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Abstract

VW LMi was classified as an W UMa-type eclipsing binary after the discovery of pho-

tometric variability by Hipparcos mission in 1997. Long-term spectroscopy (Pribulla

et al., 2006) showed that VW LMi is a quadruple system consisting of a contact eclipsing

binary and a non-eclipsing binary. The short outer orbital period (355 days) indicates

a presence of significant orbital perturbations in the inner sub-systems. The aim of

this thesis was to improve orbital elements and physical parameters of components but

also to search for secular changes. First of all, new spectra from Stara Lesná, Skalnaté

pleso and Tautenburg observatories were deconvolved in order to obtain the broad-

ening functions and the radial velocities of the components. The fitting of observed

radial velocities as well as light-time effect visible in the photometric data was crucial

to determine orbital parameters. These parameters were used in further numerical

simulations to investigate evolution of the system and to constrain mutual inclination

of the inner and outer orbits.

keywords: hierarchical quadruple, secular orbital changes



Abstrakt

VW LMi bola klasifikovaná ako zákrytová premenná typu W UMa po objave jej

fotometrickej premennosti misiou Hipparcos v roku 1997. Dlhodobá spektroskopia

(Pribulla et al., 2006) ukázala, že VW LMi je štvorhviezdny systém pozostávajúci

zo zákrytovej dvojhviezdy a nezákrytovej dvojhviezdy. Krátka vonkaǰsia obežná doba

(355 dńı) naznačuje pŕıtomnost’ výrazných dráhových porúch vnútorných podsystémov.

Ciel’om práce bolo presneǰsie určenie dráhových elementov a fyzikálnych parametrov

jednotlivých zložiek a hl’adanie sekulárnych zmien dráh. V prvom rade sa spektrá z

observatóríı Stará Lesná, Skalnaté pleso a Tautenburg rozložili, aby sa źıskali funkcie

rozš́ırenia a radiálne rýchlosti zložiek. Fitovanie napozorovaných radiálnych rýchlost́ı,

ako aj light-time effect (LITE) pozorovaný vo fotometrických dátach boli kl’́učovými

pri určovańı dráhových elementov. Tieto elementy boli využité pri následných num-

erických integráciách systému, pri ktorých sa skúmala evolúcia systému pri rôznych

hodnotách inklinácie medzi vnútornými dráhami a vonkaǰsou dráhou.

kl’́učové slová: štvorhviezdny systém, sekulárne zmeny dráhy



Preface

Systematic spectroscopic study of VW LMi by Pribulla et al. (2008) indicated a pres-

ence of significant orbital perturbations in the hierarchical quadruple system. The aim

of this thesis is the further study of the system: precise determination of it’s orbital

parameters and secular orbital changes. The main tool used is spectroscopy. Radial

velocities of components determined from observed spectra via deconvolution routines

in IDL as well as light-time effect observed in photometric data are crucial for the res-

olution of orbital parameters. For the demands of this thesis we developed a computer

code to fit observed values of radial velocities with the radial velocity equation. Using

multidimensional minimization this fit provides almost all Keplerian orbital parame-

ters of the system. Comparing the results with parameters determined by Pribulla

et al. (2008) the orbital changes due to secular orbital perturbations should be visible.

To take a look at the further evolution of the system we developed another code: a

model that numerically integrates the components in time. Via setting various initial

conditions we resolved all missing orbital parameters that could not be determined

through radial velocity fitting. Setting all resolved orbital elements as parameters for

our model provided us a look on the evolution of hierarchical quadruple VW LMi as

well as the trends of the system’s secular orbital changes.

Aristotle said a bunch of stuff that was wrong. Galileo and Newton fixed things up.

Then Einstein broke everything again. Now, we have basically got it all worked out,

except for small stuff, big stuff, hot stuff, cold stuff, fast stuff, heavy stuff, dark stuff,

turbulence and the concept of time (Weinersmith, 2017). One aim of this thesis is to

extend the present knowledge of the multiple stuff. We hope that this thesis will con-

tribute to the better understanding of behaviour and celestial mechanics of this tight

quadruple system as well as of multiple stellar systems in general.
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Chapter 1

Multiple stellar systems

The following chapter is dedicated to overview the present knowledge of stellar multiple

systems. As multiple stellar systems we consider systems with at least three stars tied

together by gravitational attraction. As discussed in Tokovinin (1997), multiple sys-

tems are useful objects as they provide precise values of stellar masses and luminosities

- properties tied together via relation L = Mα, which help us understand the processes

of the stellar evolution. On the other hand, from the dynamical point of view, these

systems aid our understanding of the formation of physical multiples or higher order

stellar systems. We do recognize two categories of multiple systems:

• Chaotic multiple systems

• Hierarchical multiple systems

Chaotic systems, as their name suggests, have chaotic dynamics. These systems,

also called trapezia, have strongly interacting orbits, therefore they are dynamically

unstable. On the other hand, hierarchical systems have stable orbits, which could be

divided into smaller nested sub-orbits. It is important to note, that the mentioned sub-

orbits could be treated as Keplerian two-body problems, whilst chaotic systems must

be treated via N-body problem. Hierarchical multiple systems are described through

mobile diagrams as proposed by Evans (1968). These diagrams are simply just binary

trees divided into levels. The widest system forms the uppermost level of the dia-

gram, every other component is represented as a bifurcation at the next level. Mobile

diagrams are alterable - they represent the present knowledge of the multiple stellar

system and could be changed as new components are discovered (mostly via spectro-

scopic or interferometric observations). Accordingly, the terms as ”triple”,”quadruple”

or ”quintuple” represent our current knowledge, rather than the true multiplicity of

the system. Examples of mobile diagrams are shown in Figure 1.1.
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(a) (b)

Figure 1.1: Examples of mobile diagrams. (a) Mobile diagram of sextuple system α

Gemini - Castor. Credit: Tokovinin (2018). (b) Mobile diagram of VW LMi. Credit:

Tokovinin’s Multiple Stellar Catalogue (MSC).

Comparing various catalogs of multiple stellar systems, it is clear, that the majority

of such systems are hierarchical and not chaotic (Tokovinin, 1997). However, this fact

seems to be obvious: chaotic systems are dynamically unstable, they must not appear

as physically bound systems at all. Moreover, these systems disintegrate hastily to sep-

arate rogue stars or smaller hierarchical systems, therefore there is a lower probability

of observing such systems.

1.1 Mechanisms of quadruple star formation

Stars form after gravitational collapse in interstellar gas clouds, while the collapse

generally occurs in more regions of the cloud. This means, that multiple stars form

from one interstellar cloud and they create loosely bound stellar open clusters. The

further fate of these clusters was discussed in (Tokovinin, 2004a). The cartoon showing

the current understanding of multiple stars formation is shown in Figure 1.2.

First of all, stars evolve in a collapsing cloud, which is often part of a larger inter-

stellar gas cloud. The protostars accrete cloud material and fall towards the center of

the cloud as the timescale of both processes is roughly 104 − 105yrs. At the first close

encounter of protostars, interstellar surrounding gas is still present and it significantly

affects the further dynamical evolution of the cluster. Single or binary stars may be

ejected from this system and some unstable hierarchical multiples may form. Stronger

hierarchies may form through dynamics and tidal dissipation. Or the initial weak hi-

erarchies may became unstable as the remaining gas of the cloud interacts with their

outer components. Studies of statistical properties of multiple star lead to compre-

hension of quadruple stellar systems formation mechanism as published in (Tokovinin,
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Figure 1.2: Scenario of multiple star formation. Credit: Tokovinin (2004a).

2008). It was shown, that dynamical dissipation of stellar clusters leaves behind mostly

single stars and just a minority of binary and multiple systems (Goodwin and Kroupa,

2005). However, other mechanisms for quadruple formation were suggested. The most

promising of these mechanisms are as follows.

1.1.1 Rotationaly driven fragmentation

The first promising scenario for quadruple system formation is the rotationally driven

fragmentation. In this scenario two binaries are formed in the collapsing interstellar

gas with initial separation roughly 102 − 104 a.u. They interact with the remnants of

the surrounding gas, create spiral waves and transfer their angular momentum out-

wards, becoming tighter and tighter. This process naturally produces quadruple stars

consisting of two binaries.

1.1.2 Migration due to gas accretion

The second scenario is migration of the orbits as a result of accretion of gas to binary,

with consequent increase of the mass ratio, and associated braking by the massive

circum-binary disc. This scenario might consist of two separate mechanisms: accretion

induced migration, which acts on larger scales and a second migration, not associated

with accretion, which shortens inner orbital periods. All in all, the outer orbit shrinks

by accretion from the envelope, while the gas accreted in the inner binaries inherits it’s

angular momentum and shrinks the inner orbits.
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Chapter 2

Secular orbital changes

As the main topic of this thesis is to determine secular orbital changes of quadruple

system VW LMi, herewith we introduce the definition and physical background of

secular orbital changes. Secular orbital changes, or secular perturbations, are defined as

long term phase average evolutions on timescales much longer than the orbital periods

of system’s subsystems (Naoz, 2016). As secular timescales are longer than the orbital

periods, motions of the individual components could be averaged over their orbits.

Therefore, only secular changes of the orbital elements should be studied (Antognini,

2015). Obviously, contemplating secular perturbations has sense for stellar systems

with at least three components - triples. In case of a triple stellar system, the system

is decomposed to a binary system and its stellar companion bound by gravitational

force. As theories and observations confirm, the companion orbiting around the binary

system causes secular perturbations in the orbit of the binary. This topic in case of

gravitationally bound triple systems has already been studied by Lagrange, Laplace or

Poincare.

More detailed studies of hierarchical triple systems were published by Lidov (1962)

and Kozai (1962). Lidov (1962) focused on the evolution of orbits of artificial satellites

in the Solar system due to perturbations from outer potential. Kozai (1962) published a

study, where he discussed the effect of Jupiter’s gravitational perturbations on a highly

inclined asteroid orbits. We note, that hereafter the semi-major axis of the inner orbit

is noted as ain, whilst the semimajor axis of the outer orbit is denoted as aout. The total

energies of the inner orbits, as well as the total energy of the outer orbit are conserved

separately, which implies that ain and aout are constants during evolution. The presence

of the secular perturbations is due to the exchange of the angular momentum between

the inner and outer orbits. Kozai’s method was to expand the three-body Hamiltonian

in parameter α, which is the ratio ain/aout, average through whole orbit and truncate

the expression to lowest possible (quadruple) order, which is proportional to (ain/aout)
2
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(Naoz, 2016). Both Kozai (1962) and Lidov (1962) found out that large eccentricity

and inclination oscillations are present in such system’s inner orbits and that most

of the angular momentum is carried by the third (outer) perturber. Also, assuming

axisymmetric outer potential, the z-components of the angular momenta vectors of

both inner and outer orbits are conserved quantities. Majority of the further studies

of the Kozai-Lidov effect used the stated quadrupole level approximation. However,

the quadrupole approximation has it’s boundaries as secular perturbations manifest

only for initially highly inclined inner and outer orbits (∼ 40◦ - 140◦). Also, this

approximation could be applied in the special case of circular outer orbit, therefore it

is not suitable for more eccentric systems. As Naoz et al. (2011) showed that neglecting

the boundaries of the quadrupole approximation leads to different dynamical evolution

of a multiple system.

The study of Kozai-Lidov effect re-emerged towards the end of the century as pe-

culiar systems were discovered, such as the discovery of a highly eccentric exoplanet 6

Cyg B (Cochran et al., 1996) or the study of almost perpendicular system Algol (Eggle-

ton et al., 1998). It was obvious, that higher order approximation would be needed

to overcome the limitations of the quadrupole approximation. The solution was to

truncate the expanded three-body Hamiltonian series to octupole order, proportional

to (ain/aout)
3. Using this approximation allows inner orbit eccentricity reach extraor-

dinary high and uncertain values, because the whole system becomes more chaotic at

all (Ford et al., 2000). What is more important, the inclination of the inner orbit

could change up to value of π/2, which means that the orientation of the orbit could

flip from prograde to retrograde with respect to the angular momentum (Naoz et al.,

2011). The described process with exceptionally high eccentricities and orbital flips is

called the eccentric Kozai-Lidov effect. This mechanism results in far more interesting

dynamical evolution of a multiple systems. However, the effect does not occur in sys-

tems where the components of the inner sub-system have comparable masses, mass loss

from whichever component could induce the eccentric oscillations (Antognini, 2015).

2.1 The Kozai-Lidov effect

In this section the theoretical basis of the Kozai-Lidov effect will be derived. Firstly

derived by Lidov (1962) and Kozai (1962), the quadrupole order approximation was

derived afterwards by many other authors. Hereby, the timescale of Kozai-Lidov effect

and the time evolution equations of the orbital elements will be derived. The derivation

is based and closely follows the works of Harrington (1968), Naoz (2016), Ford et al.

(2000) and Antognini (2015).
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(a)

(b)

Figure 2.1: Cartoon of the three-body perturbation problem. (a) Spatial scheme of

the inner and outer orbit. MC denotes mass center of the inner orbit. rin an rout are

the state vectors, while Φ is the angle between them. (b) The angular momenta G and

inclinations. The invariable plane is perpendicular to Gtot.

The scheme of the three-body problem is illustrated on Figure 2.1a. A tight binary

and a distant third companion form the triple hierarchy. As it is a hierarchical system,

we can divide the motion to two separate Keplerian orbits: denoted as inner (tight

binary) and outer (mass center of tight binary and the third body). The inner system

is formed by bodies of mass m1 and m2, rin is the relative position vector from m1

to m2. The third body has mass m3 and rout is the relative position vector from the

mass center of the inner binary to m3. We will describe the system using Hamiltonian

formalism. The Hamiltonian of the given system consists of the Hamiltonials of the

inner and outer orbit and the perturbed Hamiltonian, which represents their mutual

interaction. The coupling term in the Hamiltonian is rewritten as a power series in the

ratio of the semi-major axes α = ain/aout. The described Hamiltonian as published by

Harrington (1968) is given in Equations 2.1 and 2.2.

H =
k2m1m2

2ain
+
k2m3(m1 +m2)

2aout
+Hpert (2.1)
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H =
k2m1m2

2ain
+
k2m3(m1 +m2)

2aout
+
k2

r2

∞∑
n=2

(
rin
rout

)n
MnPn(cos Φ) (2.2)

Here k2 is the gravitational constant, Pn are Legendre polynomials, Φ is the angle

between rin and rout. Mn is the mass parameter:

Mn = m1m2m3
mn−1

1 − (−m2)
n−1

(m1 +m2)n
. (2.3)

The reference frame of the system is the invariable plane, perpendicular to z axis

along the total angular momentum of the system, which is a conserved quantity during

the whole secular evolution, see Figure 2.1b. Adopting canonical Delaunay’s elements,

every orbit could be described via three sets of angles (M , ω, Ω) and their three

conjugate momenta (L, G, H). Afterwards we will change the notation of the latter

angles to frequent notation (M , ω, Ω) → (l, g, h). The first angles are the mean

anomalies Min and Mout, their conjugate momenta Lin, Lout are as follows:

Lin =
m1m2

m1 +m2

√
k2(m1 +m2)ain,

Lout =
m3(m1m2)

m1 +m2 +m3

√
k2(m1 +m2 +m3)aout.

(2.4)

The second angles are the arguments of periastron ωin and ωout, their conjugate

momenta Gin, Gout are as follows:

Gin = Lin

√
1− e2in,

Gout = Lout
√

1− e2out.
(2.5)

Where ein and eout are the inner and outer orbit’s eccentricities. The third angles

are the longitudes of ascending nodes Ωin and Ωout. Noting that iin and iout are the

inclinations of the inner and outer orbits, the conjugate momenta Hin and Hout of the

ascending nodes are:

Hin = Gin cos(iin),

Hout = Gout cos(iout).
(2.6)

Perceive that Gin and Gout are the magnitudes of angular momentum vectors Gin

and Gout, while Hin and Hout are the z-components of these vectors. The configuration

of these vectors is shown in Figure 2.1b. Considering the conservation of total angular

momentum, we get the relation between the z-component of angular momenta and the

total angular momentum magnitude:

Gtot = Hin +Hout. (2.7)
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Now, the equations of motion are represented by the following canonical relations:

dLj
dt

=
∂H
∂lj

,
dlj
dt

=
∂H
∂Lj

, (2.8)

dGj

dt
=
∂H
∂gj

,
dgj
dt

=
∂H
∂Gj

, (2.9)

dHj

dt
=
∂H
∂hj

,
dhj
dt

=
∂H
∂Hj

, (2.10)

where j = 1, 2 denotes the canonical relations to have opposite sign, because of

the chosen sign convention for this Hamiltonian. If the semi-major axis ratio α is a

small parameter, then in the zeroth approximation each orbit is a Keplerian orbit with

conserved total energy. Averaging the equations of motion on short timescales allows

us to look on the long-term orbital dynamics of the system. In this, so-called secular

approximation the energies and semi-major axes of orbits are conserved quantities and

angular momentum exchange between the orbits takes place. Eliminating short-term

orbital changes is done via Von Zeipel transformation (Brouwer, 1959) and the whole

process is described in (Naoz et al., 2011). In the final secular approximation and

generally for systems without non-gravitational effects, two quantities are conserved:

the energies (and semi-major axes) and the total angular momentum Gtot. Now, the

time evolution of eccentricities and inclinations could be obtained from the equations

of motion 2.8, 2.9, 2.10:

dej
dt

=
∂ej
∂Gj

∂H
∂gj

, (2.11)

d cos(ij)

dt
=
Ḣj

Gj

− Ġj

Gj

cos(ij). (2.12)

Here j = 1, 2 denotes the inner and the outer orbit, respectively. The quadrupole

approximation is the lowest order approximation and is proportional to (α)2. As a

result of the Von Zeipel transformation, the outer orbit’s angular momentum Gout

remains a constant quantity. As a consequence, the quadrupole order approximation

should be used only for circular outer orbits (axisymmetric potential). Considering

the inner orbit, as the energy and the z-component of the angular momentum Hin

are preserved, it’s Hamiltonian does not depend on the longitude of ascending node

and the system is integrable. The precession rate of the inner orbit’s ascending node

Ωin and the longitude of periapsis ωin causes large amplitude oscillations between the

eccentricity and the inclination within the inner orbit.
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Considering circular outer orbit and an inner test particle, while m2 → 0, following

the derivation of Lithwick and Naoz (2011), the Hamiltonian of the three-body system

is as follows

H =
3

8
k2
m1m2

aout

(
ain
aout

)2
1

(1− e2out)3/2
Fquad, (2.13)

where Fquad is as follows:

Fquad = −e
2
in

2
+ θ2 +

3

2
e2inθ

2 +
5

2
e2in(1− θ2) cos(2ωin), (2.14)

where θ = cos(itot). At this alignment the inner orbit angular momentum along the

z axis with jz,in being its specific z component and θ is conserved:

Hin ∝ jz,in =
√

1− e2in cos(itot) = const.,

θ = cos(itot) = const.
(2.15)

As Hin and Fquad are both conserved, we define the following constant defined by

initial conditions of the system:

CKL =
Fquad

2
− 1

2
j2z,in = e2

(
1− 5

2
sin(i2tot) sin(ω2

in)

)
. (2.16)

As jz,in is conserved:

jz,in =
√

1− e2in,max/min cos(iin,min/max) =
√

1− e2in,0 cos(iin,0). (2.17)

Setting initial conditions as ein,0 = 0 and ωin,0 = 0 we obtain the minimal eccentric-

ity and maximal inclination (and vice versa) a multiple system must reach to manifest

secular orbital perturbations:

emax =

√
1− 5

3
cos2(i0), (2.18)

cos(imin) = ±
√

3

5
. (2.19)

Equation 2.19 yields to extremal values imin = 39.2◦ and imin = 140.77◦. These

angles are called Kozai angles and they represent the limit angle between the inner and

outer orbit where eccentricity and inclination oscillations are present.

From the more general point of view, if we do not consider a test particle in the inner

orbit, we obtain the Hamiltonian of the system in the form:

Hquad = C2{(2 + 3e2in)(3 cos2(itot)− 1) + 15e2in sin2(itot) cos(2ωin)}, (2.20)



Chapter 2 – Secular orbital changes 10

where the constant C2 is defined as:

C2 =
k4

16

(m1 +m2)
7

(m1 +m2 +m3)3
m7

3

(m1m2)3
L4
in

L3
outG

3
out

. (2.21)

Using this general approximation, the minimal eccentricity and maximal inclination

values of the inner orbit could be obtained from the conservation of total angular

momentum Gtot = Gin +Gout:

G2
tot −G2

out = L2
in(1− e2in) + 2LinLout

√
1− e2in

√
1− e2out cos(itot), (2.22)

and from the conservation of energy, for the minimal eccentricity and maximal

inclination (or vice versa), setting ωin = 0 we could write:

Hquad

2C2

= 3 cos2(itot,max)(1− e2in,min)− 1 + 6e2in,min. (2.23)

However, the extremal values of inclination could not be determined generally, just

for a given sets of initial conditions.

Considering circular outer orbit, a typical timescale of the secular orbital perturba-

tions of eccentricity and inclination could be determined. The timescale is given by

relation tquad = Gin/C2. Integrating this relation between the minimal and maximal

eccentricity yields to result of Antognini (2015):

tquad ∼
16

15

a3out

a
3/2
in

(1− e2out)3/2
√
m1 +m2

m3k

=
16

30π

m1 +m2 +m3

m3

P 2
out

Pin
(1− e2out)3/2.

(2.24)

Summing the presented nature of the Kozai-Lidov effect, we can see, that the con-

servation of the z-component of the angular momentum results in oscillations between

inner orbit’s eccentricity and inclination. The inner orbit becomes more eccentric for

lower inclination and vice versa as shown on Figure 2.2.

2.2 The eccentric Kozai-Lidov effect

If the outer orbit in a hierarchical three-body system has non-zero eccentricity the

Hamiltonian in Equation 2.1 requires the next-level, so called octupole approximation,

which is proportional to α3 as non-zero eccentricity leads to changes of the orbital

parameters of the outer orbit (that are much slower than the Kozai-Lidov oscillation

timescales in the inner orbit). In this approximation the inner orbit’s inclination could
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(a) (b)

Figure 2.2: Cartoon of the consequence of the Kozai-Lidov effect. As the eccentricity

in the inner orbit rises, the inclination decreases.

surpass the value of π/2 and therefore, it could flip it’s orientation from prograde to

retrograde. As a consequence, the inner orbit’s eccentricity could reach very high and

not well defined values, as the whole system becomes more chaotic. The mechanism

is applicable for far more stellar systems as the quadrupole Kozai-Lidov one. It allows

to study eccentric orbits such us exoplanetary orbits, black hole dynamics and higher

multiplicity stellar systems. The eccentric Kozai-Lidov effect leads to higher order

resonances in general, characterised by eccentricity excitations and orbit flips, which

lead to chaotic behavior of the whole system at all. In addition, short range forces and

stellar mass-loss could trigger the eccentric Kozai-Lidov effect, what is an important

consequence in the case of contact binary systems (Naoz et al., 2011). However, in case

of VW LMi both the eccentricity of the detached orbit and the mutual orbit are smaller

than 0.1, therefore the eccentric Kozai-Lidov effect could not be the effect that causes

secular orbital changes in this quadruple system. The Kozai-Lidov effect is important

at the formation of tight binary systems. These systems can not form in proto-stellar

gas clouds without the Kozai-Lidov effect. As a consequence, the inner binaries of

loose triple systems in gas clouds transfer their angular momenta to their outer (third)

companions, and eventually the binary systems become more tighter and hierarchic.

Considering, that the orbital period of the inner binary is less than ten days, the effect

of magnetic braking grows and causes further angular momentum losses, which implies

formation of a contact binary system (Pribulla and Rucinski, 2006).
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2.3 Kozai-Lidov effect in quadruple systems

The Kozai-Lidov effect was immensely studied in the lowest possible order of stellar

multiplicity - hierarchical triple systems. In this case, the third component of the

system, which is markedly distant from the tight inner binary system aout � ain, causes

secular orbital changes in the inner orbit. Assuming non-zero eccentricity of the outer

orbit, secular changes in the outer orbit could occur, too. In this section we consider the

presence of secular perturbations in higher-order hierarchical multiple systems. It was

stated in Chapter 1 that hierarchical multiple systems could be divided into smaller

nested sub-systems. Further, each of the nested sub-systems could be treated as a

Keplerian orbit. Considering this actuality, in theory any multiple stellar system could

be divided into some sort of triple system and studied for the presence of Kozai-Lidov

secular orbital perturbations. However, as we saw the complexity of the approximation

of secular orbital perturbations in Section 2.1 for triple stellar systems, for higher-order

multiplicity even more complicated analytical solutions are expected. As the aim of

this thesis is to determine secular orbital changes of a hierarchical quadruple, the

application of Kozai-Lidov effect on hierarchical quadruples will be presented.

