UNIVERZITA KOMENSKEHO V BRATISLAVE
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

ROZSIRENIE AUTOMATICKEJ KONSTRUKCIE ZAVISLEHO SVA

Bakalarska praca

2020 FrantiSek Tomana

UNIVERZITA KOMENSKEHO V BRATISLAVE
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

ROZSIRENIE AUTOMATICKEJ KONSTRUKCIE ZAVISLEHO SVA

Bakalarska praca

Studijny program: Aplikovan4 informatika

Studijny odbor: 2511 Aplikovand informatika
Skoliace pracovisko: Katedra aplikovanej informatiky
Skolitel: Doc. RNDr. Milan Fta¢nik, CSc.

Konzultant: Ing. Karol Zithansky

Bratislava, 2020 FrantisSek Tomana

75594803

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZAVERECNE]J PRACE

Meno a priezvisko Studenta: FrantiSek Tomana

Studijny program: aplikovand informatika (Jednoodborové Stidium, bakalarsky
I. st., denna forma)

Studijny odbor: aplikovana informatika

Typ zaverecnej prace: bakalarska

Jazyk zaverecnej prace: slovensky

Sekundarny jazyk: anglicky

Nazov: Rozsirenie automatickej konstrukcie zavislého Sva

The extension of automatic construction of dependent seam

Anotacia: Firma assyst vyvinula prva verziu softvérového modulu, ktory dokdze
zrekonStruovat’ pravidld pre konStrukciu zdvislého Sva zo vstupnej
geometrie hlavnej anezdvislej Svove] kontiry. Tento modul dokdze
v stcasnosti zrekonstruovat’ 2/3 zdkaznickych dat. Cielom price je
zanalyzovat mozné konsStrukéné pravidla zdavislého Sva, kategorizovat’
chybové situicie ich implementicie v SW module firmy assyst, navrhnit’
vlastné rieSenie a implementovat’ d’alSie algoritmy automatickej konstrukcie
zéavislého Sva, ktoré rozsiria existujuci modul, aby pokryl ¢o najvicsie
mnozstvo dat pri rekonstrukcii zavislého Sva.

Vedci: doc. RNDr. Milan Ftaénik, CSc.
Katedra: FMFI.KALI - Katedra aplikovanej informatiky
Veduci katedry: prof. Ing. Igor Farkas, Dr.

Datum zadania: 05.10.2019

Datum schvalenia: 07.10.2019 doc. RNDr. Damas Gruska, PhD.
garant Studijného programu

Student veduci prace

Cestné vyhlasenie

Cestne vyhlasujem, Ze som tito bakaldrsku pracu vypracoval samostatne s pouZitim

citovanych zdrojov.

V Bratislave, dna 14. 5. 2020 e ——————

FrantiSek Tomana

Pod’akovanie

Chcem sa pod’akovat’ svojmu Skolitel'ovi Doc. RNDr. Milanovi Fta¢nikovi, CSc.
a odbornému konzultantovi Ing. Karolovi Zitiianskému za cennt pomoc, rady, konzultécie
a ¢as, ktory mi venovali po¢as pisania bakaldrskej prace. Dakujem aj Ulrike Reng, ktora
ma na starosti zabezpecenie kvality, Ze odborne otestovala implementované softvérové

moduly a tym potvrdila ich kvalitu.

ABSTRAKT

V bakalérskej praci vychddzame z ivodnej analyzy dat povodného softvérového
modulu firmy assyst. Na zdklade problémovych skupin dit sme rozdelili pracu na dve

kategorie pre konsStrukéné pravidla: vol'ny Sev a zastrihnuty roh.

Pre konS$truk¢né pravidlo volny Sev sme navrhli modul, ktory pomocou
rozkopirovania odchylkovych bodov dokdZe zachytit’ miesta Svovej kontiry, ktoré pdvodny
softvérovy modul odignoroval, teda vytvori volny Sev na potrebnych miestach. Po
implementécii doplnenia odchylkovych bodov sme analyzovali d’al$si problém, spojeny
s nekompletnymi trajektériami, zapriCineny stratou zlomového bodu v niektorej zo
stupniovanych velkosti anavrhli sme modul, ktory dopocita zlomovy bod a vytvori

kompletnu trajektoriu s povodnymi zlomovymi bodmi.

