The app prototype

All of the information (including visual) is a subject to change. This is only a

WARNING
prototype, which is not representing the final quality of the product.

Backend

The app prototype includes basic backend providing API. There are two models implemented for
now: Category and Item. Two screenshots below show the models on the swagger-ui page.

NOTE Spring Boot also creates some models by default.

Models v
Category v {
description string
id string
name string
}
Item v {
answers
> [...]
categoryId string
description string
helpers
> [...]
id string
name string
type string
Enum:

> Array [4]

Link >
ModelAndView >

View >

There are several API requests available for the Category model.

© swagzer

Api Documentation @

[Base URL: localhost:z0se]

hitps:/llocalhost:8080/apifv2/api-docs

Api Documentation

Terms of service

Apache 2.0
basic-error-controller sasic Eror Controller N
category-controller Category Controlier o

GE /api/category all
/api/category newCategory
/api/category/{id} one
/api/category/{id} put

(IEEEE /op/cotesory/tid) seouomoson

item-controller ttem Controlier N
main-controller Wain Controlier N
operation-handler operation Handler N

For example, GET request to the /api/cateqgory returns all categories available.
NOTE The certificate issue is being investigated for now.

< C A Not secure | hitps://localhost:8080/api/category

[{"id":"61e5a812e611e319dee75832", "name" : "EX-288", "description":"Red Hat OpenShift Development II: Containerizing Applications"}]

There is also an Item controller with several basic requests.

Api Documentation @

[Base W]
rtips:/ocalnost:80 doc

Api Documentation

Terms of service

Apache 2.0

basic-error-controller sasic Error Controlier N
category-controller category Controller 5
item-controller ttem Controlier o
GE /api/item al
/api/item newltem
GE /api/item/{id} one
/api/item/{id} put
[/api/iten/{id} deleteltem
= /api/item/type getitemsByType
>

main-controller Wain Controller

Annratinn handlar Anacfinn Hondlar

All calls to the API must contain a Basic Authentication header. They will be

WARNING
rejected with response 403: Forbidden otherwise.

Frontend

The frontend of the app has three screens implemented: Categories, Questions and Item.
Category screen looks as follows:

& Categories

EX-288
Red Hat OpenShift Development Il: Containerizing Applications

NOTE For now the database is populated with only one category.

Each category has a name of the certification and a short description. Tapping/clicking on the
specific category brings the user to the Questions screen listing the questions for the category
chosen.

< Questions

—

O 0 N & U A W N

10

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

. Deploying an Application to an OpenShift Cluster

. Deploying and Managing Applications on an OpenShift Clusterl

. Building Container Images with Advanced Dockerfile Instructions
. Injecting Configuration Data into an Application

. Designing Containerized Applications for OpenShift

. Using an Enterprise Registry

. Creating an Image Stream

. Publishing Enterprise Container Images

. Managing Application Builds

. Triggering Builds

Building Applications

Customizing S2I Builds

Creating an S2I Builder Image

Customizing Source-to-lmage Builds

Creating a Multicontainer Template

Creating Applications from OpenShift Template
Activating Probes

Implementing a Deployment Strategy
Managing Application Deployments
Integrating an External Service

Building Cloud-Native Applications for OpenShift
Designing a Container Image for OpenShift
Containerizing and Deploying a Service

Building and Deploying a Multicontainer Application

Choosing a question navigates the user to the Item screen.

< Item

1. Enter your local clone of the DO288-apps Git
repository and checkout the master branch

2. Create a new branch docker-build and push
it to git

3. Load your ocp environment

4. Log in to OpenShift

5. Create a new project your_username-
docker-build

6. Create a new application named echo from
the Dockerfile in the ubi-echo folder. Use the
branch you created in a previous step

7. Follow the build logs

8. Verify that the application works inside
OpenShift

9. Get the application pod

10. Display the application pod echo-1-555
logs

11. Rebuild the application

D0O288-apps, docker-build, master,
${RHT_OCP4_DEV_USER},
{RHT_OCP4_DEV_PASSWORD]},
${RHT_OCP4_MASTER_API}, https://github.com
/${RHT_OCP4_GITHUB_USER}/, echo-1-555

There two buttons at the moment: Show answer and Next. The former puts a correct answer into the
answer window; the latter brings up the next question.

NOTE All data is being loaded via the live requests to API server right now running locally.

	Untitled
	The app prototype
	Backend
	Frontend

