
The Clock is Still Ticking:
Timing Attacks in the Modern Web

Tom Van Goethem‡, Wouter Joosen‡, Nick Nikiforakis†

‡iMinds-Distrinet, KU Leuven, 3001 Leuven, Belgium
firstname.lastname@cs.kuleuven.be

†Department of Computer Science, Stony Brook University
nick@cs.stonybrook.edu

Abstract
Web-based timing attacks have been known for over a decade,
and it has been shown that, under optimal network condi-
tions, an adversary can use such an attack to obtain infor-
mation on the state of a user in a cross-origin website. In
recent years, desktop computers have given way to laptops
and mobile devices, which are mostly connected over a wire-
less or mobile network. These connections often do not meet
the optimal conditions that are required to reliably perform
cross-site timing attacks.

In this paper, we show that modern browsers expose new
side-channels that can be used to acquire accurate timing
measurements, regardless of network conditions. Using sev-
eral real-world examples, we introduce four novel web-based
timing attacks against modern browsers and describe how
an attacker can use them to obtain personal information
based on a user’s state on a cross-origin website. We evalu-
ate our proposed attacks and demonstrate that they signif-
icantly outperform current attacks in terms of speed, relia-
bility, and accuracy. Furthermore, we show that the nature
of our attacks renders traditional defenses, i.e., those based
on randomly delaying responses, moot and discuss possible
server-side defense mechanisms.

Categories and Subject Descriptors
K.4.1 [Computers and Society]: Public Policy Issues—
privacy ; K.6.5 [Management of Computing and Infor-
mation Systems]: Security and Protection

Keywords
Side-channel attacks; privacy; web-based attacks

1. INTRODUCTION
Ever since the first web browser, browser vendors have

been eagerly adding new features to their software. This
eagerness helped the web transition from a static informa-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CCS ’15 Denver, Colorado USA
© 2015 ACM. ISBN 978-1-4503-3832-5/15/10 ...$15.00.
DOI: http://dx.doi.org/10.1145/2810103.2813632.

tion retrieval medium, to a ubiquitous system where billions
of users each have their personalized view, and share per-
sonal data on numerous online services. While these new
browser features allow web developers to create applications
that were not possible using traditional HTML, such as,
single-page dynamic websites, they have also brought along
various types of vulnerabilities, for instance the execution of
attacker-controlled code in a cross-site scripting attack. In
addition, some types of attacks arise from the unexpected in-
terplay between different browser components and can thus
be very hard to eliminate.

A powerful yet underappreciated class of attacks are side-
channel attacks. In these attacks, an attacker leverages the
information exposed by the unintended behavior of specific
mechanisms, in order to disclose secret or private informa-
tion. One of the most well-known side-channel attacks in
browsers is the disclosure of pages the user had previously
visited by first modifying the color of visited links using the
CSS :visited pseudo-class, and subsequently requesting the
computed style in JavaScript [9]. In an empirical study,
researchers discovered that this technique was actively be-
ing used by various high-profile websites to uncover a user’s
browsing history [17]. This finally lead to a lawsuit against
an advertising company that leveraged the history hijacking
attacks to infer visitors’ interests [1,15]. In a related attack,
Felten et al. have shown that the time required to load
an external resource can leak sensitive information, compro-
mising a user’s privacy [12]. The timing attack described by
the researchers leverages the reduced loading time for cached
resources to uncover recently visited, and thus cached, web
pages. While this attack has been known for over 15 years,
the timing side-channel leak, which is inherent to a browser’s
design, is still present in modern browsers. Just recently, re-
searchers showed that using exactly the same cache timing
techniques on various online services, an adversary can de-
rive the geo-location of web users [18].

In addition to cache-based timing attacks, which can only
be applied to static resources, Bortz and Boneh presented
cross-site timing attacks where an adversary measures the
time it takes for a user to download a dynamically gener-
ated resource [7]. The resulting timing measurements often
disclose information on the state of the user at the vulner-
able cross-origin website, e.g., whether the user is currently
logged in to that website.

In this paper, we expand upon the aforementioned prior
work, and focus on various new browser features that can
be exploited by adversaries to obtain substantially more ac-
curate timing measurements. Contrary to classic timing at-

1

tacks which are subject to several limitations, such as vari-
ations in latency and instability of the network, our newly
introduced attacks do not rely on the network download
time, and therefore do not suffer from these limitations. We
show that by using these new attack vectors, adversaries
are able to rapidly obtain timing measurements that can be
analyzed in order to estimate the size of a cross-origin re-
source. By the means of real-world attack scenarios on five
of the most popular social networks, we illustrate how ad-
versaries can apply these novel timing techniques to obtain
various types of personally identifiable information from an
unwitting user. For targeted advertising purposes, an ad-
versary could use this information to create a profile based
on the user’s demographics and interests. Alternatively, the
attacker can leverage information acquired from online so-
cial networks to de-anonymize the user, as has been shown
in previous research [42].

Motivated by the effectiveness of our proposed attacks, as
well as the, seemingly, innumerable opportunities to apply
these attacks on popular websites, we discuss a possible anti-
CSRF-like server-side countermeasure that hides the differ-
ence in resource sizes from potential cross-site attackers.

Our main contributions are:

• We evaluate various browser features with regard to
the timing information they expose.

• We propose several new timing techniques, and demon-
strate that our techniques outperform existing attacks
in speed and reliability, allowing an adversary to esti-
mate the size of a cross-origin resource despite unfa-
vorable network conditions.

• We describe how an attacker can use these timing tech-
niques to extract personally identifiable information,
exemplified by five attack scenarios on widely-used so-
cial network websites.

• We discuss possible server-side solutions that have the
potential to mitigate all variations of cross-site timing
attacks.

2. BACKGROUND
Timing attacks are one of the oldest types of side-channel

attacks, where the time required to perform a certain op-
eration is leveraged to deduce private information on the
attacked system. For example, Kocher found that uninten-
tional timing characteristics reveal sufficient information to
extract the entire secret key from a vulnerable cryptosys-
tem [20]. In the context of the web, Felten and Schnei-
der [12] were the first to indicate that adversaries could use
timing attacks to compromise a user’s online privacy. In
their research, published in 2000, they describe how different
types of caching can leak information about the static web
pages a user recently visited. Several years later, Bortz et al.
presented two types of web-based timing attacks targeting
dynamic web pages [7]. In their first attack, called direct
timing, an adversary directly measures response times from
a website in order to obtain information about the website’s
state, e.g., the existence of an account with a certain user-
name. The second attack, called cross-site timing, enables
an attacker to learn information on the state of a user at a
cross-origin website. By leveraging JavaScript to time cross-
origin requests, the researchers show how an adversary can

detect whether a user is currently logged in to a cross-origin
website.

2.1 Threat Model
In the novel timing attacks we present, we employ a sim-

ilar threat model as in Bortz’ cross-site timing attack, i.e.,
an adversary provides an unwitting user with a malicious
client-side script that performs timing measurements on a
cross-origin website. By analyzing these timing measure-
ments, adversaries can estimate the file size of an external
resource, which often depends on the current state of the
user. This consequently allows an attacker to infer informa-
tion about a user’s current state at the third-party website.

Since there is a plethora of different types of personal in-
formation shared across a large and diverse set of online web
services, an attacker’s interests may vary. An attacker may
be interested in uncovering the unique identity of a user,
which, as previous research has indicated [10,14,42], can be
obtained by combining various bits of personal information
of that user. In another attack scenario, the adversary could
leverage a user’s private information in order to create, or ex-
tend, a profile on the user, and display targeted advertising,
derived from the obtained information. In their research,
Nikiforakis et al. have shown how advertising companies
are already using, often questionable, advanced techniques
to track a user across different sites in order to uncover a
user’s interests [29]. The use of timing attacks could extend
their ability to discover personal information, including age,
location and interests of a user, posing an imminent threat
to the online privacy of users.