The Kozai-Lidov effect in quadruple systems was not studied previously, until the re-

search of Pejcha et al. (2013). In (Pejcha et al., 2013) considered hierarchical quadruple

systems composed of two binaries, where each binary acts as a distant third perturber

on the other, thus allowing to apply the analytical approximation of the three-body

Kozai-Lidov effect. However, the problem is more complex as the distant third per-

turber is not a point mass, indeed two separate bodies orbiting each other. This setting

causes secular orbital perturbations in both inner and outer orbits. Therefore quadru-

ple systems exhibit new dynamics related to Kozai-Lidov cycles. The work of Pejcha

et al. (2013) exposed, that quadruple’s dynamics qualitatively and quantitatively dif-

fers from the dynamics of triple systems. In quadruple systems, close encounters and

further collisions of stars occur more frequently. The aftermath of close encounters

or collisions by which binaries merge into single stars is that quadruple systems of-

ten dissipate into single rogue stars and triple systems. Dissipation could explain the

lesser count of quadruple systems compared to triple systems, what is consistent with

the Multiple Stellar Catalog (Tokovinin, 2008, 2018). For that reason, the lower fre-

quency of quadruples may be the result of a presence of much stronger and efficient

Kozai-Lidov effect in these systems. These results imply important applications of

Kozai-Lidov effect in quadruple systems such as the explanation of the origin of close

binaries and blue stragglers on a wide mutual orbit (Perets and Fabrycky, 2009) or the

origins of cataclismatic mergers of white dwarfs orbiting close binary systems (Soker

and Tylenda, 2006). Considering a quadruple system, which consists of two white
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dwarves on a close binary orbit and a distant binary star perturber, the two white

dwarves could merge due to Kozai-Lidov effect, thus creating type Ia supernova (Benz

et al., 1989). There are much more applications in case of quadruple systems as there

are no restrictions on the inclination of the perturbing body as in the case of triple

systems (Katz and Dong, 2012).

The analytic solution for quadruple systems consisting of two binary systems was

formulated by Vokrouhlický (2016). The results show, that unless the system is very

compact, a quadruple system could be perceived as two triple system in superposition

with gravitational effects on each other. The typical timescale of secular orbital changes

in quadruple systems as showed in (Vokrouhlický, 2016) and (Pejcha et al., 2013) is as

follows:

tk =
2

3π

(
aA(1− e2AB)

aB

)3/2(
aAB
aA

)3

PB. (2.25)

Here, as a quadruple system was considered, different notation was used: A denotes

parameters of one binary system, while B denotes the parameters of the second one.

AB denotes the orbital parameters of the shared mutual orbit of two binaries. This

typical timescale, also called as the Kozai unit gives us a useful estimation of secular

perturbation’s duration, thus allows us to precisely set the run-times of further nu-

merical integrations of studied systems. Integration run-times are generally set as the

multiples of the system’s Kozai unit, which could be directly determined from observed

orbital parameters. Vokrouhlický (2016) tested his solutions on various well observed

quadruple systems as V994 Her, V379 Cep and even VW LMi. Results on VW LMi

showed, that pericentre of the non-eclipsing binary could drift by roughly 3◦yr−1 due

to gravitational interaction with the eclipsing binary system. As a part of this thesis,

we will provide further examination of this drift. Using numerical integrator, we would

probe VW LMi’s secular orbital changes over a period of multiple Kozai units of the

stellar system, see Equation 2.25.

2.4 Empirical stability limit

All multiple systems with well defined orbits are dynamically stable (Tokovinin, 2008)

and the eccentricities of the outer orbits obey an empirical stability limit

Pout(1− eout)3

Pin
> 5. (2.26)

Based on statistics on the Tokovinin’s Multiple Stellar Catalog, an important em-

pirical ratio arises:
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Pout
Pin

> 5, (2.27)

where Pout is the period of the mutual wide orbit and Pin is the period of the

particular inner orbit. This ratio could be comprehended as a stability limit of a

stellar system. Systems whose values of period ratios are higher than five appear to be

dynamically stable as shown on Figure 2.3.

Figure 2.3: The relation between the inner and outer period for all physical multiple

system in Multiple Stellar Catalog. Full line represents equality, dashed line represents

value Pout/Pin = 5. Red dot represents the contact binary and the blue dot the detached

binary of VW LMi. Credit: Tokovinin (2018).

As we see, almost all known multiple stellar systems lay above this limit. In Figure

2.3 we can see some multiple systems laying in between values 0 and 5. It must not

necessarily mean that these systems are dynamically unstable. Most probably, this

is a result of a selection effect: these systems could be parts of higher-order multi-

ple systems (with period ratios obeying the empirical stability limit), which were not

discovered yet. Discovering higher-order hierarchies requires combination of various ob-

servation techniques (photometry, spectroscopy, interferometry). A marked example is

VW LMi. VW LMi was classified as an W UMa-type eclipsing binary after the discov-

ery of photometric variability by Hipparcos mission in 1997. Long-term spectroscopy

(Pribulla et al., 2006) showed that VW LMi is a quadruple system consisting of a

contact eclipsing binary and a non-eclipsing binary. As stated in (Tokovinin, 2004b)

all stellar systems with well-defined orbits are dynamically stable systems. Possible

explanation is, that dynamically unstable systems such as trapezia , see Chapter 1,
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dissipate quite rapidly, therefore it is not possible to define their orbital elements pre-

cisely or on the other hand, they just dissipated a long time ago and they do not form

a multiple system at the time. Thus, based on statistics we can say, that if we observe

a stellar system and determine it’s orbital parameters precisely, the stellar system will

be, with a high probability, dynamically stable. Comparing Equation 2.27 with the

typical timescale of Kozai-Lidov oscillations, Equation 2.24, we can see a direct re-

strain between the empirical stability limit and the Kozai-Lidov effect. The ratio is

also tied with the probability of secular orbital changes (Kiseleva et al., 1998). Apply-

ing Kepler’s third law on Equation 2.27 we get the ratio of outer and inner semi-major

axes. Thus, we can see the tightness of the system. If the ratio of semi-major axes

(and therefore orbital periods) is small, the multiple system’s components are at close

mutual distances and they behave dynamically unstable. However, if the component’s

separation high enough, the system remains stable and Kozai-Lidov oscillations reveal

on timescales longer than the timescales of the orbital periods. All these empirical and

analytic results imply, that the period ratio is an important parameter in the field of

study of multiple stellar systems as it reveals the system’s stability and the presence

of secular orbital changes.
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Chapter 3

Presenting VW LMi

VW LMi is a spectral type F3-5V hierarchical quadruple with 8.0 maximal visual mag-

nitude (Pribulla et al., 2006). It’s photometric variability with period 0.477547 days

was found by Hipparcos mission in 1997. It was classified as a W UMa - type eclipsing

binary. This type of system consists of a contact binary with a common envelope and

a characteristic strong tidal distortion is present (Ruciński, 1973). First ground based

photometric measurements of the contact binary were performed in 1999 and 2000

by Dumitrescu (2000). Later analysis of light curves and determination of system’s

parameters (Dumitrescu, 2003) proved that the system is a contact binary. BV pho-

tometry and it’s analysis was presented in 2003 (Gomez-Forrellad et al., 2003), while

Fourier analysis of Hipparcos light curve was presented in 2004 (Selam, 2004).

Long-term spectroscopy (1998-2005) by Pribulla et al. (2008) showed the presence of

a second non-eclipsing binary system. Thereafter VW LMi was classified as a spectro-

scopic hierarchical quadruple 1. However, it was shown, that a nearby star HD95606

forms a loose binary with the quadruple system. It’s separation and gravitational effect

is such minimal, that from the view of the dynamics of the quadruple system it could

be neglected. The periods of the three orbits were determined: contact eclipsing bi-

nary with period P12 = 0.4775 days, non-eclipsing binary with period P34 = 7.93 days,

both systems on a tight, 355 days long period mutual orbit. The masses of all four

components as well as the light-time effect (LITE) due to mutual revolution were also

determined. New photometric elements of VW LMi were obtained by Sánchez-Bajo

and Garcıa-Melendo (2007).

With its shortest mutual period, VW LMi is the tightest quadruple system ever dis-

covered(Tokovinin, 2008). The short mutual period is a key parameter of this thesis.

As was shown in Section 2.4, the ratio of the outer (mutual) orbital period and inner

1Notation: Indexes 1,2 - parameters of the eclipsing binary. Indexes 3,4 - parameters of the

detached binary.
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orbital periods is an important parameter - the value of this fraction is tied to the prob-

ability of secular orbital changes in multiple stellar systems. In the discussed system

the ratio of outer period P1234 and inner non-eclipsing period P34 is equal to 44.5. Since

systems with outer/inner period ratio higher than five are dynamically stable and have

high probability of secular orbital changes as a consequence of mutual gravitational

interactions (Kiseleva et al., 1998), we expect that secular orbit changes on timescales

as short as decades are present in this hierarchical system. Since the components tight

maximal angular separation (10 mas) (Pribulla et al., 2006), observational determina-

tion of the system’s parameters would be possible by interferometric method. However,

as we could not acquire interferometric observational time to observe VW LMi, pho-

tometric and spectroscopic observations will be used to determine the systems orbital

parameters.

VW LMi

GSC 2519-2347

HD 95660

HIP 54003

μα [mas.yr−1] 13.303(0.120) (Gaia Collaboration et al., 2018)

μδ[mas.yr−1] −6.083(0.166) (Gaia Collaboration et al., 2018)

RV [km.s−1] −0.15(25) (Pribulla et al., 2008)

π [mas] 9.0488(0.12) (Gaia Collaboration et al., 2018)

Vmax 8.0003(0.0123) (Gaia Collaboration et al., 2018)

(B − V ) 0.340(21) (Hog et al., 2000)

(J −K) 0.208(30) (Skrutskie et al., 2006)

Teff [K] 6506.0 (Gaia Collaboration et al., 2018)

sp. type F3 - 5V (Pribulla et al., 2006)

Table 3.1: Parameters of the variable VW LMi. The last column shows the source of

parameters.

3.1 Orbital parameters of VW LMi

In this section we present the known parameters of VW LMi. Secular orbital pertur-

bations are contemplated in the system, therefore it is important to state the orbital

parameters from the older observations to compare them with the new orbital param-

eters obtained in this thesis. First of all, in Table 3.1 we present the observational

parameters of VW LMi obtained from various sources - from David Dunlap Observa-

tory (Pribulla et al., 2008) Tycho-2 Catalog (Hog et al., 2000), 2MASS (Skrutskie et al.,
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2006) and from the most recent GAIA data release (Gaia Collaboration et al., 2018).

Secondly and most importantly, the spectroscopic orbital parameters by (Pribulla et al.,

2008) determined by simultaneous fit to observed radial velocities of both binaries and

times of minima of the eclipsing pair. The spectroscopic orbital parameters of (Pribulla

et al., 2008) will be crucial as the same processing techniques will be applied in this

thesis, therefore these parameters would serve as comparision to newly-determined or-

bital parameters.

Contact binary Detached binary

P12 [days] 0.47755106(3) P34 [days] 7.93063(3)

Q [days] 1.63(9) 10−10 e34 0.035(3)

T12 [HJD] 2,452,500.1467(2) T34 [HJD] 2,452,274.54(11)

K1 [km.s−1] 105.8(1.0) K3 [km.s−1] 63.99(23)

K2 [km.s−1] 250.2(1.2) K4 [km.s−1] 65.53(27)

M12 sin3i12 [M�] 2.231(23) M34sin3i34 [M�] 1.785(11)

i12 [deg] 79.0 i34 [deg] 68.9(1.5)

M1 [M�] 1.66 M3 [M�] 1.11

M2 [M�] 0.70 M4 [M�] 1.09

χ
2
ν (RV1) 1.086 ω34 [rad] 1.90(9)

χ
2
ν (RV2) 1.058 χ

2
ν (RV3) 0.862

χ
2
ν (MIN) 1.086 χ

2
ν (RV4) 0.851

Mutual wide orbit

P1234 [days] 355.02(17)

e1234 0.097(11)

T1234 [HJD] 2,456,046(6)

K12 [km.s−1] 21.61(49)

K34 [km.s−1] 23.22(33)

M1234sin3 i1234 [M�] 3.32(10)

i12 [deg] 64.1(4.2)

M1234 [M�] 4.56(0.07)

ω1234 [rad] 2.20(12)

V0 [km.s−1] −0.15(25)

Table 3.2: Spectroscopic elements of VW LMi. Determined via simultaneous fit to

radial velocities of both binaries and minima times of the eclipsing binary. The con-

tact binary has a circular orbit. Explanation: Pj-orbital period, ej- eccentricity, Tj-

time of periastron passage in eccentric orbits, time of minimum light for the contact

pair, Kj- spectroscopic half-amplitude, Mj sin3 ij- projected mass, ij- inclination, Mk-

component mass, ωj- argument of periapsis, j ∈ (12, 34, 1234), k ∈ (1, 2, 3, 4), χ2 are

the reduced chi-squared tests. Standard errors are given in parentheses. The stated

stellar masses and orbital inclinations are estimates. Credit: (Pribulla et al., 2008).
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Physical and geometrical parameters of the components that could not be determined

through spectroscopy, could be determined by a procedure used in (Pribulla et al.,

2006). These parameters, namely the component’s masses and orbit’s inclinations were

estimated in (Pribulla et al., 2008). We present these values in Table 3.2, however, these

are estimates, not directly determined values.

3.2 Presence of secular orbital changes

As it was stated in Section 2.4, based on works of (Tokovinin, 2004b) and (Kiseleva

et al., 1998), the empirical relation between the ratio of outer and inner orbital periods

Pout/Pin serves as a useful tool to show, if the multiple system is stable and if there are

present any secular orbital changes. In case of VW LMi, the ratio of orbital periods

of the outer orbit and the orbit of the non-eclipsing binary is P1234/P34 = 44.76, while

the ratio of orbital periods of the outer orbit and the orbit of the contact binary is

P1234/P34 = 743. Therefore, we have the following consequences: as both period ratios

are higher than the limit value five as stated in Equation 2.27, the system is dynamically

stable and according to the timescale of Kozai-Lidov oscillations, visible secular orbital

changes are expected on timescale of decades in case of the non-eclipsing binary and

on scale of centuries in case of the contact binary system. On human timescales, only

the secular changes of orbit of the non-eclipsing binary could be detected. However,

long-term observations of VW LMi are available. Pribulla et al. (2008) compared the

observations of the quadruple system for a decade 1998-2008. The values of important

parameters of the non-eclipsing binary determined from various observations are shown

in Table 3.3.

Year 1998 1999-2000 2002 2004-5 2007-8

HJD

(2 400 000+)
50852-50960 51261-51673 52277-52391 53060-53836 53823-54650

e34 0.032(6) 0.030(6) 0.032(5) 0.038(4) 0.039(4)

ω34 [rad] 1.43(19) 1.81(12) 2.04(15) 2.17(14) 2.18(9)

K3 [km.s−1] 63.69(37) 62.72(27) 65.00(39) 63.72(28) 63.59(34)

K4 [km.s−1] 65.67(42) 66.47(32) 65.51(43) 65.22(33) 65.79(39)

Table 3.3: Evolution of the non-eclipsing orbit. Standard errors of the last digit are

given in parentheses. Credit: (Pribulla et al., 2008).

The important consequences of the results are:

• The eccentricity remains quite stable
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• The semi-amplitudes remain stable within error, thus mutual orbit and non-

eclipsing orbit are probably very close to coplanar

• There is a definite apsidal motion.

Further observations, which will expose the precise rate of the apsidal motion of the

non-eclipsing binary system are provided in this thesis. For better view on the secular

orbital changes of the quadruple system and to determine the changes in the orbit of

the eclipsing binary, which could not been determined from observations yet, we will

perform numerical integration of the quadruple system on a scale of multiple Kozai

units to reveal the nature and timescales of secular changes in the quadruple system

VW LMi.
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Chapter 4

Numerical integration of orbits

In Chapter 1 it was stated, that hierarchical multiple systems consist of smaller nested

sub-orbits which could be treated as Keplerian two-body problems. Using this ap-

proach, in Chapter 2 we showed the analytical solution of Kozai-Lidov effect for hierar-

chical triple systems. The solution is complex and not trivial. The analytical solution

for hierarchical quadruple systems was outlined in Section 2.3. Coming out from the

solution for triple systems, the solution for the quadruple systems becomes far more

complex as seen in the publication of Vokrouhlický (2016). For this reason it is more

convenient to study the motion of multiple stellar systems through numerical methods

rather than looking for exact analytical solution. In this chapter we introduce the nu-

merical integration procedures, which were used in this thesis. First of all, we introduce

two basic approaches of finding the solution of perturbed orbital motions as published

in (Danby, 1992).

4.1 Encke’s Method

Encke’s method comes up from the osculating orbit, an ideal Keplerian orbit unper-

turbed by other bodies. However, if there are any other perturbing bodies, the oscu-

lating orbit of our studied body will vary in time. Cartoon showing the basic geometry

of Encke’s method is show in Figure 4.1.

Let µ = G(M + m) and ~F to be the perturbing force. Considering the geometry

shown in Figure 4.1, the equation for undisturbed motion (osculating orbit) is given

by

~̈ρ+ µ
~ρ

ρ3
= ~F , (4.1)

while the equation for the perturbed orbit is given by
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Figure 4.1: Cartoon showing the geometry of Encke’s method.

~̈r + µ
~r

r3
= ~F . (4.2)

The difference from the osculating orbit δ~r is given by

δ~r = ~r − ~ρ, (4.3)

thus we get the equation of motion

d2

dt2
δ~r = ~F + µ

(
~ρ

ρ3
− ~r

r3

)
. (4.4)

Equation 4.4 could be solved for δ~r through numerical integration. The undisturbed

orbit’s equation of motion 4.1 could be easily solved as a Keplerian two-body problem.

Thus, with δ~r and ~ρ solved, the real position of the perturbed body ~r could be directly

calculated using Equation 4.4. Encke’s method allows integration on a larger time

interval as perturbations, δr and its derivates are small. However, calculating each step

of Encke’s method takes much more time comparing to Cowell’s method. Also, with

accumulating perturbations δr increases and the whole procedure becomes divergent.

4.2 Cowell’s Method

Cowell’s method, often called direct integration, is the simplest and most straightfor-

ward method of orbit integration. It comes up from the N-body problem. Simply, for

N gravitationaly interacting bodies, the final force affecting the i-th body is given by

the sum of forces from bodies j:

mi ~̈ri = −G
j=N∑

j=1,i 6=j

mimj(~ri − ~rj)

|ri − rj|3
, (4.5)
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where mi, ~ri are the mass and state vector of the i-th body, mj, ~rj are the mass and

state vector of j-th body and G is the gravitational constant. Equation 4.5 is indeed the

formulation of Newton’s law of gravitational force for N-body problem. The principle

of this method is to numerically integrate the cartesian coordinates of each celestial

body. Considering N-body problem with its geometry shown on Figure 4.2, dividing

Equation 4.5 by mi we gain the acceleration of i-th body to the other N − 1 bodies.

Figure 4.2: Cartoon showing the geometry of Cowell’s method.

By numerical integration we can obtain the i-th body’s velocity and by further

integration we obtain its position. Since acceleration, velocity and position are three-

dimensional vectors, we split them to their components:

~a =


ẍ

ÿ

z̈

 , ~v =


ẋ

ẏ

ż

 , ~r =


x

y

z

 . (4.6)

The whole method is based on the integration of each cartesian component sep-

arately. To start the numerical integration, we must set the initial conditions of the

system. Taking a look at Equation 4.5, the consequent initial conditions are the masses,

initial positions and initial velocities of the studied bodies. Taking advantage of the

initial conditions, the accelerations could be determined directly from Equation 4.5.

The implementation of Cowell’s method is easier and quicker than the implementation

of Encke’s method. However, if the motion of the objects becomes rapid or the per-

turbations increase, smaller intervals of evaluation are required, which results in the

increase of the computational time and errors. Nevertheless, Cowell’s method is the

chosen method of orbit integration in this thesis. As any suitable numerical integrator

could be used to evaluate orbits, in the following section we present two integrators

used in this thesis.
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4.3 Numerical integrators

At the beginning of this section we define the meaning of the term integrator. Let ~r be

the position at time t and h a timestep. If we want to determine a new position at time

t′ = t+h, which approximates the true position of an object, we require an algorithm.

Algorithms that allow us determine such positions are called integrators. Hereby we

present the principles of two integrators used in this thesis as they are published in

(Press et al., 1986).

4.3.1 Euler integrator

Euler’s integrator is a simple numerical integrator suitable for solving first order ordi-

nary differential equations. Let have a given differential equation

d~y

dt
= f(y, t). (4.7)

For a small interval h in time t, using Taylor expansion we could obtain

yi+1 = yi + f(yi, ti)h. (4.8)

Since Newton’s second law, just as Equation 4.5 is a second order ordinary differ-

ential equations, we have to simultaneously solve two first order equations

d~r

dt
= ~v(t),

d~v

dt
= ~a(t). (4.9)

Taking advantage of Equation 4.8 and solving for Equations 4.9, we obtain the

following results for orbital motion:

~ri+1 = ~ri + h~vi

~vi+1 = ~vi + h~ai.
(4.10)

While ~ai is determined directly from Equation 4.5. As seen in Figure 4.3, the deriva-

tive at the starting point of each interval is extrapolated to find the next function value.

That means, that Euler’s method is asymmetric, which means that it advances the so-

lution through an interval h, but uses derivative information only at the beginning of

the interval. The error in each step of this method is proportional to O(h2). Therefore,

to acquire precise solution of a differential equation, small stepsize must be chosen,

which markedly increases computational time of the method. Also, the method is not

as accurate as other methods run at the equivalent stepsize and most crucially, it is

not very stable. Euler’s integrator is the most basic Runge-Kutta method. Runge-

Kutta methods of higher orders provide more precise solutions of ordinary differential

equations.



Chapter 4 – Numerical integration of orbits 25

(a)

(b)

Figure 4.3: Various integration methods. (a) Euler’s method. (b) Fouth-order Runge-

Kutta method. Credit: (Press et al., 1986)

4.3.2 Fourth-order Runge-Kutta integrator

Fourth-order Runge-Kutta method of orbit integration is in fact an extended Euler

method. However, fourth-order Runge-Kutta method calculates new function values

in more steps, which eventually increases the accuracy of calculation. Coming out from

first order differential equations 4.9, we obtain the function values in time t′ = t + h

from the following equation:

yi+1 = yi +
h

6
(k1 + 2k2 + 2k3 + k4), (4.11)

where h is the timestep and the coefficients k1, k2, k3 and k4 are defined as

k1 = f(ti, yi)

k2 = f(ti + h/2, yi + k1/2)

k3 = f(ti + h/2, yi + k2/2)

k4 = f(ti + h/2, yi + k3).

(4.12)

Coefficients indicate the slope of the function at the beginning, at the midpoint and

at the end of the time interval. The slope of the midpoint is determined twice. The

determination of these slopes is shown in Figure 4.3. As there are four coefficients,

the fourth-order Runge Kutta method requires four calculations at each step of size

h. The final function value determined from Equation 4.11 is much more precise than

the function value determined from the Euler method. The error in each step of this

method is proportional to O(h5). Smaller error means, that the method remains stable

even if we use larger timesteps during integration.

The method will be used to numerically integrate the orbital motion of multiple

system VW LMi to study the nature of the system’s secular orbital perturbations.
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Chapter 5

Radial velocity and Doppler effect

The Doppler shifted stellar velocity in the line of sight of the observer called radial

velocity is

vr =
c(λ− λ0)

λ0
, (5.1)

where c is the speed of light, λ is the observed wavelength of light and λ0 is wave-

length of light without Doppler shift. Broadening due to rotation of the star is caused

by the Doppler shift of light waves caused by the differences of radial velocity of in-

dividual surface elements of a star caused by its rotation. Doppler broadening of the

spectral lines due to rotation of the star has a shape of rotational profile (Gray, 2005).

