High Integrity
Software

The SPARK Approach
to Safety and Security

John Barnes
with Praxis Critical Systems Limite

High
Integrity
Software

The SPARK Approach to
Safety and Security

High
Integrity
Software

The SPARK Approach to
Safety and Security

JOHN BARNES

with Praxis Critical Systems Limited

A
V'V ADDISON-WESLEY

An imprint of Pearson Education

London « Boston -« Indianapolis « New York ¢ Mexico City
Toronto « Sydney « Tokyo * Singapore * Hong Kong « Cape Town
New Delhi « Madrid ¢« Paris * Amsterdam ¢ Munich * Milan

PEARSON EDUCATION LIMITED

Head Office: London Office:

Edinburgh Gate 128 Long Acre

Harlow CM20 2JE London WC2E 9AN

Tel: +44 (0) 1279 623623 Tel: +44 (0) 207 447 2000
Fax: +44 (0) 1279 431059 Fax: +44 (0) 207 447 2170

Website: www.awprofessional.com

First printed in Great Britain in 2003.
© 2003 Praxis Critical Systems Limited.

The right of John Barnes to be identified as author of this Work has been asserted by him in
accordance with the Copyright, Designs and Patents Act 1988.

ISBN 0-321-19973-1

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without either the prior written permission of the Publishers or a licence permitting
restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, 90
Tottenham Court Road, London W1T 4LP. This book may not be lent, resold, hired out or
otherwise disposed of by way of trade in any form of binding or cover other than that in which it
is published, without the prior consent of the Publishers.

The programs in this book have been included for their instructional value. They have been
tested with care but are not guaranteed for any particular purpose. The publisher does not offer
any warranties or representations nor does it accept any liabilities with respect to the programs.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Pearson Education Limited has made every attempt to supply trademark
information about manufacturers and their products mentioned in this book. A list of the
trademark designations and their owners appears below.

Trademark Notice

Adobe and Acrobat are trademarks of Adobe Systems Inc. which may be registered in certain
jurisdictions. Acrobat Reader Copyright © 1987-2001 Adobe Systems Incorporated. All rights
reserved.

IBM370 is a trademark of International Business Machines Corporation.
SPADE is a trademark of Praxis Critical Systems Limited.

Windows and Windows NT are trademarks of Microsoft Corporation.
Design-by-contract is a trademark of Interactive Software Engineering, Inc.

The SpARK programming language is not sponsored by or affiliated with SPARC International
Inc. and is not based on the SPARC architecture.

SPARC is a trademark of SPARC International Inc.

Cover designed by Karen Green of Praxis Critical Systems Limited
Typeset by John Barnes Informatics
Printed and bound in Great Britain by Biddles Ltd., Guildford and King's Lynn

The Publisher's policy is to use paper manufactured from sustainable forests.

There are two ways of constructing a
software design. One way is to make it so
simple that there are obviously no
deficiencies. And the other way is to make
it so complicated that there are no
obvious deficiencies.

Professor C. A. R. Hoare
The 1980 Turing award lecture

Foreword

To the participants, the early years of SPARK were more than just exciting...
The first challenge was to produce, rather rapidly, a formally-based
computational model and analysis tools, for a core of Ada large enough to be
considered a usable language. At the time, even compilation of Ada was still
regarded as a major undertaking, and few people believed rigorous static-
analysis methods could ever ‘scale up’ to industrial proportions; bringing the
two together was seen as a rather wild enterprise. The idea was nevertheless
brought to fruition, through the imaginative talent and determination of the
youthful SPARK team at PVL (Program Validation Limited) that I was so
privileged to lead at that time. There were too many of them to name here, but
a number of their works are cited in the Bibliography. The success of this first
phase of the development of SPARK also owed much to the confidence and
sympathetic help of the early users of SPARK, guiding us in the right direction.

SPARK is more than a programming language — it is a way of conceiving
programs. To use it to advantage, in concert with one’s other preferred
software development paradigms, requires a very good understanding of what
it offers. The second important phase in the development of SPARK — this time
as a support for the software design and development process — required direct
involvement in high integrity Ada projects on a much larger scale than PVL
could undertake. Crucial to this was the vision of Praxis Critical Systems (in
which PVL is now incorporated), in recognizing the potential of the
technology, and fielding it judiciously in large projects to great advantage. It
has been pleasing to see the change in SPARK users’ perception of software
verification, from a retrospectively-applied purgative, inflicting on the
developer a level of pain matching the integrity level required — to an integral
part of a software development process aimed at getting it right first time. It
should not really be surprising that techniques that help to produce the right
product can also be economically beneficial; and indeed, our gradual absorption
into a cultural movement towards Correctness by Construction has been very
good news.

It is said that most of the best books never get written. For some time we
had agonized over the need to inform the wider programming community of

vii

viii

Introduction

what SPARK can accomplish; although there were many successful applications,
it remained very difficult to discover enough about SPARK to use it well. Yet it
seemed that a good exposition of the subject would remain a dream forever.
What a joy and a relief that John Barnes, having developed an interest in SPARK
over a number of years, and having experienced the need for a book, should
write it for us! And better, so much better, than we could have done ourselves!

Obviously John shares our belief in the importance of language, in shaping
and implementing one’s ideas in software. But his healthy scepticism of the
usefulness of formalization, his energetic questioning of every aspect of
SPARK, took us on a new voyage of discovery, casting an interesting new light
on the language. And when it came to the adaptation to Ada 95 (on which John
is an expert, being the principal author of the official Ada 95 Rationale), the
decisions on how SPARK should be extended at this time were rather obvious to
him.

The reader will enjoy John Barnes’ lively guidance through Spark. With
panache, he combines rigorous clarity and a great sense of fun.

Bernard Carré
Southampton, England
April 1997

As a now less-youthful member of Bernard Carré’s ‘youthful SPARK team’ at
Program Validation Limited, I find it satisfying to see how SPARK has matured.
With that growing maturity, it has also become much more widely accepted,
thanks in a large part to earlier editions of this book. Many of the trends
observed by Bernard in his 1997 Foreword have developed an increased
momentum and some new ones have become discernible.

The migration of static analysis from a painful, post-hoc verification
exercise to an integral part of a sound development process is now well-
established. Users who have espoused ‘correctness by construction’ and
allowed the design-by-contract™ facilities of SPARK to strengthen their designs
have been rewarded with improved quality, lower defect rates and reduced cost
(a result that should not surprise any professional engineer).

Progressive refinement of SPARK, together with the rapid increase in
computing horsepower provided by current hardware, has also made it easier
to apply in the harsh reality of the industrial ‘real world’. In particular, proof
of exception freedom is now a wholly practical exercise for any high integrity
system; a result of particular interest to the security community for whom
‘buffer overflow’ attacks remain a serious problem.

The sustained success of SPARK can be traced to its sound logical and
mathematical underpinnings. SPARK is good engineering and good engineering
endures as fashions change.

Peter Amey
Bath, England
December 2002

Preface

This book is about programming in SPARK — a language highly suited for
writing programs that need to be reliable, and thus particularly relevant to
those application areas where safety or security are important. It is a major
revision of the previous book which was entitled High Integrity Ada.

SPARK is sometimes regarded as being just a subset of Ada with various
annotations that you have to write as Ada comments. This is mechanically
correct but is not at all the proper view to take. SPARK should be seen as a
distinct language in its own right and that is one reason why the title was
changed in this edition.

SPARK has just those features required for writing reliable software: not so
austere as to be a pain, but not so rich as to make program analysis out of the
question. But it is sensible to share compiler technology with some other
standard language and it so happens that Ada provides a better framework than
many other languages. In fact, Ada seems to be the only language that has good
lexical support for the concept of programming by contract by separating the
ability to describe a software interface (the contract) from its implementation
(the code) and enabling these to be analysed and compiled separately. The
Eiffel language has created a strong interest in the concept of programming by
contract which SPARK has embodied since its inception in the late 1980s.

There has recently also been interest in reliable software in areas other than
those that have traditionally cared about reliability (avionics and railroads). It
is now beginning to be realized that reliable software matters in other areas,
such as finance, communications, medicine and motor cars.

Accordingly, I have changed the presentation with the goal that no
knowledge of Ada is required to understand the discussion. However, there are
some remarks comparing SPARK and Ada which will be helpful to those who do
know Ada. Most of these are confined to the ends of sections and are in a
different font but just a few are embedded in the text in square brackets. Either
way they should not impede the discussion for the general reader.

I have always been interested in techniques for writing reliable software, if
only (presumably like most programmers) because I would like my programs
to work without spending ages debugging the wretched things.

x Preface

Perhaps my first realization that the tools used really mattered came with
my experience of using Algol 60 when I was a programmer in the chemical
industry. It was a delight to use a compiler that stopped me violating the
bounds of arrays; it seemed such an advance over Fortran and other even more
primitive languages which allowed programs to violate themselves in an
arbitrary manner.

On the other hand I have always been slightly doubtful of the practicality
of the formal theorists who like to define everything in some turgid specifica-
tion language before contemplating the process known as programming. It has
always seemed to me that formal specifications were pretty obscure to all but
a few and might perhaps even make a program less reliable in a global sense
by increasing the problem of communication between client and programmer.

Nevertheless, I have often felt that underlying mathematical foundations
can provide us with better tools even if the mathematical nature is somewhat
hidden by a more practical fagade. For example, enumeration types are really
about sets but a deep understanding of set theory is not necessary in order to
obtain the benefits of strong typing by realizing that a set of apples is not the
same as a set of oranges.