3. WEB-BASED TIMING ATTACKS
When requesting a certain URL, a web server will often

return a different resource based on the current state of the
user. For example, when requesting the page of a private
group on a social network, a user who is not a member of
this group will receive a short error message, whereas group
members are provided the full information of that private
group. If an attacker is able to differentiate between the
two types of responses, it is possible that the user’s group
membership is uncovered. Using web-based timing attacks,
an attacker can differentiate between responses on the basis
of their file size, as timing measurements are related to file
size.

In order to detect the group membership of a user, the
attacker can first perform a timing measurement on a re-
source with a predictable size, e.g., the page of a private
group without any members. Using this value as a base-
line, the attacker can discover whether the user is member
of a specific group by collecting timing measurements of that
group’s page. If the outcome is comparable to the baseline,
the user is not a member of the group. If, however, the dif-
ference in timing results is considerable, this indicates that
the user received the full group information, and is thus a
member of the group.

The accuracy with which an attacker can discover infor-
mation on the state of a victim, is dependent on the cor-
rectness of the timing measurements. For example, if the
attacker’s timing measurements are based on the time re-
quired to download a resource, there are many factors that
can negatively influence the correctness of the conducted
measurements. Variations in latency, network congestion,
and dropped packets are just a few examples which may

2

prevent an attacker from successfully executing a timing at-
tack. To improve the attack’s effectiveness, an attacker can
obtain multiple timing measurements, and subsequently ap-
ply statistical methods. However, by using multiple mea-
surements, an adversary incurs a performance cost since the
external resources need to be downloaded numerous times.
Depending on the state of the network, these costs may be-
come significant, preventing the attacker from inferring the
state of the victim within a limited time frame. Moreover,
a web server may start blocking requests when it detects
a large number of requests originating from the same user,
preventing an attacker from executing his attack.

In this section, we show how side-channel information ex-
posed by modern browsers can be used to perform more
accurate timing attacks. We exemplify this by describing
four new types of timing attacks that can be employed by
an adversary to estimate the size of a resource, and are in-
dependent of a victim’s network stability. In addition, we
compare these newly introduced attacks to the classic tim-
ing attacks where the network response time is measured,
and show how some of these novel timing techniques can be
combined to further improve their performance.

3.1 Experimental setup
In order to evaluate how well the different types of tim-

ing techniques perform, we conducted the following experi-
ments. We set up a remote web server to serve four randomly
generated HTML files, each with a different size: 50kB,
60kB, 150kB and 250kB. For each type of timing attack, we
wrote a JavaScript program which would obtain 100 timing
measurements. In the interest of minimizing the influence of
a temporary network anomaly, or network congestion, the
files were requested sequentially and in random order.

All experiments were executed in the latest version of
Google Chrome, on a 2.5 GHz Intel Core i5 Macbook Pro
with 16 GB RAM, which was placed in our campus’ wireless
network. As the network speed of our campus is significantly
higher than the global average of 22.1 Mbps [30], the exper-
iments were re-evaluated in a residential network. We found
that the results of the residential-network evaluation were
very similar to the ones from our campus. Thus, in this pa-
per, we only present the results based on the measurements
obtained at our campus.

To measure the time in our experiments, we used the per-
formance.now function of the High Resolution Time API,
which is present in all modern browsers and returns timing
information with up to microsecond precision [24].

3.2 Basic web-based timing attack
The most straightforward way to perform a cross-site tim-

ing attack is to attempt to load an external resource that
leaks information on the state of the victim as an image,
and measure the time required to download the resource.
More concretely, an attacker could use the JavaScript snip-
pet as defined in Listing 1 to estimate the size of a victim’s
dashboard on the example.org website.

In this example, the browser will start downloading the
user’s dashboard as soon as the src attribute is set on the
Image object. Since the browser does not know in advance
whether the external resource is an image, it will first down-
load its entire contents and, subsequently, it will try to dis-
play the resource as an image, but will fail to do so since
the user’s dashboard is an HTML resource. As a result,

� �
var img = new Image ();
img.onerror = function () {

var end = window.performance.now();
alert (' Result: ' + (end - start));

};
var start = window.performance.now();
img.src = ' http :// example.org/dashboard.php ';� �

Listing 1: Basic web-based timing attack

the browser will fire an error event, which indicates to the
attacker that he can stop his timing measurement.

Figure 1 (a) shows the distribution of the time interval be-
tween assigning the src attribute to an image, and the firing
of the error event for the four files of different size. From
this graph, it is clear that by using this traditional type of
timing attack, an adversary requires multiple measurements
to differentiate between a resource of size 50kB and one of
60kB. When there is a significant difference in file size, e.g.,
50kB versus 150kB, it may be sufficient for an attacker to
rely on the network download time to perform the timing at-
tack. However, it should be noted that these measurements
were acquired in optimal conditions: the browser had only a
single tab open, very few other connections were made dur-
ing the experiment, and the network jitter between the web
server and end-user was minimal. In real-world scenarios, it
is likely these optimal conditions are not met.

As the performance of this type of attack is heavily in-
fluenced by the stability of the network, we performed the
same experiment on a mobile device, which was connected
over a 4G network. Although the mobile device was placed
in a fixed position, and performed no other networking op-
erations, it becomes nearly impossible to distinguish the dis-
tribution of the two smallest files, as can be seen in Figure 1
(b). For the HTML files of 150kB and 250kB, the standard
variance becomes considerably larger, which means that an
attacker will require a significant number of timing mea-
surements to reliably differentiate between two file sizes. As
the window of opportunity during which an attacker can ex-
ecute his attack is limited, and the average download time
can range from multiple hundreds of milliseconds to seconds,
the chance of a successful timing attack is considerably re-
duced.

3.3 Video parsing
To reduce the impact of network performance on tim-

ing measurements, we propose various new types of web-
based timing attacks in the following sections. All the newly
presented timing attacks make use of different timing side-
channels that are present in most modern browsers. In this
first attack, the side-channel leak is the time it takes the
browser to parse a cross-origin document as a multimedia
resource.

To support built-in media, HTML5 introduced two new
elements: <audio> and <video> [27]. Using these elements,
a website developer can directly include sound and video
content in a way that is very similar to including an image,
namely by assigning a link of the external resource to the
element’s src attribute. Similar to the element, the
new media elements also fire various events to indicate the
progress of loading and playing a media file. More precisely,
to indicate that a resource is currently being downloaded,
a progress event is periodically fired. Similarly, a suspend

3

0.00

0.05

0.10

40 60 80 100
Time (ms)

50kb
60kb
150kb
250kb

(a) Network response time

0.000
0.002
0.004
0.006
0.008

0 200 400 600
Time (ms)

(b) Network response time − Mobile network

0

1

2

3

1 2 3 4 5
Time (ms)

(c) Video parse time

0.00
0.25
0.50
0.75
1.00

12 15 18 21
Time (ms)

(d) Cache load time

0.0
0.3
0.6
0.9
1.2

15.0 17.5 20.0 22.5 25.0 27.5
Time (ms)

(e) Cache store time

0.00
0.01
0.02
0.03
0.04
0.05

200 300 400 500 600
Time (ms)

(f) Script parse time

Figure 1: Distribution of load time, or time required
to parse documents of four difference sizes

event is fired when the fetch is completed, to indicate the
network state returns to the idle state.

