
Timing Attacks on Web Privacy

Edward W. Felten and Michael A. Schneider
Secure Internet Programming Laboratory

Department of Computer Science
Princeton University

Princeton, NJ 08544 USA

ABSTRACT
We describe a class of attacks that can compromise the privacy of
users’ Web-browsing histories. The attacks allow a malicious Web
site to determine whether or not the user has recently visited some
other, unrelated Web page. The malicious page can determine this
information by measuring the time the user’s browser requires to
perform certain operations. Since browsers perform various forms
of caching, the time required for operations depends on the user’s
browsing history; this paper shows that the resulting time variations
convey enough information to compromise users’ privacy. This at-
tack method also allows other types of information gathering by
Web sites, such as a more invasive form of Web “cookies”. The
attacks we describe can be carried out without the victim’s knowl-
edge, and most “anonymous browsing” tools fail to prevent them.
Other simple countermeasures also fail to prevent these attacks. We
describe a way of reengineering browsers to prevent most of them.

1. Introduction
This paper describes a class of attacks that allow the privacy of

users’ activities on the Web to be compromised. The attacks al-
low any Web site to determine whether or not each visitor to the
site has recently visited some other site (or set of sites) on the Web.
The attacker can do this without the knowledge or consent of ei-
ther the user or the other site. For example, an insurance-company
site could determine whether the user has recently visited Web sites
relating to a particular medical condition; or an employer’s Web
site could determine whether an employee visiting it had recently
visited the sites of various political organizations.

The attacks work by exploiting the fact that the time required by
the user’s browser to perform certain operations varies, depending
on which Web sites the user has visited in the past. By measur-
ing the time required by certain operations, a Web site can learn
information about the user’s past activities. These attacks are par-
ticularly worrisome, for several reasons:

• The attacks are possible because of basic properties of Web
browsers, not because of fixable “bugs” in a browser.

• The attacks can be carried out without the victim’s knowl-
edge.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’00, Athens, Greece.
Copyright 2000 ACM 1-58113-203-4/00/0011 ..$5.00

• Standard Web “anonymization” services do not prevent the
attacks; in many cases they actually make the attacks worse.

• Disabling browser features such as Java, JavaScript, and client-
side caching do not prevent the attacks.

• The only effective ways we know to prevent the attacks re-
quire either an unacceptable slowdown in Web access, or a
modification to the design of the browser.

• Even modifying the browser design allows only a partial rem-
edy; several attacks remain possible.

1.1 Why Web Privacy Matters
There is now widespread concern about the privacy of users’ ac-

tivities on the World-Wide Web. The list of Web locations visited
by a user often conveys detailed information about the user’s fam-
ily, financial or health situation. Consequently, users often consider
their Web-browsing history to be private information that they do
not want unknown parties to learn. Of course, visiting a Web site
necessarily leaks some information to that site; but users would like
some assurance that information about their visits to a site is not
available to arbitrary third parties.

Thus far in the short history of the Web, two types of prob-
lems have led to compromise of users’ Web-browsing histories, and
remedies are available for both types.

First, some Web sites gather information and then reveal it to
third parties without the informed consent of users. (Alternatively,
some sites cause users’ browsers to reveal information directly to a
third-party site.) These problems have been dealt with by the use
of privacy policies and third party audits of Web sites. While these
remedies leave much to be desired, they do give users a chance to
guess where information will go after it is revealed to a law-abiding
site.

Second, some implementation bugs in browsers have provided
opportunities for unscrupulous third parties to gather information
without the user’s consent. While these bugs are part of an unfor-
tunate pattern of security bugs in browsers, each bug by itself has
been fixable.

The attacks we describe in this paper admit no such remedy. Be-
cause information about visits to a site is not controlled by that site,
privacy policies, auditing, and trust in sites are not effective reme-
dies. Because the attacks are not caused by browser bugs, they
cannot easily be fixed.

2. Exploiting Web Caching
The first timing attack we will discuss exploits Web caching. We

first review how Web caching works, and then discuss the attack.

2.1 Web Caching
Accessing Web documents often takes a long time, so Web browsers

use caching — they save copies of recently-accessed files, so that

Timing Attacks on Web Privacy

25

future accesses to those files can be satisfied locally, rather than re-
quiring another time-consuming Web access. Caching is relatively
effective in reducing perceived access times of Web pages.