SpAarRK has this flavour of practical helpfulness underpinned by solid
mathematical foundations. You don’t have to understand the theorems of B6hm
and Jacopini in order to obtain the benefits of good flow structure. Equally,
SpARK does not require esoteric annotations of a formal kind but quite simple
affirmations of access and visibility which enable the SPARK Examiner to
effectively ‘look over your shoulder’ and identify inconsistencies between what
you said you were going to do in the annotations and what you actually did in
the code.

One of the advantages of SPARK is that it may be used at various levels. At
the simplest level of data flow analysis, the annotations ensure that problems
of mistaken identity do not arise, that undefined values are not used and other
similar flow errors are trapped. The next level of information flow analysis
gives additional assurance regarding the inter-dependence between variables
and can highlight unexpected relationships indicative of poorly organized data.

For certain applications, formal proof may be useful and SPARK provides a
third level in which formal preconditions, postconditions and other assertions
enable proofs to be established with the aid of the SPARK tools.

However, formal proof is easily oversold; the effort involved in developing
a proof can be high and in many cases might well be spent more effectively on
other aspects of ensuring that a program is fit for its purpose. So the ability to
apply SPARK at various levels according to the application is extremely
valuable.

A simple use of proof is in showing that a program is free from exceptions
due to run-time errors such as those caused by overflow or writing outside an
array. This can be done in a straightforward manner and does not require the
addition of the more detailed annotations required for proof in general.

The various levels of analysis might even be mixed in a single program.
The fine detail of key algorithms might be formally proved, higher organiza-
tional parts might benefit from information flow analysis, whereas the overall
driving routines could well need only data flow analysis. And proof of freedom
from run-time errors might be applied to the whole program.

Preface xi

I must say a little about the background to this book. I first encountered the
foundation work done by Bob Phillips at Malvern when a consultant to the
British Government and tasked with monitoring the usefulness of various
research activities. I remember feeling that the flow analysis he was investi-
gating was potentially good stuff but needed practical user interfaces.

That was twenty-five years ago. The current language and tools reflect the
enormous energy put into the topic since then by Bernard Carré and his
colleagues, first at Southampton University, then at Program Validation
Limited and later at Praxis Critical Systems. The original approach was for the
analysis of existing programs but now the emphasis is much more on writing
the programs correctly in the first place.

However, it always seemed to me that although the tools and techniques
were gaining steady acceptance, nevertheless both the tools and indeed the
world of programmers deserved a more accessible description than that found
in conference papers and user manuals.

A big impetus to actually do something was when my daughter Janet and I
were invited by Program Validation Limited to join in a review of the formal
definition of SPARK and its further development. This resulted in a report
familiarly known as Janet and John go a-Sparking (non-British readers should
note that there is a series of children’s books concerning the activities of Janet
and John). Being involved in the review strengthened my feeling that a book
would be very appropriate and, thanks to the support of Praxis, led to the first
version of this book in 1997.

Since then, SPARK and its tools have evolved further to include the safe parts
of object oriented programming, a better means of interfacing to other parts of
a system, a simpler means of showing that a program is free from exceptions,
and more auditable means of proving that a program is correct. The various
tools are also greatly improved both in terms of speed and quality of reporting.

These improvements justified this new book and I am most grateful for the
support of Praxis in enabling me to write it. The CD at the back includes the
latest demonstration versions of the major tools and electronic copies of a great
deal of further documentation as well as the exercises and answers. More
information regarding Praxis and SPARK will be found at www.sparkada.com.

I must now thank all those who have helped in many different ways. The
external reviewers included Kung-Kiu Lau, George Romanski, Jim Sutton,
Tucker Taft and Phil Thornley; their comments were extremely valuable in
ensuring that the book met its main objectives. | was greatly assisted by a
number of staff of Praxis Critical Systems and I am especially grateful to Peter
Amey, Rod Chapman, Jonathan Hammond and Adrian Hilton for their detailed
comments and encouragement.

I must also continue to thank Bernard Carré for his vision in getting it all
going; Bernard has now retired to warmer climes but his good work lives on.

Finally, many thanks to my wife Barbara for her help in typesetting and
proofreading, to friends at Addison-Wesley for their continued guidance and to
Sheila Chatten for her help in the final stages of production.

John Barnes
Caversham, England
December 2002

Contents

Foreword vii
Preface ix
Part1 An Overview 1
1 Introduction 3
1.1 Software and its problems 3

1.2 Correctness by construction 5

1.3 Rationale for SPARK 8

1.4 SpARK language features 11

1.5 Tool support 14

1.6 Examples 16

1.7 Historical note 19

1.8 Structure of this book 21

2 Language Principles 23
2.1 Decomposition and abstraction 23

2.2 Language support for abstraction 25

2.3 Program units 30

2.4 Declarations and objects 31

2.5 Subprograms 33

2.6 Abstract data types 40

2.7 Type extension 43

2.8 Abstract state machines 46

2.9 Refinement 47

2.10 Program composition 50

xiii

xiv Contents

3 SpPARK Analysis Tools 53
3.1 Program correctness 53
3.2 The Examiner 56
3.3 Path functions 61
3.4 Verification conditions 64
3.5 Iterative processes 69
3.6 Nested processes 73

Part 2 The SPARK Language 79

4 SPARK Structure 81
4.1 The definition of SPARK 81
4.2 Program units 82
4.3 Lexical elements 86
4.4 Pragmas 90

5 The Type Model 91
5.1 Objects 91
5.2 Types and subtypes 92
5.3 Enumeration types 96
5.4 Numeric types 98
5.5 Composite types 102
5.6 Aggregates 109
5.7 Names 113
5.8 Expressions 116
5.9 Constant and static expressions 121

6 Control and Data Flow 125
6.1 Statements 125
6.2 Assignment statements 126
6.3 Control statements 128
6.4 Return statements 133
6.5 Subprograms 134
6.6 Primitive operations 135
6.7 Procedure and function annotations 137
6.8 Subprogram bodies and calls 144

7 Packages and Visibility 151
7.1 Packages 151

7.2 Inherit clauses 155

7.3 Own variables
7.4 Package initialization
7.5 Global definitions
7.6 Private types
7.7 Visibility
7.8 Renaming
7.9 Compilation units
7.10 Subunits
7.11 Compilation order
8 Interfacing

8.1 Interfacing pragmas
8.2 Hidden text
8.3 External variables
8.4 The predefined library
8.5 Spark IO
8.6 Implementation of Spark IO
8.7 Example of Spark 10
8.8 Interfacing to C
8.9 Representation issues

Part 3 The SPARK Tools

9 The SPARK Examiner

10

poovovvovo
- RV NI S e

Examination order
Messages

Option control

Metafiles and index files
Example of report file
Proof options

Other facilities

Flow Analysis

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

Production of verification conditions
Control flow composition
Information flow relations
Sequences of statements

Undefined variables

Subprogram calls

Conditional statements

Loop statements and stability

Contents

161
166
168
171
174
177
181
183
184

187

187
188
190
195
197
205
207
209
212

215

217

217
221
224
228
232
236
238

239

239
245
247
250
254
256
257
259

XV

xvi Contents

11 Verification

12

13

14

11.
11.
11.
11.
11.
11.
11.
11.
11.
11.
11.

Testing and verification
Tool organization

Run-time checks

Functions and return annotations
Proof contexts

Proof functions

Proof declarations and rules
The FDL language
Quantification

10 Refinement and inheritance
11 The Proof Checker

OO WN AW~

Design Issues

12.
12.
12.
12.
12.
12.
12.
12.
12.

Te

13.
13.
13.
13.
13.
13.
13.

1 Some principles

2 Architecture & INFORMED

3 Location of state

4 Package hierarchy

5 Refinement and initialization of state
6 Decoupling of state

7 Boundary layer packages

8 Summary of design guidelines

9 Coding style

chniques

1 Shadows

2 Testing with children

3 Unchecked conversion

4 The Valid attribute

5 Testpoints

6 Memory-mapped constants
7 Proof techniques

Case Studies

14.
14.
14.

14.
14.
14.
14.
14.
14.

1 A lift controller

2 Lift controller main program

3 An autopilot

4 Autopilot main program

5 Altitude and heading controllers

6 Run-time checks and the autopilot
7 A sorting algorithm

8 Proof of sorting algorithm

9 Industrial applications

265

265
267
270
273
277
281
286
289
294
300
303

307

307
309
312
315
320
323
326
331
332

333

333
335
337
339
340
340
341

343

343
348
351
354
360
365
370
375
377

Appendices

Al Syntax

A1l.1 Syntax of core SPARK language
A1.2 Syntax of proof contexts

A2 Words, Attributes and Characters

A2.1 SPARK words
A2.2 FDL words
A2.3 Attributes

A2.4 Character names

A3 Using the CD
A4 Work in Progress

Answers to Exercises
Bibliography

Index

Contents xvii

381

381

381
392

395

395
396
397
397

399
401

405
421
425

Part 1

An Overview

Chapter 1 Introduction 3
Chapter 2 Language Principles 23
Chapter 3 SPARK Analysis Tools 53

This first part comprises three chapters which cover the background to
SPARK and provide a broad overview of the main features of the
language and its associated tools.

Chapter 1 starts with a brief account of the categories of software,
the need for reliable software and the idea that individual pieces of
software should have to satisfy contracts defining what they do. It
then discusses the key requirements of a language for high integrity
systems and explains how SPARK with its various annotations meets
those requirements. There is then a very brief introduction to the main
SPARK tools which comprise the Examiner, Simplifier and Proof
Checker and this is followed by a couple of simple examples. The
chapter concludes with some historical remarks regarding the origins
of SPARK and the structure of the book.