Once a resource is fetched, the browser will parse its con-
tents in an attempt to make it available for playing. As the
external resources in web-based timing attacks usually con-
sist of HTML content, parsing the content will obviously fail.
Interestingly, the time required to parse a resource is depen-
dent on the size of this resource. Consequently, browsers
expose side-channel information that can be used by an at-
tacker to perform a timing attack. It should be noted that
Internet Explorer and Firefox only allow multimedia files to
be played when these are served with the correct Content-

Type header. Because these browsers immediately abort
video processing as soon as the headers are received, it is
not possible to perform this type of timing technique.

To analyze the variance in parsing time, we measured the
time required to parse a resource, by measuring the time be-
tween the suspend and the error events. The latter event,

just as with images, indicates a failure in the attempt to
parse the file as a media resource. Similar to the previous
experiments, we collected the parsing time for the four files,
where each remote resource was parsed 100 times. The dis-
tribution of this timing information is depicted in Figure 1
(c). This graph shows that, especially for the 50kB and
60kB files, the timing measurements for each file are less
distributed (have a smaller standard deviation) than when
the resource download time is used as a timing measurement.

In summary, this type of timing technique exploits side-
channel information caused by a difference in parsing time
for multimedia elements. This type of attack is particularly
useful for an adversary when attacking a user whose inter-
net connection is unstable. As the attacker starts his timing
measurement after the resource has been downloaded, the
network connection has no influence on the timing process.
This also means that delays imposed by the web server, as a
countermeasure for classic timing attacks, are rendered ob-
solete. Coupled with the ability to perform measurements
simultaneously, as parsing a resource only requires a few mil-
liseconds, an adversary can use this attack to rapidly collect
accurate timing measurements on different cross-origin re-
sources.

3.4 ApplicationCache
To make websites available offline, web developers can

make use of a recent browser feature named Application-
Cache [41]. By defining a manifest, the web author can de-
fine, among other things, which files should be permanently
cached, making them available even when the user is no
longer connected to the Internet. Normally the web server
on which a resource is located, determines the caching pol-
icy, for instance by sending out a Cache-Control directive
by the means of an HTTP header [13]. However, in the case
of ApplicationCache, the server-side directives are overrid-
den1, allowing an attacker to force an external resource to
be cached in the context of his attack page.

When a cached resource is requested, the web browser
will read it from the hard disk, and make it available to the
web page. Although reading out a small file may take less
than a millisecond, we found that the size of a file still has
a measurable influence on the time required to read it from
the cache. As a result, this exposes side-channel information
that allows an attacker to estimate the size of a file.

In our experiment, we defined a manifest as shown in List-
ing 2, which forces the four HTML files to be cached. When
all files are cached, the AppCache mechanism fires an event
named cached, after which we start our timing measure-
ments. To reduce the impact of small measuring inaccura-
cies, we measured the time required to sequentially load the
same file five times. This resulted in the four distributions as
depicted in Figure 1 (d). The graph shows that, contrary to
the previously discussed attacks, the relative standard devi-
ation is small for all four files, including larger files. A major
benefit of using this attack technique is that files only need
to be downloaded once. As soon as the remote resources are
placed in cache, the attacker can rapidly perform multiple
timing measurements, with each taking only a few millisec-
onds.

1The ApplicationCache manifest will override all caching
directives, except for the no-store directive of the Cache-
Control header.

4

� �
CACHE MANIFEST
CACHE:
http :// example.com/50kb.html
http :// example.com/60kb.html
http :// example.com /150kb.html
http :// example.com /250kb.html

NETWORK:
*� �
Listing 2: Example ApplicationCache manifest

To further improve his attack, an adversary could combine
this attack with the video parsing technique. For smaller
files, the latter gives more accurate timing information and
because resources do not have to be downloaded for each
measurement, the attacker can determine the size of a cross-
origin resource with precision in a very short time frame.

3.5 Service Workers
Due to the increasing interest in developing web appli-

cations that can gracefully handle an offline environment,
more and more developers have been complaining about the
limitations of the AppCache mechanism [3]. To remove most
of these limitations and to give the web developer program-
matic control over the browser’s cache, a new feature named
Service Workers was developed [39]. Service Workers are
defined as event-driven scripts which have a lifetime that is
independent of the web page that created them. This means
that even when a user closes the browser tab that started the
Service Worker, a process could still be running in the back-
ground. This daemon-like quality of Service Workers can,
unfortunately, become particularly useful for an adversary.
Whereas an attacker traditionally had a very limited time
frame in which he had to collect his timing measurements,
this time frame can now be considerably extended by using
Service Workers.

Since the main purpose of Service Workers is to make web-
sites faster and available offline by intercepting network re-
quests and controlling the cache, they do not have DOM ac-
cess and can only use a limited API. Because of this limited
environment, the video parsing attack defined in Section 3.3
can no longer be used when a victim closes the attacker’s web
page. One of the APIs that is available in a Service Worker
environment, is the Fetch API [37], which allows a script
to perform network requests. Unlike the XMLHttpRequest
API, which also can be used to perform network requests,
the Fetch API can make authenticated cross-origin requests
without using the Cross-Origin Resource Sharing (CORS)
mechanism. For security reasons, it’s not possible to read
out the response of this authenticated cross-origin request,
but the time required to download the resource can still be
used in a web-based timing attack. However, as we have
shown in Section 3.2, a user’s network conditions can heav-
ily influence the performance of a timing attack.

By using another API in Service Workers, namely the
Cache API, we show that it is possible to extract accurate
timing measurements which are independent of the network
stability, and give an indication of a resource’s file size. As
was previously mentioned, Service Workers enable a web de-
veloper to programmatically control the cache. This means
that, for instance, a script could first download a specific
resource, hold it in memory, and subsequently place it in

the cache2. In the presented attack, we exploit side-channel
information that is exposed by the time required to place a
resource in the cache, and afterwards remove it.

To evaluate the performance of this timing attack, we cal-
culated, for the four HTML files, the distribution of 100
timing measurements where each file was first placed in the
cache and then removed, ten times in a row. The num-
ber of sequential additions and removals from the cache was
picked to accommodate the speed of the hard disk, but could
be fine-tuned by an adversary based on a brief benchmark
on the victim’s disk speed. The results of this experiment
are displayed in Figure 1 (e), and show that the perfor-
mance of this timing attack is slightly better than the Ap-
plicationCache attack, as the relative standard deviation is
small, and the distributions of different files show less over-
lap. This comes as no surprise, as both attacks exploit the
side-channel information exposed by the disk activity, i.e.,
read operations for the ApplicationCache attack, and write
operations for the Service Workers attack.

At the time of this writing, Service Workers are incorpo-
rated in the stable versions of Chrome and Opera, which
covers more than 50% of the user-base according to Stat-
Counter [33]. Implementations in other browsers will likely
follow soon: Service Workers are already shipped in sta-
ble versions of Firefox [26] but require manual activation,
and Internet Explorer has also shown interest in providing
them [25]. This means that in the near future, all users who
operate a modern browser, can be victimized by web-based
timing attacks occurring in background processes.

3.6 Script parsing
Whereas the previous timing attacks originate from abus-

ing relatively new HTML5 APIs, the script parsing attack
serves as an example that timing side-channels may also
be present in long-established browser technologies. As the
name already suggests, the timing side-channel in this attack
is introduced by tricking the browser into parsing a remote
resource as a JavaScript file. This can be easily done by
creating a script element, and assigning the src attribute
to the location of the remote resource. When this element is
added to the DOM, the browser downloads the resource and
attempts to parse and execute it as JavaScript3. An example
of how an attacker would measure the time it takes to parse
a script is shown in Listing 3. In most attack scenarios, the
external resources of which the attacker wants to estimate
the size, are not valid JavaScript files. For instance, trying
to execute a file that starts with <html>, will throw a Syn-

taxError on the first line, preventing the rest of the “script”
from executing. Nevertheless, the resource still needs to be
read into memory and undergo several operations in order to
be parsed. We found that the time it takes for this process
to complete, is dependent on the size of the resource that
needs to be parsed, thus exposing a timing side-channel.

