number. In addition to integer types UL has a Boolean type (Bool) and an address type
(Addr) that are pointers to places in memory. We let T be the set of all types in UL.

Instructions Given a finite set of variables R we denote all instruction sequences of UL by L (Sequence).
All possible instruction sequences of UL are generated by the EBNF in Figure 1. L (Sequence) refers
to the language generated by the production rule 〈Sequence〉. A typical instruction sequence are, for
example, an arithmetic expression, a Boolean comparison operation, or a memory operation. Our in-
structions do not have associated types. A Type in UL is instead associated directly to registers through
a map Γ : R→ T. Given this map we can straightforwardly create a type system, which we omit in this
paper.

Memory UL uses a zero-indexed byte-oriented memory layout, so formally the memory is just a function
δ : N→B8. We refer to the set of all possible memory states by ∆. We can update the nth byte in memory
δ by simply modifying the image of n in δ . Thus δ [n 7→ b] sets the nth byte to b ∈ B8.

Timing Information A classical Control Flow Automaton (CFA) is a tuple (R,Γ,L,l,E) where R is a set of
registers, Γ : R→ T maps registers to types, L is a set of control locations, l ∈ L is the initial location and
E ⊆ L×L (Sequence)×L is the set of flow edges annotated with instruction sequence to be executed
while moving along that edge. Such a model is sufficient if we are only concerned with the “flow” of a
program, but we know that timing is an just as important aspect of a program: an airbag has to deploy at
the right time, and not just at some point after a crash. In a security context it is also fairly well-known
that measuring timing of a program can sometimes reveal confidential information about it. Even using
very low capacity covert timing channels (2 bits per minute) leaking secret data e.g. a credit card number
can be done in less than 30 minutes [1]. For these reasons we want to extend our model with timing
information. To this end assume there exists a function Ω : L (Sequence)→I — where I is the set
of intervals in R — that assigns upper and lower bound on the execution time of an instruction sequence.
Notice that for defining this function it suffices to define the intervals for individual instructions as the
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〈Sequence〉 ::= 〈Internal〉 〈InstrSeq〉 | 〈InstrSeq〉

〈InstrSeq〉 ::= 〈InstrSeq〉 〈Instr〉 | 〈Instr〉 | 〈Assigns〉

〈Instr〉 ::= 〈Arith〉 | 〈Cast〉 | 〈Cmp〉 | 〈Memory〉

〈Internal〉 ::= Assume r | NegAssume r | Assert

〈Assigns〉 ::= r | r← NonDet | r←Copy Op

〈Arith〉 ::= r←Add 〈Op〉, 〈Op〉 | r← Sub 〈Op〉, 〈Op〉 | r←Div 〈Op〉, 〈Op〉 | r← SDiv 〈Op〉, 〈Op〉 | r←Mult 〈Op〉, 〈Op〉
| r← LShl 〈Op〉, 〈Op〉 | r← AShr 〈Op〉, 〈Op〉 | r← LShr 〈Op〉, 〈Op〉

〈Cast〉 ::= r← SExt 〈Op〉 | r← ZExt 〈Op〉 | r← Trunc 〈Op〉 | r← BoolSExt 〈Op〉 | r← BoolZExt 〈Op〉

〈Cmp〉 ::= r← LEq 〈Op〉, 〈Op〉 | r← SLEq 〈Op〉, 〈Op〉 | r← NEq 〈Op〉, 〈Op〉 | r← Eq 〈Op〉, 〈Op〉 | r←GEq 〈Op〉, 〈Op〉
| r← SGEq 〈Op〉, 〈Op〉

〈Memory〉 ::= r← Load 〈Op〉 | Store 〈Op〉, 〈Op〉

〈Op〉 ::= r | [n]ib2 | [n]ib

Figure 1: EBNF for generating instruction sequences of UL. Let r ∈ R, n ∈ N and z ∈ Z. The notation
([n]ib2) [n]ib is our notation encoding a number n into (2s-complement) bit-vector.

execution time of a sequence is the sum of the individual instructions. We use the Ω function to enrich a
classical CFA coping with time.

Remark 1. Expert-knowledge of the execution platform is needed to properly asses the execution time
of individual instructions. We are not concerned with assessing that for now, but do acknowledge this as
non-trivial and an aspect worth investigating in the future.

Transition Semantics The first thing to define is the domain of the types in UL. Figure 2 shows the map-

Type Domain
ib Bb

Bool {true,false}
Addr B64

Figure 2: Semantic domains of
types in UL

pings in UL. The state that we execute an instruction sequence in con-
sists of the sequence of instructions and an environment giving values
to the registers Env : R→ ∪t∈Tdom(t). A special state † signifies an
error happened during execution. Externally the memory δ ∈ ∆ and
the types of register Γ are passed on to the transitions. The result is a
modified environment Env′ and an updated memory δ ′ ∈ ∆. Thus the
transition rules take the form δ ,Γ ` 〈Inst,Env〉 → Env′,δ ′.