Chapter 2 discusses the general principles of decomposition
through abstraction and the concepts of Abstract State Machines,
Type Extension and Abstract Data Types. It then illustrates the major
features of the SPARK language through a number of examples of these
abstractions. The chapter concludes with an introduction to the
important topics of refinement and program composition. In a sense
this chapter provides an overview of the second part of the book
which discusses the SPARK core language in detail.

2 Introduction

Chapter 3 introduces the main SPARK tools and the process of proof
which form the topics of the third part of the book. It starts with some
philosophical remarks on correctness and then introduces the use of
the Examiner for flow analysis. It concludes with an outline of the use
of path functions and the generation and proof of verification

conditions.

Introduction

1.1 Software and its problems 1.5 Tool support

1.2 Correctness by construction 1.6 Examples

1.3 Rationale for SpAarRk 1.7 Historical note

1.4 Spark language features 1.8 Structure of this book

SPARK is a high level programming language designed for writing software for
high integrity applications. In this introductory chapter we briefly outline the
main objectives of SPARK, its background and the overall structure of the rest
of this book.

It is perhaps difficult to give a rigid definition of high integrity
applications other than to say that they are applications where it is important
for the program to be well written. High integrity applications include both
safety and security. Safety critical applications are usually defined to be those
where life and limb or the environment are at risk if the program is in error,
whereas security applications concern the integrity of information or the access
to it. But clearly any application benefits from being written correctly and the
merit of SPARK is that it enables errors to be prevented or detected in a more
predictable manner.

1.1 Software and its problems

Software pervades all aspects of our modern society. Banking systems,
transport systems, medical systems, industrial control systems and office
systems all depend upon the functioning of software. As a consequence the
safety of many human lives and the security of much property now depends
upon the correctness of software.

4

Introduction

Software takes many forms and there are many styles of application. At
one extreme is the casual calculation on a pocket calculator or similar machine.
Speed of programming and immediacy of answer are key considerations.

Then there are office programs such as spreadsheets and word processors.
These highly interactive programs are the subject of much attention and market
driven development. They tend not to be critical. If incorrect, a word processor
may crash and lose data but disaster does not strike (except perhaps that the
user may get angry and suffer a heart attack). The specification of such
programs is not given; they do what they do and the user learns by experience.

And finally there are serious programs that, if incorrect, cause real
difficulties. These range from safety critical programs such as engine
controllers to programs in communications systems where security is a major
concern. For safety critical programs the consequence of any error can be loss
of life or damage to the environment. For secure programs the consequence of
an error may be equally catastrophic such as loss of national security or
commercial reputation or just plain theft. In addition, large programs of any
kind often have their own problems resulting from complexity and these
frequently lead to economic embarrassment through delays in commissioning.

Both safety critical and secure systems may be designed with great care
and contain physical back up, locks and other devices; however, their ultimate
integrity depends upon the correctness of the underpinning software.

What do we mean by correct software? Perhaps a general definition is
software that does what the user had in mind. And ‘had in mind’ might literally
mean just that for a simple one-off program written to do an ad-hoc calculation
or, for a large avionics application, it might be interpreted as the text of some
contract between the ultimate client and the software developer.

This idea of a contract is not new. If we look at the programming libraries
developed in the early 1960s, particularly in mathematical areas and perhaps
written in Algol 60 (a language favoured for the publication of such material in
respected journals such as the Communications of the ACM and the Computer
Journal), we find that the manual tells us what parameters are required, any
constraints on their range and so on. In essence there is a contract between the
writer of the subroutine and the user. The user promises to hand over suitable
parameters and the subroutine promises to produce the correct answer.

The decomposition of a program into various component parts is very
familiar and the essence of the programming process is to define what these
parts do and therefore the interfaces between them. This enables the parts to be
developed independently of each other. If we write each part correctly (that is
so that it satisfies its side of the contract implied by its interface) and if we
have defined the interfaces correctly then we are assured that when we put the
parts together to create the complete system, it will work correctly.

Bitter experience shows that life is not quite like that. Two things go
wrong: on the one hand the interface definitions are not usually complete (there
are holes in the contracts) and on the other hand, the individual components are
not correct or are used incorrectly (the contracts are violated). And of course
the contracts might not say what we meant to say anyway.

It is these problems that SPARK addresses by using techniques whose
overall goal is to develop correct programs with less total effort than with
conventional languages.

1.2 Correctness by construction 5

1.2 Correctness by construction

SpARK encourages the development of programs in an orderly manner with the
aim that the program should be correct by virtue of the techniques used in its
construction. This ‘correctness by construction’ approach is in marked contrast
to other approaches which aim to generate as much code as quickly as possible
in order to have something to demonstrate.

There is strong evidence from a number of years of use of SPARK in
application areas such as avionics and railway signalling [Amey, 2002] that
indeed, not only is the program more likely to be correct, but the overall cost
of development is actually less in total after all the testing and integration
phases are taken into account.

We will now look in a little more detail at the two problem areas
introduced above, first giving complete interface definitions, and secondly
ensuring that the code correctly implements the interface.

Ideally, the definition of the interfaces between the software components
should hide all irrelevant detail but expose all relevant detail. Alternatively we
might say that an interface definition should be both complete and correct.

As a simple example of an interface definition consider the interface to a
subprogram (method). As just mentioned, the interface should describe the full
contract between the user and the implementor. The details of how the
subprogram is implemented should not concern us. In order that these two
concerns be clearly distinguished it is helpful to use a programming language
in which they are lexically distinct. Unfortunately not many languages are like
this. Popular languages such as Java, C and Eiffel usually present subprograms
as one lump with the interface physically bound to the implementation. This is
a nuisance because not only does it make checking the interface less
straightforward since the compiler wants the whole code but it also encourages
the developer to hack the code at the same time as writing the interface and this
confuses the logic of the development process.

However, Ada has such a structure separating interface (known as a
specification) from the implementation (a body). This applies both to
individual subprograms (procedures or functions) and to groups of entities
encapsulated into packages and this is one reason why Ada was chosen as a
base for SPARK.

SPARK requires additional information to be provided and this is done
through the mechanism of annotations which conveniently take the form of
Ada comments. A key purpose of these annotations is to increase the amount
of information about the interface without providing unnecessary information
about the implementation. In fact SPARK allows the information to be added at
various levels of detail as appropriate to the needs of the application.

Consider the information given by the following Ada specification

procedure Add(X: in Integer);

Frankly, it tells us very little. It just says that there is a procedure called Add
and that it takes a single parameter of type Integer whose formal name is X.
This is enough to enable the compiler to generate code to call the procedure.
But it says nothing about what the procedure does. It might do anything at all.

6

Introduction

It certainly doesn’t have to add anything nor does it have to use the value of X.
It could for example subtract two unrelated global variables and print the result
to some file. But now consider what happens when we add the lowest level of
SpAarK annotation. The specification might become

procedure Add(X: in Integer);
—--# global in out Total;

This states that the only global variable that the procedure can access is that
called Total. Moreover the mode information tells us that the initial value of
Total must be used (in) and that a new value will be produced (out). The SPARK
rules also say more about the parameter X. Although in Ada a parameter need
not be used at all, nevertheless an in parameter must be used in SPARK.

So now we know rather a lot. We know that a call of Add will produce a
new value of Total and that it will use the initial value of Total and the value of
X. We also know that Add cannot affect anything else. It certainly cannot print
anything or have any other malevolent side effect.

Of course, the information regarding the interface is not complete since
nowhere does it require that addition be performed in order to obtain the new
value of Total. In order to do this we can add optional annotations which
concern proof and obtain

procedure Add(X: in Integer);
--# global in out Total;
—-—# post Total = Total~ + X;

The annotation commencing post is called a postcondition and explicitly
says that the final value of Total is the result of adding its initial value
(distinguished by ~) to that of X. So now the specification is complete.

It is also possible to provide preconditions. Thus we might require X to be
positive and we could express this by

-—# pre X > 0;

As we shall see later, an important aspect of the SPARK annotations is that
they are all checked statically by the SPARK Examiner and other tools and not
when the program executes. These tools are outlined in Section 1.5.

It is especially important to note that the pre- and postconditions are
checked before the program executes. If they were only checked when the
program executes then it would be a bit like bolting the door after the horse has
bolted (which reveals a nasty pun caused by overloading in English!). We don’t
really want to be told that the conditions are violated as the program runs. For
example we might have a precondition for landing an aircraft

procedure Touchdown(...);
--# pre Undercarriage_Down;

It is pretty unhelpful to be told that the undercarriage is not down as the plane
lands; we really want to be assured that the program has been analysed to show
that the situation will not arise.

1.2 Correctness by construction 7

This thought leads into the other problem with programming — ensuring
that the implementation correctly implements the interface contract. This is
often called debugging. Generally there are four ways in which bugs are found

(1) By the compiler. These are usually easy because the compiler tells us
exactly what is wrong.

(2) Atrun time by a language check. This applies in languages which carry out
checks that, for example, ensure that we do not write outside an array.
Typically we obtain an error message saying what structure was violated
and whereabouts in the program this happened.

(3) By testing. This means running various examples and poring over the
(un)expected results and wondering where it all went wrong.

(4) By the program crashing. In olden days this resulted in a nice coredump
which you could take home and browse over in the middle of the night. A
similar modern effect is when Windows becomes remarkably silent
because your application has written all over the operating system and
usually destroyed the evidence. Reboot and try again!

Type 1 should really be extended to mean ‘before the program is executed’.
Thus it includes program walkthroughs and similar review techniques and, as
we shall see, it includes the use of analysis tools such as those provided for
SpARK. But many programs are just hacked together and the only static analysis
they get is by the compiler.