In comparison to parsing a resource as a video, the speed
by which scripts are parsed, is significantly higher. As a re-
sult, it becomes impractical to measure this for smaller files,
even with the High Resolution Time API. However, most
modern browsers (with the exception of Firefox) use an op-

2The Cache API allows any resource to be stored, even if the
no-store directive is present in the Cache-Control header
3When the value of the X-Content-Type-Options header is
set to nosniff, Chrome and Internet Explorer will not parse
nor execute the file as a script

5

� �
window.onerror = function () {

var d = performance.now() - window.start;
console.log (' parsing done ' , d)

}
var s = document.createElement (' script ');
document.body.appendChild(s);
s.onload = function () {

console.log (' script downloaded ');
window.start = performance.now();

}
s.src = ' http :// example.com/resource ';� �

Listing 3: Script parsing example

timization that when the same resource is requested multiple
times within a short time interval, only a single request is
made. Consequently, this optimization can be used to force
the browser to parse a script multiple times requiring only a
single GET request. To obtain a measurement, we first cre-
ate a number of script elements, register an event listener
for the load event on each element, and add them all to the
DOM. Next, we register for the error event on the window

object (which is where the SyntaxError event will be fired),
and finally start parsing the remote resource by assigning
the src attribute on all script elements simultaneously. We
compute the total parsing time as the interval between the
first load event and the last error event.

We applied the same performance evaluation as with the
other attacks, and calculated the distribution of the time
it took to parse each file 50 times. This number of itera-
tions was chosen to optimally suit the performance of the
tested device. The results of this experiment are depicted in
Figure 1 (f), and show that this attack performs reasonably
well, especially for smaller files. While the time required to
obtain a single measurement for this attack is relatively high,
it should be noted that the measurements are independent
of the victim’s network condition.

3.7 Performance evaluation
In the previous sections, we discussed four different types

of web-based timing attacks that exploit side-channel infor-
mation exposed by browsers, and briefly analyzed their per-
formance in comparison to a basic timing attack that relies
on the download time of a resource. To evaluate the poten-
tial of the newly presented timing attacks in more detail, we
performed an additional experiment using a similar setup as
the one discussed in Section 3.1. The goal of this experiment
was to evaluate, for each type of timing technique, the time
required by an attacker to successfully make a distinction
between two resources of different sizes.

First, HTML files were created with a file size ranging
from 100kB to 200kB, in 5kB increments. We compared
timing measurements of each file to the 100kB file, which
was used as a baseline, by alternately extracting timing in-
formation from the baseline file, followed by a timing mea-
surement of the larger file. This process, which we limited
to 60 seconds, was then repeated for each timing technique.

In order to estimate the time required for an adversary
to perform a successful attack, we first calculated the small-
est number (n) of timing measurements required to perform
a timing attack with an accuracy of 95%. The accuracy
was calculated as follows: for each group of n timing mea-
surements of the baseline, we compared the mean of those
measurements to the mean of the corresponding group of
the tested file. For example, for the basic timing attack

●

●

●

●

● ● ● ● ● ● ●
● ● ●

●
●

● ● ●
0

2500

5000

7500

25 50 75 100
Difference in file size (kB)A

vg
. t

im
e

to
 p

er
fo

rm
 ti

m
in

g
at

ta
ck

 (
m

s)

● Application Cache
Basic
Cache + video parsing
Script parsing
Service Workers
Video parsing

Figure 2: The average time required to perform a
cross-site timing attack with 95% accuracy, for each
type of web-based timing technique.

where the baseline file of 100kB was compared to a file of
155kB, we collected a total of 600 timing measurements dur-
ing one minute, namely 300 for each file. For a group size
of 13 measurements, we found that the mean of the mea-
surements for the baseline file was smaller than the mean of
the corresponding group of the 155kB measurements in 22
of the 23 groups, leading to an accuracy of 95.65%. For all
groups with a smaller value of n, we found the accuracy to
be less than 95%. Finally, we calculated the required time
to perform a successful timing attack as the average time
required to collect all measurements for the minimum group
size.

The results of this experiment are shown in Figure 2.
While the timing experiments were conducted in a controlled
environment, on a relatively stable network, the results show
that using a basic timing attack, an attacker would be un-
able to differentiate files with a difference in size of less than
15kB. Interestingly, for the 140kB file, the basic timing at-
tack failed as well, which was most likely caused by a brief
irregularity in the network. This again shows that perform-
ing a web-based timing attack by collecting timing measure-
ments based on the network download time, can be a very
unreliable process. Furthermore, the overall results indicate
that the four newly introduced timing attacks substantially
outperform basic web-based timing techniques. Especially
when the difference in file size is small, the newly introduced
timing techniques show a manifold increase in terms of per-
formance.

As was mentioned earlier, our individual timing techniques
can be combined to further improve the performance of a
timing attack. In Figure 2, we also show the results of a
timing attack where we first force the caching of the remote
resources and then apply our video parsing attack. This re-
sults in a significant performance increase, where even the
smallest difference in file size could be detected in approx-
imately 200ms, including the initial download time. Com-
bined with the ability to collect timing measurements in
parallel without loss of accuracy, the use of our newly pro-
posed techniques makes timing attacks much more viable in
real-world situations.

Other devices.
In order to validate that our proposed attacks work on multi-
ple systems, we performed the same experiment on a variety

6

●

●

●
●

● ●
● ●

●
● ● ●

●

●
● ●

●
● ●

0

2500

5000

7500

25 50 75 100
Difference in file size (kB)A

vg
. t

im
e

to
 p

er
fo

rm
 ti

m
in

g
at

ta
ck

 (
m

s)
● Desktop computer

Macbook Pro
Macbook Pro (FF)
Mobile
Tablet

Figure 3: The average time required to perform an
AppCache-based timing attack with 95% accuracy,
for different platforms.

of devices: a mid-level desktop computer running Ubuntu,
the Macbook Pro from previous experiments, once using
Chrome and once using Firefox, a Motorola Moto G smart-
phone, and a Samsung Galaxy Tab 3 tablet. Due to space
limitations, in Figure 3, we only show the results of the
AppCache-based timing attack. All other attacks behave in
a similar fashion.

In general, we found that the timing techniques demon-
strated only a minor variation in performance among the
different browsers, operating systems, and devices. As a re-
sult, the timing attacks presented in this paper can be lever-
aged to obtain sensitive information across a wide range of
browsers and devices. Although the average time required
to differentiate between two files is comparable between dif-
ferent platforms, we found that the time required to obtain a
single measurement differed considerably. For instance, the
average time required to load a 100kb resource five times
from the cache was almost twice as high on the smartphone
as it was on the laptop (27.76ms versus 15.84ms). While it
takes longer to obtain a single measurement, the measure-
ments from slower devices are generally more accurate, and
thus fewer are required for a successful attack.