The purpose of caching is to make accesses to recently-visited
files faster. The attack exploits this by measuring the amount of
time required to access a particular file. If that file is in the user’s
cache, the access will be fast; if not, it will be slow. By measuring
the access time, an attacker can determine whether or not a file is
in the user’s cache, and hence whether or not the user has accessed
the file recently.

2.2 An Example
To illustrate what we are talking about, we will now give a simple

example. Readers should bear in mind that this is only one example;
countermeasures that would prevent this simple example attack will
not necessarily prevent more sophisticated versions of the attack.

Suppose that Alice is surfing the Web, and she visits Bob’s Web
site at http://www.bob.com. Bob wants to find out whether
Alice has visited Charlie’s Web site (http://www.charlie.
com).

First, Bob looks at Charlie’s site, and picks a file that any visitor
to the site will have seen. Let’s say Bob picks the file contain-
ing Charlie’s corporate logo, at http://www.charlie.com/
logo.jpg. Bob is going to determine whether the logo file is in
Alice’s Web cache. If the file is in her cache, then she must have
visited Charlie’s Web site recently.

Bob writes a Java applet that implements his attack, and em-
beds it in his home page. When Alice views the attack page, the
Java applet is automatically downloaded and run in Alice’s browser.
The applet measures the time required to access http://www.
charlie.com/logo.jpg on Alice’s machine, and reports this
time back to Bob. If the time is less than some threshold (say, 80
milliseconds), Bob concludes that Alice has been to Charlie’s site
recently; if it is greater than the threshold, he concludes that she has
not been to the site recently.

2.3 Measuring Access Time
The main component of the attack is a measurement of the access

time for a particular Web URL. There are several ways the attacker
could measure this time. Java and JavaScript both have facilities for
measuring the current time and for loading an arbitrary URL; these
can be combined in the obvious way to measure the time required
to load a URL.

Java and JavaScript provide the most accurate means of mea-
suring access time, but the attacker can get a sufficiently accurate
measurement even if Java and JavaScript are disabled. This is done
by writing a Web page that loads three files in sequence:

1. a dummy file on the attacker’s site,

2. the file whose access time is to be measured, and

3. another dummy file on the attacker’s site.

The attacker’s Web server can record the time at which it receives
requests 1 and 3; subtracting yields an approximation to the time
required to perform step 2. (We omit the straightforward but tedious
details of how to write HTML that causes popular browsers to make
serialized accesses to files.)

Any of these methods can be used to perform a measurement
invisibly to the victim. The Java and JavaScript programs need
not display anything, and the three-step method can also be im-
plemented in a way that does not affect the appearance of the page
doing the measuring.

To make the measurement as accurate as possible, the attacker
can measure some control cases — known hits and known misses

— along with the main measurement. Known misses can be gen-
erated by accessing nonexistent (e.g. randomly generated) URLs
on the same site as the file to be measured. Known hits can be
generated by replicating the main measurement. The second and
subsequent measurements will be known cache hits. By measuring
several known hits and misses, the attacker can choose a threshold
for discriminating between hits and misses. We show below that
the attacker can pick a good threshold and make determinations
with high accuracy, even when the control cases are restricted to
only two known hits and two known misses.

Another way for the adversary to improve the accuracy of his
measurement is to combine the results of several measurements.
For example, there might be several static image files linked from
Charlie’s home page. If Bob measures the access time for each of
these images individually, this gives him several estimates of the
likelihood that Alice had visited Bob’s site. By using standard sta-
tistical techniques, Bob can combine these estimates to obtain a
more accurate estimate.

2.4 Delivering an Attack
The measurements described above are all performed by HTML

pages that are viewed by the victim. In order to carry out the attack,
the attacker must cause the victim to view an HTML page written
by the attacker. There are many ways to do this.

1. An unscrupulous organization that runs a popular Web site
could put measurement code into its site.

2. A Web advertising agency could add measurement code to
the banner ads it distributes.

3. The attacker could create a Web site that is engineered to
appear near the top of the list returned by a popular search
engine when the user searches for a common search term.

4. The attacker could send the victim an email message refer-
ring to some enticing content, such as a low-price sale, or an
award certificate, on the attacker’s Web site.

5. The attacker could send the victim an email message with an
HTML message body. If the victim uses an HTML-enabled
mail reader (and most popular mail readers are now HTML-
enabled), the measurement would be performed when the
victim read the email message. The message could be dis-
guised as an unwanted “spam” message, so that the victim
did not notice anything unusual.