Pre konStruk¢né pravidlo zastrihnuty roh sme navrhli modul, ktory dokdze
pomocou pomeru vzdialenosti odchylkovych bodov na elementoch hlavnej kontiry
detegovat’, ¢i sa tieto body nachddzaji na mieste rohového elementu. Nasledne sme navrhli
modul, ktory pomocou vektorovej geometrie dokdze prednastavit’ hodnoty pre zastrihnuty
roh, ktoré nésledne globdlny optimalizator pévodného softvéru dopocita, aby dosiahla

pracovnd verzia zavislého Sva tvar geometrickej predlohy.

Kracové slova: Sev, hlavna kontura, Svova kontira, pracovna verzia zavislého

Sva, volny Sev, zastrihnuty roh, odchylkové body, konsStruk¢né pravidlo

ABSTRACT

The bachelor thesis is based on the initial data analysis of the original software
module of the assyst company. Based on the problematic groups of data, we divided the

thesis into two categories for design rules: free seam and cut corner.

For the design rule free seam, we have designed the module that, by copying the
deviation points, can capture the seam contour locations that the original software module
ignored, thus creating a free seam at the required locations. After implementing the addition
of deviation points, we analyzed another problem with incomplete trajectories, causing the
loss of a turn point in one of the graded sizes, and therefore we designed module that added

turn point and creates complete trajectory with the original turn points.

For the design rule cut corner, we have designed the module that can use the ratio
of the distances of the deviation points on the main contour elements to detect whether these
points are in place of the corner element. Subsequently, we designed the module that can use
vector geometry to present values for the cut corner, which is then calculated by global
optimizer to achieve a working version of the dependent weld shape of the geometric

template.

Keywords: seam, main contour, seam contour, working version of the dependent

seam, free seam, cut corner, deviation points, design rule

UV OD.uuciiiiiiininsninnnsnicssisssssncssissssssnsssessssssessssssssssasssssssssssssssssssssassssssssssssssssssssssssssssasssns 1
1. VYCHODISKA PRACE ..ccucrumrermnscrmsescsssessesssssssssssssssssssssssssssssssssosssssssssasssssssssses 2
L1, CAD SOFEVET cueeueinrsuisnisaicncsessnsssssssssississsssnssssssssssssssssssssssssssssssosssssssssssssssssssssssossons 2
1.2. Vysvetlenie POJIMOYV ...ccuiccererecsrarccssancsssnscsssnssssssesssssesssases 3
1.2.1. KonStrukEné pravidla..........coceeiiiiiiiiiiiiiieieeeeeeee e 5
|8 | ¥[S0) (< SPRRPR 8
1.3, Format AAMA/ASTM .cuciivnvensnnsuissisnssnsssossens 9
1.4, STUPNOVANIC .cccovveierrrricssancsssarcsssaresssssessssssssssssssssssssssesssases 9
1.5. Metrika hodnotenia presnosti KONLUIYccccceeecanecncssancsascssascsascssasesssssasessssssase 10
1.5.1. MinkKOWSKENO SUMAcccuiiiiiiieiiiieiiie ettt e e e s saee e 10
1.5.2. OdchylKOVE PIOCRYcoiiiiiiiiiiieiie et 12
1.6. Proces reKONSIIUKCIE c.cuccvveiccriesseicsncssansssnessassssnessansssssssasssssessassssssssasssssssasssssessass 13
1.7. GlobAalna optimaliZACia......cccoceerrerernescancrencssaresanessasesascssasssssesasssassssassssssssasssassssae 15
1.8. Sutcasny Stav reKONStrUKCIC.covieniesserccncsseicsncssansssnessasssssessassssssssassssssssassssssssas 16
1.8.1. Sekvenciny diagrami........c.ccociiriiiiiiiniieiieeieeeeee ettt 17
1.8.2. Analyza problematiKy.........ccceeeriiiiiiiiiiiieieeeeeee e 18
2. NAVRHuouucruneseresssesssssessssssessssssossassss 19
2.1, VOPIY S@YV ueeiereriicercsancssanessscssssssasessassssssssassssssssassssssssassssssssassssssssassssssssassssssssassssasse 20
2.1.1. Doplnenie odchylkovych bodOVc.c.coiiiiiiiiiiiiiiiiiiiecieeeeeeeee e 20
2.1.2. DopInenie trajeKtOriiccueieruiiiiiiiiiiieeeiieeeite ettt ettt 23
2.2, ZAStrINNULY TON ..ucueiiireinnriineinsaiinseisnsncsseisssessassssnsssssssssesssssssssssassssssssassssssssassssssse 27
3. IMPLEMENTACIA ..coevuureennsseensssessssssessasssssssssssess 30
3.1. Implementacia konstrukéného pravidla VOPNY SVccccccecccercsncscnscsancssasosancse 30
3.1.1. Proces doplnenia odchylkovych bodovccccooiiiiiiiiiiiiiniiiiieecce 30
3.1.2. Proces doplnenia trajektoriicoovueeriieiiiiieniiierieeeiee e 32
3.2. Implementacia konStrukéného pravidla zastrihnuty rohceiccecivecesneens 34