The observed spectrum is a convolution of the local spectrum (unaffected by macro-

scopic motions) and the broadening kernel (which includes radial-velocity shifts and

rotational broadening). The broadening kernel or broadening function (hereafter BF)

gives the dependence of flux on the radial velocity. Thus, instead of a function f(u), we

observe a function h(x) which is a convolution with a broadening function (Rucinski,

1999):

h(x) =

∫ ∞
−∞

f(u)g(x− u)du = f(x) ∗ g(x). (5.2)

The function f(u) is the sharp-line (or local) spectrum of a non-rotating star being

at constant distance with respect to the observer (having zero radial velocity). The

function h(x) The function h(x) is the observed spectrum of a star with rotationally

broadened lines moving in the radial direction. Now we have observed spectrum h(x). If

we could produce a synthetic spectrum f(u), which would be the ideal spectrum of the

star without broadening effects, from Equation 5.2 we could determine the broadening

function g(x). As we are interested in broadening function caused by the motion of the

star, we have to choose spectral lines which are less affected by other broadening effects.

For this reason we have to choose a spectrum with narrow metal spectral lines, which
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are less affected by thermal or pressure broadening. Therefore, the ideal spectral range

free of hydrogen lines of the Balmer series and disturbing telluric lines is 4900-5500 Å.

Hydrogen atoms move in gas much faster than the atoms of metals, thus it’s lines are

more broadened. Also, lines are more broadened due to high abundance of hydrogen.

As regards for the other broadening effects, there are elegantly eliminated during the

process of deconvolution. Natural, pressure and thermal broadening of spectral lines

are present both on the template and the object spectra. As these effects are the

same on both spectra, during the deconvolution they simply eliminate each other. The

resulting broadening function has the shape of a rotational profile for a single star

rotating as a solid body (as long as we have sufficient spectral resolution). For binaries

and multiple stars, the broadening function is a superposition of rotational profiles for

individual components shifted in radial velocity because of the Doppler effect. The

function f(u) could be obtained by creating a synthetic spectrum or using a template

spectrum of a slow-rotating star, which has similar spectral type, metalicity and log g

to our studied star. Using this procedure we could obtain the broadening functions,

which are caused by the motion of the star and from these broadening functions we

could easily determine the radial velocities of the observed star. The radial velocity

of a star or a stellar system can be determined by various ways. The most primitive

way is to measure centers of stellar lines and finding their Doppler shifts. It is much

better to use the information from a longer section of spectrum. This can be done

by (i) cross-corelation of the observed spectrum with a spectrum of a radial velocity

standard (template) or by (ii) deconvolution of the observed spectrum by a template.

5.1 Cross-correlation technique

Hereby we present the method of cross-correlation as published in (Hilditch, 2001). The

cross-correlation technique was first implemented by Griffin (1967). Cross-correlation is

an operation which for real functions differs from the convolution only in the symmetry

of the arguments. The result is the cross-correlation function:

ccf(x) =

∫ ∞
−∞

f(u)g(x+ u)du = f(x) ∗ g(x). (5.3)

The function determines when the two functions f(u) and g(x) are best correlated.

Here, f(u) could be comparison star or a synthetic spectrum. The function can be

determined using fast Fourier transformation. The maximum of ccf(x) corresponds

to the radial velocity difference of the studied star and the template spectrum. The

ccf(x) resembles to the broadening function but it loses original spectral resolution so

it is its pure substitute. Lower resolution means that ccf(x) is not ideal to determine
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the radial velocities of the individual components because of their blending. The cross-

correlation was one of the first methods to determine radial velocities from spectra and

it is still widely used for single and slowly rotating stars. Therefore, in this thesis we

will use the broadening-function technique described in the following section.

5.2 Broadening function technique

The broadening function technique is a method of spectra deconvolution worked out

by Rucinski (1999). The method could be described through equation:

P (λ) = S(λ) ∗B(λ). (5.4)

Here P (λ) is the observed spectrum, S(λ) is the template sharp line spectrum and

B(λ) is the broadening function. Essentially, the broadening function is a function

mapping sharp-line template spectrum to rotationally broadened spectrum. In prin-

ciple it is the Doppler image of a star or stellar system, which gives the dependence

of flux on radial velocity. The computation of the broadening function is as follows.

Having an observed broadened spectrum P and spectrum of a slowly rotating template

S, we look for the convolution kernel B to the broadened spectrum P :

P (x) =

∫ ∞
−∞

S(y)B(y − x)dy. (5.5)

Both spectra must be expressed in constant step in radial velocity:

λi = λ0(1 + ∆/c). (5.6)

For real and discrete data the Equation 5.5 could be written as summation and

results in many linear equations for the broadening function:

sm−1 ... s1 s0

sm ... s2 s1

sm+1 ... s3 s2

. . . .

. . . .

sn−1 ... sn−m+1 sn−m





b0

b1

.

.

bm−1


=



pmc

pmc+1

.

.

pn−mc


(5.7)

This system of linear equations could in principle be solved e.g., by the Gaussian

elimination method. The problem is that we deal with a large set of equations (typically

several hundreds) which are ill-defined (close to being singular). A very powerful

technique for dealing with sets of equations or matrices that are either singular or
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numerically very close to singular is the singular value decomposition (Press et al.,

1986). Results obtained via broadening function technique are superior compared to

results of the cross-correlation technique as shown in Figure 5.1.

Figure 5.1: Cross-correlation (CCF) compared with the broadening function (BF).

Credit: (Rucinski, 1999).

As we see, the broadening function is a true linear deconvolution, with the proper

baseline at zero and no distortions. Meanwhile the cross-correlation is a non-linear

proxy of the broadening function with various distortions.

The extraction of radial velocities from the broadening functions is done through

fitting the broadening functions with Gaussian and rotational profiles. Gaussian pro-

files fit properly the broadening functions of slowly-rotating stars. This is the case

when the projected rotational velocity of the star is comparable or smaller than spec-

tral resolution of our spectrograph in radial velocity. For close binary stars including

the extreme case of contact binaries it is better to directly model the broadening func-

tions taking into account so-called proximity effects such as deformed shape of the

components, gravitational darkening, mutual irradiation or eclipses. For fast rotators

including components of close binaries theoretical limb-darkened rotational profiles are

appropriate. Rotational profile can be evaluated without excessive error by the linear

limb darkening law:

IC
I0C

= (1− ε) + ε cosφ, (5.8)

where I0C is the specific intensity at the center of the disk and φ is the angle between

the particular surface element and the direction to the observer (center of the disk) as
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viewed from the center of the star (so-called foreshortening angle). It is important to

note, that from the various limb darkening laws the linear law is the only one which

allows us analytically evaluate the rotational profile. The rotational profile with limb

darkening as stated in (Gray, 2005) is as follows:

G(ν) =

2(1− ε)

√
1−

(
νz
νL

)2

+
1

2
πε

(
1−

(
νz
νL

)2
)

(1− ε

3
)πνL

. (5.9)

The shape and the interpretation of the rotational profile is shown on Figure 5.2.

Fit of broadening functions via rotational profiles and Gaussian functions is compared

on Figure 5.3.

Figure 5.2: The shape and the interpretation of the rotational profile (left), dependence

of the rotational profile shape on the linear limb-darkening coefficient (right). Credit:

T. Pribulla

Figure 5.3: Rotational profile and Gaussian function fit of a binary star broadening

function. Credit: T. Pribulla.



Chapter 5 – Radial velocity and Doppler effect 31

Afterwards, from the fit of rotational profiles and Gaussian functions the radial

velocities of each component could be easily determined. Using this technique, we

can precisely determine the radial velocities for moderately to rapidly rotating stars.

Radial velocities are specially important in spectroscopy as they let us determine the

orbital parameters of the observed stars the way it is shown in the following section.

5.3 Spectroscopic orbit

We are interested in the equation of radial velocity in terms of Keplerian orbital el-

ements. Although the equation was first derived by Lehmann-Filhés (1894), in the

following we will follow the derivation of the radial velocity equation of Binnendijk

(1960).

Firstly, we derive the radial velocity equation for a spectroscopic double star with

only one spectrum visible. It means that the second component of the binary is faint

compared with the primary component and we are considering the absolute orbit of

the brighter primary component around the barycenter of the system.

Figure 5.4: Orbital ellipse in true plane. Credit: (Binnendijk, 1960).

In Figure 5.4 is shown the geometry of the problem. The absolute ellipse of the

brighter star is compared with the relative ellipse of the binary’s mutual orbit. The

z-axis is directed towards the observer. Comparing both ellipses, from trigonometry

we get:
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z = −r sin(ν + ω + π) sin i = r sin(ν + ω) sin i, (5.10)

where r is the position vector, ν is true anomaly, ω is the argument of periapsis and

i is the inclination angle between the ellipses. As we are interested in determination of

speed along z-axis, we differentiate Equation 5.10 with respect to time

ż = ṙ sin(ν + ω) sin i+ rν̇ cos(ν + ω) sin i. (5.11)

We can obtain ṙ from the equation of ellipse in polar coordinates

r =
a(1− e2)
1 + e cos ν

,
1

r
=

1 + e cos ν

a(1− e2)
. (5.12)

Differentiating 1/r gives

ṙ
1

r2
= ν̇

e sin ν

a(1− e2)

ṙ = ν̇
r2e sin ν

a(1− e2)
=

2πabe sin ν

Pa(1− e2)
= nb

e sin ν

1− e2

= na
√

(1− e2)e sin ν

1− e2
=

nae sin ν√
(1− e2)

.

(5.13)

Here we used Kepler’s second law which is the starting point for the computation

of ν̇

r2ν̇ =
2πab

P
= nab

rν̇ =
nab

r
=
nab(1 + e cos ν)

a(1− e2)
=
nb(1 + e cos ν)

1− e2

=
na
√

1− e2(1 + e cos ν)

1− e2
=
na(1 + e cos ν)√

1− e2
.

(5.14)

Taking advantage of trigonometric formula

cosω = cos[(ν + ω) + ν]

= cos ν cos(ν + ω) + sin ν sin(ν + ω),
(5.15)

we can express the Equation 5.12 as

ż =
nae sin ν√

1− e2
sin(ν + ω sin i+

na(1 + e cos ν)√
1− e2

cos(ν + ω) sin i

=
na sin i√

1− e2
[e cosω + cos(ν + ω)].

(5.16)

The observed radial velocity consists of a constant velocity V0, which is the velocity

of the system’s barycenter and from ż, which is variable with time since ν varies with
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time. Other symbols in the equation are Keplerian orbital constants. Thus, the final

equation of the radial velocity is as follows

RV = V0 +K[e cosω + cos(ν + ω)], (5.17)

where the spectroscopic half amplitude K is

K =
na sin i√

1− e2
. (5.18)

5.4 Spectroscopic orbits in quadruple systems

Now, as VW LMi is a quadruple system consisting of two binaries and the spectra

of all four components are observable, the radial velocity equation for this quadruple

system as expressed in (Pribulla et al., 2008) is:

RVi = V0 +K12[e1234 cosω1234 + cos(ν1234 + ω1234)]

+ (−1)i+1Ki[e12 cosω12 + cos(ν12 + ω12)].
(5.19)

This is the radial velocity equation of the contact binary. The contact binary’s

elements are denoted with indexes ”12”, while the detached binary’s elements are

denoted with indexes ”34”. The elements of the mutual orbit of the quadruple system

are denoted with indexes ”1234”. In Equation 5.19 index i = 1, 2 denotes the individual

components. Similarly, the radial velocity equation for the detached binary is as follows

RVi = V0 −K34[e1234 cosω1234 + cos(ν1234 + ω1234)]

+ (−1)i+1Ki[e34 cosω34 + cos(ν34 + ω34)],
(5.20)

where index i = 3, 4 denotes the individual components. The true anomalies could

be computed from

ν = 2 arctan(

√
1 + e

1− e
tan

E

2
), (5.21)

where E is the eccentric anomaly. However, further in this thesis the true anomaly

is represented in derivatives by the truncated series up to the second degree in orbital

eccentricity as follows:

ν ≈M + 2e sinM +
5

4
e2 sin 2M, (5.22)

where M = 2π(t − T )/P is the mean anomaly, with t being the observation time,

P the orbital period and T the time of periastron passage.
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As we can see, the radial velocity equation is a function of Keplerian orbital param-

eters. This is the key to determine orbital parameters through spectroscopy. Radial

velocities of the components can be obtained by modeling extracted broadening func-

tion by the Gaussian or rotational profiles. If we have a given set of radial velocities

with corresponding observation times t, we could determine the unknown parameters

in Equations 5.18, 5.20 and 5.21 via fitting the observed data with the theorethical

Equations 5.18, 5.20 and 5.21 using least-squares minimization. This is exactly how

the orbital parameters of VW LMi will be determined further in this thesis.
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Chapter 6

Photometry

VW LMi was detected by the Hipparcos mission as a W UMa-type eclipsing binary.

The non-eclipsing binary in the system does not change its brightness and hence it was

revealed by the spectroscopy. The light curve of the contact binary was analyzed by

Pribulla et al. (2008). The authors determined the inclination angle, degree of contact

and mass ratio. In this thesis we will concentrate on the timing information encoded

in the photometric data. The light-curve analysis is beyond our scope. To inspect the

timing variability, we construct so-called (O − C) diagram. In the term (O − C), O

stands for observed, while C stands for calculated value of a physical parameter. It

means, that (O − C) diagram designates the deviation of an observational parameter

from it’s theoretically predicted value. In its broadest sense it is a diagnostic tool in the

natural sciences and involves the evaluation and interpretation of the discord between

the measure of an observable event and its predicted or foretold value (Sterken, 2005).

While observing eclipsing binary systems, the observations are mostly timed in the

times of photometric minima. Photometric minima occur when the components of the

binary system are eclipsing each other, thus lesser light is observable. From the light

curves of such minima we can determine the exact time of the middle of the eclipse. Let

this exact time be our observed value O. As the revolution of a binary system around

it’s center of mass is a periodic event, if we know the length of the revolution’s period

and at least one time of a photometric minimum, we can determine the upcoming times

of photometric minima. This is our value C in the (O − C) diagram. If the deviation

(O − C) is marked, it means that the revolution’s period changes. The changes in

periods are caused by physical processes in the system, such as mass transfer between

components, mass loss or decelerating of the rotation due to magnetic breaking. Also,

the period could change due to light-time effect, which would be described later. Note,

that the period changes caused by the light-time effect are apparent and seen by the

observer only. The most straightforward method of determining the the upcoming
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times of photometric minima is through the linear ephemeris:

Tmin = T0 + PE, (6.1)

where T0 is an initial minimum time, P is the period a E is the epoch. However, if

there is a constant change of period in the system, the trend of the (O−C) diagram is

parabolic, therefore the quadratic ephemeris must be used to compute minima times:

Tmin = T0 + PE +QE2, (6.2)

where Q is the parameter of the quadratic ephemeris. An example of a star with

constantly changing period is shown on Figure 6.1.

Figure 6.1: O − C diagram for some Tmin of BW Vul with best fit parabola. Credit:

(Sterken, 2005)

If the residuals have a sinusoidal trend, it means that periodic changes occur, which

could be caused by orbital perturbations, apsidal motion or by the light-time effect.

6.1 The light-time effect

The light time effect (hereafter LITE) is an effect caused by the finite speed of light

and the changing distance from the observer. As the distance of the observer from

the light source varies also varies the time needed to travel this distance at the speed

of light (light-time). This basic, yet brilliant principle was recognized by Ole Rømer,

who firstly estimated the speed of light from the observations of Jupiter’s moons using

this exact principle. LITE in eclipsing binaries, caused by the orbital motion of the

eclipsing pair around the barycenter of the triple system, produces period variation

in minima timings (Zasche, 2005). Analyzing the (O − C) diagram of the eclipsing

binary it is possible to determine the orbital parameters of the eclipsing binary’s orbit
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around the triple system’s barycenter. This is crucial in case of VW LMi as we can

combine spectroscopic and photometric observations in order to determine the orbital

parameters of the quadruple system. If there is LITE present, the ephemeris could be

computed from equation:

Tmin = T0 + PE +QE2 + ∆T, (6.3)

where c is the speed of light. The amplitude of LITE is:

∆T =
ain sin i

c

(
1− e2

1 + e cos ν
sin(ν + ω) + e sinω

)
, (6.4)

where ain is the semi-major axis of the eclipsing binary and e, ν, ω are the ec-

centricity, true anomaly and the argument of perigee of the mutual wide orbit. Note,

that the Equation 6.4 could be derived directly from Equations 5.10 and 5.11. The

light-time is derived simply from Equation:

t =
z

c
, (6.5)

where z is the distance of the object c is the speed of light. The sinusoidal trend in

the O − C diagram caused by the LITE is shown in Figure 6.3.

Figure 6.2: An example of an O−C diagram of AU Aur with LITE . Credit: (Zasche,

2005)

As stated in (Wolf, 2014), LITE in eclipsing binaries and its combination with other

effects of celestial mechanics is a very efficient tool for study of triple and multiple stellar

systems. It can only be applied successfully in those cases where the expected period

of the third body is well defined by existing observations.

6.2 Minima determination

Most widespread approach to obtain instants of minima of eclipsing binaries is to use

Kwee & van Woerden’s method (Kwee and Van Woerden, 1956). From our experience
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the errors estimated using their formula (14) are often unrealistically small. The real

uncertainties are very probably dominated by systematic errors. The principal problem

in case of CCD photometry is scattered light which cannot be fully corrected by flat-

fielding. This results in spurious shifts/trends in differential photometry in case that

the telescope is not perfectly guided making times of minima systematically shifted.

Our photometry could possibly be improved by using an algorithm based on Principal

Component Analysis proposed by Tamuz et al. (2005). Unfortunately, the frames were

obtained at several observatories with different setups and even different orientation

of the field. Systematic errors in minima positions were partially removed by fitting

technique proposed below. Since light curve of the system appears to be very stable

(we do not see any asymmetries or changes) fitting templates were prepared to obtain

instant of conjunction (minimum) for any sufficiently long photometric sequence. Such

a way we made use not only of the minima but of other light curve segments. The

template light curves were represented by symmetric trigonometric series of the 10th

order.

Figure 6.3: An example of a fit of the observed light curve by template T (x). From

the best fit a new minimum time was determined.

Even if the eclipsing pair is a contact binary, amplitude of it’s light curve depends

on the wavelength. The differences in amplitude primarily result from wavelength-

dependent limb darkening and light contribution of the non-eclipsing binary. Due to

the differences in filter transparencies and wavelength response of detectors we had to

form a template light curve for each filter separately and the fitting light curve was

scaled to match the observations. We also noted small (≈ 0.02 mag) shifts of the light
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curves observed even with the same instrument. Sometimes even slight slopes of the

light curve were recorded. These shifts/slopes are very probably caused by scattered

light combined with different pointing of the telescope. To obtain good fits of the

observed light curves by templates T (x) we formed the following fitting function:

F (x) = A+Bx+ CT (x−D). (6.6)

This allowed for shifting, scaling and ”slanting” of the template light curve. Fixing

of the parameters was judged according to the appearance of individual light curves.

The example of a fit of the observed light curve by template T (x) is shown in Figure

6.3.

6.3 LITE and VW LMi

While determining the orbital parameters of VW LMi, we decided to fit a global model

to radial velocities and the minima times to better characterize the outer orbit. Rigor-

ous modeling of those datasets (four RV curves and times of minima) is quite complex

since times of all RV observations should be properly corrected for the LITE caused

by the mutual revolution of the binaries (Pribulla et al., 2008). The LITE is most

important in the case of the minima times of the contact binary orbit, where the LITE

amplitude is substantially larger than the data errors. Thus we will ignore LITE cor-

rection of the radial velocity data. For this specific quadruple system, the Equation

6.3 for the ephemeris of the contact binary acquires the following form:

Tmin = T12 + P12E +QE2 + ∆T12, (6.7)

where the last term is the amplitude of LITE:

∆T12 =
K12P1234(1− e1234)3/2

2πc

sin(ν1234 + ω1234)

1 + e1234 cos ν1234
, (6.8)

while our reference plane is the plane parallel to the sky and intersecting mass center

of the quadruple system. As we see, 6.7 and 6.8 shares the orbital parameters with

the radial velocity equation for the quadruple system VW LMi, presented in Section

5.4. In the further data processing, these equations will be used for the global fit of

the observations to determine the orbital parameters of VW LMi.
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6.4 Combining spectroscopy and photometry

We decided to fit the datasets of the radial velocities together with the dataset of new

photometric minima times. Both datasets are, however, nicely complementary: during

the spectroscopic conjunction, when the radial velocities of the components are not

measurable, we can observe minima giving the radial distance of the eclipsing binary

in the outer orbit.

Figure 6.4: Broadening functions of VW LMi. Left to right: all four components

visible, contact binary’s components in conjunction, detached binary’s components in

conjunction. Credit: (Pribulla et al., 2008)

As we can see in Figure 6.4, when the binary systems are in conjunctions, their

broadening functions are blended, thus one cannot determine the radial velocities of

components. However, the time of the contact binary’s conjunction is exactly the time

of a photometric minimum. Photometric minima times can be modelled by Equation

6.7. Combining spectroscopic and photometric observations allows us to determine

the orbital parameters more precisely as in times of spectroscopic conjunctions we still

have observational information about the orbits in form of photometric minima times.
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Chapter 7

New observations of VW LMi

As our aim is to find secular changes of orbits in the hierarchical quadruple VW Leonis

Minoris, the basis of this thesis was to obtain new observations to acquire the current

Keplerian orbital parameters of this system. The purpose of acquiring new orbital

parameters is to compare them with the decade-old orbital parameters shown in Table

3.2 determined by Pribulla et al. (2008). This comparasion should expose definite

changes in system’s orbits. New observations were obtained in season 2017-2018. Leo

Minor is in observable altitudes in a period from November up to May. In this period

during years 2017 and 2018 several new spectroscopic and photometric observations of

VW LMi were obtained at Astronomical Institute of the Slovak Academy of Sciences

in Tatranská Lomnica and at Thüringer Landessternwarte Tautenburg.

7.1 Spectroscopic observations

Medium and high-dispersion spectroscopy of VW LMi was obtained with three spectro-

graphs. At Stará Lesná observatory the observations were performed at the G1 pavilion

with a 60cm, f/12.5 Zeiss Cassegrain telescope equipped with a fiber-fed échelle spec-

trograph eShel (Pribulla et al., 2015; Thizy and Cochard, 2011). The spectrograph

has a 4150-7600 Å(24 échelle orders) spectral range and a maximum resolving power

of about R = 11,000. The ThAr calibration unit provides about 100 m.s−1 radial-

velocity accuracy. An Atik 460EX CCD camera, which has 2749×2199 array chip,

4.54 µm square pixels, read-out noise of 5.1 e− and gain 0.26e−/ADU, was used as

the detector. The observations were also performed with a 1.3m, f/8.36, Nasmyth-

Cassegrain telescope equipped with a fiber-fed échelle spectrograph at Skalnaté Pleso.

Its layout follows the MUSICOS design (Baudrand and Bohm, 1992). The spectra were

recorded by an Andor iKon 936 DHZ CCD camera, with a 2048×2048 array, 13.5µm

square pixels, 2.7e− read-out noise and gain close to unity. The spectral range of the
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instrument is 4250-7375 Å(56 échelle orders) with the maximum resolution of R =

38,000. Additional spectra were obtained at Thüringer Landessternwarte Tautenburg

with the Alfred Jensch 2m telescope and coudé échelle spectrograph. These spectra

cover 4510-7610 Åin 51 orders. A 2.2′′ slit was used for all observations giving R =

31,500.

Because of the short orbital period the exposure times were limited to 900 seconds

to prevent orbital-motion smearing.

The raw data obtained with the 60cm and 1.3m telescopes were reduced using

IRAF package tasks, Linux shell scripts and FORTRAN programs as described in

Pribulla et al. (2015). In the first step, master dark frames were produced. In the

second step, the photometric calibration of the frames was done using dark and flat-

field frames. Bad pixels were cleaned using a bad-pixel mask, cosmic hits were removed

using the program of Pych (2004). Order positions were defined by fitting Chebyshev

polynomials to tungsten-lamp and blue LED spectra. In the following step, scattered

light was modeled and subtracted. Aperture spectra were then extracted for both

object and ThAr lamp and then the resulting 2D spectra were dispersion solved. The

spectra obtained at Thüringer Landessternwarte Tautenburg were reduced under the

IRAF environment (Guenther et al., 2009; Hartmann et al., 2010; Hatzes et al., 2005).