2.5 Accuracy of the Measurements in Practice
We performed a series of experiments to determine how accu-

rately an attacker could distinguish cache hits from cache misses.
In the experiments, we ran the Netscape Navigator 4.5 browser on
a Windows NT 4.0 (Service Pack 4) PC with a 350 MHz Pentium
II processor and 256 Megabytes of RAM. (Preliminary results indi-
cate that our conclusions would have been unaffected had we used
Internet Explorer rather than Netscape Navigator.) This PC was
connected to our department’s network via a 10BaseT link.

The experiments used our department’s Web server, which is
on the same switched departmental network as the client browser.
Because the client and server are so close together in our experi-
ments, cache miss times are much lower than they would be in prac-
tice, thereby making it artificially difficult to distinguish hits from
misses. In practice, we expect miss times to be longer, giving the
attacker even higher measurement accuracy than our experiments
show.

26

2.5.1 Computing the Accuracy
The ultimate goal of our experiments will be to determine how

accurately an attacker can distinguish cache hits from misses. We
will characterize the accuracy as a percentage, which tells us what
percentage of unknown references the attacker will be able to cor-
rectly characterize. We now consider how to compute this percent-
age.

The attacker will choose a threshold value T , such that, given an
unknown reference r with access time tr, he will decide r is a hit if
tr < T , and will decide r is a miss if tr > T . If tr = T , he will decide
randomly, choosing “hit” with probability p. Given T and p, we
can compute the attacker’s accuracy by seeing what percentage of
references are mischaracterized.

To determine the accuracy, we first compute the accuracy sepa-
rately for hits and misses. In other words, we compute the fraction
of hits that are correctly characterized, and the fraction of misses
that are correctly characterized. We then take the minimum of these
two values, so that an accuracy of (say) 98% means that the attacker
can get at least 98% of hits right, and at least 98% of misses right.

But how would the attacker choose T and p? Different methods
are called for, depending on whether or not the attacker knows the
performance characteristics of the user’s system. We will consider
two cases. In the first, the attacker knows the distributions of access
times for hits and misses. In the second case, the attacker does not
know these distributions.
2.5.2 Computing Accuracy from Known Time Distributions

To choose T and p optimally, the attacker needs to know two
things:

1. the distribution of access times for references that hit in the
cache, which we will represent with a function h such that
h(t) is the probability that a hit will have access time equal to
t; and

2. the distribution of access times for references that miss in the
cache, which we will represent with a function m such that
m(t) is the probability that a miss will have access time equal
to t.

From these, we calculate two additional functions: H(t) is the prob-
ability that a hit will have access time less than t, and M(t) is the
probability that a miss will have access time greater than t.

Now, if we choose the parameters T and p, the accuracy is

A(T, p) = min(H(T)+ ph(T),M(T)+(1− p)m(T)).

To find the optimal values for the parameters, we loop over all val-
ues of T . For each value of T we find the value of p that maximizes
A(T, p), by first finding the value p∗ such that

H(T)+ p∗h(T) = M(T)+(1− p∗)m(T),

and then choosing p as follows:

1. If p∗ ≤ 0, choose p = 0.

2. If p∗ ≥ 1, choose p = 1.

3. If 0 < p∗ < 1, choose p = p∗.

Finding the optimal T and p is relatively efficient.
2.5.3 Computing Accuracy with Unknown Time Distributions

In practice, the attacker often does not know the distributions h(t)
and m(t). To find a good value for T , the attacker can employ the
following “four-sample” method:

1. Measure the time taken by the client to retrieve two known
hits (H1,H2), and two known misses (M1,M2).

-50 0 50 100 150 200

Load time (ms)

100

200

300

400

500

F
re

qu
en

cy

Hit in Browser Cache
Miss in Browser Cache

Figure 1: Distribution of access times for known cache hits and
known cache misses, as measured by a JavaScript program em-
bedded in the attacker’s Web page.

2. Choose T as the mean of max(H1,H2) and min(M1,M2).

3. Choose p, the probability of concluding a hit for measure-
ments exactly equal to T , as 1/2.

Intuitively, the four-sample method will achieve high accuracy if
there is not much overlap between the distributions for hits and for
misses. If almost all misses take longer than almost all hits, high
accuracy will result, even if the attacker does not know the distribu-
tions of hit and miss times.
2.5.4 Measuring with Client-Side JavaScript

Figure 1 shows the distribution of hit times and miss times when
the attacker measures access latency using a JavaScript program
embedded in a Web page. The JavaScript program runs on the client
browser and measures the time both before and after loading a file.
Subtracting the two measured times yields the access latency, which
is shown here.