4. TESTOVANIEcuuoirrenrniensnensansenssecssessasssesssssssssssssssssassssssassssssssssassssssassssssssssassss 36

4.1. Testovanie konStruk¢éného pravidla VOPNY SeV.......ccueecceecrncssarcsancssasesascsasosascse 36

4.2. Testovanie konStrukéného pravidla zastrihnuty rohc.eeeeneiccecssercsanees 43
4.3. Moznosti rozsirenia automatickej reKonStrukciecceeeeececscercsncscasesascssasosancne 47
4.4. Hodnotenie SOftvErového MoOdulU.......cccieveerreicsrncsserssanessansssnessasssssessassssssssassssscse 47
ZAVER ...uuiiiiernainncsancsansssassssssssssassns 50

Uvod

Predkladand bakaldrska praca vznikla v spolupraci s nemeckou firmou Assyst
GmbH, ktord sa zaoberd vyvojom aplikdcii pre odevny priemysel. Hlavnym ddévodom

vyberu tejto t€émy bola moZnost’ nahliadnut’ priamo do praxe tvorby softvéru.

Odbornici posobiaci v odevnom priemysle pouzivaju rozne CAD systémy pri tvorbe
a navrhu jednotlivych dielov odevu. Tieto diely vytvaraji pomocou konstrukénych pravidiel
daného CAD softvéru. AvSak pocas prechodu medzi systémami sa stratia doleZité
informécie z odevarskeho hladiska napriek tomu, Ze maji medzi sebou dohodnuty
vSeobecny vymenny format. Preto sa firma Assyst rozhodla vytvorit' softvérovy modul,
ktory dokaze aplikovat’ konStrukéné pravidlad a automaticky zrekonstruovat’ jednotlivé diely

odevu z cudzich CAD softvérov ako keby boli konstruované softvérom firmy Assyst.

V sicasnosti tento softvérovy modul na automatickd rekonstrukciu obsahuje
nedostatky. Ciel'om tejto prace je zanalyzovat ich, problémové déta zoradit’ do skupin podla
dostupnych konstrukénych pravidiel. Nédsledne navrhnit’ rieSenie a implementovat’ d’alSie
algoritmy s cielom pokryt’ ¢o najvidc¢Sie mnozstvo zdkaznickych dat pocas automatickej

rekonsStrukcie.

Préaca je rozdelend na 4 kapitoly. Prvd sa venuje opisu sucasného stavu softvéru,
zdovodiiuje potrebu rozSirenia automatickej konStrukcie a opisuje postupy, ktoré sa
pouzivaju pri samotnej rekonstrukcii. Zaroven vysvetluje doleZité pojmy na pochopenie

danej tematiky.