The transition rules are obmitted do to space constraints and will
not be shown here. They essentially look up values of their operands, perform the associated opera-
tions in the bit vector logic and assigns the left hand side to the result. The instructions SExt, ZExt
resp. BoolSExt, BoolZExt and Trunc sign-extend or zero-extend or truncates the right hand operand to
the type of the left hand side.

Remark 2. UL does not allow function calls. This is because we assume all function calls has been in-
lined. Inlining functions for verification purposes is a common practice [9, 13] and drastically simplifies
the interpreter code.

An actual transition is performed on a network of CFAs, that is a structure C1 ‖ . . . ‖ Cn where each
Ci = (Ri,Γi,L,l

i,Ei) is a CFA. Again we assume the existence of a function Ω. The state of such a
network is a tuple (s1,s2, . . . ,sn,δ ) where each si =(li,Envi,xi), li ∈ L, Envi : Ri→∪t∈Tdom(t), xi ∈R and
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δ ∈ ∆ is a memory state. Enriching the CFA with a timed behaviour results in specifying the following
two transitions: a state S = (s1,s2, . . . ,si, . . . ,sn,δ )

1. can transit to state S′ = (s′1,s
′
2, . . . ,s

′
i,s
′
n,δ
′) (written S → S′) where si = (li,Env,xi) and s′i =

(l′i ,Env
′,0) if there exists an edge e = (li, Inst, l′i) ∈ Ei, δ ,Γi ` 〈Inst,Env〉 → Env′,δ ′ and xi ∈

Ω(Inst).

2. can delay d time units to state S′ = (s′1,s
′
2, . . . ,s

′
i, . . . ,s

′
n,δ ) (written S d−→ S′) if, for all i, si =

(li,Env,xi) such that s′i = (li,Env,xi+d) and there exists an edge e = (li, Inst, l′i) such that xi+d ∈
Ω(Inst).

Remark 3. The semantics for networks of CFAs is the traditional interleaving semantics. Our semantics,
however, considers the execution of each edge atomically and does not properly reflect all possible
interleavings of a real program — unless each edge has exactly one instruction as in the semantics of
LLVM by Legay et al. [17]. This is not a problem as long we ensure all interleavings of memory accesses
are possible. We can guarantee this by splitting edges so that an edge has exactly one memory access
which is guaranteed to be the last instruction.

3 Integration with UPPAAL

In this section we will describe the general translation of a network of CFAs C1 ‖ . . . ‖Cn into a UPPAAL

6 LLVM code ½ Entry point(s)

6 C++-file

o minimc.so
q XML

specifications o code.so

Å UPPAAL ϕ Verification query

Figure 3: tool chain

Timed Automaton [8]. For starters each CFA Ci is rep-
resented by a single Timed Automaton A i with the
same graph structure and stores register values in an
integer array lState. It also has one clock x. Memory
is similarly represented using an integer array memory.
In regards to memory there is one last component we
need, and that is an integer stored in the memory locat-
ing the next unused byte. For simplification our seman-
tics did not include global registers, but we are nev-
ertheless including them in our actual tool. These are
stored in a UPPAAL integer array glob.

Remark 4. On the surface this translation framework
might seem a bit unnecessarily complicated but it does
provide advantages. Firstly, since the state of CFAs
are kept inside UPPAAL we can take advantage of UP-
PAALs capabilities: namely model checking and statistical model checking. Secondly, since UPPAAL

knows about the graph structure of the CFA, we can use those locations as part of verification queries.

Automated tool chain We developed a tool chain1 that automates building the UPPAAL model along with
connecting it to the CFA interpreter (see Figure 3). The tool accepts an LLVM input-file along with
information about the entry-points of the program (in case of a parallel program several entry points can
be specified). This information is embedded into a C++-file which is compiled and linked against the
library (minimc2) resulting in a dynamic link library (code.so) providing an interface to the interpreter
(used in the resulting UPPAAL model as discussed), and also query functions in regards to the structure

1https://gitlab.com/dannybpoulsen/uppllvm
2https://github.com/dannybpoulsen/minimc

https://gitlab.com/dannybpoulsen/uppllvm
https://github.com/dannybpoulsen/minimc


M. Kulczynski, A. Legay, D. Nowotka & D.B. Poulsen 5

of the CFA. These latter query functions are used by a python script that creates the UPPAAL XML-
file. Finally the code.so library and XML-file are passed to UPPAAL in which verification questions
can be posed. The minimc library is needed as this converts LLVM to our UL structure and also
performs needed syntactical modifications to the CFA like expanding NonDet instructions into several
edges (one for each possible value), ensuring each edge only has one memory instruction, inline all
LLVM functions, identify assert statements and add a special AssertViolation location that is reached
only when an assert is violated, and add a Term location indicating normal termination of a CFA.