Figure 1 shows that hit times are almost always considerably
lower than miss times. An attacker who knows these distributions
will set his threshold T to be 60 ms, his p to be 0.14, and will
achieve 98.5% accuracy. An attacker who does not know the dis-
tribution, but uses the four-sample method, will achieve a mean
accuracy of 97.7%.
2.5.5 Measuring on the Server Side

Using a Java or JavaScript program to measure access times is
the most effective strategy for the attacker, but a few victims will
make this impossible by turning off JavaScript. Even if JavaScript is
turned off, the attacker can still measure the access time by creating
an HTML page that hits a known URL on the attacker’s site, then
loads the file that the attacker wants to test, then hits another known
URL on the attacker’s site. The attacker’s Web server can measure
the times at which it receives the two hits. Subtracting these two
time measurements yields a measure of how long it took to load the
file that the attacker wants to test.

This approach will typically lead to a higher variance in mea-
sured times, since the time for the first and third hits to reach the
attacker’s Web server will vary. We performed an experiment to
determine how well the attacker could distinguish cache hits from
misses in this scenario.

27

0 50 100 150 200

Server measurement time (ms)

0

50

100

150

200

F
re

qu
en

cy
Known Hit
Known Miss

Figure 2: Distribution of access times for known cache hits and
known cache misses, as measured by server-side time measure-
ment.

Figure 2 shows the distribution of times we measured for known
cache hits and known cache misses. The two distributions overlap a
bit but are generally disjoint. To be precise, an attacker who knows
the distributions will choose T to be 60 ms and p = 1.0, giving an ac-
curacy of 96.7%. An attacker who does not know the distributions,
but uses the four-sample method, will achieve a mean accuracy of
93.8%.

Summing up these two experiments, we can see that an attacker
can determine with high accuracy whether or not a particular file is
present in the victim’s cache.

2.6 Uncacheable Files
Not all files on the Web are cacheable. Some files are explic-

itly marked as uncacheable by the Web server supplying them, and
some files are inherently uncacheable, for example because they
are dynamically generated. A study [9] by Wolman and colleagues
at the University of Washington found that about 60% of Web ac-
cesses are to cacheable files1. The Washington group’s data also
shows that the fraction of files that are cacheable is not changing
appreciably over time [8].

Uncacheable files do not always prevent timing attacks. Pages
that are dynamically generated often include embedded images that
are cacheable — for example, a portal’s news page might include
the portal’s corporate logo. To carry out a successful attack, the
attacker need only find one cacheable file that is referenced by the
page.

3. Anonymization Tools Do Not Help
Several tools exist to provide “anonymous” Web browsing; ex-

amples include anonymizer.com [2], Crowds [6], the Lucent Per-
sonal Web Assistant [3], and Zero Knowledge Freedom [10]. These
tools all send Web requests through some kind of intermediary which
shields the address of the original requester.

1In their study, a file was considered cacheable if version 2 of the
Squid proxy cache [7] would have been willing to cache it.

Since accesses made through these systems are all subject to
caching, none of these systems prevents the timing attacks dis-
cussed above. Indeed, these systems may well make the attack eas-
ier — routing cache misses through an intermediary makes misses
even slower, which makes it easier for the adversary to distinguish
hits from misses.

Some of these systems attempt to block Java and JavaScript from
reaching the browser, which would force the attacker to rely on the
less accurate server-side timing method. However, this is unlikely
to prevent the attack entirely, and in any case there is doubt as to
whether it is possible for a firewall to block Java and JavaScript in
all cases [4].

An anonymizing tool could also modify Web sessions to mark
every incoming file as uncacheable. This would be equivalent to
turning off caching at the Web browser, which is discussed in Sec-
tion 7.

4. Exploiting DNS Caching
Attacks on Web caching can be prevented by turning off Web

caching. This has a high performance penalty, since caching has a
major effect on overall Web performance.

Even if Web caching is turned off, an attacker can exploit other
types of caching, such as DNS caching, to learn about a user’s ac-
tivities.

4.1 DNS Caching
The Domain Naming System (DNS) [1] is the mechanism that

looks up human-readable “DNS names” like www.whitehouse.
gov so that they can be translated into the numeric IP addresses
like 192.168.13.4 that the Internet protocols use. Every DNS
address must undergo this translation before it is used. This is done
with the help of a set of server machines on the Internet.

