
COMENIUS UNIVERSITY OF BRATISLAVA

FACULTY OF MATHEMATICS, PHYSICS AND

INFORMATICS

APPLICATION DESIGNED TO HELP EMPLOYEES

PREPARE FOR VARIOUS CERTIFICATIONS

Bachelor thesis

2022

Pavel Semenov

COMENIUS UNIVERSITY OF BRATISLAVA

FACULTY OF MATHEMATICS, PHYSICS AND

INFORMATICS

APPLICATION DESIGNED TO HELP EMPLOYEES

PREPARE FOR VARIOUS CERTIFICATIONS

Bachelor thesis

Study programme: Applied Computer Science

Study field: 9.2.9 Applied Informatics

Department: Department of Applied Informatics

Supervisor: RNDr. Marek Nagy PhD.

Consultant: Ing. Pavol Jesenský

2022

Pavel Semenov

Name and Surname: Pavel Semenov
Study programme: Applied Computer Science (Single degree study,

bachelor I.
deg., full time form)

Field of Study: Computer Science
Type of Thesis: Bachelor´s thesis
Language of Thesis: English
Secondary language: Slovak
Title: Application designed to help employees prepare for various

certifications
Annotation: Resulting product of the project is ready-to-use, fully functional app.

App allows employees to choose the certification and check their
knowledge on the topic. These data are provided by back-end service
and requested by the app through its API. This project will be of a
huge help for employees as no such tools are yet available for them.
Project aims to make preparation for the certifications easy and
effective at the same time. The goal of the application is upskilling of
the employees primarily in the cloud computing area e.g. AWS
certifications, Openshift certifications, etc. The Backend will provide
data at REST API, the consumer in scope is mobile app which
consumes the API.

Comment: Designed for IBM company needs. Contact person and consultant:
Pavol Jesenský (pjesensk@sk.ibm.com)

Supervisor: RNDr. Marek Nagy, PhD.
Department: FMFI.KAI - Department of Applied Informatics
Head of department: prof. Ing. Igor Farkaš, Dr.

Assigned: 22.10.2021

Approved: 25.10.2021 doc. RNDr. Damas Gruska, PhD.
Guarantor of Study Programme

Student Supervisor

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

DECLARATION

I declare that I have prepared the bachelor's thesis independently and I have listed every used

literature.

……………………………………………

student’s handwritten signature

Acknowledgement

I would like to thank my supervisor RNDr. Marek Nagy, PhD. and consultant Ing. Pavol

Jesenský for help and advice.

Abstract

IT certifications are becoming more and more valuable nowadays. While they are considered a

good benefit for juniors, they are now absolutely essential for everyone applying for a senior

position. IBM Slovakia discovered a need for internal certifications preparation system to be

able to offer the most well-trained specialists to the clients.

This thesis considers the development of multiplatform mobile application providing tests

designed to help IBMers prepare for the certifications. Main features of the app include a list of

the available learning resources, different kinds of preparatory tests, an access to the remote

exercise environment from the mobile device. We examine closely the technologies, design and

implementation of the app.

Keywords: mobile app, certifications, Spring Boot, React Native, Kubernetes.

Abstrakt

IT certifikácie sú v dnešnej dobe čoraz cennejšie. Zatiaľ čo sú považované za dobrý prínos pre

juniorov, v súčasnosti sú absolútne nevyhnutné pre každého, kto sa uchádza o seniorskú pozíciu.

IBM Slovensko objavilo potrebu interného systému prípravy ku certifikáciam, aby mohla

klientom ponúknuť čo najkvalitnejších špecialistov.

Táto práca sa zaoberá vývojom multiplatformovej mobilnej aplikácie poskytujúcej testy

navrhnuté tak, aby pomohli IBM zamestnancom pripraviť sa na certifikácie. Medzi hlavné

funkcie aplikácie patrí zoznam dostupných učebných zdrojov, rôzne druhy prípravných testov,

prístup k vzdialenému cvičebnému prostrediu z mobilného zariadenia. Táto práca uvažuje

technológie, dizajn a implementáciu aplikácie.

Keywords: mobilná aplikácia, certifikácie, Spring Boot, React Native, Kubernetes.

Table of contents

INTRODUCTION ... 1

1 PROBLEM STATEMENT ... 2

1.1 CERTIFICATIONS .. 2

1.2 SURVEY ... 3

1.3 EXISTING SOLUTIONS .. 4

1.3.1 Certification Questions ... 4

1.3.2 PMP Certification Mastery ... 6

1.4 TECHNOLOGIES ... 7

1.4.1 Backend .. 7
1.4.1.1 Java... 7
1.4.1.2 Spring ... 7
1.4.1.3 Spring Boot ... 9
1.4.1.4 Lombok .. 9
1.4.1.5 Swagger-UI ... 10
1.4.1.6 Spring Data for MongoDB .. 10
1.4.1.7 MongoDB ... 10
1.4.1.8 Maven .. 11
1.4.1.9 yq ... 11
1.4.1.10 kubectl.. 11
1.4.1.11 Kubernetes ... 12
1.4.1.12 Docker .. 12

1.4.2 Frontend ... 12
1.4.2.1 JavaScript ... 12
1.4.2.2 React Native ... 13
1.4.2.3 @react-navigation .. 13
1.4.2.4 react-native-paper ... 13
1.4.2.5 @react-native-async-storage ... 13
1.4.2.6 Expo.. 13

2 DESIGN ... 14

2.1 FEATURES .. 14

2.2 APP ARCHITECTURE ... 15

2.3 SERVER ... 15

2.3.1 Data model ... 16

2.3.2 Spring Boot application .. 16

2.3.3 MongoDB.. 18

2.3.4 Field exercises ... 18
2.3.4.1 Kubernetes cluster and exercise environment ... 18
2.3.4.2 Pod ... 19
2.3.4.3 Use-case scenario ... 21

2.4 CLIENT .. 22

2.4.1 React Native application .. 22

2.4.2 Local storage .. 23

2.5 COMMUNICATION PROTOCOLS ... 24

2.6 DATA FORMATS .. 25

3 IMPLEMENTATION .. 28

3.1 BACKEND ... 28

3.1.1 MongoDB configuration ... 28

3.1.2 Sping Boot application .. 28

3.1.3 Lombok annotations ... 29
3.1.3.1 @Data .. 29
3.1.3.2 @NonNull ... 29

3.1.4 Spring annotations ... 29
3.1.4.1 @SpringBootApplication .. 29
3.1.4.2 @RestController ... 30
3.1.4.3 @GetMapping, @PostMapping, @PutMapping, @DeleteMapping .. 30
3.1.4.4 @RequestParam, @PathVariable, @RequestBody .. 30
3.1.4.5 @Bean .. 31
3.1.4.6 @Autowired ... 31

3.1.5 Exception handling ... 31

3.1.6 Bash scripts ... 32

3.2 FRONTEND ... 33

3.2.1 React Native application .. 34

3.2.2 Hooks .. 34
3.2.2.1 useState() ... 34
3.2.2.2 useRoute() .. 35
3.2.2.3 useEffect() .. 35

3.2.3 Animations ... 35

3.2.4 Async Storage ... 35

3.3 FINAL APP .. 36

3.4 APP TEST ... 38

3.4.1 Test report 1 ... 38

3.4.2 Test report 2 ... 39

3.4.3 Test report 3 ... 39

CONCLUSION ... 40

BIBLIOGRAPHY .. 42

ATTACHMENTS .. 44

1

Introduction

 According to the survey conducted by me among the IBM Slovakia employees,

100% of respondents (24 employees) are either doing a certification or preparing for one. Third

of them spends more than 8 hours a week preparing for the certification. A lot of the time is

spent searching for the information and the practice tests instead of actual productive learning.

Thus, it seems to be convenient if practice tests and most useful information resources for a

large set of certifications were available at hand via the mobile app, and, according to the survey,

92% of IBM SK employees agree to this statement. After research of the market no apps

satisfying all the requirements at once were found. This created an idea for such an app, that

would save the time for IBM employees, allowing them to prepare for the certifications more

efficiently.