Clearly these four ways provide a progression of difficulty. Errors are
easier to locate and correct if they are detected early. Good programming tools
are those which move bugs from one category to a lower numbered category.
Thus good programming languages are those which provide facilities enabling
one to protect oneself against errors that are hard to find. Strong typing is one
example and the enumeration type is a simple feature which correctly used
makes hard bugs of type 3 into easy bugs of type 1. This is discussed in more
detail in Chapter 3.

Incidentally, it is sad to note that many popular and fashionable languages
such as Java do not include proper enumeration types. The wave of enthusiasm
for Object Orientation (OO) in all its dynamic glory (which indeed has its uses
but by its very dynamic nature can create difficult problems) appears to have
caused other established language features to be neglected with the
consequence that many programmers no longer have the benefits of simple
language-based debugging aids.

A major goal of SPARK is to enable the strengthening of interface
definitions (the contracts) and so to move all errors to a low category and
ideally to type | so that they are all found before the program executes. Thus
the global annotations do this because they prevent us writing a program that
accidentally changes the wrong global variables. Similarly, detecting the
violation of pre- and postconditions in SPARK results in a type 1 error. However,
in order to check that such violation cannot happen requires mathematical
proof; this is not always straightforward but the SPARK tools automate much of
the proof process as we shall see in Chapter 3.

8

Introduction

1.3 Rationale for SPARK

As mentioned above the general goal of SPARK is to provide a language which
increases the likelihood of the program behaving as intended. A corollary is to
reduce to an acceptable level the risks of disaster arising as a result of any
residual errors in the program.

The previous section outlined the benefits of strengthening interfaces
(sometimes called programming by contract) but many other factors were also
considered in the design of SPARK. The following paragraphs briefly discuss a
number of these factors.

Logical soundness

For the behaviour of a program to be completely predictable, it is vital that the
language in which it is written be precise. For example, most languages permit
a statement such as

Y = F(X) + G(X);

but do not define the order of evaluation. As a consequence, if the functions F
and G have side effects (by making assignments to X for example) then it is
possible for the result assigned to Y to depend upon whether F or G is called
first. This potential ambiguity does not arise in SPARK because functions cannot
have side effects; functions are true mathematical functions which may observe
the state of some part of the system but cannot change that state.

It is interesting to observe that the absence of ambiguity is achieved by
preventing side effects and not by prescribing the order of the evaluations. In
turn, the absence of side effects is not prescribed directly but, as we shall see,
is a result of the interaction between a number of more fundamental rules.

Simplicity of language definition

Simplicity is generally considered to be good since it reduces the risk of a
program actually meaning something different from what it appears to mean.
Indeed, experience shows that parts of a language which cause complexity in
any formal definition of the language are likely to be sources of problems.

Generally we can expect that simplicity of definition means simplicity of
reasoning which implies simplicity of supporting tools and simplicity of
testing. If tools are simpler then they are more likely to be reliable so that risks
are reduced.

Expressive power

On the other hand, the language must not be so simple as to be trivial and not
able to provide the key benefits of a modern language and its concepts of
information hiding. Thus languages such as Basic, Pascal and C do not have
enough expressive power largely because they do not have adequate facilities
for hiding implementation details.

1.3 Rationale for SPARK

Another aspect is the need to be able to make stronger assertions about the
values of variables and their relationships than is traditional in imperative
programming languages. Such assertions clearly increase the expressive
capability of the language.

Security and integrity

A language must be secure in the sense that it should not have rules that cannot
be checked with reasonable effort (technically within polynomial time).
Moreover the behaviour of any program must lie within certain well defined
bounds. This is achieved by ensuring that the program does not stray outside a
well defined computational model. In particular, a program must not be able to
‘run wild’ by jumping or writing to arbitrary locations.

Verifiability

Safety critical programs have to be shown to be correct. In order to do this it is
necessary that the language constructions are such that a program can be
subjected to rigorous mathematical analysis. For example it can be shown that
goto statements impede analysis by making the decomposition of the flow of
control intractable in the general case. It has been shown that it is highly
desirable that every fragment of code has a single entry point and limited exit
points. Thus the goto statement and arbitrary internal exits from loops and
subprograms must be prevented.

It is also important to be able to analyse fragments of program on their
own. This impacts on many aspects of the language such as the control of
visibility.

Bounded space and time requirements

In order to prove that a program is able to function satisfactorily it is necessary
to be able to predict the amount of storage space that it requires. So it must be
possible to calculate the maximum amount of space required prior to execution,
that is statically. General dynamic storage allocation is thus prohibited; in
language terms this means that recursion, the declaration of arrays with
dynamic bounds and especially pointer types and the use of heap storage have
to be forbidden. It is interesting to note that recursion is not forbidden
explicitly but cannot occur as a consequence of other rules in much the same
way that side effects cannot occur as discussed above. The absence of
recursion (direct and mutual) means that the depth of calls and hence the
amount of stack space is bounded and can be computed statically.

Bounding time is more difficult. A real-time program that does not meet its
deadlines is incorrect just as much as a numerical program that gives the wrong
answer. SPARK is designed so that worst-case execution time analysis is
possible if a manual analysis of loop bounds is carried out. At the time of
writing, the Examiner does not implement this style of analysis. However, the
Examiner does carry out some analysis of loops and gives warnings of certain
non-terminating situations.

9

10

Introduction

Correspondence with Ada

There are benefits in sharing technology and general resources with an existing
standard language. However, these benefits can only be obtained if the special
language truly is a subset of the parent language in the sense that compilers
(and other tools) for the parent language can also be used for the special
language. SPARK is indeed a true subset of Ada in this sense since any legal
SPARK program is also a legal Ada program and, in addition, always executes
with exactly the same meaning.

Note that SPARK does not impose additional requirements on the Ada
compiler itself. Even though Ada permits an Ada program to mean different
things using different implementations (that is, using different compilers)
because of phenomena such as side effects, nevertheless the rules of SPARK are
such that those Ada programs are not legal SPARK programs anyway.

Verifiability of compiled code

In an ideal world we would like to be assured that the compiled code does
properly correspond to the source code written by the programmer. There
would seem little point in carefully writing and verifying a program at the
source level if bugs in the compiler mean that the object code does not exactly
correspond to the source code. Thus we would like in turn to be assured that
there are no bugs in the compiler. In principle it would seem easier to develop
a correct compiler for a smaller language such as SPARK rather than for full
Ada. However, such a compiler would be expensive to develop relative to the
number of applications. There is also evidence that it is more reliable to use the
well trodden parts of a widely used compiler for a larger language than to write
and use a special compiler for an intrinsically simpler language.

Complexity of run time system

The final system delivered in an operational environment will typically
comprise two parts, the code corresponding to that written by the programmer
and a run time system written by the compiler developer which supports
language features that cannot be sensibly implemented by inline code. The run
time system is thus an integral part of the operational system and has to be
shown to be correct (certified) just as much as the specific code for the
application. Therefore the run time system must itself be capable of analysis.

Certifying a COTS (Commercial Off The Shelf) run time system for the
most stringent standards such as DO-178B level A for commercial avionics
systems [RTCA-EUROCAE, 1992] can be both arduous and very costly. The
same applies to highly secure systems where many problems are blamed on the
standard run time system of languages such as C [Wheeler, 2002].

SpARK has been designed so that it demands a very small run time system
and, for some programs, none at all thereby avoiding at a stroke the costs and
problems of certification.

It may not always be possible to avoid a run time system because, although
most of the program can be written in a simple manner, nevertheless there may
be some (less critical) parts that need more general facilities.

1.4 SPARK language features 11

1.4 SprARK language features

The SpARK language comprises a kernel which is a subset of Ada plus
additional features inserted as annotations in the form of Ada comments. These
annotations are thus ignored by an Ada compiler and so a SPARK program can
be compiled by a standard compiler.

The annotations are in two categories. The first category concerns flow
analysis and visibility control and the second category concerns formal proof.
The kernel plus the first category of annotations comprises the SPARK core
language and the corresponding annotations are called the core annotations.
The additional annotations concerning proof are referred to as the proof
annotations. Thus SPARK comprises a core language plus optional features
concerning proof. There is an interesting parallel with Ada which comprises a
core language plus optional specialized annexes.

The relationship between SPARK and Ada is represented diagrammatically
in Figure 1.1. This shows both languages comprising a core plus additional
features. The overlap between them is the kernel. An important point is that
SpARK should not be perceived as just a subset of Ada with a few bits tacked
on in comments. SPARK should be seen as a language in its own right with just
those facilities necessary for writing high integrity programs and permitting
analysis and proof according to the needs of the application. For convenience
SPARK and Ada overlap in terms of the compilable kernel for the very good
reason of wishing to share compiler technology. Indeed it is clear that SPARK is
not a subset of Ada at all since SPARK imposes additional requirements through
the annotations.

(Incidentally, the term ‘full Ada’ is sometimes used for emphasis in the
sense of ‘as opposed to the kernel subset’ and has nothing to do with the
specialized annexes of Ada.)

Ada Remainder The SPARK SPARK
specialized of Ada common core proof

annexes core kernel annotations | annotations

Ada SPARK

Figure 1.1 Relationship between SPARK and Ada.

12

Introduction

Although the kernel language necessarily omits many features of full Ada
it is nevertheless a rich language in its own right. It includes

* packages, private types, library units, type extension,
* unconstrained array types, functions returning composite types.

Thus SPARK contains a full capability for defining Abstract Data Types. Not
only does it have private types giving information hiding but it also allows
functions to return composite types. It also permits unconstrained array types
as formal parameters so that subprograms can be written which will operate
upon arrays of any size (although local arrays must have static size). SPARK
also has facilities for separate compilation.