Because a DNS lookup requires potentially expensive network
communication, and because machines typically look up the same
DNS addresses repeatedly, most machines keep a DNS cache that
holds the results of recent DNS lookups. Subsequent lookups of the
same address can be completed quickly by using the cached result.

As with a Web cache, a DNS cache records information about
a user’s recent activities. In particular, if the user visits a Web
server at www.whitehouse.gov, this will cause a DNS lookup
for www.whitehouse.gov, so an entry for this address will ap-
pear in the DNS cache of the user’s PC. Subsequent attempts to
look up www.whitehouse.gov will complete quickly because
of the cache entry.

There are several ways for an HTML page to cause a DNS lookup.
For example, a Java applet can directly ask to have a DNS lookup
done; a JavaScript program can indirectly cause a DNS lookup to
occur. By measuring the time required to look up a particular DNS
address, an HTML page can determine whether or not a particular
address appears in a user’s DNS cache, and can therefore determine
whether the user accessed that address recently.

Such an attack can be delivered by any of the same methods as
the Web caching attacks described above, via either a Web page or
an email message.

4.2 Accuracy of the Measurements
Figure 3 shows the distribution of DNS lookup time for known

hits and known misses to three different Internet sites, as deter-
mined by a Java applet. The three sites cs.princeton.edu
(our department), rutgers.edu (about thirty kilometers from
us), and berkeley.edu (about 4000 kilometers from us) were
chosen as examples of DNS servers with different network laten-
cies for DNS queries. The test client experienced a small latency

28

0 50 100 150

[cs.princeton.edu] load time (ms)

50

100

150
F

re
qu

en
cy

Hit in Resolver Cache
Miss in Resolver Cache

0 50 100 150

[rutgers.edu] load time (ms)

50

100

150

F
re

qu
en

cy

Hit in Resolver Cache
Miss in Resolver Cache

0 50 100 150

[berkeley.edu] load time (ms)

50

100

150

F
re

qu
en

cy

Hit in Resolver Cache
Miss in Resolver Cache

Figure 3: Distribution of DNS lookup time for known DNS hits
and known DNS misses for three sites, as measured by a Java
applet embedded in the attacker’s Web page.

for queries to cs.princeton.edu, a slightly larger latency for
queries to rutgers.edu, and a somewhat larger latency in queries
to berkeley.edu.

Computing the accuracy as described above in Section 2.5.2
for each site, we find that, for the three servers, an attacker would
knows the distributions would choose (T, p) to be (10 ms, 0.63),
(20 ms, 0.15), and (60 ms, 0), respectively, giving optimal accura-
cies of 53.5%, 90.4%, and 100.0%, respectively. Using the four-
sample method, an attacker who does not know the distributions
will achieve mean accuracies of 53.5%, 87.7%, and 100.0% respec-
tively.

The differences in these accuracy measurements demonstrate that
these tests do not perform well when queries to the DNS server be-
ing tested experience a very small cache miss penalty. However,
when the miss penalty is large enough to detect (as it is for almost
all sites on the net) the tests lead to very high accuracies.

Thus, when the attacker chooses a DNS server with a measurable
latency between the server and the victim, the attacker can effec-
tively determine whether or not a particular entry is in the victim’s
DNS cache.

5. Attacking Multi-Level Caches
So far we have described how attackers can learn the contents

of caches on client workstations. Often, client caches are backed
by additional caches that are shared by many clients. For example,
a client PC’s DNS cache is typically backed by another cache that
is shared at a departmental level. If an address is not found in the
client’s DNS cache, a request is sent to the departmental cache.
If the address is in the departmental cache, the result is provided
to the client; if not, the departmental cache does a DNS lookup,
which may involve lookups in additional caches. Similar forms

of multilevel caching are often used for Web content, backing a
client browser cache with a departmental or institutional Web proxy
which performs caching.

Multilevel caches are presumably effective in reducing average
access time; that is the main reason for their existence. In prin-
ciple, then, if an attacker determines that an access misses in the
first-level cache, he may be able to tell whether it hits or misses
in the second-level cache. This may allow attackers to gather even
more information than is available from measuring first-level cache
contents.

The typical difference between a first-level cache and a second-
level cache is that second-level caches are usually shared between
multiple client machines. For example, a departmental DNS cache
might be shared by all of the client machines in the department. In
general, a shared departmental cache aggregates information about
the access patterns of individuals in the department: it records which
files have been accessed by members of the department, but does
not record which specific individual accessed which file. Depend-
ing on the circumstances, leaking aggregated information may be
either more or less dangerous than leaking individual information.