 Technically the app is based on a client-server architecture, where the Spring Boot

framework is used for the backend part and the frontend is developed using React Native. Most

of the data is stored in NoSQL MongoDB database on the server side and is accessed by the

frontend through the API interface by communicating via the HTTP protocol. Backend, in its

turn, executes the necessary commands against the Kubernetes cluster to setup or clean out the

exercise environment if needed.

 The following chapters will be focusing on the main aspects of the app. They will

provide a deeper research of the problem, present the technologies and the technical design.

First chapter shortly introduces the world of certifications, gives an overview of the existing

solutions to the problem and presents the technologies used for the implementation. Features of

the app, its architecture and design are described in the second chapter. Lastly, the third chapter

focuses on the implementation of the app and its final looks. It points out the most challenging

aspects of the implementation process and comments on the most interesting pieces of source

code.

2

1 Problem statement

This chapter gives a complete image of the problem along with the existing solutions. First, a

brief introduction into the certifications is given. Then, a closer look at the results of the survey

with analysis is provided. Finally, there are a few chapters presenting the results of the market

research of existing solutions and a list of theses covering similar problems.

1.1 Certifications

Certifications are a good way to strengthen one’s CV. Awarded by professional organizations,

they confirm a person's ability to do a specific job or his possession of specific knowledge.

Certifications are acquired through passing an exam and usually valid for a limited amount of

time.

Most popular IT certifications include ones from Amazon, Microsoft, RedHat and Oracle. For

example, Amazon offers an “AWS Certified Cloud Practitioner” certification. As the company

states “Earning AWS Certified Cloud Practitioner validates cloud fluency and foundational

AWS knowledge.” [1]

Usually a certification represents a series of multiple-choice tests, which are supplemented with

multimedia elements in some cases. However, so-called "performance-based testing" has been

steadily growing in popularity throughout past years. In performance-based testing, a simulated

environment is presented to the exam taker, who is then required to complete a task, rather than

answer questions. Performance-based testing is favored, because it replicates the work

environment and emphasizes results. Employers see simulations as a far superior way to

measure whether someone has the real-world skills required to troubleshoot a network, for

example, or configure a workstation.

After the exam is completed, the overall score is calculated. If the score is greater or equal to

the passing score, the certification is earned by the exam taker. It can be then verified online by

the unique certificate id. Some exams also provide detailed information on the performance.

After completing any of the certification offered by the Red Hat, for instance, exam taker

receives an email with an overall score and a performance evaluation for each of the exam

objectives.

3

1.2 Survey

A survey was conducted among the employees of IBM Slovakia. It’s results confirm that

certifications are a vital step towards career progress. All participants of the survey are doing

the certifications or at least planning to do so soon.

Figure 1. Pie chart clearly shows, that the majority of employees have already earned a certification, while other 12.5% are
preparing for their first.

Most of the respondents also stated that it would be helpful to have an app which would provide

the necessary preparation materials. This is probably caused by the fact that the currently

available information related to the specific certification is scattered across the Internet, making

it rather time-consuming to look for it.

Figure 2. According to the pie chart presented above, most of the employees agree, that it would be helpful to have an app
allowing to practice before the certification exam.

4

The survey also included a few questions regarding the information resources IBM employees

use for the preparation. Respondents had to evaluate the usefulness and the ease of use (by

marking it from 1 to 10) of the following resources: Slack1 channels, notes from a colleague,

official courses and web resources. They were asked to provide some concrete examples, as

well. The most popular were web resources, which were used by approximately 87.5% of

respondents. However, the easiest ones to use were official courses with an average mark of 7.7

and notes from a colleague with an average mark of 7.2, while web resources and official courses

were the most useful with average marks of 8.1 and 7.8 respectively. Therefore, the resources

tab of the app should certainly include links to the web resources like Udemy, which is the most

popular of them, and official preparation courses.

1.3 Existing solutions

There are a few apps preparing for the certifications available on the market. However, no such

theses were found, that would consider the same problem this thesis is considering. Thus, we

will have a closer look at a few theses considering student testing apps or good examples of

server-client architecture implementations.

1.3.1 Certification Questions

This app [2] provides training tests for a big variety of IT certifications. It also tries to reproduce

the exam environment with a timer ticking in the top left corner, although it also provides an

explanation for each question, which might be quite useful. However, the list of the available

certifications doesn’t include some of the most popular ones, like “EX-288”. Moreover, this

application does not provide “performance-based tests”. It is also lacking the automated answer

evaluation for each question, which deprives user of the actual exam experience. The

1 Slack is a business communication platform widely used among IT companies. [13]

5

explanation is rather hard to read through and the “Previous” and “Next” buttons on the bottom

are too small.

To sum up, this app impacts my implementation in a few ways. Firstly, the size of the text and

buttons should be considered as this has a huge impact on the overall app usability. Secondly,

tab navigation looks native on mobile apps and, thus, should be the main navigation component

in my implementation. Thirdly, a search bar would be a great addition to the list of the

certifications and to the list of available learning sources. It allows to find the necessary

resources fast, making it easier to navigate in the app and increasing overall usability of the app.

Figure 3. A list of the certification vendors.
Figure 4. One of the tasks for the “EX200”
certification.

6

1.3.2 PMP Certification Mastery

This app [3] is available on iOS devices and provides a great preparation environment for the

Project Management Professional (PMP)® certification. It offers exam-like practice questions,

PMP concepts explanation, quiz questions and instructional videos. A whole tab is designated

to the performance tracking, encouraging users to stay on track and maintain practice streaks.

On the downside, there are only multiple-choice questions in every exercise and the paid

subscription is required to finish the exercise and get the performance evaluation.

All things considered, material design is probably the only thing worth to borrow for my

implementation of the app.

Figure 5. Main menu of the app. Figure 6. Test page with the multiple-choice
question.

7

1.4 Technologies

This section describes the technological solutions used by the app. They are divided into

subsections: backend and frontend. The former lists the tools required for the server side of the

app; the latter lists the tools required by the client side.

1.4.1 Backend

Backend of the solution is developed using mainly Java programming language. A few static

bash scripts are stored on the server and called by the application.

1.4.1.1 Java

Java is a high-level, class-based, object-oriented programming language. It is widely used in the

software development, allowing to build robust and portable products. Compiled Java code can

run on all platforms that support Java without the need to recompile. Java applications are

typically compiled to bytecode that can run on any Java virtual machine (JVM) regardless of

the underlying computer architecture.

Another strong point towards choosing Java as the main backend language is the Spring

framework. Spring provides everything required beyond the Java programming language for

creating enterprise applications for a wide range of scenarios and architectures. More details

about the framework can be found in further chapters dedicated to the subject.

Since nowadays official releases of Oracle Java require a paid subscription for commercial

support, IBM is using free open-source reference implementation of Java called OpenJDK. For

the development was chosen Java 11 as it is the most stable and widely supported release after

the Java 8, yet it also has some very useful features like var keyword and additional String

methods (strip(), lines(), isBlank()).

1.4.1.2 Spring

Spring [4] is the most popular application development framework for enterprise Java. Lots of

developers use Spring Framework to create high performing, easily testable, and reusable code.

Spring framework is an open source Java platform. It is lightweight when it comes to size and

transparency. The basic version of Spring framework is only around 2MB in size.

8

Spring framework is modular, which allows developers to pick only the modules applicable to

their product. The following diagram lists some of the modules provided by the framework. The

ones, that are used in my implementation are colored in green.

The Core Container consists of the Core, Beans, Context and Expression modules. The Core

and Beans modules provide the most fundamental parts of the framework and provide the IoC

and Dependency Injection features. IoC or Inversion of Control is a programming principle,

where the flow of the program is controlled by the external sources. Dependency Injection, often

referred to as DI, is a more specific version of IoC, where implementations are passed into an

object through either constructors or setters or service lookups, which the object will “depend”

on in order to behave correctly. The basic concept here is the BeanFactory which provides a

sophisticated implementation of the factory pattern. It removes the need for programmatic

singletons and allows you to decouple the configuration and specification of dependencies from

your actual program logic.