Figure 7.1: Comparison stars used in aperture photometry and VW LMi.

7.2 Photometric observations

Multicolour photometric observations were obtained primarily to measure the light-

time effect but could be used to constrain possible secular inclination-angle changes.
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CCD BV I photometric data of VW LMi were also obtained. The primary goal of the

photometry was to better define the timing variability in the outer orbit. The data

were obtained at the Stará Lesná observatory with a 18cm f/10 auxiliary Maksutov-

Cassegrain telescope attached to the Zeiss 60cm Cassegrain used to obtain the échelle

spectroscopy (G1 pavillion). An SBIG ST10 MXE CCD camera and the Johnson-

Cousins filters were used. The field of view (FoV) of the CCD camera is 28.5×18.9’.

The filter set is also close to the Johnson-Cousins system. The CCD frames were pho-

tometrically reduced under the IRAF environment. First, master dark and flat-field

frames were produced, then bad pixels were cleaned and the frames were photometri-

cally calibrated. Prior to aperture photometry all frames were astrometrically solved

to define the pixel to WCS1 transformation. Ensamble aperture photometry was per-

formed with respect to 8 stars close to VW LMi as shown in Figure 7.1.

1World Coordinate System
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Chapter 8

Data processing

The data processing consisted of deconvolution of the spectra in IDL to extract the

broadening functions and to determine the radial velocities of the quadruple system’s

individual components, global fit to radial velocities and minima times to determine

the orbital parameters and the numerical integration of orbits for further study of

the system’s secular orbital evolution. While spectra deconvolution and radial velocity

extraction was done in IDL using routines of Rucinski (1999), for the global fit of radial

velocities and the photometric minima times and the numerical integration of orbits

own software tools were developed. The workflow of the data processing is shown in

Figure 8.2.

Figure 8.1: UML diagram of data processing.

The reduction of spectroscopic (raw frames to 1D normalized spectra) and photo-

metric data (raw frames to light curves) was performed by the supervisor. The focus

of this thesis is on the processing of spectroscopic and photometric observations, espe-

cially the determination of the observed system’s orbital parameters through global fit

of the data and numerical modeling of the system. Hereby, we describe the steps of

our data processing workflow as well as the process of our development of new software

tools.
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8.1 IDL

Interactive Data Language (IDL) is a high-level programming language designed specif-

ically for scientific data analysis (Bowman, 2006). IDL consists of both an interactive

programming environment and a programming language. The first part of our work-

flow - spectra processing was done in IDL. Our aim was to deconvolve spectra, and

afterwards to determine the radial velocities of VW LMi’s components modeling the

extracted broadening functions. As working with stellar spectra in form of FITS files,

and important prerequisite was the Astro library for IDL (Landsman, 1993). This

library contains routines for reading and writing FITS files, performing barycentric

correction of spectra and a lot more. All the spectra processing was done using IDL

routines1 of Rucinski (1999), which use the broadening function technique. Hereby, we

present the important steps of the spectra processing.

8.1.1 Analysis of the template spectrum

First of all, all spectra must be fully reduced - wavelength calibrated and normalized

to unity at maxima (rectified). The work process starts with the singular value decom-

position of the template spectrum using routine BFpro1.pro. This step is necessary

for the derivation of broadening functions from all other spectra. The template was a

spectrum of star HD128167. This star has similar spectral type, metalicity and log g as

VW LMi. However, HD128167 is slow-rotating, therefore it’s spectral lines have mini-

mal Doppler broadening. The template spectrum was taken with the same instrument

as the spectra of VW LMi, thus the instrumental effects were effectively removed from

all object spectra. The routine allows selection of the preferred spectral range. This is

a crucial step as we must avoid telluric lines and select a spectral range without wide

hydrogen lines, which are most affected by thermal Doppler broadening. In our case

this spectral range is 4900-5500 Å. Using routine BFpro1.pro the spectra with originally

linear wavelength vectors are rebinned to spectra with logarithmic wavelength vectors.

Prior using this routine we have to choose a reasonable step in the velocity vector,

which covers the resolution of the spectrum, ideally 2-3 steps per FWHM resolution.

8.1.2 Extraction of the broadening functions

The next step was the extraction of the broadening functions from the spectra of VW

LMi. Solving linear Equations 5.7 we obtain the broadening functions for our object

1The routines are available here: http://www.astro.utoronto.ca/~rucinski/BFdescription.

html

http://www.astro.utoronto.ca/~rucinski/BFdescription.html
http://www.astro.utoronto.ca/~rucinski/BFdescription.html
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spectra. The method of deconvolution has an important consequence. As stated in

Chapter 5, we have to choose a spectral range with spectral lines which are not affected

by other than Doppler broadening effects. Evidently, all spectral lines are affected by

natural and pressure broadening. However, the effects of these broadenings on the

template spectrum and on our object spectra are the same as we had chosen HD128167

as the source of our template spectrum. This star has almost the same local spectrum

(similar Teff , log g and metalicity) as VW LMi, thus the stated broadening effects

on the template spectrum and the object spectra are the same. The deconvolution

causes that effects, which are the same on both template and object spectra will be

eventually eliminated. Thus the resulting broadening function is an exclusive function

of Doppler broadening caused by the motion of the observed object. The extraction of

the broadening functions was done using the routine BFpro2.pro.

8.1.3 Smoothing of the broadening functions

Take a look at Figure 8.2, top left picture. This is the broadening function of VW LMi

determined with routine BFpro2.pro. As we see, the shapes of the function are not

well defined. This is caused because the individual points in the function are treated

as independent variables. Moreover, our spectrograph has a finite spectral resolution.

Thus we have to convolve the broadening function (which has now virtually infinite

resolution) with Gaussian corresponding to the spectral resolution of our instrument.

Smoothing of the functions is done through convolution with Gaussian functions with

various widths of FWHMs. FWHM is a function of the function’s variance σ. In Figure

8.2 we present the smoothed broadening functions of VW LMi for various values of

variance σ. As we increase the value of σ, the shape of the function becomes more

marked and the individual broadening functions of the quadruple’s components become

visible. The two sharp peaks are the broadening functions of the slow-rotating detached

binary system, while the two wider peaks are the broadening functions of the contact

binary system.

8.1.4 Heliocentric velocity corrections

To ensure correct measurements of radial velocities from the obtained broadening func-

tions we must compute heliocentric dates of middle exposure, heliocentric radial ve-

locity corrections and orbital phases of periodic variables. These computations and

routines are provided by routines hjd vel and hjd phase, respectively.
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Figure 8.2: Smoothed broadening functions of VW LMi. Smoothing was done through

convolution with Gaussian functions with various values of σ.

8.1.5 Radial velocity extraction

The final step is the determination of the radial velocities of the individual components.

Because of the reason stated in Subsection 8.1.2, the profiles of components can be

approximated by Gaussian profiles. However, in case of a contact binary system, the

profile of the broadening function must be modelled by rotational profile with limb

darkening. Therefore, the extraction of the radial velocities of the quadruple VW LMi

was done as follows. Firstly, all four peaks of the broadening function were modelled by

Gaussian functions. From the best fits of the Gaussian functions the radial velocities

of the detached binary were determined directly. Afterwards, we had to subtract the

peaks of the detached binary in order to model the remaining peaks of the contact

binary system by rotational profiles with linear limb darkening. From the best fit of the

broadening function by Equation 5.9 we determined the radial velocities of the contact

binary system’s individual components. As an example we present the broadening

functions of VW LMi in Figure 8.3. As we see on the left image all four components

of the quadruple systems are visible.

8.2 Orbit fitter

The outputs from the data processing in IDL were arrays of radial velocities and

corresponding heliocentric julian dates for VW LMi’s individual components. In order

to determine the orbital parameters of VW LMi we had to model the observational
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Figure 8.3: Broadening functions of VW LMi. On x-axis is the radial velocity and on

the y-axis the intensity. Left: all four components visible with their best Gaussian fits.

Right: components of the contact binary after subtraction of the detached system’s

components.

radial velocities with the theoretical equation of the radial velocity, see Equations 5.19

and 5.20 together with the obtained times of photometric minima. To perform the

mentioned global fit of all five datasets (radial velocities of four components and the

photometric minima times), we developed a new software tool - Orbit fitter. The tool

was written entirely in Python programming language with the use of Python libraries

pandas (data manipulation library), numpy (numerical procedures library), lmfit (non-

linear optimization and curve fitting library) and matplotlib (visualization and plotting

library). The optimization of data was performed via simplex method for function

minimization (Press et al., 1986). This optimization method, originally published by

Nelder and Mead (1965) was provided in Python’s lmfit library. The source code of the

Orbit fitter is presented in Appendix B. Hereby, we present the most important steps

of data processing via this software tool. Line numbers are references to Appendix B.

8.2.1 Preparing the fit

The first part of our tools is responsible for reading the datasets of radial velocities and

minima times and converting these datasets to numerical arrays, which are suitable for

further methods. All the data manipulation was done using library pandas. Starting

from line 32, we define the functions, which were used during the optimization. These

are the equations of the mean anomaly, true anomaly 5.21, the LITE ephemeris 6.7

and the radial velocity equation for the contact binary 5.19 and for the detached binary

5.20.
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8.2.2 The parameters

The parameters are objects of lmfit ’s class Parameters. These objects are the key con-

cepts of lmfit library. Parameters are the quantities to be optimized in all minimization

problems, in our case the parameters are the Keplerian orbital elements defined on lines

94-112. By using Parameter objects instead of plain variables, the objective function

does not have to be modified to reflect every change of what is varied in the fit, or

whether bounds can be applied. This simplifies the writing of models, allowing general

models that describe the phenomenon and gives the user more flexibility in using and

testing variations of that model (Newville et al., 2016).

8.2.3 Individual fits of the datasets

Individual fits of the datasets were necessary before the global fit. The goodness of fit

is described through the reduced chi-squared distribution χ2
ν (Bevington et al., 1993):

χ2
ν =

1

ν

N∑
i=1

(Oi − Ci)2

σ2
i

, (8.1)

where Oi are the observed data, Ci the calculated data, N the number of data-

points, σi are the uncertainties of the observed data and ν is the number of the degrees

of freedom, which equals to number of observations N minus number of fitted param-

eters m. The value of χ2
ν is in substance the summed deviation of our observed data

from the theoretically calculated expectations. In an ideal case, if the uncertainties of

the data are correctly determined and our model is appropriate, χ2
ν is close to unity.

Our individual fits (starting from line 114) were necessary, because our observational

data had not assigned uncertainties. Thus, we had to determine the unknown values

of σ before approaching to global fit of the data. The unknown uncertainties were

determined by fitting the individual datasets and changing the values of σ, until χ2
ν

for each dataset was closest to unity. The determined values of σ were then used as

average uncertainties of datasets in the global fit of the data.

8.2.4 Global fit of the data

This is the ultimate method of the Orbit fitter. In order to determine the unknown

orbital parameters, we fitted all our datasets at once. As a merit function we used the

reduced chi-squared distribution, see Equation 8.1. The merit function defined on line

157 was optimized using lmfit ’s minimize method, which we called on line 199. The

result of the global fit was the set of optimized orbital parameters.
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8.2.5 Plot of radial velocity curves

The rest of our code is responsible for calculating the phases of observations and plot-

ting the curves of radial velocities and LITE ephemeris against the observational data.

While plotting the observational data, we had subtracted the motion of the mutual

mass center of the quadruple system.

8.2.6 Comparing different approaches

The developed tool Orbit fitter relies on numerical procedures carried out by various

Python libraries. The merit function 8.1 is minimized by numerical methods in many

iterations. This thesis compares the orbital parameters of VW LMi published by

Pribulla et al. (2008). However, in (Pribulla et al., 2008) a different approach was used.

The merit function was minimized by the steepest descent approach (gradient method).

Let the merit function’s quantity (Oi − Ci) be a function f we want to minimize. We

have to compute the partial derivatives of function f by each parameter2:

δf =
∂f

∂V0
δV0 +

∂f

∂K12

δK12 +
∂f

∂K34

δK34 + ... (8.2)

We then put δf back in the merit function 8.1 and optimize the function via simplex

method for function minimization (Nelder and Mead, 1965). In (Pribulla et al., 2008)

computation of Equation 8.2 was done using analytic formulas for derivatives in the

merit function and optimized using a software tool written in Fortran language. Using

this approach, the number of optimization iterations is much smaller as there is no

need to partially derive the merit function (eighteen times). In the following Chapter,

we present our results obtained through both approaches.

8.3 Coordinates module

Presented in Appendix C, module Coordinates is a trivial, yet important transfor-

mation module in between Orbit fitter and N-body model. Via Orbit fitter we had

determined the Keplerian orbital elements of VW LMi. However, as we decided to use

Cowell’s method of orbit integration, we needed some initial cartesian position and ve-

locity vectors of VW LMi’s components before orbit integration. Module Coordinates

provides the transformation from Keplerian orbital elements to cartesian position and

velocity vectors at some arbitrary initial time using basic equations of orbital mechan-

ics (Danby, 1992). The origin of our cartesian coordinate system is in the mutual mass

center of both binaries, while our reference plane is the plane perpendicular to observer

2Note, that in our case we have eighteen orbital parameters we want to optimize.
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- the plane of sky. Thus, we also had to perform transformation of the cartesian vectors

to the plane of sky. This transformation of positions was performed using the following

equations (Hilditch, 2001):

x = r(cos Ω cos(ω + ν)− sin Ω sin(ω + ν) cos i)

y = r(sin Ω cos(ω + ν) + cos Ω sin(ω + ν) cos i)

z = r(sin i sin(ω + ν)).

(8.3)

While the velocities were transformed through:

vx =
xhe

rp
sin ν − h

r
cos Ω sin(ω + ν) + sin Ω cos(ω + ν) cos i

vy =
yhe

rp
sin ν − h

r
sin Ω sin(ω + ν)− cos Ω cos(ω + ν) cos i

vz =
zhe

rp
sin ν − h

r
cos(ω + ν) sin i,

(8.4)

where h is the absolute value of the angular momentum vector. These obtained

components of the cartesian position and velocity vectors served as initial conditions

for our numerical simulation.

8.4 N-body model

As we wanted to study the scale and long-term evolution of the orbital changes in the

quadruple system VW LMi, we had developed a numerical simulator N-body model, to

perform numerical integration of orbits in this system. The tool was written entirely

in Python programming language with the use of Python libraries numpy (numerical

procedures library) and matplotlib (visualization and plotting library). N-body model

is an object-oriented software tool, where stellar objects are represented as objects

(arbitrary objects could be defined). The source code of the N-body model is presented

in Appendix D. Hereby, we describe it’s individual parts.

8.4.1 Class Body

Class Body (defined on line 63) is used to define celestial objects. The objects are de-

fined through their masses and initial components of their position and velocity vectors.

In case of VW LMi, the initial vector components were computed using module Coor-

dinates. The masses of VW LMi’s individual stellar components were obtained from

(Pribulla et al., 2008). An important part of this class is the method CalcAcc (defined

on line 75). Using Equation 4.5 this method provides the calculation of the acceleration

vector of the celestial body. Additional methods Energy and Momentum provide the
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calculation of the body’s total energy and angular momentum, which are necessary

to inspect as these quantities during integration are conserved. List Body.atributes is

used to store the results of numerical integration.

8.4.2 Class Model

Class Model (defined on line 103) is the core of the N-body model. List Model.atributes

stores the celestial objects, the stellar system we want to simulate. Method RK4

(line 109) is the fourth-order Runge-Kutta integrator, which calculates new positions,

velocities and accelerations for each stellar object and appends these new values to their

Body.atributes lists. The main method of this class is simulation (defined on line 175).

It provides the iteration to calculate new position, velocity and acceleration vectors for

defined time interval and step size. The final method plot provides visualization of the

integrated orbits.

8.4.3 Integrating VW LMi

Quadruple stellar system VW LMi is defined from line 213. During the integration we

focused on the orbital changes of the detached binary as modelling the contact binary

system would require a different gravitational model, with built in solid-body model of

the stars, which is not implemented in the current version of our N-body model. Thus,

we took the contact binary system as one point mass and we studied the changes in

orbits of the detached binary. As P34 = 7.929 days, the timestep of integration must

be much chosen to be much smaller than period P34. Further, as Kozai timescales of

secular orbital changes of the detached binary system are on scales of decades, we had

to integrate the orbits for several decades to observe secular changes in their orbital

elements. From spectroscopy one cannot determine the values of the longitudes of the

ascending nodes. As the scale of secular orbital changes in the orbit of the detached

binary directly depends on the difference of the longitudes of ascending nodes Ω34 and

Ω1234, we set Ω34 = 0 and integrated the orbits for various values of Ω1234. The result

of the integrations were the positions and velocities of components.

8.4.4 Additional simulations with ReboundX

As we will discuss later, the fourth-order Runge-Kutta integrator proved to be insuffi-

cient for integrating such a tight stellar system as VW LMi. We were able to integrate

the system for some orbital periods, but afterwards the simulation lost it’s stability.

Therefore, we used C/Python simulator ReboundX (Tamayo et al., 2016) to perform

long-term numerical integrations of system VW LMi. ReboundX uses a fifteenth-order



Chapter 8 – Data processing 53

adaptive stepsize Runge-Kutta integrator ias15 (Rein and Spiegel, 2014). This inte-

grator prooved to be sufficient to integrate our system for several centuries.

8.5 Elements module

The final part of the data processing was done using the Elements module. The results

of our numerical integrations were the cartesian position and velocity vectors of VW

LMi’s components. In order to study the system’s orbital changes we developed the

module Elements, which transforms cartesian vectors to Keplerian orbital elements.

The source code of the module is presented in Appendix E. The main transformation

method in defined on line 14. All the transformations were performed in relative orbital

frame - we inserted the heavier component of the binary to the center of the system

and considered that the less heavier component orbits the heavier component. In this

method we firstly calculated the angular momentum vector (h bar). We also calculated

the eccentricity vector (ecc vec), which points from the mass center of the binary system

to the periastron of the orbit and the vector n pointing towards the ascending node

and the true anomaly. Afterwards, using basic equations of celestial mechanics we

calculated the orbital parameters we were interested in: semi-major axis a, orbital

eccentricity e, longitude of the ascending node Ω and the argument of periastron ω.

In order to determine the inclination between VW LMi’s binary systems, the method

also returns the components of the angular momentum vector.
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Chapter 9

Results

Following the workflow presented in Chapter 8 we processed the new spectroscopic and

photometric observations of the quadruple system VW LMi. This Chapter is dedicated

to presentation of our results. In dedicated sections we present the results of spectra

deconvolution and radial velocity extraction in IDL, global fit of the radial velocities

and minima times in order to determine the orbital parameters and the numerical

integration of orbits of VW LMi.

9.1 Radial velocities

As stated in Chapter 7, we obtained new spectra of VW LMi at Stará Lesná, Skalnaté

Pleso and Tautenburg observatories. The quality of these spectra differed widely be-

tween the observatories. The precision of the radial-velocity measurements is deter-

mined by the resolution of the spectrograph, the signal-to-noise ratio, the observed

spectral range, the density of spectral lines, and the projected rotational velocity of the

observed object (v sin i). The signal-to-noise ratio (SNR) depends on the sky trans-

parency, object altitude and seeing conditions. Taking all this to account, the best

quality spectra were from Thüringer Landessternwarte Tautenburg. The runner-ups

were the spectra from Skalnaté Pleso MUSICOS spectrograph and the least quality

spectra were from Stará Lesná eShel spectrograph. Controversially, we neglected the

use of Tautenburg spectra. Only a few spectra from this observatory were available

(9). In addition, after the determination of their broadening functions we saw, that on

some of these spectra either or both binaries were in conjunction resulting in blended

component profiles, therefore we were not able to extract their radial velocities. Al-

though the spectra from Tautenburg were the most precise, their statistical weight was

too negligible to reliably determine the orbital parameters of VW LMi. Consequently,

all new radial velocities were determined from spectra taken by échelle spectrographs
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eShel and MUSICOS at Stará Lesná and Skalnaté Pleso, respectively. Although these

spectra provided less precise radial velocities, there were more numerous and the fit of

the radial velocity equation was more reliable. Some examples of the broadening func-

tions of VW LMi have been already presented in Chapter 8. The broadening functions

were then modeled by Gaussian and rotational profiles in order to obtain the radial

velocities of the components. Finally, all together we obtained radial velocities for 222

times, 110 of them from eShel spectra and 112 from MUSICOS spectra. All the new

radial velocities, together with the 48 new minima times are appended in Appendix A.

9.2 The orbital parameters

We proceeded the global fit of new data. Spectra from Stará Lesná and Skalnaté Pleso

had different quality and as a consequence, the radial velocities determined from fits of

the broadening functions had different quality, too. The new data from Skalnaté Pleso

had significantly higher dispersion compared to the new data from Stará Lesná. By

this reason we had decided to fit data from these observatories separately. For both

separate fits the same photometric minima times were used.

9.2.1 Test fit of 2008 data

To make sure, that the Orbit fitter provides precise orbital parameters, we performed

a test fit of radial velocities and minima times, that were used to determine the orbital

parameters of VW LMi published in (Pribulla et al., 2008). The test was performed

following the workflow presented in Chapter 8. From the individual fits of the datasets

we determined the following average uncertainties: σminima = 0.0009 day, σRV 1 = 10

km s−1, σRV 2 = 11.5 km s−1, σRV 3 = 3.5 km s−1, σRV 4 = 3.2 km s−1. The average

uncertainties determined by Pribulla et al. (2008) were as follows: σminima = 0.0008

day, σRV 1 = 11.3 km s−1, σRV 2 = 13.1 km s−1, σRV 3 = 2.6 km s−1, σRV 4 = 2.2 km s−1.

As presented in Table 9.1 the parameters determined by Orbit fitter were in a close

match with the parameters of Pribulla et al. (2008). The corresponding fits of radial

velocity curves are presented in Figure 9.1. After being assured, that our software tool

provides precise results, we advanced to the fit of 2018 data.

9.2.2 Fit of 2018 eShel data

As it was told in Chapter 8, the Orbit fitter uses different methods to obtain the orbital

parameters from the best fits than the software tool of T. Pribulla. Therefore we had

performed fits of the new data using both tools in order to compare both approaches.



Chapter 9 – Results 56

From the individual fits of the new 2018 eShel datasets we determined the following

average uncertainties: σminima = 0.0009 day, σRV 1 = 8.5 km s−1, σRV 2 = 9.5 km s−1,

σRV 3 = 1.15 km s−1, σRV 4 = 0.95 km s−1. The average uncertainties determined by T.

Pribulla were as follows: σminima = 0.0009 day, σRV 1 = 8.9 km s−1, σRV 2 = 12.3 km

s−1, σRV 3 = 0.86 km s−1, σRV 4 = 0.87 km s−1. The complete set of the new orbital

parameters of VW LMi is presented in Table 9.1 and the corresponding best fits are

shown on Figure 9.2.

9.2.3 Fit of 2018 MUSICOS data

From the individual fits of the new 2018 MUSICOS datasets we determined the fol-

lowing average uncertainties: σminima = 0.0009 day, σRV 1 = 4.4 km s−1, σRV 2 = 11.2

km s−1, σRV 3 = 0.55 km s−1, σRV 4 = 1 km s−1. The average uncertainties determined

by T. Pribulla were as follows: σminima = 0.0009 day, σRV 1 = 5.2 km s−1, σRV 2 = 12.7

km s−1, σRV 3 = 0.55 km s−1, σRV 4 = 0.42 km s−1. The complete set of the new orbital

parameters of VW LMi is presented in Table 9.1 and the corresponding best fits are

shown on Figure 9.3.