Druhd kapitola popisuje problematiku jednotlivych chybovych situdcii a opisuje
dokladny navrh rieSenia problémov. Na konci tejto kapitoly budeme pripraveni na

implementéciu.

Tretia kapitola zobrazuje implementacnu Cast’ softvéru, akym spdsobom boli rieSené
skupiny problémov. Struktiru softvérovych modulov popisujeme triedami a vztahmi medzi

nimi pomocou UML triednych diagramov.

ZéavereCnd kapitola zobrazuje vysledky analyzy zdkaznickych dat pred apo
implementécii softvérovych modulov. Na zaver opisuje nedostatky, ktoré sa nepodarilo

vyriesit.

1. Vychodiska prace

Prva kapitola s nazvom Vychodiskd prdce vysvetluje zédkladné pojmy potrebné na
pochopenie danej problematiky. Popisuje konsStrukéné pravidla softvéru cad.assyst, ktoré su
potrebné pri rekonstrukcii. Uvadza dovod preco je potrebné rieSit dand problematiku.
Rozoberd a vysvetl'uje sucasny stav softvérového modulu. Ukoncend je prvou analyzou

zékaznickych dat, ktord predstavuje vychodiskovy stav pre nasu pracu na tejto téme.

1.1. CAD softvér

S rozvojom informatickej oblasti sa globdlne dostiva do popredia pocitatom
podporovany navrh v réznych sférach odvetvi. ,,Skratka CAD je pocitaCom podporovany
navrh alebo pocitacova podpora tvorby konStrukénej dokumentécie. Ide o programové

vybavenie pre geometrické a matematické modelovanie suciastok a ich vlastnosti* [7].

Okrem grafickych ¢innosti CAD systémy umoziiuju realizovat’ aj rozne inZinierske
vypocty a analyzy pricom spolupracuji s desiatkami inych podporovanych programov.

Tieto programy zahfiiame do jedného celku ako CAD/CAM systémy.

Odbornici v takychto systémoch navrhujia vykresovd, konStrukénd a vyrobnu
dokumentéciu k vyrobkom. Proces ndvrhu vykondvaju s vyuZitim prostriedkov vypoctove;j
techniky pokrocilych konStrukénych softvérovych aplikdacii ako su napriklad CATIA,
UNIGRAPHICS, AutoCAD, cad.assyst, atd’.

Kazda z aplikacii ponika moznost’ vybrat si vystupny format, v ktorom sa ulozi cely
vyrobny vykres. Tieto vystupné formaty moZeme rozdelit’ na Specifické, ktoré su vlastné

iba danej aplikdcii a Standardizované, pre vymenu dat medzi réznymi CAD aplikaciami.

»Prvé takéto systémy vznikli v Case, ked’ poziadavky na vzdjomnu komunikéciu
neboli tak velké ako v stidasnosti. Struktira ich dat bola v principe vzdy zloZitejia ako
napriklad Struktdra textovych stborov. Navyse takmer kazdy vyrobca takéhoto programu
pouziva interne uzavrety format dat, ktory vyvija sicasne s vyvojom programu. Vyrobcovia
na natlak uZzivatel'ov zvolili kompromis a vytvorili vSeobecné vymenné formaty DXF

ainé...“ [1].

1.2. Vysvetlenie pojmov

Firma assyst pracuje, okrem iného, na softvéry s ndzvom cad.assyst, ktory umoZziiuje
dizajnérom navrhovat’ jednotlivé diely odevu (alebo inych predmetov, ktoré sa rezi z latky)
a zdroven tieto diely moZu byt stupiiované v roznych velkostiach na zdklade stupnovacej
tabulky. UkdZka obrazovky softvéru cad.assyst s prikladom stupiiovaného dielu je na

obrazku 1.

cad.'a'fsyst Assysty = [m] X
File Databaseaccess Tables Marker Parameter Macros Tools Show Menus Help

size range |§~

Rule editor

Obr. ¢.1 — cad.assyst s prikladom stupniovaného dielu

KaZzdy navrhnuty diel sa sklada z jednotlivych typov elementov a zaroven tento diel
tvoria spravidla dve konttry: hlavnd a §vova (pozri obrdzok ¢.2). Pri stupfiovanej hlavnej
konttire sa v kazdej velkosti prideli rovnaky Svovy pridavok. To znamend, Ze §vova kontdra
sa stupfiuje spolu s hlavnou kontirou. Velkost' §vového pridavku vSeobecne zavisi od

stuptiovacej tabulky.