Figure 7. Modules of the Spring framework.

9

The ORM module provides integration layers for popular object-relational mapping APIs,

including JPA, JDO and others. My implementation makes use of the JPA mapping API. I

describe how in further chapter dedicated to the subject.

The Web module provides basic web-oriented integration features such as multipart file-upload

functionality and the initialization of the IoC container using servlet listeners and a web-oriented

application context. Spring is also shipped with an embedded Tomcat server.

1.4.1.3 Spring Boot

Spring Boot [5] is a tool that helps developers to create stand-alone, production-grade Spring-

based applications that you can run. It takes an opinionated view of the Spring platform and

third-party libraries, so that very little Spring configuration is needed to get started.

Among the features of Spring Boot are:

• Radically faster and widely accessible getting-started experience for all Spring

development.

• Possibility to be opinionated out of the box but get out of the way quickly as

requirements start to diverge from the defaults.

• A range of non-functional features that are common to large classes of projects (such as

embedded servers, security, metrics, health checks, and externalized configuration).

• Absolutely no code generation and no requirement for XML configuration.

Spring Boot applications are annotation-based. This means, that there are lots of annotations

used in every class and interface definition. We’ll consider most common ones in

implementation chapter.

1.4.1.4 Lombok

From the official description [6] “Project Lombok is a java library that automatically plugs into

your editor and build tools, spicing up your java.” Lombok basically provides a lot of useful

annotations to make Java code clean and compact. Among most popular features of Lombok are

annotations, that can handle generation of getters, setters and constructors automatically.

10

1.4.1.5 Swagger-UI

Swagger UI allows development team to visualize and interact with the API's resources without

having any of the implementation logic in place. In other words Swagger allows to generate an

API documentation without actually implementing it.

There is an io.springfox.documentation module available for the Spring, which allows to

generate a documentation webpage easily by declaring an additional Bean. This webpage

provides a list of controllers with the endpoints specifications. Each endpoint has an example

response model, available request parameters and an option to execute the request on the spot.

Besides the controllers, there is also a list of the models.

1.4.1.6 Spring Data for MongoDB

The Spring Data MongoDB project provides integration with the MongoDB document database.

Key functional areas of Spring Data MongoDB are a POJO centric model for interacting with a

MongoDB DBCollection and easily writing a Repository style data access layer. Features of the

Spring Data MongoDB include:

• MongoTemplate helper class that increases productivity performing common Mongo

operations. Includes integrated object mapping between documents and POJOs.

• Annotation based mapping metadata but extensible to support other metadata formats

• Java based Query, Criteria, and Update DSLs

• Automatic implementation of Repository interfaces including support for custom query

methods.

• GridFS support

1.4.1.7 MongoDB

MongoDB [7] is a document database designed for ease of development and scaling. It is a

NoSQL database, which MongoDB stores data records as BSON documents. BSON is a binary

representation of JSON documents, though it contains more data types than JSON.

Each database contains collections which in turn contains documents. Each document can be

different with a varying number of fields. Documents doesn’t need to have a schema defined

beforehand. Instead, the fields can be created on the fly.

11

The document structure is more in line with how developers construct their classes and objects

in their respective programming languages. Usually classes and objects can easily be

represented as key-value pairs.

The data model available within MongoDB allows you to represent hierarchical relationships,

to store arrays, and other more complex structures more easily.

Another upside of MongoDB is its scalability – the MongoDB environments are very scalable,

allowing to define clusters with hundreds of nodes.

1.4.1.8 Maven

Maven [8] is a build automation tool used primarily for Java projects. Maven builds a project

using its project object model (POM) and a set of plugins. Maven provides useful project

information that is in part taken from your POM and in part generated from your project's

sources. For example, Maven can provide:

• Change log created directly from source control

• Mailing lists managed by the project

• Dependencies used by the project

• Unit test reports including coverage

1.4.1.9 yq

yq is a lightweight and portable command-line YAML, JSON and XML processor. It can be

used to modify and reassign YAML properties, merge or create YAML files.

1.4.1.10 kubectl

kubectl is a command line tool for communicating with a Kubernetes cluster's control plane,

using the Kubernetes API. It looks for configuration file in $HOME/.kube directory or uses the

location specified in the KUBECONFIG environment variable. A default namespace,

authentication provider and cluster IP address are among the properties that can be defined using

the configuration file.

12

1.4.1.11 Kubernetes

Kubernetes is an open-source container orchestration tool. Basically, Kubernetes allows to

define the way applications are deployed using YAML files. Kubernetes then distributes the

load between the available hardware resources (nodes) inside the cluster (a set of nodes). This

feature is called load-balancing. Besides, load-balancing Kubernetes can manage the scaling

and exposing of your deployments.

To partition a single Kubernetes cluster into multiple virtual clusters we can use namespaces.

Namespaces provide a mechanism for isolating groups of resources within a single cluster.

There are a lot of types of resources, that can be deployed into the Kubernetes cluster. Pods are

the smallest deployable units of computing that you can create and manage in Kubernetes. Pod

can run several containers at once. It can also have a volume, which can be mounted to a specific

directory inside the container. One way to populate that volume is by ConfigMap. A ConfigMap

is an API object used to store data in key-value pairs. When mounted, each key becomes the

filename and its value makes the contents of the file inside the mounted directory.

1.4.1.12 Docker

Docker provides a set of tools to build application images. Docker images are basically a

template with the set of instructions to build a container, which is in some ways similar to VM

(Virtual Machine). The Dockerfile makes the specifications for creating an image. Since Docker

uses a layering system each Dockerfile must specify the image to build upon using the “FROM”

keyword. Docker Engine is designed to build images from Dockerfiles and run them.

1.4.2 Frontend

Frontend is developed using React Native framework for the JavaScript programming language.

Expo is also used as it provides a great set of tools for building and testing the application.

1.4.2.1 JavaScript

JavaScript is a high-level, often just-in-time compiled language. It has dynamic typing,

prototype-based object-orientation, and first-class functions. It has application programming

interfaces (APIs) for working with text, dates, regular expressions, standard data structures, and

the Document Object Model (DOM).

13

1.4.2.2 React Native

React Native [9] is an open-source UI software framework created by Meta Platforms, Inc. It is

used to develop applications for a variety of platforms by enabling developers to use the React

framework along with native platform capabilities.

React Native provides a core set of platform agnostic native components like View, Text, and

Image that map directly to the platform’s native UI building blocks. Besides that, React Native

provides animations, navigation and routing libraries. Below are listed some libraries used in

my React Native project.

1.4.2.3 @react-navigation

This library allows to construct navigation containers for the app. Alongside bottom tabs and

stack navigation it provides a useful useRoute() hook to access route in every functional

component. We examine the use of this hook in the implementation chapter.

1.4.2.4 react-native-paper

Paper is a collection of customizable and production-ready components for React Native,

following Google's Material Design guidelines. It allows to create convenient and user-friendly

design.

1.4.2.5 @react-native-async-storage

This module [10] provides an asynchronous, unencrypted, persistent, key-value storage system

for React Native. It allows to store and retrieve data on different platforms using the same API.

For each platform, though, it implements its own type of storage based on the features a specific

device possesses.

1.4.2.6 Expo

Expo is a framework based on the React Native. It extends available functionality with some

great add-ons like DocumentPicker, GoogleSignIn or SMS. It is shipped with the Metro to

bundle JavaScript for Android and iOS platforms.

14

2 Design

This chapter aims to give a full understanding of the technical aspects regarding the app

implementation. First, the design of the solution will be considered in detail. Then, we will cover

the DevOps side of the app.

2.1 Features

Test environments providing different types of exercises and different kinds of tasks are the

main feature of the app. However, besides the “Test” tab where the tests are located, “Drillz”

app also has a “Learn” tab with a list of links to the various courses and an “About” tab, where

information about the app itself is located.