Note furthermore that SPARK includes type extension (a key feature of OO)
but it does not include dynamic features such as polymorphism and dispatching
since these cannot be proven statically; consequently it does not have class-
wide types either.

At the time of writing SPARK does not include tasking facilities and indeed
the full tasking capability of Ada would be impossible to analyse. However, it
is planned that SPARK should support the so-called Ravenscar subset of Ada
tasking in due course [Burns, Dobbing and Vardanega, 2003]. See Appendix 4.

The kernel also excludes the following features of full Ada

* exceptions, generics (templates),
* access (pointer) types, goto statements.

These are omitted largely on the grounds that they create difficulties in proving
that a program is correct.

The core annotations take various forms. There are two important
annotations regarding subprograms and these add further information to that
provided by the specification in the Ada sense which simply gives the types
and modes of the formal parameters.

* Global definitions — declare the use of global variables by subprograms.

* Dependency relations of procedures — specify the information flow
between their imports and exports via both parameters and global
variables.

These annotations should be seen as part of the specification of the contract
between the subprogram and its callers and should be written at the design
stage before coding is commenced. Of course, the information provided by
these annotations just completes the static semantic description of the interface
that the subprogram presents to the rest of the program. When the code of the
subprogram body is written, the SPARK Examiner can be used to check that the
code is consistent with the annotations.

On the other hand, once the code of the subprogram body is written, the
annotations might be seen as simply providing an alternative view of
information also existing in the implementation given in the subprogram body.
This essential redundancy thereby gives confidence that the program is correct.

1.4 SPARK language features 13

There is an analogy with hardware redundancy where physical replication of
equipment gives confidence if the resulting measurements are consistent.

SPARK permits flow analysis at two levels: data flow analysis which just
concerns the direction of data flow, and information flow analysis which also
considers the coupling between variables. The dependency relation (familiarly
known as the derives annotation) can be omitted if information flow analysis is
not required but the global annotation is always necessary whenever global
variables are used. Returning to our earlier example of the procedure Add, the
specification including the derives annotation would be

procedure Add(X: in Integer);
—--# global in out Total;
—-# derives Total from Total, X;

In this particularly simple example, this actually adds no further information.
We had already deduced that we had to use X and the initial value of Total in
order to produce a new value of Total and this is precisely what this derives
annotation says. But in more elaborate examples extra information is given.
Thus we might have

procedure Add(X: in Integer);

—--# global in out Total, Grand_Total;

—-# derives Total from Total, X &

—--# Grand_Total from Grand_Total, X;

and now the derives annotation does provide additional information.

Other important core annotations concern access to variables in packages.
Packages are the general means of encapsulation in SPARK. They provide the
key facilities of Object Oriented Programming (OOP) by controlling access to
hidden entities via subprograms (methods). The annotations relating to
packages are

* Inherit clauses — control the visibility of package names.
* Own variable clauses — control access to package variables.
* Initialization annotations — indicate initialization of own variables.

Note that an own variable is one declared inside a package and which contains
state preserved between calls of subprograms in the package. Own variables
are an important feature of SPARK and can be used to represent abstractions
encapsulating state of various forms. The initialization annotations ensure that
it is impossible for such state not to be properly initialized and thereby prevent
a variety of common programming errors. Own variables can also represent
values in the physical world such as the readings of sensors and the settings of
actuators.

A general guideline in the design of the fine detail of SPARK was to ensure
that a SPARK program is as explicit as reasonably possible and that all potential
ambiguities (whether in the mind of the compiler or the human reader) are
eliminated wherever possible. This overall guideline is reflected in the
following principles

14

Introduction

* Overloading should be avoided as far as possible.

* Scope and visibility rules should be such that each entity has a unique
name at a given place.

* All subtypes (types with constraints) should be named.
* All constraints (such as the size of arrays) should be static.

* Operations on complete arrays should be explicit wherever possible,
implicit operations between arrays with different bounds (sliding) should
be avoided.

The first three are closely related and concern the uniqueness of names. At any
one place any entity should have only one name (no aliasing); each name
should name only one entity (no overloading) and all entities should have a
name (no anonymous entities). These principles are not followed exactly in
every instance. For example, although the user cannot declare overloading of
subprograms and enumeration literals, nevertheless the integer and floating
point types inevitably have to use overloading for the predefined operations
such as "+". However, the general observance of these principles does facilitate
the rigorous analysis of SPARK programs and the uniqueness of names reduces
the risk of confusion in the mind of the reader.

A number of further features of Ada are omitted on the grounds that they
can also create confusion in the mind of the reader by introducing effects at a
distance (that is the effect on the program is at a place remote from where the
feature is used). These include such things as default parameters of
subprograms.

Intrinsically unreliable features such as unchecked conversion (that is
converting (casting) between values of unrelated types) are also prohibited in
SparKk. However, where absolutely essential, they (and indeed any feature of
full Ada) can be used in parts of a program covered by the special hide
directive which tells the Examiner that a part of a program is not to be
examined.

1.5 Tool support

The main SPARK tool, the Examiner, is vital to the use of SPARK. It has two
basic functions

e It checks conformance of the code to the rules of the kernel language.

* It checks consistency between the code and the embedded annotations by
control, data and information flow analysis.

The analysis performed by the SPARK Examiner is based largely on the
analysis of the interfaces between components and ensuring that the details on
either side do indeed conform to the specifications of the interfaces. The
interfaces are of course the specifications of packages and subprograms and the

1.5 Tool support 15

SPARK annotations say more about these interfaces and thereby improve the
quality of the contract between the implementation of the component and its
users.

The Examiner is itself written in SPARK and has been applied to itself.
There is therefore considerable confidence in the correctness of the Examiner.

The SpARK language with its core annotations ensures that a program
cannot have certain errors related to the flow of information. Thus the
Examiner detects the use of uninitialized variables and the overwriting of
values before they are used.

However, the core annotations do not address the issue of dynamic
behaviour. In order to do this a number of proof annotations can be inserted
such as the pre- and postconditions we saw earlier which enable dynamic
behaviour to be analysed prior to execution. The general idea is that these
annotations enable the Examiner to generate conjectures (potential theorems)
which then have to be proved in order to verify that the program is correct with
respect to the annotations. These proof annotations address

* pre- and postconditions of subprograms,
+ assertions such as loop invariants and type assertions,
* declarations of proof functions and proof types.

The generated conjectures are known as verification conditions. These can
then be verified by human reasoning, which is usually tedious and unreliable,
or by using other tools such as the SPADE Automatic Simplifier (usually
referred to as just the Simplifier) and the Proof Checker.

Even without proof annotations, the Examiner can generate conjectures
corresponding to the run-time checks of Ada such as range checks. These are
checks automatically inserted to ensure that a variable is not assigned a value
outside the range permitted by its declaration or that no attempt is made to read
or write outside the bounds of an array. The proof of these conjectures shows
that the checks would not be violated and therefore that the program is free of
run-time errors that would raise exceptions in full Ada.

It is important to understand that the use of proof is not necessary. SPARK
and its tools can be used at various levels. For some applications it might be
appropriate just to apply the core annotations because these alone enable flow
analysis to be performed. Moreover, as already mentioned, flow analysis can
be performed at two levels according to whether derives annotations are
supplied or not. But for other applications it might be cost-effective to use the
proof annotations as well. Indeed, different levels of analysis can be applied to
different parts of a complete program. This is discussed in more detail in
Chapter 3.

It should be noted that there are a number of advantages in using a distinct
tool such as the Examiner rather than simply a front-end processor which then
passes its output to a compiler. One general advantage is that it encourages the
early use of a V & V (Verification and Validation) approach. Thus it is possible
to write pieces of SPARK complete with annotations and to have them processed
by the Examiner even before they can be compiled. For example, a package
specification can be examined even though its private part might not yet be

16

Introduction

written; such an incomplete package specification cannot of course be
compiled.

There is a temptation to take an existing piece of Ada code and then to add
the annotations (often referred to as ‘Sparking the Ada’). This is to be
discouraged because it typically leads to extensive annotations indicative of an
unnecessarily complex structure. Although in principle it might then be
possible to rearrange the code to reduce the complexity, it is often the case that
such good intentions are overridden by the desire to preserve as much as
possible of the existing code.

The proper approach is to treat the annotations as part of the design process
and to use them to assist in arriving at a design which minimizes complexity
before the effort of detailed coding takes one down an irreversible path. This is
discussed further in Chapter 12.

1.6 Examples

We conclude this introductory discussion with two further examples which
illustrate a number of aspects of SPARK.

The first example leads on from that of the procedure Add which calculated
a total and grand total by simulating the odometer of a vehicle. It records both
the total distance travelled and the distance travelled on the current trip. The
user can reset the trip recorder to zero but cannot change the setting of the total.

Each rotation of the wheel increments the counters by one and so a
procedure Inc is provided for this rather than using Add. There are also
functions for reading the current values of the counters.