4 The tool chain in action

This section is devoted to demonstrating our tool chain. Next to verifying a password validation form
which leaks information over time, we analyse a classical mutual exclusion protocol: Petersons Algo-
rithm. This diverse set of examples demonstrates the capabilities of the presented approach.

4.1 On timing leaks

Timing is an important aspect of many programs and a major reason for integrating software models like
LLVM into UPPAAL. In this example we identify potential timing leaks in a wrongly implemented pass-
word validation program given in Figure 5. After setting the password to abcdef the program enters a
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Figure 4: Runtime distribution
of Figure 5.

loop reading characters by the function read(). The characters are
immediately compared to the expected password abcdef. However,
read() is an undefined function and therefore our toolchain replaces
it by a NonDet instruction which forces UPPAAL to search all possible
values of k in each iteration of the loop. Adding a clock G that is never
reset to the UPPAAL model allows us to estimate the run time of all
paths through the program by the UPPAAL query

E[<=500;1000] (max: G*(1-main.AssertViolation || main.main Term)).

We went up 500ms within 1000 runs. to Figure 4 shows a distribution
plot of the run times revealing a variation in the run times. A symbolic
analysis (in UPPAAL) reveals that a properly terminating program has
a run time in the range [125,175] ms. Any execution-time outside this range could leak information to
an attacker, as it has lower run-time because we broke out of the loop due to mismatching characters.

1 char read ();

2

3 #define N 6

4

5 int main () {

6 char sec[N];

7 for (int i = 0; i <N; i++) {

8 sec[i] = ’a’+i;

9 }

10 for (int i = 0; i< N; i++) {

11 char k = read();

12 if (k != sec[i])

13 assert (0);

14 }

15 return 0;

16 }

Figure 5: Program depending on timing.
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4.2 Verifiying a mutual exclusion protocol

As a proof of concept we have implemented a mutual exclusion protocol (Petersons Algorithm) in C —
see Figure 6 for an excerpt — and ran it through our toolchain after first compiling it to LLVM using
clang. Using UPPAAL we are able to verify that the algorithm behaves correctly (i.e. guarantees mutual
exclusion). We have also made an implementation of Petersons Algorithm containing an error breaking
the mutual exclusion property. The error is initialising the *opt.mflag variable wrongly on line 20.
Our toolchain does correctly find a path showing the mutual exclusion property is broken in this case. In
order to locate the error we had to first find the CFA location (let us call it Crit correspodning to line
45 and 26 respectively, and since UPPAAL has knowledge about those we can simply ask UPPAAL E<>

(petersons1.Crit && petersons2.Crit).

1 int *mflag;

2 int *oflag;

3 int *turn;

4 }Options;

5

6 int turn = 0;

7 int oneflag;

8 int secondflag;

9

10 int crit1 = 0;

11 int crit2 = 0;

12

13 void petersons1 () {

14 Options opt;

15 opt.mflag = &oneflag;

16 opt.oflag = &secondflag;

17 opt.turn = &turn;

18

19 *opt.mflag = 1;

20 *opt.turn = 1;

21

22 while (*opt.oflag

23 && *opt.turn == 1) {

24 /* busy wait */

25 }

26 // critical section

27 crit1 = 1;

28 // end of critical section

29 crit1 = 0;

30 *opt.mflag = 0;

31 }

32

33 void petersons2 () {

34 Options opt;

35 opt.mflag = &secondflag;

36 opt.oflag = &oneflag;

37 opt.turn = &turn;

38

39 *opt.mflag = 1;

40 *opt.turn = 0;

41

42 while (*opt.oflag

43 && *opt.turn == 0) {

44 /* busy wait */

45 }

46 // critical section

47 crit2 = 1;

48 // end of critical section

49 crit2 = 0;

50 *opt.mflag = 0;

51 }

Figure 6: Excerpt of Petersons algorithm in C.

5 Conclusion

In this paper we presented our preliminary work towards utilising UPPAAL for model checking of
LLVM-code. Our current strategy is to “outsource” LLVM to an external interpreter and allow UP-
PAAL to act as a simulation controller. Our initial experiments show the integration is functional and
warrants further investigations. In the future we will investigate mixing our LLVM-verification model
with (stochastic) models of the environment. This would allow analysing the source in different environ-
mental contexts by simply changing parameters of the model. A use-case could be analysing whether a
cruise controller for a car responds fast enough when moved to quicker accelerating car which names an
important capability of the presented ideas.
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