There are three exercise types available in the app: “test”, “lab” and “field”. The first one looks

like the most common exams. User can encounter either single-choice, multiple-choice or text

questions. Exercises of the second type represent the so-called “performance-based testing”,

where the test environment is designed to test practical skills of the test taker. Tasks are arranged

in a certain order and target one particular real-world problem. User is expected to construct a

command from the offered command parts. The third type is similar to the second one except

this time the commands are actually being executed against the Kubernetes cluster. Each

exercise has a recommended duration predefined, and the amount of time spent for the user to

complete the exercise impacts the final score for this exercise.

The maximum (although hardly ever reachable) score for the exercise is 10000. Half the score

is awarded based on the correctness of exercise, another half is awarded based on the time spent.

The amount of points awarded for each task depends on its weight. No points are awarded for

the task if at least one mistake was made. Time points are awarded according to the following

formula:

5000*max(time_expected – time_actual, 0)/time_expected

which means that zero points are received if time spent on the exercise equals or exceeds the

time allocated on the exercise and a maximum of 5000 is received when no time is spent on the

exercise.

15

Progress for each exercise is saved to the local storage. That is, if the exercise is left

uncompleted, user has an option to continue practicing from the first uncompleted task. The

timer and number of failures are also loaded from the local storage.

After the exercise is finished, a short summary is displayed. For each exercise there is the total

completion time, the total mistake count and the overall score is displayed. An option to restart

the exercise is also available.

2.2 App Architecture

App is constructed of the frontend, which makes HTTP requests to the backend, which, in its

turn, communicates with the database and Kubernetes cluster. The following diagram gives a

basic overview of the app structure.

2.3 Server

Backend of the solution is built upon Spring Boot. Its main purpose is to provide API, which

responds to the HTTP requests from the frontend, sending the requested data in JSON format.

Backend is also responsible for the creation and deletion of exercise environment when the task

of type “field” is started or ended.

Figure 8. App architecture diagram.

16

2.3.1 Data model

The following diagram illustrates the data model for the app.

The app does not require a complicated data model. For User entity, for instance, only the id is

stored as a way to uniquely identify users. ExerciseType and TaskType are two static Java

enums.

2.3.2 Spring Boot application

Spring Boot application listens for the incoming requests and responds to them using the data

fetched from the database. It provides endpoints for each model. Spring Boot app also ensures,

that the endpoints are protected with Basic Authentication. It is responsible for all database

transactions.

Figure 9. Data model diagram.

17

The application is designed to have main packages: models, repositories and controllers. The

diagram below displays the package structure and dependencies between them. We consider

each package in detail below.

Models package includes all the declarations of all database models used in application. Each

model has an Id field, which is automatically generated when a new object is inserted into the

database. Required fields are marked as NonNull to ensure their presence in every entry of the

respective model. Besides models, the package includes the definitions of Java enums to

distinguish between the types of exercises and tasks.

Repositories package contains repositories, which are the services responsible for the

communication between the Mongo database and controllers. There is a separate repository

interface for each one of the models.

Controllers package is a collection of REST controllers. Each controller has the definition of

endpoints for a particular database model. Controllers are responsible for serializing the requests

and building the responses.

Another important part of the app is security package. Security package handles the

authentication entry point, security and CORS (Cross-Origin Resource Sharing) configurations.

All requests should pass through the authentication entry point, which decides if the request

satisfies the security requirements. If not, it sends the 401 UNAUTHORIZED response.

Figure 10. UML package diagram. Security package does not import or access any functionality from other internal packages.

18

2.3.3 MongoDB

Mongo database does not require any further configuration except creating a separate user with

a password for the backend to use. Once the MongoDB Server is up, Spring Boot manages the

connection itself. It is only required to provide the spring.data.mongodb.url property in the

application properties. Connection string has the following format:

mongodb://[username:password@]host[:port][/[defaultauthdb][?options]]

where defaultauthdb is the default database name to connect to and options is query string that

specifies connection specific options as key-value pairs.

2.3.4 Field exercises

A dedicated chapter is required for the exercises of the “field” type as they have the most

complicated design and involve executing bash scripts and managing the Kubernetes cluster.

2.3.4.1 Kubernetes cluster and exercise environment

Each exercise environment can be uniquely identified by user id and exercise id. This allows

multiple users to work on the same exercise at the same time and yet have a full environment

for themselves. This also allows the same user to start the next exercise as soon as he finishes

the previous one as some time needed to terminate the exercise environment. Three resources

are created for each user-exercise pair. A single convention is used to name resources inside the

cluster. That is, for user with id 1234 and exercise with id 4321 a namespace is named ns-1234-

4321, a pod is named pod-1234-4321 and a config map containing the Kubernetes configuration

is named kubeconfig-1234-4321.

Kubernetes cluster has a namespace, let’s say user-vms, where a pod and a config map are

created when new “field” exercise is started by user. All commands issued by the user are then

executed inside this pod. This means that user has no access to the server environment itself.

The config map has a Kubernetes configuration file, which restricts the default namespace used

when kubectl commands are executed inside the pod to the one, which was created specifically

for this exercise. user-vms namespace has also a static config map called credentials, which is

the same for every user and every exercise. It contains a JSON file with credentials to the service

account, which is used to authenticate user’s commands against the cluster. The diagram below

19

represents the state of the Kubernetes cluster, when a user from example above starts the

exercise. Unrelated namespaces and resources are omitted in sake of clarity.

When server receives a request to execute a command, it starts the bash script, which uses

kubectl to execute the command inside the pod, which is identified by the user id and exercise

id supplied with the request. Output of the command is then returned in the response body. If

input stream is empty, then the output written to the error stream is returned.

2.3.4.2 Pod

Pods, created for each exercise, sleep for the time allocated on exercise and then terminate all

resources created for this exercise including itself. Pods are created from the YAML template,

which is modified for every new exercise using the yq utility. The following code listing contains

the pod specification:

Figure 11. Kubernetes cluster diagram. User is free to use the exercise-vm container to execute commands or create new
resources inside user-1234-4321 namespace.

20

apiVersion: v1
kind: Pod
metadata:
 labels:
 app: exercise-vm
 name: <change-me>
 namespace: user-vms
spec:
 containers:
 - command: <change me>
 env:
 - name: KUBECONFIG
 value: <change me>
 - name: GOOGLE_APPLICATION_CREDENTIALS
 value: /var/opt/credentials/credentials.json
 image: gcr.io/eastern-team-350219/exercise-vm:latest
 imagePullPolicy: IfNotPresent
 name: pod-template
 volumeMounts:
 - mountPath: /var/opt/credentials/
 name: credentials
 - mountPath: /var/opt/kubeconfig/
 name: kubeconfig
 restartPolicy: Never
 volumes:
 - configMap:
 name: credentials
 name: credentials
 - configMap:
 name: <change me>
 name: kubeconfig

Listing 1. Pod YAML specification.

Pod’s name is changed according to the convention mentioned previously. Command is changed

to

["/bin/sh","-c","sleep ${SLEEP_TIME} && kubectl delete ns ${NAMESPACE} && kubectl -n

${USER_VMS_NAMESPACE} delete cm ${CM_NAME} && kubectl -n

${USER_VMS_NAMESPACE} delete po ${POD_NAME}"]

where the variables are replaced by their respective values. Both config map name and

KUBECONFIG environment variable value are changed according to the newly created config

map name.

Image used for the pod is of big importance. It should be lightweight, so that new

environments are created quickly, nevertheless, it must include the necessary for binaries for

21

the exercise. At the moment, only kubectl and git binaries are required, and the image is the

same for each exercise environment.

The image is built from the lightweight Linux distro called alpine. Dockerfile specification of

the image is in the next code listing.

FROM alpine:latest

RUN apk add git && \
 apk add curl && \
 curl -LO "https://dl.k8s.io/release/$(curl -L -s
https://dl.k8s.io/release/stable.txt)/bin/linux/amd64/kubectl" && \
 install -o root -g root -m 0755 kubectl /usr/local/bin/kubectl

Listing 2. Dockerfile contents.