Obr. ¢.2 - zobrazenie dielu

¢ hlavna kontira sa nereze, iba uruje miesto, v ktorom st samotné diely

spolu spdjané (zosivané, zavarované a pod.).

e Svova kontdra urcuje predlohu, po ktorej sa reze pomocou rezacieho

zariadenia.

Svova konttra je vytvorena bud’ ako nezdvisly alebo ako zdvisly Sev a skladd sa z

elementov.

® nezavisly Sev je tvoreny elementami, ktoré nie su zavislé od hlavnej kontury.
Je to neziadany stav, pretoZe posunutim bodov na hlavnej kontdre Svova

kontira nemeni svoj tvar.

e zavisly Sev sa sklada z elementov, ktoré su zavislé od elementov na hlavnej

kontire a k tymto elementom su zadefinované konstruk¢éné pravidla.

1.2.1. KonStrukéné pravidla

Informdcie ako konStruovat’ zavisly Sev si ulozené na samotnom diely, na
elementoch hlavnej kontiry alebo na bodoch medzi elementami. Ak to nie je Specifikované
inak, cad.assyst vytvori paralelnd képiu elementov hlavnej konttry. Ak navrhar posunutim

zmeni tvar hlavnej kontury, cad.assyst automaticky zmeni tvar Sva.

Pocas tvorby zdvislého $va sa daju priradit’ nasledujiice konstruk¢né pravidla:

= Elementom

e Paralelné, kde velkost $vového pridavku je rovnakd po celej dizke
elementu. Takto vytvoreny Svovy element je paralelny k elementu hlavnej

kontury [11].

¢ Neparalelné, kde vel’kost’ Svového pridavku je ind na zaciatku a na konci
elementu. PocCas priebehu sa velkost pridavku meni linedrne vzhladom

k polohe medzi za¢iatkom a koncom, obrdzok 3 [11].

/

Seam line modified in a non-parallel way
Obr. ¢.3 — zobrazenie neparalelného sva k elementu

e Svovy schodik

o Vytvoreny §vovy element ma dve paralelné oblasti. Prechod medzi
nimi mdze byt definovany vzhl'adom na zaciatok/koniec elementu,
(dizka kroku zostane pri odstuptiovani rovnakd) alebo v pomere k
odstupiiovanému z4strihu (notch zobrazeny na obrizku 4) na hlavne;j

kontire, kde sa dizka kroku meni s velkostou dielu pri stupfiovani

podla stupiiovacieho pravidla zastrihu (stepped seam created at notch

position) [11].

s vz

Na vytvorenie schodiku je potrebnd Sirka Svového pridavku na zaciatku,

koncova Sirka, krok auhol. Uhol sa pocita od hlavnej kontury

v protismere hodinovych ruciciek k §vovej kontire bez ohl'adu na polohu

kroku.

Obr. ¢.4 — zobrazenie konstrukcného pravidla svovy schodik
¢ Volny Sev

o Definuje sa pomocou l'ubovolnej konsStrukénej Ciary, vdcSinou sa
pouZiva vtedy, ak sa pozadovany tvar nedd dosiahnut’ inym

konStrukénym pravidlom, obrdzok 5 [11].

Obr. ¢.5 — zobrazenie volného sva

= Bodom medzi elementami

e Zastrihnuty roh

o Je Specifikovany vzdialenostou priamky (orezdvajicej

zrekonStruovand Svovd kontdru) od rohového bodu na hlavnej

kontire a jej uhlom, obrdzok 6 [11].