5.1 Testing for Cache Sharing
If an adversary can test for the presence of files in second-level

caches, he can also determine whether two clients share a second-
level cache. This would be done by causing the first client to access
a unique name (in a part of the namespace controlled by the at-
tacker), and then determining whether that name is present in the
second-level cache of the other client. If it is present, then the two
clients must share a second-level cache.

An attacker can use this attack in several ways. He might use it
to probe the organizational structure of an enterprise, exploiting the
fact that employees who work in the same group, department, or
location tend to share second-level caches. Alternatively, he might
use it to find the location of an unknown client, by checking whether
that client shares a second-level cache with any of a set of clients
whose locations are known.

5.2 Accuracy of Measurements
We performed an experiment to determine how accurately an at-

tacker could distinguish hits from misses in a shared departmental
HTTP proxy cache. To do this, we disabled caching in a client
browser and configured the client to use our department’s caching
HTTP proxy. We then measured the access time for known hits and
known misses in the proxy cache.

Figure 4 shows the results. The hit distribution and the miss dis-
tribution are nearly disjoint. Following the methodology of Sec-
tion 2.5.2, we find that an attacker who knows the distributions
will choose his threshold T to be 50 ms, and his p to be 0.58,
achieving an accuracy of 96.7%. Using the four-sample method,
an attacker who does not know the distributions can attain an accu-
racy of 95.7%. In other words, the attacker can effectively test for
the existence of a file in a shared second-level cache.

6. Cache Cookies
Traditional web cookies are one way for sites to maintain persis-

tent state on the clients who visit their pages. The cookie itself is a
relatively small amount of data, “written” by the server and stored
by the client as part of a normal HTTP request. Clients volunteer
the contents of the cookie back to the same server on subsequent
HTTP accesses as part of the HTTP request. Clients can store cook-
ies across multiple browsing sessions; a cookie may have an expiry
time associated with it beyond which it will be discarded by the
client. [5]

29

0 50 100 150

Load time (ms)

200

400

600

800
F

re
qu

en
cy

Hit at Proxy
Miss at Proxy

Figure 4: Distribution of access times, with client-side caching
disabled, for known hits and and known misses in a shared
HTTP proxy cache, as measured by a JavaScript program em-
bedded in the attacker’s Web page.

Sites might use the persistent state stored on each client, for ex-
ample, to retain the site preferences of individual users. Cookies
can also be used to tie multiple site visits to the same user. Most
web browsers provide a method for accepting (storing) or rejecting
(ignoring) web cookies on the client. This method allows clients to
opt-out of the persistent state, perhaps for personal privacy reasons.

6.1 Cache Cookies
Using the methods described above, it is possible to develop a

new, more intrusive, form of web cookies, which we call “cache
cookies”. Servers can store cache cookies on clients who visit their
pages, without the client’s knowledge or approval. Cache cook-
ies are stored in the form of entries in the client’s web cache. By
forcing a client to retrieve a specific URL (using an IMG tag, for
example), the server can effectively write entries into the client’s
cache, thus storing the cookie. To read the cookie, the server can
use any of the measurement techniques described above to measure
the retrieval time for the same URL. A hit indicates that the cookie
is present, otherwise the cookie is not present.

Although cache cookies can be used to emulate traditional cook-
ies, they differ in two important respects. First, they require no
client side support. A server can use cache cookies to store infor-
mation on a client without the user’s knowledge or approval. We
know of no way that a browser can unconditinally block these sorts
of cookies without an unacceptable performance loss.

Second, cache cookies can be writen and read by different servers.
The reading of traditional web cookies is restricted to the site which
originally wrote them by web browser security. Implementing this
type security for cache cookies would most likely require reengi-
neering of the operation of the client’s web browser.

6.2 Emulating “Traditional” Web Cookies
A single cache file can be only present or absent, so it can store

only a single bit of state. Traditional Web cookies store multi-bit
values, so several files (one per bit, plus a few extra for error cor-
rection) must be put in the cache to emulate one traditional cookie.
Since traditional cookies are used only to store very small amounts

of information (a unique identifier, for example), the number of
cache files required is small enough to be managable.