2.3.4.3 Use-case scenario

As soon as user taps “Start exercise”, his id is retrieved from the local storage. Then, it sends a

request to check if the environment for this exercise already exists. This can happen if the

exercise was started but not completed or when it has been completed recently and the exercise

environment is still terminating.

If user id was found locally, user id and exercise id are supplied with the request. Server executes

the bash script and, depending on its exit code, returns either 0 if no environment was not found

or 1 if the environment exists. In latter case user is asked to wait while the old environment is

terminated and a termination request is sent. In former case a request to setup a new exercise

environment is sent. In both cases, termination and creation of environments are made by

separate bash scripts.

If no user id is found locally, then no exercise environment exists for this user. A request to

setup a new exercise environment is sent. Since no user id is supplied with the request, a new

user is inserted into the database and its id is returned and then stored locally.

When user finishes the exercise, a termination request is sent automatically. If user does not

manage to finish the exercise in time, he is notified about this and is redirected to the final

screen, where his score is calculated (and 0 points are awarded for the time component of the

score).

22

2.4 Client

Client is a multiplatform application built with React Native. Its main purpose is to provide a

user-friendly experience while also delivering the necessary information in easily consumable

format.

2.4.1 React Native application

The application has three main screens accessible via the bottom tab navigation. There are

Learn, Test and About tabs. Let’s consider those in detail.

Learn tab is designed to gather learning resources in one

place. That is, it has to possess two main features: a scrollable

list of learning resources and a search window to search

through this list. This tab as well as all of the described further

fetches the data on the first render as there is no point in future

requests due to the low rates of update in the database. For the

same reason search filters through the data fetched before and

does not make additional requests to the server. Each learning

resource is listed as a card with the title, cover image and a

short description. Upon click user is redirected to his default

browser, where the learning webpage is loaded.

Test tab is the most complicated one. It has two additional

nested navigation stacks. By default test tab opens the

Certifications screen, where available certifications are

fetched from the server and listed as cards. The picture below displays one of the first mock-ups

of the Certifications screen. Search feature is available at the top of the screen. By clicking the

card user can navigate to the Exercises screen. Exercises screen has a list of exercises for the

certification selected on the previous screen. Each exercise has the progress displayed as a

progress bar behind the exercise item. Search feature is available here as well. Selecting the

exercise activates next navigation stack. First, there is the starting screen, where the title, the

type and current progress of exercise are displayed. Pressing the “Start”/”Continue”/”Retry”

button (label depends on the user’s progress in the exercise) navigates to the next screen. Next

Figure 12. Learn tab.

23

screen is the Task screen. It has the task description, progress

bar, timer and the answer view on it. Answer view looks

different for every task type there is. For the tasks of type

“auto” and “exec” there is a list of “bricks”, from which the

answer should be constructed and a terminal simulation

window, for the “exec” tasks there is also an output window

right under the terminal (see chapter 3.3 Final app for the

screenshots). For the single-choice, multiple-choice and text

answers there are RadioButton, Checkbox or Input views

respectively. “Continue” button rests on the bottom of the

screen. To continue to the next task user must provide

correct answer. Although, algorithm of answer evaluation is

slightly different for each task type, basically, it all comes to

string comparison. The answer, submitted by user, is

compared with the expected answer fetched from the

database. Incorrect parts of the answer are colored in red

when answer is submitted. After all tasks have been correctly solved a congratulations screen

appears. It displays the mistake count, duration and overall exercise score, which is calculated

based on the number of mistakes, time spent and task weight. Two buttons rest at the bottom:

“retry” and “finish”. The former allows to start the exercise again from the first task. The latter

navigates back to the exercises list.

The last one is About tab. About tab provides some basic information about the app and its

purpose. There are also listed ways to get in touch with the developers.

2.4.2 Local storage

Although most of the data is stored in the database on the server side, there is also a bit of data

stored locally on user’s device. This allows to reduce the number of API requests and solves the

problem of identifying client on server side.

Every user has its progress in each exercise saved locally, so that it can be displayed later. For

each exercise there is the time spent and mistake count stored. Besides progress, user id is saved

locally, too, and a separate static key used to access it.

Figure 13. Exercises for the
selected certification. Green
background displays saved
progress for each exercise.

24

This feature uses @react-native-async-storage module described earlier in the Technologies

chapter.

2.5 Communication protocols

The only protocol used for the communication between the frontend and the backend is HTTP.

Backend controllers accept GET, POST, PUT and DELETE requests. Each request receives a

response from the server with a corresponding response code. That is, successful requests

receive a 200 OK code in case the requested data were successfully found or 201 CREATED

when the requested entity was successfully created. Failed requests are responded with the 404

NOT FOUND status or 401 UNAUTHORIZED if the request did not provide the necessary

authorization header.

Each endpoint of the API is protected by the Basic Authentication. This means, that all requests

are required to possess an Authentication header with the credentials in the following format:

Basic <auth_string>

where auth_string is a Base64 encoded username and password joined by the colon. For

example, for user “user” and password “password” the Authentication header will look as

follows:

Basic dXNlcjpwYXNzd29yZA==

Some endpoints also expect a request variable(s) passed either through the request path or by

using the HTTP GET parameters. URL in the form of

http://<api_url>/<parameter1>/<parameter2>

where <api_url> is the base URL of the API, <parameter1> and <parameter2> are the path

variables represents the former style. Whereas the latter style looks as foolows:

http://<api_url>?<key1>=<value1>&<key2>=<value2>

In the first case parameters are distinguished by their order only and in the second order of

parameters does not matter as each value is assigned to a particular key.

25

2.6 Data formats

Data exchanged between the client and the server is in most cases has the JSON format. This

allows to easily serialize objects to be used in request and response bodies. On the server side

this is realized by returning POJO (Plain Old Java Object), which is automatically converted

into JSON by Jackson serializer. Client side converts the response body to JSON using the

Response.json() JavaScript method.

When only one property of the object is being requested and that property is represented by a

single string, the response body has the text format. Then the client accesses it using the

Response.text() method.

Server database is populated through the specific endpoint, which expects a JSON body. This

body contains the list of the certifications, a list of exercises for each of them and a list of tasks

for each exercise. Here is an example of such body:

[
 {
 "title": "EX-288",
 "description": "Red Hat OpenShift Development II: Containerizing Applications",
 "imageUrl": "https://www.redhat.com/profiles/rh/themes/redhatdotcom/img/red-hat-social-share.jpg",
 "exercises": [
 {
 "title": "Deploying an Application to an OpenShift Cluster",
 "type": "LAB",
 "time": 600,
 "tasks": [
 {
 "description": "1. Enter your local clone of the DO288-apps Git repository and checkout the master
branch",
 "helpers": [
 "DO288-apps",
 "docker-build",
 "master",
 "${RHT_OCP4_DEV_USER}",
 "${RHT_OCP4_DEV_PASSWORD}",
 "${RHT_OCP4_MASTER_API}",
 "https://github.com/${RHT_OCP4_GITHUB_USER}/",
 "echo-1-555",
 "cd",
 "git",
 "checkout"
],
 "answers": [
 "cd DO288-apps",
 "git checkout master"
],
 "type": "AUTO",
 "weight": 1
 }
]
 }
]
 }
]

Listing 3. An example of JSON body used to populate the certifications database.