The system is structured as a package encapsulating the subprograms and
the counters. The specification of the package is

package Odometer
—-—# own Trip, Total: Integer;
is
procedure Zero_Trip;
--# global out Trip;
—--# derives Trip from ;
—-—# post Trip = 0;

function Read_Trip return Integer;
—--# global in Trip;

function Read_Total return Integer;
—--# global in Total;

procedure Inc;

—--# global in out Trip, Total;

—-# derives Trip from Trip & Total from Total;
——# post Trip = Trip~ + 1 and Total = Total~ +

N

end Odometer;

1.6 Examples 17

The important point of this example is to illustrate that the package
specification provides just information regarding the interfaces and nothing
else. It specifically contains no details of the workings of the implementation.
But it is necessary to mention Trip and Total which are in fact hidden in the
body in order to write the annotations and this is done using the own clause —
later we shall see that own variables need not actually represent specific
variables at all and so in fact we are not really giving away any information
regarding the implementation.
A possible package body providing the implementation might be

package body Odometer is
Trip, Total : Integer;

procedure Zero_Trip is
begin

Trip := 0;
end Zero_Trip;

function Read_Trip return Integer is
begin

return Trip;
end Read_Trip;

function Read_Total return Integer is
begin

return Total;
end Read_Total;

procedure Inc is
begin

Trip := Trip + 1; Total := Total + 1;
end Inc;

end Odometer;

It is interesting to observe that there are no annotations in the body. This
emphasizes the point that SPARK is largely about increasing the information
regarding interface specifications. We have omitted a number of minor details
such as how the variable Total becomes initialized and what happens if the
counters overflow. In fact the Examiner warns us about the initialization of
Total — we shall return to this example in Section 13.2.

But the key point of the example is to show how well the separation of
interface specification from implementation body provided perhaps uniquely
by Ada suits the goals of SPARK. Even modern languages such as Java confuse
the issues by presenting the two aspects as a single lump of text. For those not
familiar with Ada the example also illustrates the general style of the language
which hopefully should be self-explanatory.

The second example illustrates how SPARK can detect possible errors in
small-scale aspects of programming. In order to appreciate the example it must
be pointed out that array parameters in Ada can be passed by reference or by
copy. Thus a compiler might choose to pass large arrays by reference and small

18 Introduction

arrays by copy. Consider the following procedure to multiply two matrices X
and Y giving the result in Z.

type Matrix_Index is range 0 .. 9;
type Matrix is array (Matrix_Index, Matrix_Index) of Integer;

procedure Multiply(X, Y: in Matrix; Z: out Matrix)
--# derives Z from X, Y;
is
begin
Z := Matrix'(Matrix_Index => (Matrix_Index => 0)); -- zeroZ
for | in Matrix_Index loop
for J in Matrix_Index loop
for K in Matrix_Index loop
Z(1, J) := Z(1, J) + X(I, K) * Y(K, J);
end loop;
end loop;
end loop;
end Multiply;

The type declarations indicate that objects of the type Matrix_Index are
integers and can only have values in the range 0 to 9 and that arrays of the type
Matrix have two dimensions and are indexed in both dimensions by values of
the type Matrix_Index. Accordingly all arrays of the type Matrix have 100
components. Finally these components have values of the predefined type
Integer.

The procedure Multiply takes the two arrays passed as the parameters X and
Y and multiplies them together in the normal mathematical manner to produce
the array Z. However, the procedure call

Multiply(A, A, A);

intended to replace a matrix A by its square will instead nullify A if the arrays
are passed by reference rather than by copy. However, in SPARK this procedure
call is illegal because it violates the rules about aliasing — an actual parameter
cannot correspond to both an imported parameter (such as X) and an exported
parameter (such as Z).

When the Examiner examines the call of Multiply it reports

*kk Semantic Error:165: This parameter is overlapped
by another one which is exported.

for the first two parameters and so the program is rejected. (The number 165 is
the error reference number and enables the user to read more details regarding
the cause of the error in the user manual.) Note that the Examiner detects such
aliasing errors whatever level of flow analysis is used.

It is interesting to note that SPARK does not require parameter passing to be
by reference or by copy, it just imposes other restrictions that ensure that they

1.6 Examples 19

give the same result so that it does not matter. (Just imposing a restriction on
the parameter mechanism itself would actually violate the goal of the SPARK
kernel being a subset of Ada because it would mean that a particular program
well-defined in SPARK might have a different meaning in Ada.)

We conclude by emphasizing once more that the global and derives
annotations are part of the procedure specification. As we have seen, it is usual
for the specification and body to be distinct — this is always so for packages but
it is not always necessary for procedures and by way of illustration we have
shown the two combined in this example. In the case of distinct specification
and body, the annotations are not repeated in the body; if there is no distinct
specification then they occur in the body before the reserved word is as shown
here. The annotations separate the interaction between the caller and the
specification from that between the specification and the implementation, just
as the Ada parameter profile specifies enough for the subprogram to be called
without regard to the details of the body. Hence the Examiner carries out two
sets of checks: it checks that the annotations are consistent with the procedure
body (which they are) and it also checks that the annotations are consistent
with all calls (which is not so for the call in this example).

Other points to be noted from this example are that in SPARK the bounds of
arrays have to be given by a name (Index_Range in this case) and that the
bounds have to be static. Note also the assignment to Z in order to set all
components of Z to zero; the construction is known as a qualified aggregate
and takes a nested form since Z has two dimensions. The reader might wonder
why we did not use a nested loop — the reason is that this would cause certain
problems with flow analysis as will be discussed in Section 6.7.

1.7 Historical note

SPARK has its technical origins in work carried out in the 1970s at the then
Royal Signals and Radar Establishment (RSRE) by the late Bob Phillips.
(RSRE at Great Malvern in the UK is now part of the QinetiQ (sic) Group plc.)
Phillips was interested in understanding and analysing the behaviour of
existing programs and developed tools to perform such analysis. However, it
was soon realized that analysis would be easier if the programs were written in
a sensible language in the first place. There was also growing awareness of the
importance of the correctness of software for safety critical applications such
as the control of aircraft.

A group at Southampton University led by Bernard Carré doing research in
the field of graph theory then became closely involved; the group developed
tools for a subset of Pascal called SPADE — or more grandly the Southampton
Program Analysis Development Environment. It was of course realized that
Pascal was an inadequate base because it did not address separate compilation
and information hiding. An alternative foundation language was hence sought.

There were two obvious possibilities at the time, Modula-2 (whose
industrial future was already in doubt) and Ada. The C language was dismissed
on the grounds of the lack of an international standard and its general

20

Introduction

permissiveness. Ada on the other hand was an international standard, was
strongly supported among those application areas interested in high integrity
software, included packages for encapsulation and moreover had a lexical
distinction between the specification and body of a package which was
important for the description of interface contracts. It was also eminently
readable with clean syntax amenable to both human and machine analysis.

Accordingly, Ada was chosen as the foundation for future work. It was of
course necessary to exclude certain features of Ada from programs that were to
be analysed by the SPADE tools and this resulted in the SPADE Ada Kernel or
SparRK. However, as we have seen, SPARK is not just a subset of Ada but also
requires embedded annotations giving extra information about the program;
these annotations take the form of Ada comments so that the program is still
strictly an Ada program.

SpARK was originally defined informally by Bernard Carré and Trevor
Jennings of Southampton University in 1988. This Specification described
SPARK as a variation on Ada using the usual syntax together with informal
semantics. It was subsequently defined formally using a variant of Z in The
Formal Semantics of SPARK which comprises two main parts addressing the
static and dynamic semantics respectively [Marsh and O’Neill, 1994].

In 1995, the Ada standard itself was revised resulting in Ada 95. Although
most of the changes to Ada were outside the subset on which SPARK was based,
nevertheless some changes to Ada were quite fundamental and very relevant to
SparRK. The opportunity was thus taken to upgrade SPARK and the resulting
language was defined in a new version of the Specification by Gavin Finnie.
SPARK has evolved further since then and the version current at the time of
writing is [Praxis, 2002]; it is this version, based on Ada 95, which forms the
subject of this book. Whenever it is necessary to distinguish the old and new
versions they are referred to as SPARK 83 and SPARK 95 respectively.

Those familiar with the evolution of Ada 83 into Ada 95 will note that
many of the facilities added in Ada 95 are not available in SpArk. This is
almost inevitable because most of the new facilities in Ada 95 were added in
order to increase dynamic flexibility — that is to give more flexibility at run
time. But this is precisely what SPARK is not about; in order to prove that a
program is correct, it is necessary that dynamic flexibility be kept to a
minimum. However, a number of changes to Ada which were made to ease the
static burden on the programmer have also been made to SPARK. The most
obvious of these are the introduction of child packages and type extension.
Other changes include the introduction of the use type clause, the ability to
read out parameters, the clarification of the rules for conformance, and the
removal of the petty restriction on the order of declarations. Perhaps
surprisingly, the ability to read out parameters had far reaching effects; it
permitted the introduction of global annotations with mode information and
this in turn allowed greater flexibility in flow analysis by enabling it to be
performed at two different levels.

A recent publication in the standards area is the Guide for the Use of the
Ada Programming Language in High Integrity Systems [ISO, 2000]. This
contains excellent general background material on the whole topic and in
particular gives guidance on which features of Ada are appropriate for use with
various verification techniques.

1.8 Structure of this book 21

1.8 Structure of this book

The purpose of this book is to provide an overall description of the use of
SPARK for writing reliable software. It is intended that knowledge of Ada is not
required since all features are described in reasonable detail. In those cases
where all the details are not given (such as interfacing to hardware using
address clauses) it is inevitable that the user will have to refer to the compiler
vendor’s literature anyway.

However, since it is expected that some readers will have a working
knowledge of Ada, various comparative remarks have been included which it
is hoped will be helpful. These are largely confined to the ends of sections so
that they do not impede the general reader. Those wishing to know more about
Ada could consult Programming in Ada 95 by the author [Barnes, 1998]. The
ultimate reference for Ada is of course the Ada Reference Manual [Taft et al.,
2000]; this is usually referred to as the ARM.