3.8 Discussion
In our research, we analyzed various browser functions

that handle external resources for the presence of timing
side-channels and discovered several cases that could be ex-
ploited to leak timing information. Another example of this,
is the side-channel information exposed by the Navigation
Timing API [38]. This API provides timing information for
requested resources and, due to its design, can be used to
determine whether a redirection chain was followed. More
precisely, an attacker can compute the time between the ini-
tialization of the request, e.g., when he assigns the src at-
tribute to an Image object, and the fetchStart property of
the corresponding PerformanceResourceTiming entry. The
latter contains the time when the browser started fetching
the resource, which is usually a fraction of a millisecond af-
ter the request was triggered. However, when a redirection
chain is followed, the value is set to the time the fetch algo-
rithm for the last resource in the chain was initiated. As a
result, the time between the initialization of the request and
the fetchStart property will be considerably higher, allow-
ing the attacker to determine whether a redirection chain

was followed using just a single request. In their research,
Lee et al. have shown how this information can be lever-
aged to uncover the login-status of users at a cross-origin
website [22].

The wide variety of the discovered timing side-channels,
all of which are resilient from network irregularities, serves
as a strong indicator that modern browsers are lacking struc-
tural defense mechanisms to adequately protect against the
exposure of timing information. As such, we expect that,
along with the exponential growth of browser functionali-
ties and accompanying APIs, new timing side-channels will
arise.For an adversary, it is sufficient to be able to measure
the time required to handle a remote resource, either by
storing or retrieving it from the cache, or parsing it. Con-
sequently, any browser feature that accommodates these re-
quirements may expose a new timing side-channel.

4. REAL-WORLD TIMING ATTACKS
In the previous section, we showed how timing attacks can

be used to estimate the size of an external resource. In this
section, we discuss how these techniques can be applied in
real-world scenarios, and how an adversary can use these at-
tacks to extract personal information from users. We focus
mainly on social networking websites and describe differ-
ent attack scenarios which are based on the different func-
tionalities offered by these services. Previous research [42]
has shown that the information about group membership
of a user can lead to the unique identification of that user.
We extend this work by analyzing other types of personally
identifiable information that can be exfiltrated using tim-
ing attacks. This information could then be used to either
uniquely identify a user, or to create a profile of the user’s
age, gender, location, and interests. The latter is particu-
larly useful for advertising companies who are always look-
ing for opportunities to improve targeted advertising, and,
as illustrated by previous research, often use questionable
techniques to reach this goal [2, 15,29].

As web developers tend to tailor the response for certain
endpoints to the current state of a user, web-based timing
attacks can be performed on a large and varied set of web-
sites. To show some of the potential consequences of timing
attacks in the modern web, we present various real-world at-
tacks on several of the most popular social networks. While,
due to abundance of personal information that users share
on these services, we mainly focus on social networks in the
presented attack scenarios, the proposed timing attacks can
be applied to other types of online services as well.The list
of possible attack scenarios described below should be seen
as an indication of how widespread timing-related vulnera-
bilities are.

Ethical considerations.
To assess the presence of timing vulnerabilities in the wild,
and quantify the effectiveness of our newly proposed attacks
when compared to the classic timing attack, we cannot avoid
searching for vulnerabilities in real world sites. Note that all
vulnerabilities discussed in the following sections were dis-
covered by manually interacting with a website and never
resorting to the use of, potentially intrusive, automated vul-
nerability scanners. All cross-site requests were performed
against our own accounts, thus real users where never ex-
posed to our attacks. It is also important to point out that
our attacks, as far as a server is concerned, are merely cross-

7

site requests, thus the tested web applications are never ex-
posed to any kind of malicious input. Given the above, we
believe that our timing attacks did not have any adverse
effects, neither on the tested services, nor on their users.

4.1 Facebook: Age, Gender, and Location
Facebook has approximately 1.4 billion active users [11]

making it one of the largest online web services. Next to
user profiles, Facebook also offers the possibility to repre-
sent companies and brands by the means of so-called“pages”.
These pages are similar to a user’s profile in the sense that,
just like a user, a page can update its status, and interact
with others. A page’s status update will be broadcasted
through the social network to everyone connected to the
page, i.e., to every user that “follows” the page. For brand-
ing purposes, status updates can be limited to a particular
target audience, for instance users between the age of 20 and
30, or only female users from a specific location. When vis-
iting the permanent link (also known as permalink) of the
status update, users who are not part of the target audience
are presented with a static page which states the content is
not available. As the size of the static page is different from
the size of the page containing the actual status update,
this exposes side-channel information allowing an adversary
to determine whether a user belongs to a specific audience.
We found that the file size of a visible post (240kB) is suffi-
ciently different from the size of a post when the user is not
part of the target audience (163kB), allowing an adversary
to perform a successful timing attack in a few milliseconds,
using our newly proposed timing attacks.

To verify this claim, we set up a Facebook page and made
six posts, each targeted to people who fall in a specific non-
overlapping age range. As a result, only a single post was
visible to the victim user. For both the basic timing attack
as well as our novel attack technique using Service Workers,
we collected timing measurements for each post during 15
seconds. The time interval was limited because generally,
an attacker only has a limited window of opportunity dur-
ing which he can perform a timing attack. Furthermore, the
attacker is likely to be interested in other private informa-
tion on the user as well, meaning he will have to perform
multiple attacks within this limited time frame. The timing
measurements, displayed in Figure 4, clearly indicate that
the measurements acquired using the basic timing attack
are too variable to reliably determine the age of a victim. It
should also be noted that these experiments were conducted
in optimal network conditions, and network jitter may fur-
ther decrease the basic attack. The measurements for the
unauthorized posts in the Service Workers attack are, ex-
cept for a few outliers, consistently lower than the post that
is only visible to the age-range to which the victim belongs
(23-32). These results serve as an additional indicator that
an attacker can obtain sensitive information much faster by
using the newly introduced timing attacks.

4.2 LinkedIn: Contact Search
LinkedIn is a business-oriented social network with over

347 million users, and is mainly used for professional net-
working [23]. Similar to other social networking services,
users on LinkedIn can create bi-directional relations with
others, which are called connections. In order to browse
through your contacts, LinkedIn offers the functionality to
filter connections based on their name, location, employer, or

●

●

●

●

500

600

700

13−22 23−32 33−42 43−52 53−62 63−72

Age−range

P
os

t d
ow

nl
oa

d
tim

e
(m

s)

Basic attack

●

●●
●●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

15

20

13−22 23−32 33−42 43−52 53−62 63−72

Age−range

C
ac

he
 s

to
re

 ti
m

e
(m

s)

Service Workers attack

Figure 4: Timing attack against Facebook age-
limited posts.

even their current job title. If the intuitive notion that users
connect with colleagues, business partners, or friends in the
same geographic location, holds true, then it is possible to
infer a user’s location, employer, and other private aspects,
on the basis of the number of connections that match cer-
tain filters. For instance, if a user has over 100 connections
originating from Germany, and only a handful from other
countries, it is likely that the user, just as his connections,
is living in Germany.

We found that the matching contacts for a certain query
are sent as a JSON stream, in response to an XMLHttpRe-
quest request. For each connection that matches the query,
we found that the response size grows approximately 0.5kB.
As the JSON resource does not contain a token specific to
the user, and can be accessed using a normal GET request,
we found that, by using timing attacks, it is possible for
an attacker to estimate the number of connections returned
for a certain filter. By combining the outcome of several
queries, the adversary can learn the geographic distribution
of a user’s professional network, with a granularity of coun-
try or even city. In a similar fashion, the adversary could
extract information on the companies the victim works with,
allowing him to leverage this information to, for instance,
launch a personalized phishing attack.

4.3 Twitter: Protected Accounts
With 288 million active users, and 500 million Tweets sent

per day, Twitter is one of the largest online microblogging
networks [36]. By default, Twitter makes all Tweets publicly
available. However, Twitter also provides the possibility to
make your account protected, in which case Tweets are only
visible to the list of approved followers. This means that the
visibility of protected Tweets depends on the state of the
user: the protected Tweet is only shown if the user follows
its author. By exploiting the difference in size returned for
a protected account’s profile page, an adversary can detect
which protected Twitter accounts the victim is following.