26

This way, a one or a hundred of certifications can be imported into the database using the same

entrypoint. JSON is parsed by the backend using the org.json package. Then objects are created

and inserted into the database. From the example above the script will first insert a new category,

then a new exercise, which will reference the newly created category, then a task referencing

inserted exercise will be inserted into the database. The following method is responsible for

parsing JSON entries:

 @PostMapping("/entry")
 ResponseEntity<?> newEntry(@RequestBody String input) {
 JSONArray categories = new JSONArray(input);
 for (int i = 0; i < categories.length(); i++) {
 JSONObject category = categories.getJSONObject(i);
 String categoryId = categoryRepository.insert(new Category(
 category.getString("title"),
 category.getString("description"),
 category.getString("imageUrl")
)).getId();
 JSONArray exercises = category.getJSONArray("exercises");
 for (int j = 0; j < exercises.length(); j++) {
 JSONObject exercise = exercises.getJSONObject(j);
 String exerciseId = exerciseRepository.insert(new Exercise(
 exercise.getString("title"),
 categoryId,
 exercise.getEnum(ExerciseType.class, "type"),
 exercise.getLong("time")
)).getId();
 JSONArray tasks = exercise.getJSONArray("tasks");
 for (int k = 0; k < tasks.length(); k++) {
 JSONObject task = tasks.getJSONObject(k);
 taskRepository.insert(new Task(
 exerciseId,
 task.getString("description"),

task.getJSONArray("helpers").toList().stream().map(x ->
(String)x).collect(Collectors.toList()),

task.getJSONArray("answers").toList().stream().map(x ->
(String)x).collect(Collectors.toList()),
 task.getEnum(TaskType.class, "type"),
 task.getDouble("weight")
));
 }
 }
 }
 return ResponseEntity.status(HttpStatus.CREATED).build();
 }

Listing 4. Endpoint for the data import. Objects are parsed using the JSONObject and JSONArray from org.json package.

27

Since the application does not directly write or read any files, no further data format

specification is needed. Nevertheless, some data is being saved locally on the client device.

Refer to the chapter 2.4.2 Local storage for further explanation.

28

3 Implementation

This chapter is dedicated to my implementation of the app. Chapter is split up into the two parts

describing backend and frontend parts respectively.

3.1 Backend

Implementation the backend mostly comes to the development and deployment of the Spring

Boot application since Mongo database requires almost no additional configuration. We’ll first

look at the few steps required to get it running as intended.

3.1.1 MongoDB configuration

For security reasons Mongo database shouldn’t be accessed without authentication. A separate

user for the Spring to use should be created. User can be created with one line of code. After

connecting to the MongoDB and typing the command

db.createUser({user: "spring", pwd: "password", roles: [{role: "readWrite", db: "drillz"}]})

a new user will be created. Then the credentials can be passed to Spring via the application

properties.

3.1.2 Sping Boot application

The following class diagram gives an overview of the Spring Boot application structure.

Figure 14. UML class diagram.

29

Traditionally, Spring Boot applications rely on annotations to implement the dependency

injection paradigm. That’s why it is crucial to go through the annotations I have used to

implement the app. Next chapters focus on Lombok and Spring annotations.

3.1.3 Lombok annotations

Lombok annotations are there to make developer’s life easier. Instead of rewriting the same

chunks of code over and over again, developers can use annotations generating those pieces of

code for them.

3.1.3.1 @Data

This annotation is designed specifically for data models and applied to the model class. It

combines @ToString, @EqualsAndHashCode, @Getter, @Setter and

@RequiredArgsConstructor annotations. Therefore, it generates toString(), equals(),

hashCode() methods, a constructor with accepting all required fields as arguments, getters and

setters for every applicable field.

3.1.3.2 @NonNull

@NonNull annotation marks a class field as required. In addition, Lombok throws an exception

if the field value was set to null.

3.1.4 Spring annotations

Spring applications are driven by the annotations [11]. That’s why I am explaining some them

below.

3.1.4.1 @SpringBootApplication

This annotation tells Spring Boot to use auto-configuration, component scan and allowes to

define extra configuration on their "application class". A single @SpringBootApplication

annotation can be used to enable those three features, that is:

• @EnableAutoConfiguration: enable Spring Boot’s auto-configuration mechanism

• @ComponentScan: enable @Component scan on the package where the application is

located

30

• @Configuration: allow to register extra beans in the context or import additional

configuration classes

3.1.4.2 @RestController

This annotation combines the Spring @Controller and @ResponseBody annotations, making it

easier to implement controllers. @ResponseBody annotation enables automatic serialization of

the return object into the HttpResponse object.

3.1.4.3 @GetMapping, @PostMapping, @PutMapping, @DeleteMapping

These four annotations act as a shortcut for @RequestMapping annotation, each passing its own

value to the method argument. They expect a path passed as a default argument. This path is

then mapped to the method annotated by any of those annotations. This means that the request

made to this path will be processed by the mapped method. Multiple mappings of the same

method with the same path are not allowed and will produce an error during the Spring

initialization.

3.1.4.4 @RequestParam, @PathVariable, @RequestBody

These three annotations handle the data sent with request. @RequestParam annotation indicates

that a method parameter should be bound to a web request parameter. This allows us to handle

requests with URLs like

http://<api>/<endpoint>?param=value

with the following method:

@GetMapping("/<endpoint>")
ResponseEntity<?> get(@RequestParam String param) {
 // Some application logic which makes use of the param
 return ResponseEntity.ok().build();
}

Listing 5. @RequestParam usage example

@PathVariable annotation indicates that a method parameter should be bound to a URI

template variable. This allows us to handle request variables embedded in the URL like

http://<api>/<endpoint>/value

31

with the following method:

@GetMapping("/<endpoint>/{param}")
ResponseEntity<?> get(@PathVariable String param) {
 // Some application logic which makes use of the param
 return ResponseEntity.ok().build();
}

Listing 6. @PathVariable usage example

@RequestBody annotation indicates, that a method parameter should be bound to the body of

the web request. Jackson serializer is able to parse the body into the object instance, so that

JSON objects can be passed to the backend using the request body.

3.1.4.5 @Bean

Indicates that a method produces a bean to be managed by the Spring container. It must return

an object, which can be then autowired by Spring.

3.1.4.6 @Autowired

Marks a constructor, field, setter method, or config method as to be autowired by Spring's

dependency injection facilities. Basically, the object is instantiated and controlled by Spring

automatically.

3.1.5 Exception handling

Application handles some exceptions separately to return more specific error message. For each

model there exists its own exception and its own handler. Let’s consider, for instance, the case

when the Category with a specific id was requested but wasn’t present in the database. Category

controller throws a custom exception, which is defined in the following code listing:

public class CategoryNotFoundException extends RuntimeException {
 CategoryNotFoundException(String id) {
 super("Could not find category with id " + id);
 }
}

Listing 7. Custom error class

This exception is recognized by the advice, so it sends a response, wrapping the exception

message in the response body. The code listing below contains the code for this exception’s

advice.

32

@ControllerAdvice
public class CategoryNotFoundAdvice {
 @ResponseBody
 @ExceptionHandler(CategoryNotFoundException.class)
 @ResponseStatus(HttpStatus.NOT_FOUND)
 String categoryNotFoundHandler(CategoryNotFoundException e) {
 return e.getMessage();
 }
}

Listing 8. Controller advice implementation

3.1.6 Bash scripts

A lot of work is put into the bash scripts running on server side. They are the main wheel of

“field” task functionality. Let’s consider each of them in detail.

Firstly, there is the check_environment_existence.sh script. It is called by Kubernetes controller

upon every valid request to the environmentExists endpoint. The script expects two arguments,

user id and exercise id, to be passed. It exits with 0 if the respective environment was not found

or 1 in other case.

#!/bin/bash

USER_ID=$1
EXERCISE_ID=$2

if kubectl get ns | grep -q "ns-$USER_ID-$EXERCISE_ID" || kubectl -n user-
vms get po | grep -q "pod-$USER_ID-$EXERCISE_ID"; then
 exit 1
else
 exit 0
fi

Listing 9. check_environment_existense.sh

Secondly, there is prepare_exercise_environment.sh script, which is responsible for the creation

of the namespace, pod and config map. First two arguments are user id and exercise id

respectively, and the third one is a container life time in seconds. This script is called whenever

a valid request to the startExercise endpoint is received and the exercise with the supplied

exercise id is of “field” type. This script calls a small helper bash script designed to create a

YAML definition of a config map, which contains the Kubernetes configuration file.

Thirdly, the execute_exercise_command.sh script is the one used to execute commands inside

the pod. Again, first two arguments are ids, and all extra arguments are treated as a command.