6.3 Cookie Reading Caveats
While the process of writing a cache cookie into the user’s cache

is straightforward, checking for the existence of a cache cookie is
slightly more complex. Checking for the presence of a file requires
reading the file; and reading the file normally causes the file to be
loaded into the cache, so it might appear that checking for the ex-
istence of a cache cookie has the side-effect of putting that cookie
into the user’s cache. An additional technique is necessary to pre-
vent cookie checking from destroying the information contained in
the cookies.

To make reads nondestructive, the server must know, when serv-
ing a URL corresponding to a cache cookie, whether the client
is reading or writing. One method of discrimination is to use the
Referer: HTTP header. For example, suppose we have a cookie
URL cookie.jpg. The cookie might be read by an html page
reader.html, or written by another html page writer.html.
Since the enclosing page is included in the Referer:HTTP header,
the server can examine this header to determine whether to read or
write.

When writing, the server should return the file with a very long
expiry time. This will help to make sure that the cookie does not
expire from the client’s web cache. When reading, the server should
return the file with a very short expiry time. After a string of cookies
has been read, the ones that were present already (which will have
long expiry times) will persist in the cache. The cookies which
were absent (and hit during the reading process) will expire quickly,
returning them to the absent state. In this way, servers can read
client-side cache cookies nondestructively.

6.4 Using Cache Cookies
Cache cookies have the advantage (from the attacker’s point of

view) that they require no client-side support. In most cases the
client would be completely unaware that cache cookies are in use.
Worse yet, cache cookies can be used across sites (i.e. written by
one site and read by another independent site). These qualities
make cache cookies very dangerous to the privacy of web users.

7. Countermeasures
We now turn to the question of how to counter these attacks.

Several types of countermeasures exist, but all are unattractive.

7.1 Turning Off Caching
The first countermeasure is simply to turn off caching. This

will certainly prevent the attacks, but it imposes a big performance
penalty. Indeed, it seems likely that the Web and the DNS infras-
tructure could not meet the bandwidth demands imposed by the re-
moval of caching.
7.1.1 Turning Off First-Level Caching

Rather than turning off caching altogether, we could try to turn
off first-level caching and rely on department-scale second-level
caching. This has significant performance implications, and it still
allows attackers to gather aggregated information from the second-
level caches.
7.1.2 Implications of Transparent Caching

Recently, systems employing transparent Web caching have been
devised. Transparent caching does not require clients to explictly
designate a cache. Rather, a transparent cache observes network
traffic over some network segment, detects which traffic encodes
Web requests, and automatically provides a Web cache for those re-
quests, without the knowledge or consent of the requestors. Trans-

30

parent caching can be embedded in network components such as
routers, and it offers improved performance for Web clients with-
out requiring any reconfiguration at the client. Transparent caching
cannot be turned off at the client, so one client, acting alone, may
be unable to avoid using caching.

7.2 Altering Hit or Miss Performance
Another class of countermeasures relies on altering the perfor-

mance of cache hits, in an attempt to make them harder to distin-
guish from misses.

Simply slowing down hits is of limited value. As long as hits
are appreciably faster than misses, attackers will be able to extract
useful information about cache contents. Of course, if we make hits
as slow as misses, then attackers will be handcuffed; but in that case
we might as well have turned off caching.

Another approach is to increase the variance in hit times in a
randomized fashion. This also has only limited value. If a particular
hit is noticeably faster than a miss, then the attacker will still be able
to categorize it as a hit. If it is not noticeably faster than a miss, then
it might as well have been a miss. In other words, this approach
essentially converts some randomly chosen hits into misses, with a
consequent loss of performance. The more hits we wish to disguise,
the more performance will suffer.

Alternatively, we could try increasing the variance in miss times.
This fails utterly. We cannot make misses faster, since they are
already as fast as they can be. However, if we make a miss slower,
we just make it easier to classify as a miss. Thus increasing miss
variance can only make things worse.

7.3 Turning Off Java and JavaScript
Our final countermeasure is to turn off Java and JavaScript. This

takes away the attacker’s most accurate measurement tools, and
hence lowers the accuracy of the attacker’s measurements.

There are two problems with this approach. First, the attacker can
still do reasonably accurate measurements, as the data presented
above in Section 2.5.5 demonstrates. Second, Java and JavaScript
are now so widely used on Web sites that it seems unrealistic to ask
ordinary users to turn them off.

7.4 Countermeasures Summary
None of the countermeasures discussed here is attractive. At

present, we would have to turn off caching, paying a high perfor-
mance price, to prevent these attacks.