In their research, Wondracek et al. [42] describe how the
combination of the groups a social-network user is mem-
ber of, can be used in a de-anonymization attack. Using a
similar approach, but replacing the notion of “groups” with

8

“protected Twitter accounts”, an adversary can use timing
attacks to compose the list of protected accounts a user is
following, and subsequently use that information to find the
user’s unique identity. Contrary to Wondracek’s proposed
attack, where history stealing techniques are leveraged to
extract group membership information, our attack is based
on the user’s state on the social network. As such, our at-
tack provides much more reliable results since it does not
rely on a user’s browsing behavior.

Composing the complete list of protected accounts a user
is following, poses the major practical limitation in this at-
tack. Over 10% of Twitter users, i.e., approximately 30
million users, have opted to protect their Tweets [6], and
checking these one by one would be impractical. However,
we argue that a motivated attacker could employ a more so-
phisticated algorithm, e.g., by first checking accounts with
the most followers, to considerably improve this attack. By
using the newly introduced timing attacks, an adversary can
easily reveal a user’s following information since there is a
difference of more than 100kB in resource size. Interestingly,
classic timing attacks will be highly inaccurate since after
the gzip compression (typically used by web servers to re-
duce the size of HTTP responses), there is only a difference
in file size of approximately 5kB.

4.4 Google and Amazon: Search History
So far, we discussed various attack scenarios on several

social networks, which leverage cross-site timing techniques.
To demonstrate that the consequences of timing attacks are
not limited to social networks, in this section, we describe an
attack on the most-used online service, namely the Google
search engine. With over a trillion searches per year, the
majority of people on the web are using Google’s search re-
sults as a starting point for browsing websites related to their
interests. In addition to responding to new search queries,
Google provides the ability to navigate through all search
queries users have made in the past, and shows which re-
sults they have clicked.

One way of navigating through the search history is by
searching for a specific keyword, which will return up to
1,000 search queries and corresponding search results that
match that keyword. The resource containing the results is
an HTML file that can be acquired by making a GET re-
quest. Naturally, this resource grows larger as more results
are returned. An adversary is able to extract information
on a user’s interests, based on the response size of various
queries. In Figure 5, we show the measurements obtained
during two timing attacks that target various keywords. We
find that the timing measurements for the basic attack are
distributed unequally, preventing an attacker from learning
the user’s interests within the allotted time frame. How-
ever, when Service Workers are leveraged to measure the
time required to place a resource in the cache, an attacker
can quickly estimate the number of search results that are
returned for a specific query.

This particular issue is not just limited to Google’s search
engine, but can also be applied to other online web services
that provide the functionality of viewing one’s own browsing
history. For example Amazon, one of the largest e-commerce
services, offers users the ability to filter their own browsing
history based on product category. We found that the page
offering this functionality is vulnerable to timing attacks,

900

1000

1100

1200

panda (22) rabbit (56) fish (71) dog (147) cat (217)

Search term (num hits)

D
ow

nl
oa

d
tim

e
(m

s)

Basic attack

●

●●●
●
●

●

●

●
●●
●●

●●
●

●●●
●

●●
●

●

●
●

●

●●

●

●

●●

●

●

●

●
●

30

40

50

panda (22) rabbit (56) fish (71) dog (147) cat (217)

Search term (num hits)

C
ac

he
 s

to
re

 ti
m

e
(m

s)

Service Workers attack

Figure 5: Timing attack against several queries in
Google Search History.

which can provide an adversary with valuable information
that could be used for targeted advertising.

5. DISCUSSION
In the previous sections we introduced various timing tech-

niques, and described how these can be leveraged to discover
a broad range of personal information in a variety of social
networks and other online services. We found that these
techniques can be applied to the majority of modern web
browsers, and that a large fraction of the most popular on-
line services fail to protect their users against cross-site tim-
ing attacks. Defense mechanisms that have been proposed
to counter timing attacks include adding a random delay
that requires an attacker to obtain more timing measure-
ments [20], or implementing a fixed response time for all
server responses [7]. To reduce the performance impact of
these countermeasures, other researchers have proposed to
just keep the execution time of sensitive processes fixed [28],
or to add a fixed and unpredictable delay to the server’s
response time [31].

These defense mechanisms can adequately prevent both
direct timing attacks, i.e., attacks where the adversary learns
secrets about the state of the website, and basic timing at-
tacks, where the adversary learns secrets about the state of a
particular user on a third-party website. Unfortunately, they
are fully bypassed by our newly introduced cross-site timing
attacks, as our attacks exploit various browser mechanisms
which expose information on the size of an external resource.
In our timing attacks, a resource is downloaded just once,
and consequently delays imposed by the web server do not
impact the cross-site timing performance.

It could be argued that the side-channel information, which
is used in the new timing techniques, is exposed by modern
browsers, and therefore these browsers should be patched
in order to prevent this from happening. A straightforward
solution would be to add a random delay to the firing of
events. As a result, an attacker would have to collect more
measurements and apply statistical methods in order to ac-

9

curately determine the size of a resource. However, since
hundreds of measurements can be obtained in just a few
seconds, and because this solution would negatively impact
the performance of many websites, we do not consider this a
viable solution. Alternatively, browser vendors could opt to
fix the time when events are fired to the worst-case execution
time (WCET). However, in this case an attacker could still
use performance information, e.g., by continuously monitor-
ing the writing speed, to infer the time it took to perform a
certain action, e.g., writing a resource to the cache.

In light of the arduous task of eradicating timing side-
channels from modern browsers, we argue that a server-side
solution is more appropriate. In essence, the timing side-
channels exist because the browser allows web pages to in-
clude cross-origin resources that were not meant to be in-
cluded by an untrusted party. As such, mitigating the tim-
ing attacks presented in Section 3 has various similarities
with protecting against CSRF attacks. For both CSRF and
timing attacks, an adversary will typically need to trick the
browser in sending out specific requests to a vulnerable web-
site. In contrast to CSRF attacks, where the requests result
in a state-change of the logged in user, the requests that are
sent when a timing side-channel is exploited, are aimed for
resources that simply contain state-specific content. Conse-
quently, blocking illicit cross-origin requests allows a website
administrator to prevent an adversary from leveraging tim-
ing attacks against his website.

A well-known defense strategy against CSRF attacks, pro-
posed by Barth et al. [5], is to analyze the Referer and
Origin headers for endpoints that may trigger a modifica-
tion of the user’s state. Unfortunately, it is not possible
to straightforwardly apply the same technique to prevent
timing attacks, because landing pages, i.e. web pages the
user lands on after clicking a link, may also contain state-
specific content. When navigating to such a landing page,
the Referer header in the request will be set to the URL of
a remote, and possibly untrusted, web page. As a result, it
becomes impossible for a website to differentiate between le-
gitimate requests to a landing page, and requests that were
triggered from a malicious web page.

We propose to employ a placeholder web page as an addi-
tional mechanism to address this obstacle. More precisely,
when the Referer header is missing, or originates from an
untrusted domain, the placeholder is served instead of the
actual content. When loaded, this placeholder page initiates
an authenticated XHR request to the URL that was initially
requested. Since the Origin header in this request is set to
the same domain, the web server can verify that this is a
same-origin request and will send the actual resource. When
the XHR request completes, the placeholder writes the con-
tent to the DOM, and the actual page content is loaded. All
requests that originate from this page load, e.g. images that
are included by img elements, will have the Referer header
set to the current URL, and thus will be permitted by the
web server. Because only same-origin requests are allowed,
an attacker will not be able to trick a victim into loading a
state-dependent resource from the protected website.