33

The script is called upon every valid request to the exec endpoint. Its output is returned with the

response body.

#!/bin/bash

POD_NAME="pod-$1-$2"
COMMAND=${@:3}
NAMESPACE="user-vms"

kubectl -n $NAMESPACE exec -t $POD_NAME -- /bin/sh -c "$COMMAND"

Listing 10. execute_exercise_command.sh

Lastly, to clean up after the exercise is finished a clear_exercise_environment.sh bash script is

used. Traditionally, it expects ids as the first two arguments. However, if null is received as

exercise id, the script deletes all the exercise environments for the user with the provided user

id. This is useful to be invoked on the app close event. The script is responsible for the

termination of the pod, namespace and the config map.

#!/bin/bash

USER_ID=$1
EXERCISE_ID=$2

clear() {
 kubectl delete ns ns-$USER_ID-$EXERCISE_ID
 kubectl -n user-vms delete po pod-$USER_ID-$EXERCISE_ID
 kubectl -n user-vms delete cm kubeconfig-$USER_ID-$EXERCISE_ID
}

if [$EXERCISE_ID = "null"]; then
 for ns in $(kubectl get ns -o=custom-columns=':.metadata.name'|
grep "ns-"); do
 EXERCISE_ID=$(echo $ns | sed -E "s/ns-[^-]{24}-([^-]{24})/\1/g")
 clear
 done
else
 clear
fi

Listing 11. clear_exercise_environment.sh

3.2 Frontend

Frontend implementation is way more tricky. A lot of time is spent on tweaking little things like

animations, positions and styles. Another thing to keep in mind is the multiplatform aspect.

Every component or third-party library used should be compatible with both iOS and Android

platforms. Below are screenshots of the user interface.

34

3.2.1 React Native application

The biggest question when developing with React Native is whether to use classes or function

as components. Class components allow developers to use React lifecycle methods and benefits

of classes themselves, whereas functional components mostly just responsible for rendering the

UI based on the passed properties. Personally, I prefer to use functional components and keep

my logic separated from the rendering mechanisms.

Furthermore, hooks can be conveniently used in functional

components to make them stateful.

The most interesting feature of the frontend is the “auto”

and “exec” tasks. They allow user to construct a command

from the offered parts. The feature is implemented using

two stateful arrays, and the “bricks” are rendered using the

Badge component from ‘react-native-paper’ library.

Initially, terminal window has a number of empty “bricks”

equal to the number of words received by splitting the

answer by spaces. Upon user tap on one of the “bricks”, it

is being removed from the first array and appended to the

second one, which is displayed in the terminal window.

Same process is applied upon tapping on one of the non-

empty “bricks” in the terminal window.

3.2.2 Hooks

Hooks are one of the recent additions to the React. They were released just in the winter of 2019

and solved many of React’s problems [12]. Hooks allow you to use state and other React features

without writing a class. Hooks are the functions which "hook into" React state and lifecycle

features from function components.

3.2.2.1 useState()

Returns a stateful value, and a function to update it. Basically, this hook allows us to preserve

data while using the same function to re-render the view. It is the most commonly used hook in

Figure 15. “Auto” task screen.
Timer is running in the header.
Tapping on the “brick” will
append it to the answer sequence.

35

my implementation since I am only using functional components and this hook is a very

straightforward way to make them stateful.

3.2.2.2 useRoute()

Returns the route prop of the screen it's inside. I am mostly using it to access route parameters

when navigating between different screens.

3.2.2.3 useEffect()

This hook allows to execute code after the render process is finished. It also allows to specify a

list of dependencies, which trigger the effect when at least one of their values change. An empty

list of dependencies means that the effect will be executed only once for the whole app run.

3.2.3 Animations

Animations are very important to create a great user experience. Stationary objects must

overcome inertia as they start moving. Objects in motion have momentum and rarely come to a

stop immediately. Animations allow developers to convey physically believable motion in their

interface.

React Native provides two complementary animation systems: Animated for granular and

interactive control of specific values, and LayoutAnimation for animated global layout

transactions. In my implementation I use only the former one.

Animations in React Native are composed in ordered sequences of actions by

Animated.sequence() method or executed in parallel by Animated.parallel() method. Both of

them accept an array of actions, which modify the object state. Actions can be of different types

depending on the nature of the action. Among offered types is, for instance, Animated.timing()

method, which supports animating a value over time using one of various predefined easing

functions, or a custom one.

3.2.4 Async Storage

To conveniently store and retrieve the progress of exercises locally I have defined two functions.

The listing below contains the declaration of those two functions.

36

export const storeData = async (value) => {

 try {

 const jsonValue = JSON.stringify(value)

 await AsyncStorage.setItem(ITEM_KEY, jsonValue)

 } catch (e) {

 console.error(e);

 }

}

export const retrieveData = async () => {

 try {

 const jsonValue = await AsyncStorage.getItem(ITEM_KEY)

 return jsonValue != null ? JSON.parse(jsonValue) : null;

 } catch(e) {

 console.error(e);

 }

}

Listing 12. Async storage data manipulation

Besides the two functions described above, there are also utility functions designed for

manipulation with user id, which is also being stored locally.

3.3 Final app

Here I have gathered some screenshots of the app made on Android device. They provide a basic

understanding of how the app looks and feels.

Figure 17 shows the certifications screen, which appears when user visits the Test tab first time.

For each certification there is a title, a short description and a cover image. Figure 18 shows an

example of multiple-choice task. On the screenshot user has tapped the “continue” button, but

his answer was not correct. Application highlights the wrongly selected options. Exercise

finishing screen is shown on the Figure 19. It is accompanied with particles to make the message

more congratulatory. Figure 20 shows the previously completed exercise. The description of the

task type is loaded from the backend. Task of type “exec” is shown on Figure 21. Since the user

has provided a correct answer, the “next” button is active. The output of the executed command

is written to the textarea. However, on Figure 22 the answer submitted by the user wasn’t

correct. The command was executed and outputted the error message. “Next” button is not active

since the answer is wrong.

37

Figure 16. Test tab. Figure 17. “Multiple-choice” task.
Wrong answers are colored in red.

Figure 19. Previously completed
exercise. Previous score is
retrieved from local storage and
displayed.

Figure 20. “Exec” task screen.
Command was successfully
executed and the output is
displayed to the user.

Figure 21. “Exec” task screen.
Since the command is wrong,
continue button is disabled.

Figure 18. Congratulations
screen. Total number of mistakes,
time spent and score are
displayed.

38

3.4 App test

The app was tested using different iOS and Android devices. The common test process consists

of the following steps designed to test the system behavior in different conditions:

1. User opens the app, the “Learning” tab appears

2. User searches through the Learnings, only Learnings matching the search criteria are left

3. User taps on one of the search results, a browser window opens

4. User returns to the app

5. User navigates to the “Test” tab

6. User taps on the certification, the “Exercises” screen opens

7. User starts one of the exercises

8. User tries to submit both wrong and right answers

9. User exists the exercise, returns to the “Exercises” screen

10. User continues the exercise from where he left

11. User completes the exercise

12. Steps 7-11 are repeated for “test”, “lab” and “field” exercise types

13. User reviews the “About” tab

There were three full tests completed on different devices. The test reports can be found below.

3.4.1 Test report 1

The participant possessed an iPhone 13 Pro Max. Since I didn’t have access to the Mac or iOS

system during the development, this was the first time the app was tested on iOS device.

The participant was satisfied with “Learning” tab. It looked exactly as was intended and the

search was working properly. However, he had encountered several problems while completing

the tests. Firstly, text on the “bricks” was looking too small on the large screen of his device.

Secondly, the “arrow-back” icon in the header had transformed into simple line, but still was

pressable. Thirdly, the iOS keyboard has overlapped the input field during the “text” task. While

the first two issues are not critical, the last one will be our first priority when updating the app.

39

Overall, though, participant was content with the app. He

found the app enjoyable and has asked to send him a

download link when the app will be officially released into

the production.