Parameter 2008∗ 2008 eShel∗ eShel MUSICOS∗ MUSICOS Unit

V0 −0.15(25) −0.149 −2.33(3.12) −2.35 −2.59(2.56) −2.5 [km.s−1]

Q 1.63(9) 10−10 1.633 10−10 −6.0(7) 10−12 −5.99 10−12 1.4(9) 10−11 1.4 10−11 [days]

P12 0.47755106(3) 0.47755127 0.47755451(6) 0.47755454 0.47755418(8) 0.47755409 [days]

T12 52500.1497(2) 52500.15 52500.136(6) 52500.14 52500.14(4) 52500.14 [HJD]

K1 105.8(1.0) 105.58 103.74(10.29) 105.82 104.31(6.15) 104.29 [km.s−1]

K2 250.2(1.2) 250.95 232.56(14.37) 234.55 241.86(15.1) 241.32 [km.s−1]

K12 21.61(49) 21.59 20.89(7.77) 21.11 22.50(6.16) 22.48 [km.s−1]

P34 7.93063(3) 7.93018 7.93033(4) 7.93027 7.93053(1) 7.929 [days]

T34 52274.54(11) 52279.89 52220.38(2) 52220.43 52220.26(45) 52221.56 [HJD]

e34 0.035(3) 0.035 0.040(6) 0.0398 0.041(9) 0.042

K3 63.99(23) 63.87 63.91(1.03) 62.55 63.81(1) 63.80 [km.s−1]

K4 63.53(27) 65.48 65.01(1.23) 64.09 65.3(7) 65.24 [km.s−1]

K34 23.22(33) 23.18 23.25(2.16) 23.23 21.38(2.89) 21.31 [km.s−1]

ω34 1.90(9) 1.90 2.83(2) 2.80 2.84(2) 2.84 [rad]

P1234 355.02(17) 355.008 356.091(1.8) 356.06 356.96(1.45) 356.78 [days]

T1234 53046(6) 53048.896 53008.91(240) 53009.98 53093.18(88) 53092.29 [HJD]

e1234 0.097(11) 0.097 0.026(9) 0.0262 0.049(9) 0.049

ω1234 2.20(12) 2.21 2.042(4.2) 2.025 3.63(1.54) 3.60 [rad]

χ2
ν(RV 1) 1.086 1.21 1.02 1.08 1.19 1.02

χ2
ν(RV 2) 1.058 1.02 0.99 1.00 1.04 1.01

χ2
ν(RV 3) 0.862 1.09 0.99 1.06 0.99 1.31

χ2
ν(RV 4) 0.851 0.86 1.03 1.16 0.98 0.75

χ2
ν(MIN) 1.086 1.05 1.03 0.81 0.98 0.97

Table 9.1: Orbital parameters from the global fit of radial velocities and minima times.

Columns marked with an asterisk are the results of T. Pribulla, the other columns are

the results obtained via Orbit fitter. The periastron passage times Ti are stated in

heliocentric julian days − 2400000 days.
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Figure 9.1: Test fits of VW LMi’s radial velocities from 2008 data. Left to right: best

fits of Pribulla et al. (2008), best fits obtained via Orbit fitter.

Figure 9.2: Best fits of VW LMi’s radial velocities from 2018 eShel data. Left to right:

best fits of T. Pribulla, best fits obtained via Orbit fitter.
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Figure 9.3: Best fits of VW LMi’s radial velocities from 2018 MUSICOS data. Left to

right: best fits of T. Pribulla, best fits obtained via Orbit fitter.

9.2.4 Fit of minima times

The fifth dataset that was fitted together with the radial velocities was the dataset of

new minima times of VW LMi. Hereby, we present the (O − C) diagram of the new

minima times.

Figure 9.4: Left to right: Long-term (O−C) diagram with best fit by theoretical curve

of LITE. Phase (O − C) diagram with best fit by theoretical curve of LITE, using

parameters determined via Orbit fitter.

The minima times determined from photometric observations were fitted by the

theoretical curve of LITE using parameters determined by the global fit of MUSICOS
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data. In Figure 9.4 we present the best fits to the times of minima from 2004 to 2018.5

as well as the phase (O − C) diagram of the new minima times. In Figure 9.4 we can

clearly see the effect of LITE: the period of the sinusoidal curve is exactly one orbital

period of VW LMi (≈355 days) - caused by the revolution of the contact binary around

the common barycenter of VW LMi.

9.3 Numerical integration of VW LMi

After the determination of the Keplerian orbital parameters of VW LMi we proceeded

to the numerical integration of the quadruple’s orbits. Using methods in module Co-

ordinates we transformed the Keplerian orbital elements determined from global fit of

radial velocities and minima times to cartesian position and velocity vectors at some

arbitrary initial time. Module Coordinates requires the masses of individual compo-

nents of VW LMi. These masses, as well as the inclinations of orbits with respect to

the plane of sky were taken from (Pribulla et al., 2008) and they are presented in Table

3.2. As our numerical model is a point-mass model, it could not be used to integrate

the motion of the contact binary. Therefore, we considered the contact binary system

as one point mass with mass m12 = m1 + m2 and we placed it to the mass center

of the binary system. Thus, we studied the orbital perturbations in the orbit of the

detached binary system and in the mutual wide orbit of VW LMi. We integrated the

quadruple system for various intervals - 1 and 500 outer orbital periods of VW LMi

(0.97 years and 485 years, respectively). All the orbital plots in this Section are the

results of 1 period integration. In order to study long-term orbital evolution, we used

the 500 period integrations. However, while performing numerical integration with the

N-body model we realized, that our fourth-order Runge-Kutta integrator is unsufficient

for such tight (and massive) system as VW LMi, because after some periods of inte-

gration the system lost it’s stability. Because of the unstoppable marching of time that

was slowly guiding us towards inevitable deadlines we had chosen to perform the 500

period integrations of the orbits using C/Python simulator ReboundX (Tamayo et al.,

2016).

9.3.1 Determining the longitudes of ascending nodes

The last Keplerian orbital parameters, which were necessary to compute VW LMi’s

cartesian position and velocity vectors were the longitudes of the ascending nodes of

the detached binary’s orbit (Ω34) and the mutual wide orbit (Ω1234). These important

parameters one cannot determine from global fit of the observational data. As the

inclination between the orbit of the detached binary and the mutual wide orbit (Jmutual)
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directly depends on the difference of Ω34 and Ω1234 we proceeded the following way. We

set the longitude of the ascending node Ω34 = 0. Afterwards we performed numerical

integrations for various values of Ω1234, from 0◦ up to 360◦ with 30◦ steps. Thus, we

obtained twelve different results, which correspond for various values of inclinations

between the detached binary’s orbit the and mutual wide orbit. After transforming

the results of the numerical integration to osculation Keplerian orbital elements via

Elements module, we compared the results with observational orbital parameters of

VW LMi - we were comparing observational values of eccentricities and arguments of

perigee with their values obtained from numerical integrations. We found the best

matches with the observational elements for the integrations with Ω1234 = 0◦, 30◦, 330◦.

In Figure 9.5 we present the orbits of VW LMi for these values of Ω1234 as they are

projected to the plane of sky. Our results imply, that the difference of Ω34 and Ω1234

must be a value from interval <0◦, 0◦±30◦>and the true projection of VW LMi to the

plane of sky must be similar like configurations shown in Figure 9.5.

Figure 9.5: One period integrations of VW LMi for various values of Ω1234 as projected

to the plane of sky. Green and orange are the trajectories of the detached binary, blue

is the trajectory of a contact binary considered as one mass point, while the red cross

represents the mass center of the system. One unit on both axes is equal to 1 a.u.

9.3.2 The tightest quadruple system

We performed an integration of VW LMi’s orbits with different settings. We set all

the spatial angles (i, Ω) to zero to obtain perpendicular view to the orbital plane

after plotting our results. Moreover, in this case we treated the contact binary as two

separated objects. Our aim was to display how tight is the quadruple system VW

LMi. The result of this integration is shown in Figure 9.6. The separation between

the mass centers of the contact and detached system is only 1.62 a.u., the separation

of components in the detached binary system is 0.1 a.u., while the separation of mass
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centers of the contact binary is only 0.004 a.u. (approximately twice of the Earth-

Moon distance). With these separations, VW LMi is the tightest quadruple system

discovered yet.

Figure 9.6: One period integration of VW LMi. Perpendicular view to the orbital

plane. Blue and purple: trajectories of detached binary. Red: trajectory of the contact

binary’s heavier component. Green: The less heavier component of the contact binary.

9.4 Secular orbital changes in orbits of VW LMi

The aim of the 500 period integrations was to study the long-term orbital evolution

of the quadruple system VW LMi. Using module Elements we transformed the re-

sults of numerical integrations (cartesian position and velocity vectors) to Keplerian

orbital parameters. Elements ’s were developed to return the orbital elements we were

interested in: orbital eccentricity e, inclination i, longitude of the ascending node Ω,

argument of periastron ω and the angular momentum vector h. These were the orbital

parameters, which changed in time as the observations proved (ω, e), or they cannot be

determined from the observations (Ω, i). The angular momenta vectors were used to

calculate the inclination between VW LMi’s two binary systems Jmutual, which cannot

be determined from observations. Jmutual is simply the angle between the two angu-

lar momenta vectors. Note, that the inclinations i are the inclinations of VW LMi’s

orbits with respect to the plane of sky, not the true mutual inclinations of orbits in

the quadruple system. Our plots of the evolution of the orbital elements are shown in

Figure 9.7. As described in Section 9.3.1, we studied the integrated orbits, where the

initial value of Ω1234 was set to values 0◦, 30◦, 330◦. Therefore, Figure 9.7 compares the

evolution of the elements for these three cases.
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(a) Evolution of e34. (b) Evolution of i34.

(c) Evolution of Ω34. (d) Evolution of ω34.

Figure 9.7: Long-term evolution of the orbital elements of VW LMi’s detached binary’s

orbit for various initial values of Ω1234. Red curve: Ω1234 = 0◦, green curve: Ω1234 = 30◦,

blue curve: Ω1234 = 30◦.

Figure 9.8: Long-term evolution of the inclination between both binaries of VW LMi

for various initial values of Ω1234. Red curve: Ω1234 = 0◦, green curve: Ω1234 = 30◦,

blue curve: Ω1234 = 30◦.
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Similarly, we studied the evolution of the inclination Jmutual as presented in Figure

9.8. Our results for the selected values of Ω1234 are in a good match with observational

parameters of VW LMi in Table 9.1.

9.4.1 Comparison with the observations

Comparing the plots in Figure 9.8 with the orbital parameters determined from MU-

SICOS (as they are more precise than eShel results) spectra presented in Table 9.1 we

can conclude the following results.

Eccentricity e34

The observational value of the eccentricity e34 is currently 0.042 and in 2008 it’s value

was 0.035. It means that the value of eccentricity oscillates at least between these two

values. As we see in Figure 9.8 the best match for this interval is for Ω1234 = 30◦ and

Ω1234 = 330◦. Eccentricity oscillations with the least amplitude are present in case if

Ω1234 = 0◦ - however, this setting does not match with our observations. As we cannot

determine the exact value of Ω1234 (just an interval <0◦, 0◦ ± 30◦>) we can conclude,

that the true eccentricity of the detached binary system of VW LMi varies in between

value 0.03 and 0.05.

Inclination with respect to the plane of sky i34

The value of the inclination of the detached binary system i34 was determined by

Pribulla et al. (2008) as 68.9◦. More exactly it was approximated as one cannot deter-

mine this orbital parameter from spectroscopic observations. This value could match

with any of the results for various Ω1234 presented in Figure 9.8. All we can conclude

from the numerical integrations is that the value of i34 varies in between 40◦ and 90◦

with respect to the plane of sky.

Longitude of the ascending node Ω34

During our integrations the initial value of Ω34 was set to 0◦ in order to determine

the difference of Ω34 and Ω1234. Our results shown in Figure 9.8 imply, that Ω34 has

different oscillation intervals for various values of Ω1234. For Ω1234 = 0◦ the value of Ω34

varies between −5◦ and 5◦, for Ω1234 = 30◦ between −60◦ and 0◦ and for Ω1234 = 330◦

between 0◦ and 60◦. It implies that the difference of Ω34 and Ω1234 could reach the

maximal value 60◦ just as we had determined in Section 9.3.1.
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Argument of periapsis ω34

The observational value of the argument of periapsis ω34 is currently 162.7◦ and in 2008

it’s value was 108.9◦. It means that in the orbit of the detached binary is a definite

apsidal motion - the orbit’s periapsis moves 53.8◦/decade. Using this observational

value, we determined that the orbit’s periapsis completes one revolution in 67 years. If

we compare this values with the results of numerical integrations, we can see that the

best match with this value is for the integration where Ω1234 was set to 0◦. In this case

the periapsis completes one revolution in 100 years. The results for Ω1234 = 30◦ and

Ω1234 = 330◦ are quite similar - in these cases the periapsis completes one revolution

in not quite 200 years. As we obtained best match with observations for Ω1234 = 0◦

we conclude that the difference of Ω34 and Ω1234 must vary on an interval smaller

than <0◦, 0◦ ± 30◦>. Also, as the period of periastron motion from integration for

Ω1234 = 0◦ differs from the period determined from observations, we conclude that the

contact binary system, if considered as a solid body (which is true in reality) causes

perturbation in the orbit of the detached binary and therefore the observational period

of periapsis motion is smaller than the period determined from integration in which we

considered a point-mass model of VW LMi.

Mutual inclination Jmutual

Is the inclination between both binaries of VW LMi. Jmutual is important as it de-

termines the presence and scale of the Kozai-Lidov effect, see 2.18. Jmutual of VW

LMi was not determined before. Our results shown in Figure 9.8 imply, that Jmutual

does not reach the critical Kozai angle 39.2◦ for any of the values Ω1234. It means

that the orbits of both binaries are almost coplanar and the Kozai-Lidov effect is not

present in this quadruple system (anymore). The changes in orbits are caused by stan-

dard orbital perturbations in three-body problem, see Lagrange planetary equations in

(Danby, 1992, chapter 11.5).

Evolution of the mutual wide orbit

Using results from the numerical integrations we revealed the long-term evolution of

VW LMi’s mutual wide orbit. As expected, there are no significant changes in this

orbit. It is not surprising - as stated in Section 2.3, in case of quadruple systems

consisting of two binaries, the binary systems cause orbital perturbations in each others

orbits, their mutual wide orbit is not affected.
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Chapter 10

Conclusion

New observations of the VW Leonis Minoris proved the presence of secular orbital

changes in this tight quadruple system. Obtained data included spectroscopic and

photometric observations. To acquire spectroscopic elements of the system and to

study their secular changes, new software tools had to be developed. In this final

Chapter we discuss the accuracy of our software tools and take a closer look on the

obtained results.

10.1 Discussing our software tools

The processing of spectra and photometric minima times followed the workflow pre-

sented in Figure 8.2. The new spectra were deconvolved in order to obtain the broad-

ening functions and radial velocities of VW LMi’s individual components in IDL using

routines of Rucinski (1999). All the following data processing was carried out in our

own software tools, developed especially for the needs of this thesis. These tools are:

the Orbit fitter, Coordinates, N-body model and Elements. Modules Coordinates and

Elements were used to transform Keplerian orbital elements to cartesian position and

velocity vectors and vice versa. Using basic equations of celestial mechanics, these

modules provided credible results and there is no need for further discussion. The

main software tools were the Orbit fitter and the N-body model, which we discuss in

the following dedicated sections.

10.1.1 Orbit fitter

The first act performed with the Orbit fitter was the individual fit of the four datasets

of radial velocities and one dataset of new minima times in order to determine the

average uncertainties of each dataset. The determined average uncertainties presented

in Section 9.2 are in a good match with the average uncertainties determined by T.
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Pribulla. Also, these uncertainties have reasonable values if we compare them with the

radial velocities of VW LMi’s individual components. Using these average uncertainties

we proceeded to the global fit of all datasets. As stated in Section 9.2, data from Stará

Lesná and Skalnaté Pleso observatories were fitted separately because of their different

quality. We compared the results of the Orbit fitter with the results of the software

tool of T. Pribulla. Both software tools provided reasonable and comparable results.

Thus, we conclude that the steepest descent and simplex numerical approach for the

global fit of our data are both applicable and both provide adequate results.

10.1.2 N-body model

After we obtained the Keplerian orbital parameters of VW LMi via Orbit fitter we

transformed these elements to cartesian position and velocity vectors at some initial

time via Coordinates module. Afterwards we proceeded to numerical integrations of

orbits using software tool N-body model. The software tool was previously tested - we

created a numerical model of the Solar system (including the Sun, the planets and

some comets). The numerical integration of the Solar system provided precise results,

therefore we proceeded to the numerical integrations of VW LMi. The details and

settings of the integrations were presented in Section 9.3. The N-body model provided

precise results for 1 period integrations of VW LMi (outer orbital period ≈355 days).

However, after integrations for more orbital periods we noticed, that the system had

lost it’s stability. Simply the fourth-order Runge-Kutta integrator was unsufficient

for the integration of the quadruple system VW LMi. In this system there are four

stars. Each of these stars has approximately the mass of the Sun and moreover they

are very close to each other (0.1 a.u. in the case of the detached binary). To handle

this quadruple system a higher-order Runge-Kutta method was required. Therefore,

the long-term numerical integrations were obtained via ReboundX simulator and it’s

fifteenth-order Runge-Kutta integrator ias15. With this integrator we were able to

integrate VW LMi for 500 orbital periods without loosing it’s stability. Our future

plans involve implementation of a higher-order Runge-Kutta integrator (not necessary

fifteenth-order) to our tool N-body model - a task, which was not incorporated in this

thesis due to shortage of time.

10.2 Discussing our results

Hereby, we discuss our results obtained during the data processing. The main results

are the radial velocities obtained in IDL, the Keplerian orbital parameters of VW LMi
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obtained in the Orbit fitter and the various results from the numerical integration of

VW LMi’s orbits obtained in the N-body model and ReboundX.

10.2.1 Radial velocities and minima times

We processed spectra from Stará Lesná, Skalnaté Pleso & Tautenburg. The quality

of spectra from various spectrographs differed widely - the best spectra were from

Tautenburg observatory. However, since there were only few spectra available, we

neglected the further use of the Tautenburg spectra. Thus, our results come from the

spectra from the échelle spectrograph at Stará Lesná observatory and Skalnaté Pleso

observatory. Although these spectra provided less precise radial velocities, there were

more numerous. Thus, the further fit of the radial velocity equation was more reliable.

All together, we obtained 222 new radial velocities of VW LMi, 110 from the eShel and

112 from the MUSICOS spectra. Also, we obtained 48 new minima times at the Stará

Lesná observatory with a 18cm f/10 auxiliary Maksutov Cassegrain telescope attached

to the Zeiss 60cm Cassegrain telescope. These 222 new radial velocities and 48 new

minima times served as the input data to the Orbit fitter software tool.

10.2.2 Orbital parameters and secular orbital changes

All the orbital parameters of VW LMi determined from the observational data are

shown in Table 9.1. The table contains results from two different approaches: columns

marked with an asterisk are the results of T. Pribulla, who used steepest descent

approach, while the remaining columns are the results obtained via Orbit fitter using

simplex approach. First of all, we compare the results of these two approaches. As

we can see, the results from the two approaches are in a good match and the χ2
ν ’s of

both approached are close to unity. In Figures 9.1, 9.2 and 9.3 the best fits of radial

velocities for individual datasets are presented. As we can see, the best fits obtained

via Orbit fitter result in a larger scatter of the observations after the correction for the

outer/inner orbital motion. As the χ2
ν ’s of the fits are close to unity (which mean that

the fits are good) the scattering could be caused by some aberration arising during the

construction of the phase diagram. However, we did not find the mentioned bug, thus

the best fits obtained via Orbit fitter remained more scattered. Comparing the results,

we can conclude that both approaches return reliable values of the orbital parameters

and the Orbit fitter developed for this thesis is a well-grounded software tool. As we

concluded that the obtained results - orbital parameters of VW LMi are reliable, we

compare the quadruple’s orbital parameters from (Pribulla et al., 2008) with the new

orbital parameters determined from the new observations. As discussed previously,
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spectra from various observatories had different quality. As the highest quality spectra

were from MUSICOS spectrograph from Skalnaté Pleso observatory, we compare the

orbital parameters determined by the global fit to MUSICOS data with the orbital

parameters from (Pribulla et al., 2008). As stated in section 2.3, secular orbital changes

in quadruple stellar system are present in the orbits of individual binary systems (as

they perturb each other’s orbits). However, no orbital perturbations should occur in

the mutual wide orbit of the quadruple system. Pribulla et al. (2008) showed, that

secular orbital changes are present in the orbit of the detached binary system of the

quadruple VW LMi.

10.2.3 Changes in the detached binary’s orbit

As presented in Table 9.1, we found the presence of secular orbital changes in the orbit

of the detached binary. The most visible change is in the argument of perigee ω34.

While in 2008 ω34 was equal to 1.90 radians, our new value of ω34 is 2.84 radians.

It means that the orbit’s periapsis moves 0.94 radians (or 53.8◦) per decade. Also,

the eccentricity of the orbit increased from the value 0.035 in 2008 to the current

value 0.042. However, the rate of this change was determined from the results of

numerical integrations. As presented in Figure 9.8, the eccentricity of the detached

binary’s orbit oscillates between values 0.03 and 0.05. Also, using our results from the

numerical integration of orbits we obtained the changes of orbital parameters i34 and

Ω34 (which one cannot obtain from spectroscopic observations). We can conclude from

the numerical integrations that the value of i34 varies in between 40◦ and 90◦ with

respect to the plane of sky. Our results also imply, that Ω34 has different oscillation

intervals for various values of Ω1234. For Ω1234 = 0◦ the value of Ω34 varies between −5◦

and 5◦, for Ω1234 = 30◦ between −60◦ and 0◦ and for Ω1234 = 330◦ between 0◦ and 60◦.

The remaining orbital parameters did not show the presence of striking orbital changes.

As the spectroscopic semi-amplitudes K3 and K4 remained quite stable during the last

decade we can also conclude, that the detached orbit and the mutual orbit of VW LMi

are very close to coplanar.

10.2.4 Changes in the contact binary’s orbit

In the presented orbital parameters shown in Table 9.1 we did not find significant

orbital changes. Similarly to the detached binary, the spectroscopic semi-amplitudes

K1 and K2 remained quite stable during the last decade we can also conclude, that

the contact binary’s orbit and the mutual orbit of VW LMi are very close to coplanar.

Also, as our N-body model is a point-mass model, we considered the whole contact
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binary system as one point mass. In this thesis we did not focus on the secular orbital

changes in this binary system. For the reader interested in the orbital changes of this

contact binary, we recommend to compare (Pribulla et al., 2008) with the article of

Djurašević et al. (2013), which contains the photometric study of VW LMi.

10.2.5 Changes in the wide orbit

No secular orbital changes in the mutual orbit of VW LMi were expected. However,

as presented in Table 9.1 we found changes in the mutual orbit’s eccentricity e1234 and

argument of perigee ω1234. In 2008 the value of e1234 was equal to 0.097 (Pribulla et al.,

2008), while the new value of e1234 is 0.049. As for the argument of perigee ω1234: in 2008

ω1234 was equal to 2.20 radians, our new value of ω1234 is 3.60 radians. These are similar

changes in eccentricity and the argument of perigee as they are present in the detached

binary’s orbit. However, in case of the detached orbit, the secular orbital changes are

caused by gravitational perturbations from the contact binary system - the mutual orbit

should not be affected. In case that VW LMi is a quadruple stellar system. However,

the changes in ω1234 and e1234 are a serious clue, that there might be fifth component in

this stellar system, which eventually causes secular perturbations in the mutual orbit

of the quadruple VW LMi. As stated in Chapter 3, VW LMi (the quadruple system)

forms a loose binary with star HD95606 as published in (Pribulla et al., 2008). In

order to examine this relationship, we compared the parallaxes and mean motions of

VW LMi and HD95606 from the latest Gaia data release (Gaia Collaboration et al.,

2018). The parallax and the mean motion of VW LMi is π = 9.0488 mas, µα = 13.303

mas.yr−1, µδ = −6.083 mas.yr−1, while the parallax and mean motion of HD95606

is π = 7.7238 mas, µα = 12.720 mas.yr−1, µδ = −4.469 mas.yr−1. Although these

parallaxes and mean motions have similar values, they are quite different to form a

quintuple stellar system. It means that there might be a closer and yet undiscovered

fifth component of VW LMi, which causes secular orbital changes of the mutual orbit

of the quadruple system.