The description of SPARK as a language is (intended to be) complete apart
from a few features such as fixed point arithmetic. However, the discussion of
the use of the SPARK tools for proof is simply an introduction. There are many
matters of detail which are not included partly because they would occupy a
great deal of space and also because they are best learnt through practical
interactive tuition and experience. Thus only the general principles of proof are
described and the interactive use of the Proof Checker is barely covered.

The CD accompanying this book contains additional documentation as
well as demonstration versions of the Examiner and Simplifier plus all
necessary installation information and user guides. The Proof Checker is not
included on the CD but is available with professional versions of the other
tools from Praxis Critical Systems.

This book is in three main parts. The first part, Chapters 1 to 3, is an
overview of the topic and introduces the reader to most of the features of SPARK
and its associated tools in an informal manner and illustrates the language and
the tools with some small examples.

The second part, Chapters 4 to 8, comprises a thorough description of the
SPARK core language. The syntax notation is widely used because it enables a
precise description to be given in a compact and clear manner. It is anticipated
that this part of the book will be found most useful as reference material.

The third part, Chapters 9 to 14, covers in more detail the use of the various
associated tools and also describes their theoretical background. It is written in
a more tutorial style and contains many examples including some case studies
of complete programs.

The book concludes with a number of appendices covering such matters as
the complete syntax and lists of reserved words and attributes.

Most chapters have a few exercises; the reader should at least attempt these
and consult the answers because they cover a number of quite notable points
and are sometimes referred to in later material. The CD contains the text of all
the major examples and exercises and the reader might find it instructive to
apply the Examiner and (where appropriate) the Simplifier to them. Further
details will be found in Appendix 3.

14.9 Industrial applications 377

The final chapter of the book is Chapter 14 entitled Case Studies. This has
three examples, one is a lift controller, the second is an autopilot and the third
concerns the proof of a sorting algorithm. The chapter concludes with a
summary of some industrial applications which is reproduced below.

This sampler itself concludes with the bibliography which contains a
number of useful website references.

14.9 Industrial applications

The subtitle of this book is ‘The SPARK Approach to Safety and Security’ and
so it is fitting to conclude by outlining a number of projects which have used
SPARK in both the Safety and Security areas. As mentioned in Section 1.1, a key
aspect to providing safe and secure systems that involve software is getting the
software correct. It is of no avail if hardware backup systems are in place or
clever cryptography is used if the actual code is wrong.

Moreover, SPARK not only helps to get the code correct but it also provides
concrete auditable evidence that it is correct in the form of POGS output and
analysis logs. This is vital for the certification of high integrity systems.

The value of SPARK in getting the code correct has long been recognized
for military systems and so SPARK can be considered to be tried and trusted
technology even if it may not be familiar to the reader. Moreover, since around
1990, its use has spread and it is now used on many large-scale industrial
projects mainly in the aerospace, rail and security areas.

Three notable projects are briefly described below in order to give the
reader some appreciation of the importance and scale of typical applications.
Two are from the safety critical area and one is from the security area.

These three projects also illustrate the SPARK approach to three very
different software standards: DO-178B for civil aviation, ITSEC (Information
Technology Security Evaluation Criteria) and more recently the Common
Criteria [ISO, 1999] for secure systems, and Def-Stan 00-55 for military
safety-related software.

The first project uses DO-178B and the project description is followed by
a brief discussion of data and control coupling as defined by DO-178B and how
SPARK is perhaps uniquely able to satisfy these aspects of its objectives.

The Lockheed Martin C130J and DO-178B

The C130J is a remarkable aircraft. It shares the familiar Hercules airframe
with its predecessors, but features entirely new engines, propellers and
avionics. The Mission Computer is a DO-178B Level A system that controls
most of the aircraft’s major functions. It comprises over 100,000 lines of code,
most of which is written in SPARK.

DO-178B is an interesting standard. It places great emphasis on particular
forms of testing, but has little to say on issues such as choice of programming
language or the use of static analysis. Testing such software can be time-
consuming and expensive so that if defects are found during testing, the rework
implied significantly increases both the cost and timescale of the process.

378 Case studies

An alternative, therefore, is simply not to rely on testing as the only
verification activity. The cheapest way to run a DO-178B testing process is to
just write the software correctly in the first place.

This is of course the SPARK approach — the static analysis offered by the
Examiner and Simplifier eliminate so many defects that the testing process
becomes cheaper, simpler and (ideally) a one-off demonstration of correctness
rather than being a repetitive bug-hunt. The use of run-time check (RTC) proof
also means that you can justifiably turn off run-time checks in your code,
which dramatically simplifies the generated object code and subsequent
coverage analysis.

Perceived productivity is an important issue. Many program managers (and
tool vendors) equate productivity in software engineering with the number of
lines of code produced per day. Such statistics are misleading. Coding usually
accounts for a small proportion of a total project (typically 10-20%) while
testing, integration and certification are typically over 50%, and can be as high
as 80% in some cases. Slowing down coding a little to ease testing a great deal
makes sound economic sense. On the C130J, the use of SPARK certainly slowed
coding, but led to such a dramatic improvement in testing that significant costs
were saved as a result.

Of course the use of SPARK was but one technology involved. Much credit
must also be given to the maturity of the life cycle processes used and the way
in which they integrated together. Nevertheless it is recognized that SPARK
made a major contribution. Eventually, after all the numbers were added up
and accounted for, Lockheed reported an 80% saving over their projected cost
for testing and certification of the Mission Computer [Amey, 2002].

Data and control coupling and DO-178B

The SPARK approach is a sound technique for producing high integrity software
of various kinds. The previous example discussed the use of DO-178B for a
particular application. DO-178B has many objectives that must be satisfied,
but does not require the use of an approach similar to SPARK to satisfy its
requirements. One objective, however, is particularly troublesome, and SPARK
presents an approach which can be used to provide evidence which is hard to
obtain using other techniques.

DO-178B requires the analysis of data and control coupling for Levels A,
B and C software. It defines data and control coupling as follows

Data coupling — the dependence of a software component on data not
exclusively under the control of that software component.

Control coupling — the manner or degree by which one software component
influences the execution of another software component.

DO-178B does not provide a basis for why analysis of data and control
coupling is required nor does it explain how it should be achieved. The purpose
of data and control coupling analysis is to serve as a ‘goodness’ or completion
check of the integration effort. Analysis of data and control coupling is
intended to ensure good software engineering practices.

14.9 Industrial applications 379

The software components may be packages or subprograms. DO-178B has
many objectives which together provide evidence that each of the software
components satisfies its requirements. Some of these components will be
grouped because they share global data, and some because they are interrelated
through some control logic. When these components are integrated, there is a
need to show that information flows in a controlled manner as expected by the
design. By using SPARK annotations to describe the expected information flow
between software components, the design can express the data coupling
between software components, even when they are separately compiled. The
SPARK tools can be used to verify the coupling expected by design against the
coupling provided by the source code itself.

The SPARK approach enables engineers to describe the dependency of one
component on another in terms of the data and control they share. The
verification of this dependency against the code, before the code is linked,
eliminates possible integration problems between the software components.
The evidence that this has been done can be used to help satisfy the
requirements for the verification of data and control coupling.

The MuLtos CA and secure systems

The MULTi-application Operating System (MULTOS) is a smartcard OS that
allows several applications to reside on a single card. MULTOS applications can
be loaded and deleted dynamically, so a major security concern is the
prevention of forged applications. To this end, a MuLTOS application is
accompanied by a digital certificate that is signed by the MuLTOS Certification
Authority (CA).

The CA was built as far as was practicable to meet the highest standard of
the UK ITsec scheme. SPARK therefore seemed appropriate for the most
security critical aspects of the system. However, SPARK was obviously not
appropriate for all parts of the system and so a ‘right tools for the job’ mix of
languages was used. The whole system is about 100,000 lines of code, about
30% of which is in SPARK for the most security critical functions, about 30% is
in Ada 95, mainly in the system infrastructure, and 30% is in C++, for the
graphical user interface (GUI). The remaining 10% is in a mixture of C (for
some standard cryptographic algorithms) and SQL. Note that the system was
very carefully designed so that the GUI does not have any security-related
function.

The static analysis offered by SPARK proved to be most effective. Data flow
errors can cause subtle security problems — for example, an uninitialized
variable might just acquire an initial value which happens to be a piece of
cryptographic key material ‘left over’ on the stack from the execution of
another subprogram. Knowing that the use of SPARK prevented such problems
was important.

Information flow analysis also proved useful. The separation of some data
sections (so that information in variable X cannot leak into variable Y) gave
confidence that certain security properties were being maintained by the code.

RTC proof also offered strong protection against the ubiquitous buffer
overflow problems that seem to plague software written in weaker languages.

380 Case studies

The MuLTOos CA demonstrates the use of SPARK in a large, mixed-language
development. The system has been extremely reliable since it was
commissioned; in the first year after delivery, four minor defects were reported
— a rate of 0.04 defects per thousand lines of code. The project was also
completed at reasonable cost (some 3571 person days) and productivity (28
lines of code per day for the entire project).

This experience belies the myth that a project implemented to such a high
standard must be prohibitively expensive. Further details on how the CA was
constructed can be found in [Hall and Chapman, 2002].

SHoLis and Def-Stan 00-55

The Ship/Helicopter Operational Limits Instrumentation System (SHOLIS) is a
ship-borne computer system that advises ship’s crew on the safety of helicopter
operations under various scenarios. It is a fault-tolerant, real-time, embedded
system. A pre-production version of SHOLIS was originally developed during
1996 to 1998 and was the first system aimed to meet all the requirements of UK
Interim Defence Standard 00-55 for safety critical software.

Def Stan 00-55 places great emphasis on the use of rigorous notations and
processes, and actually requires the use of static analysis and programming
languages that have an ‘unambiguous definition’. As such, SPARK remains the
only language that can seriously claim to meet this standard.