3.4.2 Test report 2

The second participant had the Android device. The device

name was Xiaomi POCO X3 NFC. App was tested

multiple times on Android emulators during the

development and was running smoothly, nevertheless,

during this test a few issues were encountered.

The participant found out that the app does not restricts the

orientation, but when switching to the landscape mode,

“Test” and “About” tabs become practically unusable. This

issue must be addressed in the first patches, and the

orientation should be locked to the portrait mode. Besides

that, the participant pointed out, that the timer does not

bring attention and it is easy to forget about the time. He

suggested the timer to start flashing when the time is about to run out.

In the end the participant stated that the app left a good impression and the tests were interesting

but rather hard for him.

3.4.3 Test report 3

The third participant tested the app on his Xiaomi POCO M3. Overall run was satisfactory, yet

a few things could be improved according to the participant.

He noticed the simplicity of the design and called it user-friendly. The participant especially

liked the interactive “bricks” exercises. He didn’t like that exercise names are truncated on the

“Exercises” screen. The tester has also suggested that the app would benefit from the progress

tracking system.

No critical issues were encountered during this test, so it can be concluded as successful.

Figure 22. “Auto” task on iOS device.
The font is too small and the line in the
header is supposed to be an arrow.

40

Conclusion

The goal of this bachelor thesis was to develop a mobile application for Android and iOS

devices, which would be a helpful assistant to every IBM employee, who is wishing to prepare

for the certification. Since certifications have different formats of questions, my mission and the

most challenging part was to implement various kinds of tasks. The app has been finished and

satisfied all of the requirements. Not only it supports a variety of task types, it is also able to

provide a Linux environment and a separate Kubernetes namespace for practicing to each user.

While the official backend is still in development by other team, I asked colleagues to test and

give feedback on my application. Feedback turned out to be mostly positive, though, there are

also a lot of opportunities for improvement.

Everyone found the app useful when it comes to preparing for the certification. Designed for

mobile devices, it allows to keep practicing on-the-go and yet still have the opportunity to

execute commands on the remote server. Some also noticed that it is convenient to be able to

find good courses for the exam preparation since they can search for learning resources right in

the app. Nevertheless, according to the test reports, there are still some issues on iOS devices

that have to be fixed as soon as possible. Besides that, there are a lot of ways in which the app

could be improved in future.

To begin with, learning section can be integrated into the app, so that there is no need to open

browser to access learning resources. Each learning page can also refer to the corresponding

exercises tab allowing users to exercise right after they complete a particular learning topic.

Then, the “field” tasks can be extended to support Openshift clusters. This way, users can

practice not only kubectl commands, but also the oc ones. App’s answer evaluation system can

benefit from the improvement as well. For the “field” tasks we can compare the actual state of

the environment with the desired one. This can be done by capturing snapshot of the

environment into YAML file and then checking the correctness of specific properties. Finally,

a good way to motivate users for completing the exercises would be streaks and goals. By

completing at least one exercise a day user maintains a streak. There could also be an

achievement system, where user is awarded with achievements for completing the goals.

Maintain a streak for seven days – might be one of the goals. This might be extended further:

41

users can have an option to share their achievements among friends, thus, comes the need for

authorization and friendship system.

All things considered, the system design and implementation received commendation from the

project manager. Here his comment on the accomplished work: “We had a need of some kind

of tool to prepare the candidates for various enterprise certifications. Although some of the

platforms exists most of them are paid and are lacking our specific needs. Thus, we decided on

creating a mobile app which will be able to provide the training environment for certifications.

The application provided by Pavel fits the gap and covers all the necessary requirements. On

top of that the application is able to validate the answers against existing environment what is

nice add-on feature to have. For the near future we plan to integrate the application with our

certification portal which provides all the information for the candidate to prepare for

certification.”

42

Bibliography

[1] Amazon, "Amazon certified cloud practitioner certification," 15 January 2022. [Online].

Available: https://aws.amazon.com/certification/certified-cloud-practitioner/.

[2] Google, "Certifications Questions," 15 January 2022. [Online]. Available:

https://play.google.com/store/apps/details?id=com.certquestions.mobile.app&gl=SK.

[3] Apple, " PMP certifications mastery," 15 January 2022. [Online]. Available:

https://apps.apple.com/us/app/pmp-certification-mastery/id1150587715.

[4] "Spring Framework Documentation," April 2022. [Online]. Available:

https://docs.spring.io/spring-framework/docs/current/reference/html/.

[5] "Spring Boot Reference Documentation," April 2022. [Online]. Available:

https://docs.spring.io/spring-boot/docs/current/reference/html/.

[6] "Project Lombok," April 2022. [Online]. Available: https://projectlombok.org/.

[7] "MongoDB documentation," April 2022. [Online]. Available:

https://www.mongodb.com/docs/manual/reference.

[8] "What is Maven?," April 2022. [Online]. Available: https://maven.apache.org/what-is-

maven.html.

[9] "React Native," April 2022. [Online]. Available: https://reactnative.dev/.

[10] "Async Storage," April 2022. [Online]. Available: https://react-native-async-

storage.github.io/async-storage/.

[11] "Spring Framework 5.3.20 API," May 2022. [Online]. Available:

https://docs.spring.io/spring-framework/docs/current/javadoc-api/.

43

[12] "Introducing Hooks," May 2022. [Online]. Available: https://reactjs.org/docs/hooks-

intro.html.

[13] Slack, 15 January 2022. [Online]. Available: https://slack.com/.

44

Attachments

There are no attachments to this thesis. Source code of the system cannot be made publicly

available as it is considered an IBM intellectual property.

	DECLARATION
	Acknowledgement
	Abstract
	Abstrakt
	Introduction
	1 Problem statement
	1.1 Certifications
	1.2 Survey
	1.3 Existing solutions
	1.3.1 Certification Questions
	1.3.2 PMP Certification Mastery

	1.4 Technologies
	1.4.1 Backend
	1.4.1.1 Java
	1.4.1.2 Spring
	1.4.1.3 Spring Boot
	1.4.1.4 Lombok
	1.4.1.5 Swagger-UI
	1.4.1.6 Spring Data for MongoDB
	1.4.1.7 MongoDB
	1.4.1.8 Maven
	1.4.1.9 yq
	1.4.1.10 kubectl
	1.4.1.11 Kubernetes
	1.4.1.12 Docker

	1.4.2 Frontend
	1.4.2.1 JavaScript
	1.4.2.2 React Native
	1.4.2.3 @react-navigation
	1.4.2.4 react-native-paper
	1.4.2.5 @react-native-async-storage
	1.4.2.6 Expo

	2 Design
	2.1 Features
	2.2 App Architecture
	2.3 Server
	2.3.1 Data model
	2.3.2 Spring Boot application
	2.3.3 MongoDB
	2.3.4 Field exercises
	2.3.4.1 Kubernetes cluster and exercise environment
	2.3.4.2 Pod
	2.3.4.3 Use-case scenario

	2.4 Client
	2.4.1 React Native application
	2.4.2 Local storage

	2.5 Communication protocols
	2.6 Data formats

	3 Implementation
	3.1 Backend
	3.1.1 MongoDB configuration
	3.1.2 Sping Boot application
	3.1.3 Lombok annotations
	3.1.3.1 @Data
	3.1.3.2 @NonNull

	3.1.4 Spring annotations
	3.1.4.1 @SpringBootApplication
	3.1.4.2 @RestController
	3.1.4.3 @GetMapping, @PostMapping, @PutMapping, @DeleteMapping
	3.1.4.4 @RequestParam, @PathVariable, @RequestBody
	3.1.4.5 @Bean
	3.1.4.6 @Autowired

	3.1.5 Exception handling
	3.1.6 Bash scripts

	3.2 Frontend
	3.2.1 React Native application
	3.2.2 Hooks
	3.2.2.1 useState()
	3.2.2.2 useRoute()
	3.2.2.3 useEffect()

	3.2.3 Animations
	3.2.4 Async Storage

	3.3 Final app
	3.4 App test
	3.4.1 Test report 1

	Conclusion
	Bibliography
	Attachments