10.2.6 The longitudes of ascending nodes

One major result of the numerical integrations was the determination of the unknown

longitudes of ascending nodes Ω34 and Ω1234. As discussed in Section 9.3.1 these values

one cannot determine - we could determine only the value of their difference. There-

fore, we integrated the orbits of VW LMi for various settings as discussed in Section

9.3.1. Then we transformed the resulting position and velocity vectors to Keplerian

orbital parameters and compared them with the orbital parameters determined from
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observations. From the best matches, we implied that the difference of Ω34 and Ω1234

must be a value from interval <0◦, 0◦ ± 30◦>. This is an unprecedented result, never

determined before.

10.2.7 The mutual inclination of the binaries

Another unprecedented result obtained in this thesis is the determination of the mutual

inclination Jmutual in between the contact and detached orbits. This parameter is

important because it can prove the presence of the Kozai-Lidov effect in the system

VW LMi. As stated in Section 2.1, a minimal mutual inclination in between such orbits

must reach the critical value 39.2◦ to manifest secular orbital changes due to the Kozai-

Lidov effect. As stated in Section 9.4.1, Jmutual does not reach the critical Kozai angle

39.2◦. It means that the Kozai-Lidov effect is not present in this quadruple system. The

changes in orbits are caused by standard orbital perturbations in three-body problem.

10.3 Discussing the nature of secular perturbations

In this section we discuss the nature of the secular orbital perturbations in the quadru-

ple system VW LMi. As it was stated in Section 10.2, the calculated value of inclination

between the detached and mutual orbit implies that Kozai-Lidov oscillations are not

present in this quadruple system any more. We concluded, that the perturbations are

caused by standard orbital perturbations. Now, let’s recall Section 2 where we de-

scribed the Kozai-Lidov effect. The timescale of the secular orbital changes caused by

the Kozai-Lidov effect could be calculated using Equation 2.24. However, we already

proved that the Kozai-Lidov effect is not present in the system, we confirm our result

by calculating the timescale of such oscillations using Equation 2.24. Furthermore,

we calculate the timecale of Kozai-Lidov oscillations in quadruple systems using the

Equation 2.25. The calculated timescales are shown in Table 10.1.

Effect Equation Timescale

Kozai-Lidov 2.24 14.07

Kozai-Lidov in quadruple systems 2.25 131.93

Table 10.1: Timescales (in years) of secular perturbations in the detached orbit.

As we see, the computed timescale of the Kozai-Lidov oscillations differs from the

oscillation periods of the detached orbit’s parameters presented in Figure 9.7. This just

confirms our conclusion that the effect is not present in the system as the calculated
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timescale is unrealistic. Although, if we consider the analytic solution of the Kozai-

Lidov effect in quadruple systems and the timescale calculated using Equation 2.25

we obtain a result (132 years), which is similar to oscillation periods of the detached

orbit’s parameters presented in Figure 9.7. This result could mean, that Kozai-Lidov

effect is eventually present in the quadruple system VW LMi and it is described by

analytic solution of Vokrouhlický (2016). This quadruple system was even mentioned

in (Vokrouhlický, 2016) as a perspective candidate to test the analytic solution. As

we compare our results of numerical integrations with the timescale calculated using

Equation 2.25 we can see, that the formulation of Vokrouhlický (2016) is in a close

match with our results. Consequently, the changes in orbital parameters of VW LMi

can be described by the analytical formulation of the Kozai-Lidov effect in quadruple

systems as published by Vokrouhlický (2016). Describing the secular orbital changes

through this approach might be eventually more accurate than describing them through

Lagrange’s planetary equations.

10.4 Overview

VW LMi is an exceptionally interesting stellar system. It is the tightest quadruple

stellar system yet discovered and striking secular changes occur in it’s orbits. Both

of the system’s inner binaries act as perturbers on each other, thus causing secular

orbital perturbations in each others orbits. In our work we prooved the existence and

the scale of these secular changes. Moreover, we determined the unprecedented values

of the longitudes of the ascending nodes and the value of the mutual inclination in

between the quadruples binaries. However, some additional questions arised. First

of all, the existence of the contact binary could be a consequence of the Kozai-Lidov

effect. Due to transport of the angular momentum of the (now) contact system to the

distant perturber, it’s orbit could have shrinked until the two stars reached the Roche-

limit and eventually became a contact binary. As stated in Chapter 2, the transport

of the angular momentum is directly caused by the Kozai-Lidov effect. Secondly, even

the mutual wide orbit of the quadruple system is extremely tight (1.62 a.u.). This

tightness could have been caused by an extra and yet unknown companion of the

quadruple system, which ”stole” the inner system’s angular momentum. This means

that VW LMi is, or at some time interval was even a quintuple stellar system. However,

both of these questions are difficult to answer. The first question would require a large-

scale backward integration of the system, while the second one requires observations

of VW LMi’s closest stellar neighbours. All in all, our results are satisfactory. We

had developed four fully functional software tools, which formed the data processing
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pipeline for the needs of this thesis. The obtained results proved the presence of

secular orbital changes in the orbits of VW LMi as forecasted by Pribulla et al. (2008)

and finally, we showed that the Kozai-Lidov effect is not affecting the quadruple system

anymore - but this effect is certainly responsible for the existence of this tight quadruple

system.
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Bedalov, A. (2005). A giant planet around the massive giant star HD 13189. Astron.

Astrophys., 437:743–751.

Hilditch, R. W. (2001). An Introduction to Close Binary Stars.



BIBLIOGRAPHY 75

Hilditch, R. W. (2001). An introduction to close binary stars. Cambridge University

Press.

Hog, E., Fabricius, C., Makarov, V. V., Urban, S., Corbin, T., Wycoff, G., Bastian, U.,

Schwekendiek, P., and Wicenec, A. (2000). The tycho-2 catalogue of the 2.5 million

brightest stars. Technical report, NAVAL OBSERVATORY WASHINGTON DC.

Katz, B. and Dong, S. (2012). The rate of wd-wd head-on collisions may be as high as

the sne ia rate. arXiv preprint arXiv:1211.4584.

Kiseleva, L., Eggleton, P., and Mikkola, S. (1998). Tidal friction in triple stars. Monthly

Notices of the Royal Astronomical Society, 300(1):292–302.

Kozai, Y. (1962). Secular perturbations of asteroids with high inclination and eccen-

tricity. The Astronomical Journal, 67:591.

Kwee, K. and Van Woerden, H. (1956). A method for computing accurately the epoch

of minimum of an eclipsing variable. Bulletin of the Astronomical Institutes of the

Netherlands, 12:327.

Landsman, W. (1993). The idl astronomy user’s library. In Astronomical Data Analysis

Software and Systems II, volume 52, page 246.

Lehmann-Filhés, R. (1894). Ueber die bestimmung einer doppelsternbahn aus spec-

troskopischen messungen der im visionsradius liegenden geschwindigkeitscompo-

nente. Astronomische Nachrichten, 136(2):17–30.

Lidov, M. (1962). The evolution of orbits of artificial satellites of planets under the

action of gravitational perturbations of external bodies. Planetary and Space Science,

9(10):719–759.

Lithwick, Y. and Naoz, S. (2011). The eccentric kozai mechanism for a test particle.

The Astrophysical Journal, 742(2):94.

Naoz, S. (2016). The eccentric kozai-lidov effect and its applications. Annual Review

of Astronomy and Astrophysics, 54:441–489.

Naoz, S., Farr, W. M., Lithwick, Y., Rasio, F. A., and Teyssandier, J. (2011). Hot

jupiters from secular planet–planet interactions. Nature, 473(7346):187.

Nelder, J. A. and Mead, R. (1965). A simplex method for function minimization. The

computer journal, 7(4):308–313.



BIBLIOGRAPHY 76

Newville, M., Stensitzki, T., Allen, D. B., Rawlik, M., Ingargiola, A., and Nelson, A.

(2016). Lmfit: non-linear least-square minimization and curve-fitting for python.

Astrophysics Source Code Library.

Pejcha, O., Antognini, J. M., Shappee, B. J., and Thompson, T. A. (2013). Greatly

enhanced eccentricity oscillations in quadruple systems composed of two binaries:

implications for stars, planets and transients. Monthly Notices of the Royal Astro-

nomical Society, 435(2):943–951.

Perets, H. B. and Fabrycky, D. C. (2009). On the triple origin of blue stragglers. The

Astrophysical Journal, 697(2):1048.

Press, W. H., Flannery, B. P., and Teukolsky, S. A. (1986). Numerical recipes. The art

of scientific computing.
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Appendix A

New radial velocities and minima

times

HJD Epoch HJD Epoch

[days] [days] [days] [days]

2454931.362 5091 2456709.534 8814.5

2455168.714 5588 2457056.478 9541

2455192.589 5638 2457056.717 9541.5

2455220.525 5696.5 2458073.673 11671

2455235.566 5728 2458127.633 11784

2455249.414 5757 2458133.365 11796

2455249.415 5757 2458134.797 11799

2455253.474 5765.5 2458149.6 11830

2455253.474 5765.5 2458073.673 11671

2455274.484 5809.5 2458127.633 11784

2455274.485 5809.5 2458133.365 11796

2455280.454 5822 2458134.797 11799

2455290.482 5843 2458149.6 11830

2455295.497 5853.5 2458166.793 11866

2455295.497 5853.5 2458188.762 11912

2455304.334 5872 2458188.762 11912

2455356.386 5981 2458201.656 11939

2455356.387 5981 2458201.656 11939

2455534.52 6354 2458236.52 12012

2455535.714 6356.5 2458236.519 12012

2455560.545 6408.5 2458250.371 12041

2455589.431 6469 2458250.37 12041

2455589.432 6469 2458251.326 12043

2455659.393 6615.5 2458251.327 12043

Table A.1: New minima times.
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HJD RV1 RV2 HJD RV3 RV4 HJD RV3 RV4

[days] [km.s−1] [km.s−1] [days] [km.s−1] [km.s−1] [days] [km.s−1] [km.s−1]

2457753.634 78.57 -200.87 2457753.613 40.45 -18.71 2458133.546 55.55 -53.66

2457774.593 117.22 -216.42 2457753.624 39.62 -18.98 2458133.557 54.14 -53.55

2457774.604 113.99 -223.23 2457753.634 39.43 -17.4 2458188.386 43.53 -79.75

2457780.596 -105.65 207.49 2457774.593 33.22 -25.55 2458188.398 43.52 -80.38

2457780.606 -100.95 200.7 2457774.604 32.99 -26.29 2458188.408 43.90 -79.58

2457780.618 -88.74 191.36 2457774.615 32.88 -27.2 2458188.422 44.42 -79.82

2457797.505 101.81 -218.11 2457774.626 34.21 -27.47 2458188.433 43.80 -79.5

2457797.516 101.91 -225.12 2457780.596 -54.53 57.62 2458188.443 44.01 -80.14

2457797.526 91.24 -232.47 2457780.606 -54.81 57.33 2458188.455 43.43 -80.23

2457814.455 -103.45 226.35 2457780.618 -53.68 57.39 2458188.467 44.08 -80.03

2457843.388 103.63 -145.62 2457780.629 -53.75 56.67 2458188.556 42.38 -78.87

2457843.398 97.8 -192.67 2457782.633 34.22 -33.57 2458188.589 43.79 -78.69

2457843.409 109.1 -184.27 2457800.489 47.68 -61.63 2458188.601 42.30 -79.47

2457844.357 113.45 -195.62 2457800.500 46.73 -61.34 2458188.612 42.00 -79.37

2457844.368 97.65 -168.22 2457800.510 46.51 -60.51 2458200.408 -85.92 45.9

2457845.329 87.92 -179.27 2457814.455 24.43 -48.5 2458200.418 -86.40 46.64

2457854.346 93.14 -234.48 2457840.405 25.31 -66.34 2458200.428 -87.14 45.7

2457854.357 117.74 -224.23 2457840.415 24.76 -66.37 2458203.383 28.35 -71.56

2458133.483 -115.5 215.06 2457843.388 -88.27 46.68 2458203.394 27.97 -71.57

2458133.493 -105.42 214.8 2457843.398 -87.49 46.63 2458217.364 -57.54 10.44

2458133.504 -97.77 223.3 2457843.409 -88.11 44.6 2458217.375 -55.80 9.58

2458133.525 -90.65 200.14 2457844.357 -65.82 24.29 2458217.385 -54.93 9.15

2458133.536 -80.72 200.99 2457844.368 -65.78 23.22 2458218.465 -2.58 -43.61

2458188.386 -94.78 217.67 2457854.346 23.56 -70.8 2458218.488 -4.48 -44.7

2458188.398 -96.66 241.53 2457854.357 23.17 -71.34 2458220.400 35.13 -83.99

2458188.408 -92.06 232.81 2458073.634 -45.36 85.67 2458236.331 34.57 -86.56

2458188.422 -85.24 245.9 2458073.644 -44.71 85.84 2458236.347 34.05 -84.93

2458188.433 -81.78 241.86 2458073.655 -44.63 85.34 2458236.382 33.29 -87.83

2458188.443 -86.72 226.93 2458073.665 -43.92 84.24 2458236.393 32.75 -86.29

2458188.467 -65.21 134.03 2458073.676 -44.10 84.18 2458236.403 32.05 -83.56

2458203.394 106.38 -155.91 2458073.686 -44.33 83.97 2458251.347 33.98 -84.17

2458217.364 88.72 -151.7 2458073.697 -43.16 85.31 2458251.359 33.88 -84.47

2458218.465 -92.15 219.9 2458127.617 -28.86 39.12 2458251.371 33.15 -83.44

2458218.488 -84.25 250.04 2458133.483 56.52 -53.47 2458262.363 -52.96 7.91

2458220.400 -90.7 265.07 2458133.493 56.94 -53.92

2458236.382 112.39 -223.18 2458133.504 56.93 -54.93

2458236.393 121.68 -229.73 2458133.525 56.10 -54.23

2458236.403 121.41 -230.72 2458133.536 55.74 -53.86

Table A.2: New radial velocities obtained from spectra taken with eShel spectroscope

of Stará Lesná observatory.
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HJD RV1 RV2 HJD RV3 RV4 HJD RV3 RV4

[days] [km.s−1] [km.s−1] [days] [km.s−1] [km.s−1] [days] [km.s−1] [km.s−1]

2457781.477 -98.99 186.24 2457781.477 -18.62 21.49 2458230.338 -38.08 -7.46

2457781.491 -105.42 204.72 2457781.491 -17.96 21.21 2458231.328 -80.21 35.75

2457781.504 -112.2 210.19 2457781.504 -17.25 20.3 2458231.34 -80.62 36.04

2457843.421 92.28 -180.83 2457843.421 -84.33 49.54 2458231.351 -81.11 36.21

2458107.688 -121.7 198.33 2457843.435 -84.04 49.66 2458231.365 -81.23 36.5

2458107.701 -116.16 196.71 2457843.448 -83.87 49.46 2458231.376 -81.73 37.17

2458107.715 -124.29 218.78 2458107.688 43.42 -17.78 2458236.31 36.44 -83.92

2458166.501 -59.47 194.06 2458107.701 43.92 -17.98 2458236.323 36.25 -83.75

2458168.534 79.28 -191.72 2458107.715 44.54 -18.71 2458236.336 35.95 -83.97

2458168.55 90.36 -213.35 2458155.579 37.25 -47.22 2458241.325 -49.31 2.87

2458168.564 102 -230.64 2458155.593 37.67 -47.78 2458242.31 -1.17 -45.98

2458168.579 97.94 -227.92 2458155.606 37.94 -48.43 2458242.324 -0.42 -46.35

2458179.348 -92.48 252.92 2458168.534 -75.6 58.28 2458242.338 0.05 -46.66

2458179.36 -86.5 240.04 2458168.55 -75.53 58.21 2458245.354 3.66 -50.66

2458186.442 -75.86 218.45 2458168.564 -75.71 57.95 2458245.368 3.17 -50.03

2458186.456 -80.84 215.24 2458168.579 -75.49 58.2 2458245.383 2.41 -49.05

2458186.47 -89.19 241.75 2458179.348 28.02 -55.03 2458268.382 33.21 -75.28

2458223.456 95.88 -195.32 2458179.36 28.51 -55.14 2458268.393 32.48 -74.81

2458231.34 -73 212.12 2458179.467 31.8 -59.01 2458268.407 32.2 -74.74

2458231.351 -80.81 231.06 2458179.478 32.61 -59.21 2458268.418 31.92 -74.45

2458231.365 -82.29 270.54 2458179.489 32.78 -59.66 2458269.358 -3.52 -37.7

2458231.376 -92.74 276.06 2458182.498 -13.82 -13.82 2458269.37 -3.93 -37

2458242.31 -61.49 203.78 2458182.51 -13.9 -13.9 2458269.382 -4.79 -36.49

2458242.324 -73.3 228.07 2458212.364 39.96 -83.58 2458270.339 -52.89 13.29

2458269.358 119.6 -217.95 2458212.38 40.19 -83.41 2458270.35 -53.25 13.9

2458269.37 115.75 -212.9 2458212.395 39.72 -83.3 2458270.362 -53.64 14.55

2458269.382 121.53 -202.94 2458223.428 -80.47 37.16 2458530.506 28.95 -54.12

2458270.339 115.2 -199.64 2458223.441 -81.01 37.27 2458530.518 28.51 -53.58

2458270.35 107.02 -192.17 2458223.456 -81.63 37.76 2458530.529 28.3 -53.21

2458270.362 98.56 -148.35 2458229.354 10 -56.79 2458532.506 -64.15 39.93

2458531.48 88.82 -206.29 2458229.367 9.6 -55.92 2458532.517 -64.52 40.35

2458531.492 98.92 -215.57 2458229.38 8.94 -55.53 2458532.529 -65.01 40.66

2458531.503 107.91 -233.88 2458230.306 -36.33 -9.02

2458532.506 102.09 -210.03 2458230.321 -37.14 -8.28

Table A.3: New radial velocities obtained from spectra taken with MUSICOS spectro-

scope of Skalnaté pleso observatory.
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Appendix B

The orbit fitter

1 ”””

2 @author : Emil Puha

3 Orbit f i t t e r

4 ”””

5 # %% Library import

6

7 from lm f i t import Parameters , r e p o r t f i t , minimize

8 from numpy import cos , s in , pi , l i n space , concatenate

9 import matp lo t l i b . pyplot as p l t

10 import pandas as pd

11

12 # %% Import data

13 ’ ’ ’

14 Import data us ing pandas l i b r a r y and convert to f l o a t 6 4 .

15 ’ ’ ’

16

17 hjd = pd . r ead c sv ( ’ ∗ . tx t ’ , d e l im i t e r = ”\ t ” , header=None )

18 rv1 = pd . r ead c sv ( ’ ∗ . tx t ’ , d e l im i t e r = ”\ t ” , header=None )

19 rv2 = pd . r ead c sv ( ’ ∗ . tx t ’ , d e l im i t e r = ”\ t ” , header=None )

20 rv3 = pd . r ead c sv ( ’ ∗ . tx t ’ , d e l im i t e r = ”\ t ” , header=None )

21 rv4 = pd . r ead c sv ( ’ ∗ . tx t ’ , d e l im i t e r = ”\ t ” , header=None )

22 e = pd . r ead c sv ( ’ ∗ . tx t ’ , d e l im i t e r = ”\ t ” , header=None )

23

24 hjds = hjd [ 0 ] . va lue s

25 rad1 = rv1 [ 1 ] . va lue s

26 rad2 = rv2 [ 1 ] . va lue s

27 rad3 = rv3 [ 1 ] . va lue s

28 rad4 = rv4 [ 1 ] . va lue s

29 minima = e [ 0 ] . va lue s

30 epochs = e [ 1 ] . va lue s

31

32 # %% Functions

33 ’ ’ ’

34 Al l the f unc t i on s used during the f i t and p l o t t i n g .

35 ’ ’ ’

36

37 de f mean( t ,P,T) :

38 ’ ’ ’

39 Mean anomaly equat ion

40 ’ ’ ’
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41 M = ((2∗ pi ) /P) ∗( t−T)

42 r e turn M

43

44 de f t rue ( t ,P,T, e ) :

45 ’ ’ ’

46 True anomaly truncated s e r i e s

47 ’ ’ ’

48 phi = mean( t ,P,T)+2∗e∗ s i n (mean( t ,P,T) ) +1.25∗( e ) ∗∗2∗ s i n (2∗mean( t ,P,T) )

49 r e turn phi

50

51 de f l i t e (x ,T,P,K,O, e ) :

52 ’ ’ ’

53 The l i gh t−time e f f e c t (LITE) equat ion

54 ’ ’ ’

55 c = 299792.458

56 M = (( (2∗ pi ) /P) ∗(x−T) )

57 phi = M + 2∗ e∗ s i n (M) + (1 . 2 5 ) ∗ ( ( e ) ∗∗2) ∗( s i n (2∗M) )

58 dt = ( (K∗P∗(1−e ) ∗∗ ( 1 . 5 ) ) /(2∗ pi ∗c ) ) ∗ ( ( s i n ( phi +O) ) /(1 +e∗ cos ( phi ) ) )
59 r e turn dt

60

61 de f Tmin(E,HJD,T,P,Q,K, e ,O, Tij , P i j ) :

62 ’ ’ ’

63 Minima times equat ion

64 ’ ’ ’

65 c = 299792.458 # km/ s

66 M = mean(HJD,P,T)

67 phi = M + 2∗ e∗ s i n (M) + (1 . 2 5 ) ∗ ( ( e ) ∗∗2) ∗( s i n (2∗M) )

68 dt = ( (K∗P∗(1−e ) ∗∗ ( 1 . 5 ) ) /(2∗ pi ∗c ) ) ∗ ( ( s i n ( phi +O) ) /(1 +e∗ cos ( phi ) ) )
69 t = Ti j + Pi j ∗E +Q∗E∗∗2 + dt

70 r e turn t

71

72 de f rv ( hjd ,m, n ,V0 , Ki , Kij , e1234 , e i j , Oij , O1234 , T1234 , Tij , P1234 , P i j ) :

73 ’ ’ ’

74 The r a d i a l v e l o c i t y equat ion

75 ’ ’ ’

76 radve l = V0+(m) ∗Kij ∗( e1234∗ cos (O1234 ) \
77 +cos (O1234+true ( hjd , P1234 , T1234 , e1234 ) ) ) \
78 +((−1) ∗∗(n+1) ) ∗Ki ∗( cos ( Oij+true ( hjd , Pi j , Tij , e i j ) ) )

79 r e turn radve l

80

81 de f mc( hjd ,m, Kij , e1234 , O1234 , T1234 , P1234 ) :

82 ’ ’ ’

83 The equat ion o f the mass cent e r

84 ’ ’ ’

85 c en te r = (m) ∗Kij ∗( e1234∗ cos (O1234 ) \
86 +cos (O1234+true ( hjd , P1234 , T1234 , e1234 ) ) )

87 r e turn cente r

88

89 # %% Parameters

90 ’ ’ ’

91 Creat ing lm f i t Parameters c l a s s . I c l ud e s a l l parameters to be opt imized with t h e i r

i n i t i a l gue s s e s .

92 ’ ’ ’

93

94 p = Parameters ( )

95 p . add ( ’V0 ’ , va lue=−2.5)
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96 p . add ( ’Q’ , va lue =0.00000000001)

97 p . add ( ’P12 ’ , va lue =0.47755100)

98 p . add ( ’T12 ’ , va lue =2452500.14)

99 p . add ( ’K1 ’ , va lue=104)

100 p . add ( ’K2 ’ , va lue=241)

101 p . add ( ’K12 ’ , va lue=22)

102 p . add ( ’P34 ’ , va lue =7.93)

103 p . add ( ’ e34 ’ , va lue =0.04)

104 p . add ( ’T34 ’ , va lue =2452220.26)

105 p . add ( ’K3 ’ , va lue=64)

106 p . add ( ’K4 ’ , va lue=65)

107 p . add ( ’K34 ’ , va lue=21)

108 p . add ( ’ omega34 ’ , va lue =2.5)

109 p . add ( ’ P1234 ’ , va lue=356)

110 p . add ( ’ e1234 ’ , va lue =0.05)

111 p . add ( ’T1234 ’ , va lue =2453093.18)

112 p . add ( ’ omega1234 ’ , va lue =3.5)

113

114 # %% FIT ONE

115 ’ ’ ’

116 Separate r e s i d u a l dunct ions o f the da ta s e t s to determine average u n c e r t a i n i t i e s from

separa te f i t t i n g . Values o f sigma are changed un t i l reduced Chi−squared i s equal (

or c l o s e ) to unity .