SHOLIS was the first major effort to use the SPARK proof technology on an
industrial scale. (SHOLIS is about 27,000 lines of code, so it is not a toy program
by any means.) SHOLIS also extended the scope of any proof work that had ever
been attempted previously; RTC proof was performed on the entire system,
while safety critical subsystems were also subject to proofs of partial correct-
ness and safety properties that were derived from the formal specification of
the system. While this might seem like a great deal of work, subsequent
analysis of the project showed that the specification and code proof were
extremely cost-effective at preventing and finding defects — certainly much
more effective than the subsequent unit-testing process [King et al., 2000].

In 1996, machine resources were a limiting factor — it really was not
possible to get enough computing power for the Simplifier. Today, all the
SHOLIS proofs (some 9000 verification conditions) can be generated and
simplified in about eight hours on a modest desktop computer thereby bringing
‘regression proof’ into scope for industrial scale applications.

In conclusion

It is hoped that these three industrial examples have illustrated that SPARK is a
professional product in real use for serious programs that need to be correct.
Experience has shown that, in conjunction with good project management, the
use of SPARK both saves money and increases the predictability of project
timescales and moreover, by eliminating residual errors, reduces long-term
maintenance costs.

Bibliography

The following items are referred to in the body of the text.

[Amey, 2002] Peter Amey, Correctness by Construction: Better can also be
Cheaper, CrossTalk Journal, pp. 24-28, March 2002. {www.stsc.hill.af.mil
and www.sparkada.com}

[Barnes, 1998] J. G. P. Barnes, Programming in Ada 95, 2nd edn, Addison-
Wesley, Harlow, 1998, ISBN 0-201-34293-6.

[Bergeretti and Carré, 1985] J.-F. Bergeretti and B. A. Carré, Information-
Flow and Data-Flow Analysis of while-Programs, ACM Transactions on
Programming Languages and Systems, ACM, New York, Vol. 7, pp.
37-61, Jan. 1985.

[Bohm and Jacopini, 1966] C. B6hm and G. Jacopini, Flow Diagrams, Turing
Machines, and Languages with Only Two Formation Rules, Communi-
cations of the ACM, ACM, New York, Vol. 19, no. 5, May 1966.

[Burns, Dobbing and Vardanega, 2003] A. Burns, B. J. Dobbing and T.
Vardanega, Guide for the Use of the Ada Ravenscar Profile in High
Integrity Systems, University of York Technical Report YCS-2003-348,
2003. {ftp.cs.york.ac.uk/reports/YCS-2003-348.pdf}

[Farrow, Kennedy and Zucconi, 1975] R. Farrow, K. Kennedy and L.
Zucconi, Graph Grammars and Global Program Flow Analysis, Proceed-
ings of 17th IEEE Symposium on Foundations of Computer Science, pp.
42-56, IEEE, New York, 1975.

[Hall and Chapman, 2002] Anthony Hall and Roderick Chapman,
Correctness by Construction: Building a commercial secure system, /EEE
Software, Vol. 19, no. 1, pp. 18-25, Jan./Feb. 2002. {www.sparkada.com}

[ISO, 1999] International Standards Organization, Common Criteria for
Information Technology Security Evaluation, ISO/IEC 15408:1999.

[ISO, 2000] International Standards Organization, Guide for the Use of the
Ada Programming Language in High Integrity Systems, ISO/IEC TR
15942: 2000.

421

422 Bibliography

[King et al., 2000] Steve King, Jonathan Hammond, Roderick Chapman and
Andy Prior, Is Proof More Cost-Effective Than Testing?, IEEE
Transactions on Software Engineering, Vol. 26, no. 8, pp. 675-686,
August 2000. {www.sparkada.com}

[Marsh and O’Neill, 1994] D. W. R. Marsh and I. M. O’Neill, The Formal
Semantics of Sp4rk, Program Validation Ltd, Southampton, 1994.
{www.sparkada.com}

[Meyer, 1992] Bertrand Meyer, Eiffel: The Language, Prentice Hall, 1992,
ISBN 0-132-47925-7.

[Praxis, 2002] SpP4rk 95 — The SrADE Ada Kernel, Edition 3.1, Praxis Critical
Systems Limited, October 2002.

[RTCA-EUROCAE, 1992] Software Considerations in Airborne Systems and
Equipment Certification, DO-178B/ED-12B, RTCA-EUROCAE,
December 1992.

[SPC, 1995] The Software Productivity Consortium, Ada 95 Quality and
Style, LNCS 1344, Springer-Verlag, Berlin, 1995, ISBN 3-540-63823-7.

[Taft et al., 2000] S. Tucker Taft, Robert A. Duff, Randall L. Bruckardt and
Erhard Ploedereder (eds.), Consolidated Ada Reference Manual, LNCS
2219, Springer-Verlag, Berlin, 2000, ISBN 3-540-43038-5.

[Warshall, 1962] S. Warshall, A Theorem on Boolean Matrices, Journal of
the ACM, Vol. 9, pp. 11-13, Jan. 1962.

[Wheeler, 2002] David A. Wheeler, Secure Programming for Linux and Unix
HOWTO, 2002. {www.dwheeler.com/secure-programs/Secure-Programs-
HOWTO/index.html}

The following papers give additional information on SPARK and its tools. Most
will be found on the website www.sparkada.com.

P. Amey, Logic versus Magic in Critical Systems, Reliable Software
Technologies — Ada-Europe 2001, LNCS 2043, Springer-Verlag, Berlin,
2001.

This paper was given as a keynote address at Ada-Europe 2001. It
presents SPARK as an example of a logical approach to engineering in
contrast to the non-mathematical wizardry of other approaches. It also
includes an interesting comparison between the current state of
software engineering and the early days of aerodynamics.

P. Amey, Closing the Loop: The influence of code analysis on design, Reliable
Software Technologies — Ada-Europe 2002, LNCS 2361, Springer-Verlag,
Berlin, 2002.

This paper discusses how the need to perform static analysis has a
profound impact on the design of software. Based on the experience of
several projects, some using SPARK and INFORMED and some not, it
argues that the ability to statically analyse a software design at all

Bibliography

stages in its development should be a primary design goal in the
development of high integrity systems.

P. Amey, A Language for Systems not just Software, Proceedings of SIGAda
2001, ACM, New York, 2001.

This paper demonstrates how SPARK’s support for abstraction and
refinement can be used to specify system-level properties of a software
artefact. This enables the annotations to be in terms of concrete
devices such as sensors and actuators so that they can be constructed
and meaningfully checked by systems engineers.

P. Amey and R. Chapman, Industrial Strength Exception Freedom,
Proceedings of SIGAda 2002, ACM, New York, 2002.

This paper describes the SPARK approach to eliminating exceptions
arising from run-time checks as described in Chapter 11 of this book.
It gives results for several large programs, including the Examiner
itself; these show the effectiveness of the Simplifier in proving VCs
and the performance of the Simplifier on modest PC hardware. The
paper argues that the routine use of such proof is now within the reach
of all SPARK projects.

R. Chapman, SPARK — A State-of-the-Practice Approach to the Common
Criteria Implementation Requirements, 2nd International Common
Criteria Conference, Brighton UK, July 2001.

This paper shows how SPARK meets the Common Criteria requirements
for the implementation of secure systems. In particular, the Common
Criteria require the use of notations that have an ‘unambiguous
definition’ — an area where SPARK clearly excels. The paper also
illustrates how SPARK and the Examiner can be used to defend software
against many common forms of security vulnerability such as dataflow
errors and the ubiquitous buffer overflow.

R. Chapman and A. Burns, Combining Static Worst-Case Timing Analysis and
Program Proof, Real-Time Systems, Vol. 11, pp. 145-171, 1996.

This paper is a condensed form of the first author’s doctoral thesis. It
shows how the SPARK model of control flow and proof can be extended
to deal with worst-case static analysis of time and memory usage. It
also proposes additional annotations to enable subprograms to declare
their required computation time, loop iteration bounds and so on.

R. Chapman and R. Dewar, Re-engineering a Safety-Critical Application Using
SpARK 95 and GNORT, Reliable Software Technologies — Ada-Europe ’99,
LNCS 1622, Springer-Verlag, Berlin, 1999.

This paper reports on an experiment to port the SHOLIS (SPARK 83)
software to SPARK 95 using the GNAT Pro High Integrity Edition
compiler. This demonstrated (some ten years after the original design

423

424 Bibliography

decision was made) that SPARK really could be compiled with a ‘zero
byte run time system’.

M. Croxford and J. M. Sutton, Breaking Through the V & V Bottleneck, Ada
in Europe 1995, LNCS 1031, Springer-Verlag, Berlin, 1995.

This paper presents a method of software development aimed at
‘correctness by construction’, which greatly attenuates problems and
costs associated with the detection of errors at a late phase of the
lifecycle. The process described here has been applied to the
development of avionic software for the C-130J aircraft.

The following books provide more general background reading.

R. C. Backhouse, Program Construction and Verification, Prentice-Hall
International, Englewood Cliffs, New Jersey, 1986.

D. Gries, The Science of Programming, Springer-Verlag, Berlin, 1981.

S. S. Muchnik and N. D. Jones (eds), Program Flow Analysis, Prentice-Hall
International, Englewood Cliffs, New Jersey, 1981.

C. T. Sennett (ed.), High-integrity Software, Pitman, London, 1989.

J. Woodcock and M. Loomes, Software Engineering Mathematics, Pitman,
London, 1988; and Addison-Wesley, Reading, Massachussetts, 1989.