Limitations.
As Barth et al. indicate, requests that lack a Referer header,
something that may happen out of privacy concerns, pose a
conundrum: either the website accepts the request, render-
ing the defense ineffective, or rejects it, which may prevent
legitimate users from accessing the website. In our defense

scenario, the check of the Referer header can only pass if the
domain matches the protected domain. As such, the Ref-

erer header only needs to be present in same-origin requests.
Additionally, because no sensitive information is leaked in
these same-origin requests, there is no reason for browsers,
extensions or network configurations to omit the Referer

header for these requests.
By design, this defense mechanism prohibits cross-origin

web pages from including resources of the protected website.
However, several legitimate cases exist where a website may
want to allow certain resources to be included by other web-
sites. This poses a problem when a non-HTML resource, e.g.
a dynamically generate image, is included cross-origin, and
lacks the Referer header. In this case, the defense mecha-
nism will be unable to uncover which domain triggered the
request, and will not be able to serve the placeholder, as no
HTML content will be rendered. As a result, the including
website will need to resort to an alternative way of loading
the image, for instance by using XHR in combination with
the CORS mechanism.

6. RELATED WORK
Timing attacks are one of the oldest types of side-channel

attacks in computer systems, first introduced almost two
decades ago. In the context of the web, previous work fo-
cused mainly on the network download time [7], or the pres-
ence of certain resources in the cache [12] as timing side-
channels. We believe this paper is the first to present web-
based timing attacks that leverage timing side-channels in
various browser features to estimate the size of a cross-origin
resource, regardless of a victim’s network condition. In ad-
dition, we extend prior research on the potential privacy-
intrusive consequences of timing attacks. Previous research
has indicated that cross-site timing attacks can be used to
obtain the number of products in a victim’s shopping bas-
ket, or to uncover the websites a victim recently visited, or
is currently logged in at. In our research, we extended prior
work by describing how an adversary can employ various
attacks in the modern web to obtain private and personal
information, such as age, gender, location, and personal in-
terests, based on the state of an unwitting visitor. In the
rest of this section, we review related work on all types of
timing attacks in the context of the web, and describe other
side-channel leaks in browsers that threaten a user’s security
and privacy.

6.1 Timing attacks in the web
In their research, Bortz et al. introduced the notion of two

types of timing attacks: direct timing attacks, and cross-site
timing attacks [7]. Other researchers mainly focused on the
former type, where an adversary tries to extract secret infor-
mation from the web server, e.g., the existence of a specific
username. Crosby et al. showed that a timing difference
as low as 20µs on a server-side process can be reliably dis-
tinguished over the Internet. The ability to obtain highly
accurate timing information has given rise to numerous at-
tacks that rely on remote timing information. The goals of
these attacks range from breaking cryptographic systems,
e.g. by extracting private keys from an OpenSSL-based web
server [8], to fingerprinting the rules of Web Application
Firewalls [32].

Moreover, researchers have shown that cross-site timing
attacks can be employed to list network-enabled devices on

10

the victim’s local network [19]. An adversary could subse-
quently use this information to fingerprint the user, or to
penetrate vulnerable devices, for instance by using CSRF
attacks. Contrary to these attacks, where the main focus is
to breach the security of machines that are generally only
available over the local network, Felten and Schneider pro-
posed various cross-site timing attacks that can be used by
adversaries to obtain information on a victim’s browsing his-
tory [12]. Based on the reduced loading time of cached re-
sources, the researchers found that it is possible for an at-
tacker to uncover whether a certain resource is present in a
victim’s cache. As cached resources originate from the web-
sites a user recently visited, the adversary is able to discover
a victim’s browsing history. Although this type of attack
has been known for over 15 years, relatively few changes
were made to the browser environment to mitigate this is-
sue. Just recently, Jia et al. showed that by using exactly
the same techniques, adversaries can launch geo-inference
attacks to discover a victim’s geographical location without
his consent [18]. The geo-inference attack exploits the fact
that various web services that are trusted by the victim and
know his location, cache location-specific resources. As a
result, an adversary can discover the victim’s location by
analyzing which of these resources are cached.

Next to the network response time and server-side pro-
cessing time, researchers discovered a variety of attacks that
leverage the time required by the browser to complete cer-
tain computations. In 2013, Kotcher et al. found that after
applying CSS filters on framed documents, the time required
to render the document becomes related to its visual con-
tent [21]. As a result, this attack allowed adversaries to read
out pixels from cross-origin documents in case framing was
not explicitly forbidden. Similarly, Paul Stone found that
applying SVG filters instead of CSS filters yielded the same
results [35].

6.2 Browser side-channel leaks
Due to the complex design and intricate implementations

of browsers, it comes as no surprise that researchers fre-
quently discover unintended behavior that often leads to a
leakage of users’ private information, or that can be used to
bypass the building block of security in modern web browsers,
namely the Same-Origin Policy.

One of the oldest, and most well-known side-channel leaks
in browsers, is the history sniffing attack first introduced in
2002 [9]. By applying CSS styles to visited links and subse-
quently querying the computed style in JavaScript, an adver-
sary could easily determine whether a victim had previously
visited a certain link. By means of an empirical study on
the 50,000 most popular websites, Jang et al. discovered the
clandestine usage of these history sniffing attacks on 46 web-
sites [17]. This pressured browser vendors into adopting an
effective countermeasure that restricted the CSS directives
that could be used in the :visited pseudo-class [4]. Shortly
thereafter, researchers discovered that even with this miti-
gation in place, history detection techniques were still possi-
ble, either by using the aforementioned timing attacks that
leverage SVG filters [34], or by user-interaction [40].

Next to attacks targeting a user’s browser behavior, re-
searchers have found that the inherent behavior of certain
browser features can allow an adversary to uncover a user’s
private information at a cross-origin website. For instance,
Heiderich et al. discovered that by leveraging various CSS

and HTML features, adversaries can exfiltrate sensitive in-
formation, such as CSRF tokens [16]. Moreover, Lee et
al. found that the intrinsic behavior of the Application-
Cache mechanism can be used to uncover the status code
that is returned for a cross-origin resource [22]. Conse-
quently, this allows an adversary to obtain sensitive infor-
mation when the resulting status code for certain endpoint
is based on the user’s state. The authors showed how these
attacks could be used to discover web servers on the local
network, and to detect the login-status of a user at various
websites. Interestingly, our proposed countermeasure, which
aims to prevent illicit cross-origin requests, can also be used
to deflect the ApplicationCache attacks proposed by Lee et
al.Correspondingly, their defense mechanism, i.e., providing
more control to website administrators over the cache-ability
of a resource, can be applied to restrict the two cache-based
timing techniques. As there is a variety of browser features,
including features unrelated to the browser cache, that may
leak timing information, we conjecture that a more system-
atic approach is required to thwart this type of side-channel
attacks.

7. CONCLUSION
In this paper, we propose several new timing techniques

for estimating the size of cross-origin resources. These at-
tacks exploit the side-channel information that is exposed by
the time required by a browser to process a resource, either
by parsing it, or by involving it in caching operations, i.e.
storage or retrieval. Because the timing measurements start
after the resource has been downloaded, the side-channel at-
tacks do not suffer from the limitations of traditional timing
techniques, and can thus be used by adversaries to obtain
more accurate timing measurements, regardless of the vic-
tim’s potentially unfavorable network conditions. We show
that these attacks can be applied on various platforms, pos-
ing an imminent threat to an extensive amount of web users.
Using five real-world attack scenarios, we illustrate how at-
tackers can leverage our novel timing techniques against a
variety of online web services, allowing them to extract pri-
vate data that a victim shared with trusted services.