117 ’ ’ ’

118

119 de f funcRV1 (p , x=hjds [ : 3 4 ] , dat1=rad1 ) :

120 model1 = rv (x , 1 , 1 , p [ ’V0 ’ ] , p [ ’K1 ’ ] , p [ ’K12 ’ ] , p [ ’ e1234 ’ ] , 0 , p i /2 ,

121 p [ ’ omega1234 ’ ] , p [ ’T1234 ’ ] , p [ ’T12 ’ ] , p [ ’ P1234 ’ ] , p [ ’P12 ’ ] )

122 sigma1 = 1

123 r e s i dua l 1 = ( dat1 − model1 ) / sigma1

124 r e turn r e s i du a l 1

125

126 de f funcRV2 (p , x=hjds [ 3 4 : 6 8 ] , dat2=rad2 ) :

127 model2 = rv (x , 1 , 2 , p [ ’V0 ’ ] , p [ ’K2 ’ ] , p [ ’K12 ’ ] , p [ ’ e1234 ’ ] , 0 , p i /2 ,

128 p [ ’ omega1234 ’ ] , p [ ’T1234 ’ ] , p [ ’T12 ’ ] , p [ ’ P1234 ’ ] , p [ ’P12 ’ ] )

129 sigma2 = 1

130 r e s i dua l 2 = ( dat2 − model2 ) / sigma2

131 r e turn r e s i du a l 2

132

133 de f funcRV3 (p , x=hjds [ 6 8 : 1 3 4 ] , dat3=rad3 ) :

134 model3 = rv (x ,−1 ,3 ,p [ ’V0 ’ ] , p [ ’K3 ’ ] , p [ ’K34 ’ ] , p [ ’ e1234 ’ ] , p [ ’ e34 ’ ] ,

135 p [ ’ omega34 ’ ] , p [ ’ omega1234 ’ ] , p [ ’T1234 ’ ] , p [ ’T34 ’ ] ,

136 p [ ’ P1234 ’ ] , p [ ’P34 ’ ] )

137 sigma3 = 1

138 r e s i du a l 3 = ( dat3 − model3 ) / sigma3

139 r e turn r e s i du a l 3

140

141 de f funcRV4 (p , x=hjds [ 1 3 4 : 2 0 0 ] , dat4=rad4 ) :

142 model4 = rv (x ,−1 ,4 ,p [ ’V0 ’ ] , p [ ’K4 ’ ] , p [ ’K34 ’ ] , p [ ’ e1234 ’ ] , p [ ’ e34 ’ ] ,

143 p [ ’ omega34 ’ ] , p [ ’ omega1234 ’ ] , p [ ’T1234 ’ ] , p [ ’T34 ’ ] ,

144 p [ ’ P1234 ’ ] , p [ ’P34 ’ ] )

145 sigma4 = 1

146 r e s i du a l 4 = ( dat4 − model4 ) / sigma4

147 r e turn r e s i du a l 4

148

149 de f funcT (p , x=epochs , dat5=minima ) :
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150 model5 = Tmin(x , dat5 , p [ ’T1234 ’ ] , p [ ’ P1234 ’ ] , p [ ’Q ’ ] , p [ ’K12 ’ ] , p [ ’ e1234 ’ ] ,

151 p [ ’ omega1234 ’ ] , p [ ’T12 ’ ] , p [ ’P12 ’ ] )

152 sigma5 = 1

153 r e s i du a l 5 = ( dat5 − model5 ) / sigma5

154 r e turn r e s i du a l 5

155

156

157 # %% FIT ALL

158

159 de f func (p , x=hjds , dat1=rad1 , dat2=rad2 , dat3=rad3 , dat4=rad4 , dat5=minima ) :

160 ’ ’ ’

161 Global r e s i d u a l func t i on o f a l l da ta s e t s to minimize . Sigma va lue s taken from

prev ious s i n g l e f i t s . The parameters are shared and bounded , they are opt imized

g l o b a l l y .

162 ’ ’ ’

163 u1 = x [ : 3 4 ]

164 model1 = rv (u1 , 1 , 1 , p [ ’V0 ’ ] , p [ ’K1 ’ ] , p [ ’K12 ’ ] , p [ ’ e1234 ’ ] , 0 , p i /2 ,

165 p [ ’ omega1234 ’ ] , p [ ’T1234 ’ ] , p [ ’T12 ’ ] , p [ ’ P1234 ’ ] , p [ ’P12 ’ ] )

166

167 u2 = x [ 3 4 : 6 8 ]

168 model2 = rv (u2 , 1 , 2 , p [ ’V0 ’ ] , p [ ’K2 ’ ] , p [ ’K12 ’ ] , p [ ’ e1234 ’ ] , 0 , p i /2 ,

169 p [ ’ omega1234 ’ ] , p [ ’T1234 ’ ] , p [ ’T12 ’ ] , p [ ’ P1234 ’ ] , p [ ’P12 ’ ] )

170

171 u3 = x [ 6 8 : 1 3 4 ]

172 model3 = rv (u3 ,−1 ,3 ,p [ ’V0 ’ ] , p [ ’K3 ’ ] , p [ ’K34 ’ ] , p [ ’ e1234 ’ ] , p [ ’ e34 ’ ] ,

173 p [ ’ omega34 ’ ] , p [ ’ omega1234 ’ ] , p [ ’T1234 ’ ] , p [ ’T34 ’ ] ,

174 p [ ’ P1234 ’ ] , p [ ’P34 ’ ] )

175

176 u4 = x [ 1 3 4 : 2 0 0 ]

177 model4 = rv (u4 ,−1 ,4 ,p [ ’V0 ’ ] , p [ ’K4 ’ ] , p [ ’K34 ’ ] , p [ ’ e1234 ’ ] , p [ ’ e34 ’ ] ,

178 p [ ’ omega34 ’ ] , p [ ’ omega1234 ’ ] , p [ ’T1234 ’ ] , p [ ’T34 ’ ] ,

179 p [ ’ P1234 ’ ] , p [ ’P34 ’ ] )

180

181 u5 = hjds [ 2 0 0 : ]

182 model5 = Tmin(u5 , dat5 , p [ ’T1234 ’ ] , p [ ’ P1234 ’ ] , p [ ’Q ’ ] , p [ ’K12 ’ ] , p [ ’ e1234 ’ ] ,

183 p [ ’ omega1234 ’ ] , p [ ’T12 ’ ] , p [ ’P12 ’ ] )

184

185 sigma1 = 1

186 sigma2 = 1

187 sigma3 = 1

188 sigma4 = 1

189 sigma5 = 1

190

191 r e s i dua l 1 = ( dat1 − model1 ) / sigma1

192 r e s i dua l 2 = ( dat2 − model2 ) / sigma2

193 r e s i dua l 3 = ( dat3 − model3 ) / sigma3

194 r e s i dua l 4 = ( dat4 − model4 ) / sigma4

195 r e s i dua l 5 = ( dat5 − model5 ) / sigma5

196

197 r e turn concatenate ( ( r e s i dua l 1 , r e s i dua l 2 , r e s i dua l 3 , r e s i dua l 4 , r e s i d u a l 5 ) )

198

199 # %% Cal l f unc t i on

200

201 de f c a l l ( f unc t i on ) :

202 ’ ’ ’

203 Method to minimize r e s i d u a l func t i on and show r e s u l t s . Returned r e p o r t f i t ( )
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conta in s r e s u l t i n g Chi−squared s t a t i s t i c s and opt imized parameters

204 ’ ’ ’

205 r e s u l t = minimize ( funct ion , p , method=’ ne lde r ’ )

206 r e turn r e p o r t f i t ( r e s u l t ) , r e s u l t . params , r e s u l t . r edch i

207

208 de f c a l l c h i ( func t i on ) :

209 ’ ’ ’

210 Method to minimize r e s i d u a l func t i on and show r e s u l t s . Returns reduced Chi−squares
o f i nd i v i dua l data f i t s

211 ’ ’ ’

212 r e s u l t = minimize ( funct ion , p , method=’ ne lde r ’ )

213 r e turn r e s u l t . r edch i

214

215 # %% Show r e s u l t

216

217 ’ ’ ’

218 Minimizing the g l oba l r e s i d u a l f unc t i on . The va r i ab l e a [ 1 ] w i l l conta in the opt imized

parameters which w i l l be used in f u r t h e r p l o t t i n g

219 ’ ’ ’

220 a = c a l l ( func )

221

222 ’ ’ ’

223 Minimizing the i nd i v i dua l r e s i d u a l f unc t i on s . Returns Chi−squared va lues o f i nd i v i dua l

f i t s

224 ’ ’ ’

225 ch i1 = c a l l c h i ( funcRV1 )

226 ch i2 = c a l l c h i ( funcRV2 )

227 ch i3 = c a l l c h i ( funcRV3 )

228 ch i4 = c a l l c h i ( funcRV4 )

229 ch i5 = c a l l c h i ( funcT )

230 pr in t ( ’ \n ’ , ’ Reduced Chi−squared = ’ , round ( chi1 , 2 ) , round ( chi2 , 2 ) , round ( chi3 , 2 ) ,

231 round ( chi4 , 2 ) , round ( chi5 , 2 ) , )

232

233

234 # %% Phases

235 ’ ’ ’

236 Construct ing phase va lue s (PHASE) from obs e rva t i ona l HJD va lue s . Phases f o r f i t t i n g

curves ( f i t ) are cons t ruc ted through numpy l i n s p a c e i n t e r v a l . The t imes o f

p e r i a s t r on passage and o r b i t a l per iod are taken d i r e c t l y from g l oba l f i t through

va r i ab l e a [ 1 ] .

237 ’ ’ ’

238

239 l i n f i t 1 = l i n s p a c e ( a [ 1 ] [ ’T12 ’ ] . value , a [ 1 ] [ ’T12 ’ ] . va lue+a [ 1 ] [ ’P12 ’ ] . value , 1000 )

240 f a z a f i t 1 = ( l i n f i t 1 −a [ 1 ] [ ’T12 ’ ] . va lue ) /a [ 1 ] [ ’P12 ’ ] . va lue

241 i , f i t 1 = divmod ( f a z a f i t 1 , 1 . 0 0 1 )

242 f aza1 = ( hjds [ : 3 4 ] − a [ 1 ] [ ’T12 ’ ] . va lue ) /a [ 1 ] [ ’P12 ’ ] . va lue

243 i ,PHASE1 = divmod ( faza1 , 1 )

244

245 l i n f i t 2 = l i n s p a c e ( a [ 1 ] [ ’T12 ’ ] . value , a [ 1 ] [ ’T12 ’ ] . va lue+a [ 1 ] [ ’P12 ’ ] . value , 1000 )

246 f a z a f i t 2 = ( l i n f i t 2 −a [ 1 ] [ ’T12 ’ ] . va lue ) /a [ 1 ] [ ’P12 ’ ] . va lue

247 i , f i t 2 = divmod ( f a z a f i t 2 , 1 . 0 0 0 1 )

248 f aza2 = ( hjds [ 3 4 : 6 8 ] − a [ 1 ] [ ’T12 ’ ] . va lue ) /a [ 1 ] [ ’P12 ’ ] . va lue

249 i ,PHASE2 = divmod ( faza2 , 1 )

250

251 l i n f i t 3 = l i n s p a c e ( a [ 1 ] [ ’T34 ’ ] . value , a [ 1 ] [ ’T34 ’ ] . va lue+a [ 1 ] [ ’P34 ’ ] . value , 1000 )

252 f a z a f i t 3 = ( l i n f i t 3 −a [ 1 ] [ ’T34 ’ ] . va lue ) /a [ 1 ] [ ’P34 ’ ] . va lue
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253 i , f i t 3 = divmod ( f a z a f i t 3 , 1 . 0 0 1 )

254 f aza3 = ( hjds [ 6 8 : 1 3 4 ] − a [ 1 ] [ ’T34 ’ ] . va lue ) /a [ 1 ] [ ’P34 ’ ] . va lue

255 i ,PHASE3 = divmod ( faza3 , 1 )

256

257 l i n f i t 4 = l i n s p a c e ( a [ 1 ] [ ’T34 ’ ] . value , a [ 1 ] [ ’T34 ’ ] . va lue+a [ 1 ] [ ’P34 ’ ] . value , 1000 )

258 f a z a f i t 4 = ( l i n f i t 4 −a [ 1 ] [ ’T34 ’ ] . va lue ) /a [ 1 ] [ ’P34 ’ ] . va lue

259 i , f i t 4 = divmod ( f a z a f i t 4 , 1 . 0 0 0 1 )

260 f aza4 = ( hjds [ 1 3 4 : 2 0 0 ] − a [ 1 ] [ ’T34 ’ ] . va lue ) /a [ 1 ] [ ’P34 ’ ] . va lue

261 i ,PHASE4 = divmod ( faza4 , 1 )

262

263 # %% Prepare p l o t

264 ’ ’ ’

265 Construct ing t h e o r e t h i c a l r a d i a l v e l o c i t y curves to p l o t . Parameters are taken from

the g l oba l f i t through va r i ab l e a [ 1 ] .

266 ’ ’ ’

267 f 1 = rv ( l i n f i t 1 , 1 , 1 , a [ 1 ] [ ’V0 ’ ] . value , a [ 1 ] [ ’K1 ’ ] . value , a [ 1 ] [ ’K12 ’ ] . value ,

268 a [ 1 ] [ ’ e1234 ’ ] . value , 0 , p i /2 , a [ 1 ] [ ’ omega1234 ’ ] . value ,

269 a [ 1 ] [ ’ T1234 ’ ] . value , a [ 1 ] [ ’T12 ’ ] . value , a [ 1 ] [ ’ P1234 ’ ] . value ,

270 a [ 1 ] [ ’P12 ’ ] . va lue )

271

272 f 2 = rv ( l i n f i t 2 , 1 , 2 , a [ 1 ] [ ’V0 ’ ] . value , a [ 1 ] [ ’K2 ’ ] . value , a [ 1 ] [ ’K12 ’ ] . value ,

273 a [ 1 ] [ ’ e1234 ’ ] . value , 0 , p i /2 , a [ 1 ] [ ’ omega1234 ’ ] . value ,

274 a [ 1 ] [ ’ T1234 ’ ] . value , a [ 1 ] [ ’T12 ’ ] . value , a [ 1 ] [ ’ P1234 ’ ] . value ,

275 a [ 1 ] [ ’P12 ’ ] . va lue )

276

277 f 3 = rv ( l i n f i t 3 ,−1 ,3 , a [ 1 ] [ ’V0 ’ ] . value , a [ 1 ] [ ’K3 ’ ] . value , a [ 1 ] [ ’K34 ’ ] . value ,

278 a [ 1 ] [ ’ e1234 ’ ] . value , a [ 1 ] [ ’ e34 ’ ] . value , a [ 1 ] [ ’ omega34 ’ ] . value ,

279 a [ 1 ] [ ’ omega1234 ’ ] . value , a [ 1 ] [ ’ T1234 ’ ] . value , a [ 1 ] [ ’T34 ’ ] . value ,

280 a [ 1 ] [ ’ P1234 ’ ] . value , a [ 1 ] [ ’P34 ’ ] . va lue )

281

282 f 4 = rv ( l i n f i t 4 ,−1 ,4 , a [ 1 ] [ ’V0 ’ ] . value , a [ 1 ] [ ’K4 ’ ] . value , a [ 1 ] [ ’K34 ’ ] . value ,

283 a [ 1 ] [ ’ e1234 ’ ] . value , a [ 1 ] [ ’ e34 ’ ] . value , a [ 1 ] [ ’ omega34 ’ ] . value ,

284 a [ 1 ] [ ’ omega1234 ’ ] . value , a [ 1 ] [ ’ T1234 ’ ] . value , a [ 1 ] [ ’T34 ’ ] . value ,

285 a [ 1 ] [ ’ P1234 ’ ] . value , a [ 1 ] [ ’P34 ’ ] . va lue )

286

287 # %% Reduce the motion o f mass c en te r

288 ’ ’ ’

289 Reducing the motion o f systems mass c en t e r from the ob s e rva t i ona l data . Mass c en te r

equat ion i s de f ined above

290 ’ ’ ’

291

292 red1 = rad1 − mc( hjds [ : 3 4 ] , 1 , a [ 1 ] [ ’K12 ’ ] . value , a [ 1 ] [ ’ e1234 ’ ] . value ,

293 a [ 1 ] [ ’ omega1234 ’ ] . value , a [ 1 ] [ ’ T1234 ’ ] . value , a [ 1 ] [ ’ P1234 ’ ] . va lue )

294 red2 = rad2 − mc( hjds [ 3 4 : 6 8 ] , 1 , a [ 1 ] [ ’K12 ’ ] . value , a [ 1 ] [ ’ e1234 ’ ] . value ,

295 a [ 1 ] [ ’ omega1234 ’ ] . value , a [ 1 ] [ ’ T1234 ’ ] . value , a [ 1 ] [ ’ P1234 ’ ] . va lue )

296 red3 = rad3 − mc( hjds [68 :134 ] , −1 , a [ 1 ] [ ’K34 ’ ] . value , a [ 1 ] [ ’ e1234 ’ ] . value ,

297 a [ 1 ] [ ’ omega1234 ’ ] . value , a [ 1 ] [ ’ T1234 ’ ] . value , a [ 1 ] [ ’ P1234 ’ ] . va lue )

298 red4 = rad4 − mc( hjds [134 :200 ] , −1 , a [ 1 ] [ ’K34 ’ ] . value , a [ 1 ] [ ’ e1234 ’ ] . value ,

299 a [ 1 ] [ ’ omega1234 ’ ] . value , a [ 1 ] [ ’ T1234 ’ ] . value , a [ 1 ] [ ’ P1234 ’ ] . va lue )

300

301 # %% PLOT

302 ’ ’ ’

303 Construct ing phase diagrams o f the reduced ob s e rva t i ona l r a d i a l v e l o c i t i e s and the

t h e o r e t h i c a l r a d i a l v e l o c i t y curves .

304 ’ ’ ’

305
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306 f , ( ax1 , ax2 ) = p l t . subp lo t s (2 , 1 , sharex=True , f i g s i z e =(8 ,10) ,

307 gr idspec kw = { ’ h e i g h t r a t i o s ’ : [ 1 , 1 ]} )
308 f . s ubp l o t s ad j u s t ( hspace =0.2)

309

310 ax1 . p l o t (PHASE1, red1 , ’ ko ’ , f i l l s t y l e=’ none ’ , l a b e l=’ rv1 ’ )

311 ax1 . p l o t ( f i t 1 , f1 , ’ k−− ’ )

312 ax1 . p l o t (PHASE2, red2 , ’ kˆ ’ , l a b e l=’ rv2 ’ )

313 ax1 . p l o t ( f i t 2 , f2 , ’ k−− ’ )

314 ax1 . s e t t i t l e ( ’ Contact binary RV f i t ’ )

315 ax1 . s e t y l a b e l ( ’ Radial v e l o c i t y [ $km . sˆ{−1}$ ] ’ )

316 ax1 . s e t x l im ( [ 0 , 1 ] )

317 ax1 . s e t y l im ( [ −300 ,300 ] )

318 ax1 . l egend ( l o c=’ lower r i g h t ’ )

319

320 ax2 . p l o t (PHASE3, red3 , ’ ko ’ , f i l l s t y l e=’ none ’ , l a b e l=’ rv3 ’ )

321 ax2 . p l o t ( f i t 3 , f3 , ’ k−− ’ )

322 ax2 . p l o t (PHASE4, red4 , ’ kˆ ’ , l a b e l=’ rv4 ’ )

323 ax2 . p l o t ( f i t 4 , f4 , ’ k−− ’ )

324 ax2 . s e t t i t l e ( ’ Detached binary RV f i t ’ )

325 ax2 . s e t y l a b e l ( ’ Radial v e l o c i t y [ $km . sˆ{−1}$ ] ’ )

326 ax2 . s e t x l a b e l ( ’ Phase ’ )

327 ax2 . s e t y l im ( [ −90 ,75 ] )

328 ax2 . l egend ( l o c=’ lower r i g h t ’ )

329

330 f . s a v e f i g ( ’ p l o t . png ’ , dpi=300)

331 p l t . show ( )
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Appendix C

The Coordinates module

1 ”””

2 @author : Emil Puha

3 Coordinates

4 ”””

5 from numpy import cos , s in , pi , sqrt , cbrt , array , arctan , tan

6

7 # %% Functions d e f i n i t i o n s

8

9 s = 86400

10 HJD = 2454619.58209∗ s
11 G = 6.67408 e−11
12 ms = 1.9885 e30

13

14 de f radian ( ang le ) :

15 r e turn ( p i ∗ ang le /180)
16

17 de f MtoAU( meters ) :

18 r e turn meters ∗6 .68 e−12
19

20 de f kep ( e ,M) :

21 ’ ’ ’

22 Kepler equat ion

23 ’ ’ ’

24 j = 0

25 E = M

26 F = E − M − e∗ s i n (E)

27 de l t a = 10∗∗−8
28 whi le ( abs (F) >= de l t a ) :

29 E = E − F/ (1 − e∗ cos (E) )

30 F = E − e∗ s i n (E)− M

31 j = j+1

32 r e turn E

33

34 de f k ep 2 ca r t ( t ,m, a , e , i ,P,w,Om,T) :

35 ’ ’ ’

36 Main t rans fo rmat ion equat ion . Transforms Kepler ian o r b i t a l

37 e lements to c a r t e s i a n po s i t i o n and v e l o c i t y ve c t o r s .