8. Domain Tagging
As discussed above, no practical countermeasure against our tim-

ing attacks is available today. We now describe a countermeasure,
based on changing the browser’s cache implementation to imple-
ment “domain tagging,” that prevents some timing attacks.

Currently, each item in the browser’s cache is tagged with the
URL of the file of which it is a copy. We add another tag, called
the domain-tag, which gives the domain name of the page that the
user is viewing. A cache access is treated as a hit only if both tags
match.

For example, suppose the user is currently viewing the page http:
//search.yahoo.com/search/options. All accesses to
the cache while rendering this page (and any images and other
material embedded in it) are given the domain-tag yahoo.com.
For example, while fetching the image http://us.yimg.com/
images/yahoo.gif (which is embedded in the search options
page), the domain-tag yahoo.com is used.

If the user later visited www.adversary.com, this page could
embed the yahoo.gif image, in an attempt to determine whether

it is in the user’s cache. However, this attempt would come with
domain-tag adversary.com, which is different from the domain-
tag of the cached copy, so the result would be a cache miss. In short,
the adversary’s access to the page would miss in the cache, regard-
less of whether the user had visited Yahoo.

Domain tagging does transform some hits into misses, but this
only occurs when the same file is accessed while viewing multiple
domains. This situation is sufficiently rare that it should not pose
much of a performance problem in practice.

Domain tagging would be effective in preventing some timing at-
tacks on browser caches, but it fails to protect against other attacks.
It will not prevent timing attacks that learn shared proxy cache con-
tents (unless we augment the proxy-http protocol to carry domain-
tag information). It will not prevent attacks on DNS caches. It also
fails to prevent the use of cache cookies, although it does prevent a
cache cookie set by one site from being seen by another site. Given
the limited value provided by domain tagging, it is not clear whether
it is worth implementing in real browsers.

9. Conclusion
Cache-based timing attacks are possible in many situations where

references to data are cached. By measuring the time required to
access a data element, a malicious program can determine whether
that element is in a nearby cache, thereby allowing the program to
learn whether that element has been accessed recently on the same
machine (for local caches) or in the same group of machines (for
shared caches). We expect that this type of attack will be possible
in many situations besides the ones we have described.

Web technologies allow an attacker to control the sequence of
data accesses on a remote machine, and hence to carry out cache-
based timing attacks. An attack could be delivered by a Web page,
or in an email message if the victim uses an HTML-enabled mailer.

We have described attacks that probe the contents of Web browser
file caches, to learn a user’s Web browsing history, and attacks that
probe DNS caches, to learn which network addresses a machine has
connected to recently.

We are not aware of any practical countermeasures to these at-
tacks. There seems to be little hope that effective countermeasures
will be developed and deployed any time soon.

Acknowledgments
Thanks to Drew Dean, Gary McGraw, Avi Rubin, Dan Wallach,
Randy Wang, and the anonymous referees for their comments and
suggestions.

10. REFERENCES
[1] ALBITZ, P., AND LIU, C. DNS and BIND, third ed. O’Reilly

and Associates, 1998.
[2] ANONYMIZER. Web site at http://www.anonymizer.com.
[3] GABBER, E., GIBBONS, P., MATIAS, Y., AND MAYER, A.

How to make personalized web browsing simple, secure, and
anonymous. In Proc. of Financial Cryptography ’97 (1997).

[4] MARTIN JR., D. M., RAJAGOPALAN, S., AND RUBIN,
A. D. Blocking Java applets at the firewall. In Proc. of
Internet Society Symposium on Network and Distributed
System Security (1997).

[5] NETSCAPE COMMUNICATIONS. Persistent client state:
HTTP cookies. Web site at
http://home.netscape.com/newsref/std/cookie spec.html.

31

[6] REITER, M. K., AND RUBIN, A. D. Crowds: Anonymity for
web transactions. ACM Trans. on Information and System
Security 1, 1 (June 1998).

[7] The squid web proxy cache. Web site at http://squid.nlanr.net.
[8] VOELKER, G. Personal communication.
[9] WOLMAN, A., VOELKER, G., SHARMA, N., CARDWELL,

N., BROWN, M., LANDRAY, T., PINNEL, D., KARLIN, A.,
AND LEVY, H. Organization-based analysis of web-object
sharing and caching. In Proc. of Second USENIX Symp. on
Internet Technologies and Systems (Oct. 1999), pp. 25–36.

[10] ZERO KNOWLEDGE SYSTEMS. Freedom 1.0. Web site at
http://www.freedom.net.

32