Overall, our findings indicate that cross-site timing at-
tacks pose an imminent threat to the privacy of online users.
As the side-channel leaks exploited in the novel timing tech-
niques are inherent to the design of browsers and the web
in general, we conjecture that a systematic client-side coun-
termeasure would require structural changes to the browser
architecture. Due to the complexity of modern browsers, a
complete mitigation against all side-channels leaks appears
unlikely, pointing towards the need for CSRF-like counter-
measures at the server-side that hide the size of a resource
from cross-site attackers.

Acknowledgments
We thank the anonymous reviewers for the valuable com-
ments. For KU Leuven, this research was performed with
the financial support of the Prevention against Crime Pro-
gramme of the European Union (B-CCENTRE), the Re-
search Fund KU Leuven, the IWT project SPION and the
EU FP7 project NESSoS. For Stony Brook University, this
work was supported by the National Science Foundation
(NSF) under grant CNS-1527086.

11

8. REFERENCES
[1] Bose v. interclick, inc., 2011.
[2] G. Acar, C. Eubank, S. Englehardt, M. Juarez,

A. Narayanan, and C. Diaz. The web never forgets:
Persistent tracking mechanisms in the wild. In
Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pages
674–689. ACM, 2014.

[3] J. Archibald. Application Cache is a douchebag.
http://alistapart.com/article/application-
cache-is-a-douchebag, May 2012.

[4] L. D. Baron. Preventing attacks on a user’s history
through CSS :visited selectors.
http://dbaron.org/mozilla/visited-privacy, 2010.

[5] A. Barth, C. Jackson, and J. C. Mitchell. Robust
defenses for cross-site request forgery. In Proceedings
of the 15th ACM conference on Computer and
communications security, pages 75–88. ACM, 2008.

[6] Beevolve. An exhaustive study of Twitter users across
the world.
http://www.beevolve.com/twitter-statistics/,
October 2012.

[7] A. Bortz and D. Boneh. Exposing private information
by timing web applications. In Proceedings of the 16th
international conference on World Wide Web, pages
621–628. ACM, 2007.

[8] D. Brumley and D. Boneh. Remote timing attacks are
practical. Computer Networks, 48(5):701–716, 2005.

[9] A. Clover. CSS visited pages disclosure, 2002.
[10] X. Ding, L. Zhang, Z. Wan, and M. Gu. A brief survey

on de-anonymization attacks in online social networks.
In CASoN, pages 611–615, 2010.

[11] Facebook. Company info.
http://newsroom.fb.com/company-info/.

[12] E. W. Felten and M. A. Schneider. Timing attacks on
web privacy. In Proceedings of the 7th ACM conference
on Computer and communications security, pages
25–32. ACM, 2000.

[13] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
transfer protocol–HTTP/1.1, 1999. RFC2616, 2006.

[14] H. Gao, J. Hu, T. Huang, J. Wang, and Y. Chen.
Security issues in online social networks. Internet
Computing, IEEE, 15(4):56–63, 2011.

[15] D. Goodin. Marketer taps browser flaw to see if you’re
pregnant. http://www.theregister.co.uk/2011/07/
22/marketer_sniffs_browser_history/, July 2011.

[16] M. Heiderich, M. Niemietz, F. Schuster, T. Holz, and
J. Schwenk. Scriptless attacks: Stealing the pie
without touching the sill. In Proceedings of the 2012
ACM conference on Computer and communications
security, pages 760–771. ACM, 2012.

[17] D. Jang, R. Jhala, S. Lerner, and H. Shacham. An
empirical study of privacy-violating information flows
in JavaScript web applications. In Proceedings of the
17th ACM conference on Computer and
communications security, pages 270–283. ACM, 2010.

[18] Y. Jia, X. Dong, Z. Liang, and P. Saxena. I know
where you’ve been: Geo-inference attacks via the
browser cache. Web 2.0 Security & Privacy (W2SP),
2014.

[19] M. Johns. Exploiting the intranet with a webpage.
http://web.sec.uni-passau.de/members/martin/
docs/070906_HITB_Martin_Johns.pdf, September
2007.

[20] P. C. Kocher. Timing attacks on implementations of
Diffie-Hellman, RSA, DSS, and other systems. In
Advances in Cryptology—CRYPTO’96, pages 104–113.
Springer, 1996.

[21] R. Kotcher, Y. Pei, P. Jumde, and C. Jackson.
Cross-origin pixel stealing: timing attacks using CSS

filters. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security,
pages 1055–1062. ACM, 2013.

[22] S. Lee, H. Kim, and J. Kim. Identifying cross-origin
resource status using Application Cache. In
Proceedings of the ISOC Network and Distributed
System Security Symposium (NDSS’15), 2015.

[23] LinkedIn. About LinkedIn.
https://press.linkedin.com/about-linkedin.

[24] J. Mann. High Resolution Time. W3C
recommendation, 2012.

[25] Microsoft. modern.IE - platform status.
https://status.modern.ie/serviceworker.

[26] Mozilla Developer Network. ServiceWorker api.
https://developer.mozilla.org/en-
US/docs/Web/API/ServiceWorker_API.

[27] Mozilla Developer Network. Using HTML5 audio and
video. https://developer.mozilla.org/en-US/docs/
Web/Guide/HTML/Using_HTML5_audio_and_video.

[28] Y. Nagami, D. Miyamoto, H. Hazeyama, and
Y. Kadobayashi. An independent evaluation of web
timing attack and its countermeasure. In Availability,
Reliability and Security (ARES), 2008.

[29] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel,
F. Piessens, and G. Vigna. Cookieless monster:
Exploring the ecosystem of web-based device
fingerprinting. In Security and privacy (SP), 2013
IEEE symposium on, pages 541–555. IEEE, 2013.

[30] OOKLA Net Index. Household download index.
http://www.netindex.com/download/allcountries/,
February 2015.

[31] S. Schinzel. An efficient mitigation method for timing
side channels on the web. In 2nd International
Workshop on Constructive Side-Channel Analysis and
Secure Design (COSADE), 2011.

[32] I. Schmitt and S. Schinzel. WAFFle: Fingerprinting
filter rules of web application firewalls. In WOOT,
pages 34–40, 2012.

[33] StatCounter. Top 5 desktop browsers on jan 2015.
http://gs.statcounter.com/#desktop-browser-ww-
monthly-201501-201501-bar, January 2015.

[34] P. Stone. Bug 711043 - (CVE-2013-1693) SVG filter
timing attack. https:
//bugzilla.mozilla.org/show_bug.cgi?id=711043,
December 2011.

[35] P. Stone. Pixel perfect timing attacks with HTML5.
Context Information Security (White Paper), 2013.

[36] Twitter. Company info.
https://about.twitter.com/company, February 2015.

[37] A. Van Kesteren and WHATWG. Fetch.
https://fetch.spec.whatwg.org/, January 2015.

[38] W3C. Navigation Timing.
http://www.w3.org/TR/navigation-timing/,
December 2012.

[39] W3C. Service Workers.
http://www.w3.org/TR/service-workers/, February
2015.

[40] Z. Weinberg, E. Y. Chen, P. R. Jayaraman, and
C. Jackson. I still know what you visited last summer:
Leaking browsing history via user interaction and side
channel attacks. In Security and Privacy (SP), 2011
IEEE Symposium on, pages 147–161. IEEE, 2011.

[41] WHATWG. Offline web applications.
https://html.spec.whatwg.org/multipage/
browsers.html#offline, January 2015.

[42] G. Wondracek, T. Holz, E. Kirda, and C. Kruegel. A
practical attack to de-anonymize social network users.
In Security and Privacy (SP), 2010 IEEE Symposium
on, pages 223–238. IEEE, 2010.

12