38 ’ ’ ’

39 mu = G∗(m)

40 n = (2∗ pi ) /(P)
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41 M = n∗( t − T)

42 E = kep ( e ,M)

43 nu = 2∗ arctan ( sq r t ((1+e ) /(1−e ) ) ∗ tan (E/2) )

44 r = a ∗(1 − e∗ cos (E) )

45

46 ox = r ∗ cos (nu)
47 oy = r ∗ s i n (nu)

48

49 odotx = −( s q r t (mu∗a ) / r ) ∗ s i n (E)

50 odoty = ( sq r t (mu∗a ) / r )∗(1−e ∗∗2) ∗ cos (E)

51

52 x = ox ∗( cos (w) ∗ cos (Om) −s i n (w) ∗ cos ( i ) ∗ s i n (Om) ) \
53 −oy ∗( s i n (w) ∗ cos (Om)+cos (w) ∗ cos ( i ) ∗ s i n (Om) )

54 y = ox ∗( cos (w) ∗ s i n (Om) +s in (w) ∗ cos ( i ) ∗ cos (Om) ) \
55 +oy ∗( cos (w) ∗ cos ( i ) ∗ cos (Om)−s i n (w) ∗ s i n (Om) )

56 z = ox ∗( s i n (w) ∗ s i n ( i ) ) +oy ∗( cos (w) ∗ s i n ( i ) )

57

58 vx = odotx ∗( cos (w) ∗ cos (Om) −s i n (w) ∗ cos ( i ) ∗ s i n (Om) ) \
59 −odoty ∗( s i n (w) ∗ cos (Om)+cos (w) ∗ cos ( i ) ∗ s i n (Om) )

60 vy = odotx ∗( cos (w) ∗ s i n (Om) +s in (w) ∗ cos ( i ) ∗ cos (Om) ) \
61 +odoty ∗( cos (w) ∗ cos ( i ) ∗ cos (Om)−s i n (w) ∗ s i n (Om) )

62 vz = odotx ∗( s i n (w) ∗ s i n ( i ) ) +odoty ∗( cos (w) ∗ s i n ( i ) )

63

64 r e turn array ( [ x , y , z ] ) , array ( [ vx , vy , vz ] )

65

66 # %% Spec t ro s cop i c parameters o f the contact o r b i t

67

68 P12 = 0.47755106∗ s
69 T12 = 2452500.1497∗ s
70 e12 = 0

71 K1 = 105.8∗1000
72 K2 = 250.2∗1000
73 K12 = 21.61∗1000
74 w12 = pi /2

75 m1 = 1.66∗ms

76 m2 = 0.7∗ms

77 i 12 = radian (79)

78

79 # %% Spec t ro s cop i c parameters o f the detached o rb i t

80

81 P34 = 7.93063∗ s
82 T34 = 2452274.54∗ s
83 e34 = 0.035

84 K3 = 63.99∗1000
85 K4 = 65.53∗1000
86 K34 = 23.22∗1000
87 w34 = 1 .9

88 m3 = 1.1∗ms

89 m4 = 1.09∗ms

90 i 34 = radian ( 6 8 . 9 )

91

92 # %% Spec t ro s cop i c parameters o f the mutual o r b i t

93

94 P1234 = 355.02∗ s
95 T1234 = 2453046∗ s
96 e1234 = 0.097
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97 w1234 = 2 .2

98 i 1234 = radian ( 6 4 . 1 )

99 M1234 = m1+m2+m3+m4

100

101 # %% Semimajor ax i s c a l c u l a t i o n o f binary system

102

103 de f semimajor (M,m1,m2,P) :

104 ’ ’ ’

105 Computes semi−major axes o f b inary o r b i t s u s i n f Kepler ’ s 3 rd law .

106 Determines d i s t an c e s o f b inary ’ s components from mutual mass c ent e r .

107 ’ ’ ’

108 a = cbrt ( (G∗M∗(P) ∗∗2) /(4∗ ( p i ∗∗2) ) )
109 r1 = a/(1+(m1/m2) )

110 r2 = (a−r1 )

111

112 pr in t ( ’AU: ’ )

113 pr in t ( ’ a= %8.6 f ’ %(MtoAU(a ) ) )

114 pr in t ( ’ r1= %8.6 f ’ %MtoAU( r1 ) )

115 pr in t ( ’ r2= %8.6 f ’ %MtoAU( r2 ) , ’ \n ’ )

116 pr in t ( ’ Meters : ’ )

117 pr in t ( ’ a= %8.6 f ’ %a )

118 pr in t ( ’ r1= %8.6 f ’ %r1 )

119 pr in t ( ’ r2= %8.6 f ’ %(a−r1 ) )

120

121 r e turn array ( [MtoAU(a ) ,MtoAU( r1 ) ,MtoAU( r2 ) ] ) , array ( [ a , r1 , r2 ] )

122

123 mutual = semimajor (M1234 , (m1+m2) , (m3+m4) , P1234 )

124 comp34 = semimajor (m3+m4,m3,m4, P34 )

125

126 # %% Cartes ian coo rd ina t e s o f VW LMi ’ s components

127

128 coo rd o f 12 = kep 2 ca r t (HJD, (m3+m4) ∗∗3/M1234∗∗2 ,mutual [ 1 ] [ 1 ] , e1234 ,

129 1 .11875 , P1234 , 2 . 2 , 0 , T1234 )

130 coo rd o f 34 = kep 2 ca r t (HJD, (m1+m2) ∗∗3/M1234∗∗2 ,mutual [ 1 ] [ 2 ] , e1234 ,

131 1 .11875 , P1234 , 2 . 2 , 0 , T1234 )

132

133 c oo rd o f 3 = kep 2 ca r t (HJD, (m4) ∗∗3/(m3+m4) ∗∗2 , comp34 [ 1 ] [ 1 ] , e34 ,

134 1 .2025 ,P34 , 1 . 9 , 0 , T34)

135 c oo rd o f 4 = kep 2 ca r t (HJD, (m3) ∗∗3/(m3+m4) ∗∗2 , comp34 [ 1 ] [ 2 ] , e34 ,

136 1 .2025 ,P34 , 1 . 9 , 0 , T34)



The N-body model 92

Appendix D

The N-body model

1 ”””

2 @author : Emil Puha

3 N−body model

4 ”””

5 import time

6 import numpy as np

7 import matp lo t l i b . pyplot as p l t

8 from Coordinates import coord o f 12 , coord o f 34 , coo rd o f 3 , coo rd o f 4 ,

9 m1,m2,m3,m4,M1234

10 startTime = time . time ( )

11

12 c l a s s Vector :

13 de f i n i t ( s e l f , x , y , z ) :

14 s e l f . x = x

15 s e l f . y = y

16 s e l f . z = z

17

18 de f add ( s e l f , o ther ) :

19 r e turn Vector ( s e l f . x+other . x , s e l f . y+other . y , s e l f . z+other . z )

20

21 de f Cross ( s e l f , o ther ) :

22 i = s e l f . y∗ other . z − s e l f . z∗ other . y
23 j = s e l f . z∗ other . x − s e l f . x∗ other . z
24 k = s e l f . x∗ other . y − s e l f . y∗ other . x
25 r e turn Vector ( i , j , k )

26

27 de f Vel ( s e l f ) :

28 d = ( s e l f . x∗ s e l f . x + s e l f . y∗ s e l f . y + s e l f . z∗ s e l f . z )
29 r e turn d

30

31 de f Value ( s e l f ) :

32 d = ( s e l f . x∗ s e l f . x + s e l f . y∗ s e l f . y + s e l f . z∗ s e l f . z ) ∗∗0 .5
33 r e turn d

34

35 de f s u b ( s e l f , o ther ) :

36 r e turn Vector ( s e l f . x−other . x , s e l f . y−other . y , s e l f . z−other . z )
37

38 de f rmu l ( s e l f , o ther ) :

39 r e turn Vector ( s e l f . x∗ other , s e l f . y∗ other , s e l f . z∗ other )
40
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41 de f mu l ( s e l f , o ther ) :

42 i f type ( s e l f ) == type ( other ) :

43 r e turn s e l f . x∗ other . x+s e l f . y∗ other . y+s e l f . z∗ other . z
44 e l s e :

45 r e turn Vector ( s e l f . x∗ other , s e l f . y∗ other , s e l f . z∗ other )
46

47 de f t r u e d i v ( s e l f , o ther ) :

48 r e turn Vector ( s e l f . x/ other , s e l f . y/ other , s e l f . z/ other )

49

50 c l a s s ObjectAtr ibutes :

51 de f i n i t ( s e l f , t , pos , acc , v e l ) :

52 s e l f . t = t

53 s e l f . pos = pos

54 s e l f . v e l = ve l

55 s e l f . acc = acc

56

57 c l a s s EnergyAtr ibutes :

58 de f i n i t ( s e l f , t , e , m) :

59 s e l f . t = t

60 s e l f . e = e

61 s e l f .m = m

62

63 c l a s s Body :

64 de f i n i t ( s e l f , mass , x , y , z , vx , vy , vz ) :

65 s e l f . mass = mass

66 s e l f . pos = Vector (x , y , z )

67 s e l f . v e l = Vector ( vx , vy , vz )

68 s e l f . acc = Vector ( 0 . , 0 . , 0 . )

69 s e l f .G = 6.67408 e−11
70 s e l f . a t r i b u t e s = l i s t ( )

71 s e l f . e n e r g i e s = l i s t ( )

72 s e l f . newpos = Vector ( 0 . , 0 . , 0 . )

73 s e l f . newvel = Vector ( 0 . , 0 . , 0 . )

74

75 de f CalcAcc ( s e l f , other , t , dt ) :

76 acc = Vector ( 0 , 0 , 0 )

77 d i r e c t i o n = other . pos − s e l f . pos

78 d i s t ance = d i r e c t i o n . Value ( )

79 i f d i s t anc e !=0:

80 acc =(− s e l f .G∗ other . mass∗ d i r e c t i o n ) /( d i s t ance ∗∗3)
81 r e turn acc

82

83 de f CalcAccRK( s e l f , other , t , dt ) :

84 acc = Vector ( 0 , 0 , 0 )

85 d i r e c t i o n = other . newpos − s e l f . newpos

86 d i s t ance = d i r e c t i o n . Value ( )

87 i f d i s t anc e !=0:

88 acc =(− s e l f .G∗ other . mass∗ d i r e c t i o n ) /( d i s t ance ∗∗3)
89 r e turn acc

90

91 de f Energy ( s e l f , other , t ) :

92 d i r e c t i o n = other . pos − s e l f . pos

93 T = 0.5∗ s e l f . mass ∗( s e l f . v e l . Vel ( ) )

94 U = (− s e l f .G∗ s e l f . mass∗ other . mass ) / d i r e c t i o n . Value ( )

95 r e turn T+U

96
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97 de f Momentum( s e l f , t ) :

98 Lx = s e l f . pos . y∗ s e l f . mass∗ s e l f . v e l . z − s e l f . pos . z∗ s e l f . mass∗ s e l f . v e l . y
99 Ly = s e l f . pos . z∗ s e l f . mass∗ s e l f . v e l . x − s e l f . pos . x∗ s e l f . mass∗ s e l f . v e l . z

100 Lz = s e l f . pos . x∗ s e l f . mass∗ s e l f . v e l . y − s e l f . pos . y∗ s e l f . mass∗ s e l f . v e l . x
101 r e turn Lx + Ly + Lz

102

103 c l a s s Model :

104 ob j e c t s = l i s t ( )

105

106 de f i n i t ( s e l f ) :

107 pass

108

109 de f RK4( s e l f , t , dt ) :

110

111 i f l en ( s e l f . o b j e c t s ) > 1 :

112 f o r Body in s e l f . o b j e c t s :

113 # Runge−kutta 1 s t s tep

114 hacc = Vector (0 , 0 , 0 )

115 f o r other in s e l f . o b j e c t s :

116 i f Body != other :

117 hacc −= Body . CalcAcc ( other , t , dt )

118

119 k1 = ( t , Body . ve l , hacc )

120

121 # Runge−kutta 2nd step

122 Body . newpos = Vector ( 0 . , 0 . , 0 . )

123 Body . newvel = Vector ( 0 . , 0 . , 0 . )

124 Body . newpos += Body . pos + Body . v e l ∗0 .5∗ dt
125 Body . newvel += Body . v e l + Body . acc ∗0 .5∗ dt
126

127 hacc1 = Vector (0 , 0 , 0 )

128 f o r other in s e l f . o b j e c t s :

129 i f Body != other :

130 hacc1 −= Body . CalcAccRK( other , t , 0 . 5 ∗ dt )
131 k2=(t , Body . newpos , Body . newvel , hacc1 )

132

133 # Runge−kutta 3 rd step

134 Body . newpos = Vector ( 0 . , 0 . , 0 . )

135 Body . newvel = Vector ( 0 . , 0 . , 0 . )

136 Body . newpos += k2 [ 1 ] + k2 [ 2 ] ∗ 0 . 5 ∗ dt
137 Body . newvel += k2 [ 2 ] + k2 [ 3 ] ∗ 0 . 5 ∗ dt
138

139 hacc1 = Vector (0 , 0 , 0 )

140 f o r other in s e l f . o b j e c t s :

141 i f Body != other :

142 hacc1 −= Body . CalcAccRK( other , t , 0 . 5 ∗ dt )
143 k3=(t , Body . newpos , Body . newvel , hacc1 )

144

145 # Runge−kutta 4 th step

146 Body . newpos = Vector ( 0 . , 0 . , 0 . )

147 Body . newvel = Vector ( 0 . , 0 . , 0 . )

148 Body . newpos += k3 [ 1 ] + k3 [ 2 ] ∗ dt
149 Body . newvel += k3 [ 2 ] + k3 [ 3 ] ∗ dt
150

151 hacc1 = Vector (0 , 0 , 0 )

152 f o r other in s e l f . o b j e c t s :
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153 i f Body != other :

154 hacc1 −= Body . CalcAccRK( other , t , dt )

155 k4=(t , Body . newpos , Body . newvel , hacc1 )

156

157 # Runge−kutta Update a t r i bu t e s

158 update pos = (1/6) ∗( k1 [ 1 ] + 2∗( k2 [ 2 ] + k3 [ 2 ] )+k4 [ 2 ] )

159 update ve l = (1/6) ∗( k1 [ 2 ] + 2∗( k2 [ 3 ] + k3 [ 3 ] )+k4 [ 3 ] )

160

161 Body . acc = update ve l

162 Body . ve l += update ve l ∗dt
163 Body . pos += update pos ∗dt
164 Body . a t r i bu t e s . append ( ObjectAtr ibutes ( t , Body . pos , Body . acc ,

165 Body . ve l ) )

166

167 f o r other in s e l f . o b j e c t s :

168 i f Body != other :

169 ha = Body . Energy ( other , t )

170

171 f a = Body .Momentum( t )

172 Body . e n e r g i e s . append ( EnergyAtr ibutes ( t , ha , f a ) )

173 r e turn

174

175 de f s imu la t i on ( s e l f , method ,N, years ) :

176 work t = 0

177 j = N/20

178 day = 86400

179 i n t e r v a l = years ∗365.25∗ day
180 s tep = i n t e r v a l /N

181 i = 0

182 f o r i in range (N) :

183 work t += step

184 i += 1

185 method ( work t , s tep )

186 i f i % j == 0 :

187 pr in t ( ’ Status : ’ , i ∗100/N, ’%’ )

188 r e turn

189

190 de f p l o t ( s e l f ) :

191 d = len ( s e l f . o b j e c t s )

192 work = l i s t ( )

193 f o r Body in s e l f . o b j e c t s :

194 f o r a in Body . a t r i bu t e s :

195 work . append ( [ a . pos . x , a . pos . y ] )

196 work = np . array (work )

197 work = np . v s p l i t (work , d)

198

199 f o r i in range (d) :

200 x = work [ i ] [ : , 0 ]

201 y = work [ i ] [ : , 1 ]

202 x1 =work [ i ] [ : , 0 ] [ − 1 ]

203 y1 =work [ i ] [ : , 1 ] [ − 1 ]

204 p l t . p l o t (x , y , ’ k− ’ )

205 p l t . p l o t ( x1 , y1 , ’ ko ’ )

206

207 p l t . s a v e f i g ( ’ p l o t . png ’ , dpi=300)

208 p l t . show ( )
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209 r e turn

210

211 # %% Def in ing the model o f VW LMi

212

213 de f VW() :

214 s ta r12 = Body(m1+m2,

215 coo rd o f 12 [ 0 ] [ 0 ] , c oo rd o f 12 [ 0 ] [ 1 ] , c oo rd o f 12 [ 0 ] [ 2 ] ,

216 coo rd o f 12 [ 1 ] [ 0 ] , c oo rd o f 12 [ 1 ] [ 1 ] , c oo rd o f 12 [ 1 ] [ 2 ] )

217

218 s t a r 3 = Body(m3,

219 −coo rd o f 34 [ 0 ] [ 0 ] −c oo rd o f 3 [ 0 ] [ 0 ] ,

220 −coo rd o f 34 [ 0 ] [ 1 ] −c oo rd o f 3 [ 0 ] [ 1 ] ,

221 −coo rd o f 34 [ 0 ] [ 2 ] −c oo rd o f 3 [ 0 ] [ 2 ] ,

222 −coo rd o f 34 [ 1 ] [ 0 ] −c oo rd o f 3 [ 1 ] [ 0 ] ,

223 −coo rd o f 34 [ 1 ] [ 1 ] −c oo rd o f 3 [ 1 ] [ 1 ] ,

224 −coo rd o f 34 [ 1 ] [ 2 ] −c oo rd o f 3 [ 1 ] [ 2 ] )

225

226 s t a r 4 = Body(m4,

227 −coo rd o f 34 [ 0 ] [ 0 ] +coo rd o f 4 [ 0 ] [ 0 ] ,

228 −coo rd o f 34 [ 0 ] [ 1 ] +coo rd o f 4 [ 0 ] [ 1 ] ,

229 −coo rd o f 34 [ 0 ] [ 2 ] +coo rd o f 4 [ 0 ] [ 2 ] ,

230 −coo rd o f 34 [ 1 ] [ 0 ] +coo rd o f 4 [ 1 ] [ 0 ] ,

231 −coo rd o f 34 [ 1 ] [ 1 ] +coo rd o f 4 [ 1 ] [ 1 ] ,

232 −coo rd o f 34 [ 1 ] [ 2 ] +coo rd o f 4 [ 1 ] [ 2 ] )

233

234 modelVW = Model ( )

235 modelVW. ob j e c t s . append ( s ta r12 )

236 modelVW. ob j e c t s . append ( s t a r 3 )

237 modelVW. ob j e c t s . append ( s t a r 4 )

238

239 modelVW. s imu la t i on (modelVW.RK4,750000 ,1 )

240 modelVW. p lo t ( )

241 r e turn

242

243 # %% Cal l i ng the s imu la t i on

244

245 VW()

246

247 de f humanize time ( s e c s ) :

248 mins , s e c s = divmod ( secs , 60)

249 hours , mins = divmod (mins , 60)

250 r e turn ’%02d:%02d :%02.2 f ’ % ( hours , mins , s e c s )

251 pr in t ( ’Run time : ’ , humanize time ( time . time ( ) − startTime ) )
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Appendix E

The Elements module

1 ”””

2 @author : Emil Puha

3 Elements

4 ”””

5 import pandas as pd

6 import matp lo t l i b . pyplot as p l t

7 from numpy import l i n a l g , c ros s , arccos , pi , dot , array

8

9 # %% Transformation

10

11 de f degree ( ang le ) :

12 r e turn ( ang le ∗180/ p i )
13

14 de f ca r t 2 kep1 ( t ,m1,m2, r vec , v vec ) :

15 ’ ’ ’

16 Main t rans fo rmat ion equat ion . Transforms c a r t e s i a n po s i t i o n

17 and v e l o c i t y ve c t o r s to Kepler ian o r b i t a l e lements .

18 ’ ’ ’

19 G = 6.67408 e−11
20 h bar = c r o s s ( r vec , v vec )

21 h = l i n a l g . norm( h bar )

22 r = l i n a l g . norm( r ve c )

23 v = l i n a l g . norm( v vec )

24 a = (G∗(m1+m2) ∗ r ) /(2∗G∗(m1+m2)−r ∗v∗∗2)
25 i = arcco s ( h bar [ 2 ] / h)

26 e c c ve c = ( ( c r o s s ( v vec , h bar ) ) /(G∗(m1+m2) ) )−( r v e c / r )

27 e = l i n a l g . norm( ec c vec )

28 one = (0 , 0 , 1 )

29 n v = c r o s s ( one , h bar )

30 n = l i n a l g . norm( n v )

31

32 i f n v [ 1 ] >= 0 :

33 Omega = arcco s ( n v [ 0 ] / n)

34 e l i f n v [ 1 ] < 0 :

35 Omega = 2∗ pi − arcco s ( n v [ 0 ] / n)

36 i f Omega >= pi :

37 Omega = −arcco s ( n v [ 0 ] / n)

38

39 i f e c c ve c [ 2 ] >= 0 :

40 omega = arcco s ( ( dot ( n v , e c c vec ) ) /(n∗e ) )
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41

42 e l s e :

43 omega = 2∗ pi − arcco s ( ( dot ( n v , e c c ve c ) ) /(n∗e ) )
44

45 r e turn a , e , degree ( i ) , degree (Omega) , degree ( omega ) ,\
46 h bar [ 0 ] , h bar [ 1 ] , h bar [ 2 ]

47

48 # %% Read data

49 ’ ’ ’

50 Read the r e s u l t s o f numerica l i n t e g r a t i o n . Parameter ’ f ’ denotes the

51 ang le Omega1234 .

52 ’ ’ ’

53 f = 330

54

55 ms = 1.9885 e30

56 m1 = 1.66∗ms

57 m2 = 0.7∗ms

58 m3 = 1.1∗ms

59 m4 = 1.09∗ms

60

61 data = pd . r ead c sv ( ’ 500P 12+34/data ’+s t r ( f )+’ . txt ’ , d e l im i t e r=’ , ’ )

62 matrix = data . va lue s

63 time = matrix [ : , 0 ]

64 pos12 = matrix [ : , 1 : 4 ]

65 ve l12 = matrix [ : , 4 : 7 ]

66 pos34 = matrix [ : , 7 : 1 0 ]

67 ve l34 = matrix [ : , 1 0 : 1 3 ]

68

69 data34 = pd . r ead c sv ( ’ 500P 1+2+3+4/data ’+s t r ( f )+’ . txt ’ , d e l im i t e r=’ , ’ )

70 matrix34 = data34 . va lue s

71 pos3 = matrix34 [ : , 1 3 : 1 6 ]

72 ve l3 = matrix34 [ : , 1 6 : 1 9 ]

73 pos4 = matrix34 [ : , 1 9 : 2 2 ]

74 ve l4 = matrix34 [ : , 2 2 : 2 5 ]

75

76 # %% Compute o r b i t a l e lements

77

78 work34 = l i s t ( )

79 work1234 = l i s t ( )

80

81 f o r j in range ( l en ( time ) ) :

82 w34 = car t 2 kep1 ( time [ j ] ,m3,m4,−pos3 [ j ]+pos4 [ j ] ,− ve l3 [ j ]+ ve l4 [ j ] )

83 w1234 = car t 2 kep1 ( time [ j ] ,m1+m2,m3+m4,−pos12 [ j ]+pos34 [ j ] ,

84 −ve l12 [ j ]+ ve l34 [ j ] )

85 work34 . append (w34)

86 work1234 . append (w1234 )

87

88 work34=array (work34 )

89 work1234=array ( work1234 )

90

91 a34=work34 [ : , 0 ]

92 e34 = work34 [ : , 1 ]

93 i 34= work34 [ : , 2 ]

94 Om34= work34 [ : , 3 ]

95 om34 = work34 [ : , 4 ]

96 h34 =work34 [ : , 5 : 8 ]



The Elements module 99

97

98 a1234=work1234 [ : , 0 ]

99 e1234 = work1234 [ : , 1 ]

100 i 1234= work1234 [ : , 2 ]

101 Om1234= work1234 [ : , 3 ]

102 om1234 = work1234 [ : , 4 ]

103 h1234 =work1234 [ : , 5 : 8 ]

104

105 r = 19999

106 d = 10

107 dt = time [ : r ] [ : : d ]/31557600

108

109 p l t . p l o t ( dt , e34 [ : r ] [ : : d ] , ’ k− ’ )

110 p l t . yl im ( 0 . 0 1 , 0 . 0 7 )

111 p l t . x l ab e l ( ’Time [ year s ] ’ )

112 p l t . y l ab e l ( ’ $e {34}$ ’ )

113 p l t . s a v e f i g ( ’ e34 ’+s t r ( f )+’ . png ’ , dpi=200)

114 p l t . show ( )

115

116 p l t . p l o t ( dt , i 34 [ : r ] [ : : d ] , ’ k− ’ )

117 p l t . x l ab e l ( ’Time [ year s ] ’ )

118 p l t . y l ab e l ( ’ $ i {34}$ [ $\degree$ ] ’ )

119 p l t . s a v e f i g ( ’ i 3 4 ’+s t r ( f )+’ . png ’ , dpi=200)

120 p l t . show ( )

121

122 p l t . p l o t ( dt ,Om34 [ : r ] [ : : d ] , ’ k− ’ )

123 p l t . x l ab e l ( ’Time [ year s ] ’ )

124 p l t . y l ab e l ( ’ $\Omega {34}$ [ $\degree$ ] ’ )

125 p l t . s a v e f i g ( ’Omega34 ’+s t r ( f )+’ . png ’ , dpi=200)

126 p l t . show ( )

127

128 p l t . p l o t ( dt , om34 [ : r ] [ : : d ] , ’ k− ’ )

129 p l t . x l ab e l ( ’Time [ year s ] ’ )

130 p l t . y l ab e l ( ’ $\omega {34}$ [ $\degree$ ] ’ )

131 p l t . s a v e f i g ( ’ Somega34 ’+s t r ( f )+’ . png ’ , dpi=200)

132 p l t . show ( )

133

134 # %% Mutual i n c l i n a t i o n s

135

136 l i s t J = l i s t ( )

137

138 f o r p in range ( l en ( h34 ) ) :

139 a=dot ( h34 [ p ] , h1234 [ p ] )

140 b = ( l i n a l g . norm( h34 [ p ] ) ) ∗( l i n a l g . norm( h1234 [ p ] ) )

141 J = arcco s ( a/b)

142 l i s t J . append ( degree ( J ) )

143

144 l i s t J=array ( l i s t J )

145

146 p l t . p l o t ( dt , l i s t J [ : r ] [ : : d ] , ’ k− ’ )

147 p l t . x l ab e l ( ’Time [ year s ] ’ )

148 p l t . y l ab e l ( ’ $J {mutual}$ [ $\degree$ ] ’ )

149 p l t . s a v e f i g ( ’ mu tua l i n l i n a t i on ’+s t r ( f )+’ . png ’ , dpi=200)

150 p l t . show ( )
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