Obr. ¢.6 — zastrihnuty roh
e Zrkadleny roh

o Zrkadlovy roh sa vytvédra zrkadlovo k vybranej rohovej Ciare Sva,

obrazok 7 [11].

Obr. ¢.7 — zrkadleny roh

¢ Kolmy roh

o Vytvara sa ako pravy uhol k vybranej rohovej Ciare §va, obrazok 8

[11].

Obr. ¢.8 — kolmy roh

1.2.2. Trajektorie

Trajektdrie predstavuju prepojenia bodov medzi velkostami. Konkrétne su to body,
ktoré vznikli stupnovanim jedného atoho istého bodu zdkladnej velkosti. Trajektorie

zndzoriuju ako sa tento bod pri stupniovani “pohybuje”, (pozri obrazok ¢€.9).

ERN
\\\\

Obr. ¢.9 — zobrazenie trajektorii

Na obrazku 9, vidime ¢ervenou farbou zobrazené prepojenia bodov vo velkostiach.
Kontdra dielu sa skladd z elementov, pricom body zlomu (zobrazené Sedou farbou) su
hranice elementov, miesta, v ktorych je kontira nespojitd. Medzi dvomi bodmi zlomu je
krivka spojitd, teda ma v kazdom bode presne definovani dotyCnicu. Krivkové body
(zobrazené zltou farbou) su body, cez ktoré ,,spline algoritmus* vytvori spline. Tento spline
vytvdra automaticky podl'a vnitornych pravidiel, dopocitava kontrolné body kubického

splinu.

1.3. Format AAMA/ASTM

Tento formdt bol vytvoreny na ulahéenie komunikicie medzi CAD/CAM
systémami, ktoré reprezentuji dvojrozmerné ploché Casti dielo [2]. T4to norma poskytuje aj
konvencie na reprezentovanie suvisiacich informécii ako st stupniovacie tabul’ky, zastrihy,
typy Ciar a iné. Neposkytuje vSak konvencie na reprezentovanie zavislosti elementov. Je
v silade s formdtom DXF. Spolo¢nost’ Autodesk vyvinula formdt DXF na prenos ddajov
avymenu technickych vykresov. Do suboru sa ukladd pomocou ASCI znakov bez

kompresie. Je to vektorovy format s podporou 256 farieb.

Uzivatelia softvéru cad.assyst po exporte technickych vykresov pomocou formétu
AAMA/ASTM alebo importe zrdznych konkurennych softvérov dokazu preniest

geometriu navrhnutych dielov, ale stratia konStruk¢éné pravidla pre zdvislost’ Svovej konttry.

1.4. Stupnovanie

Stuptiovanie dielov je pomerné zvysenie alebo zniZenie velkosti dielu. Ugelom
stupniovania je prispdsobit’ cely rdd typov a velkosti I'udského tela do jedného Stylu
zdkladného dielu. Opacne je to proces premeny zdkladnej velkosti do d’alSich velkosti
pomocou stupniovacej tabul’ky, ktord obsahuje stupniovacie pravidla [3].

Stuptniovacie pravidla si zaloZené na ergonomickych meraniach tela. RozliSuje sa
medzi ru¢nym stupiiovanim a digitdlnym stupnovanim za pomoci CAD systémov [10].

Velkostnik alebo ekvivalentne aj stupiiovacia tabul’ka je sustava normalizovanych

velkosti vSetkych odevov. Velkostnik mdze byt muzsky a Zensky [8].

9

1.5. Metrika hodnotenia presnosti kontiiry

Cielom je pomocou konStrukénych pravidiel zdvislého Sva ahlavnej kontiiry
vytvorit’ novi (na hlavnej kontidre zavisli) Svovu kontiru, ¢o najviac podobni pdvodnej (na
hlavnej kontire) nezavislej Svovej kontire. Nezdvisld Svova kontira je nasa geometricka
predloha, ktord dostaneme po importe pomocou formatu AAMA/ASTM.

Vysledok postupného aplikovania dalSich a d’al§ich pravidiel zavislej Svovej
kontury, ktord meni svoj tvar pocas celej rekonsStrukcie budeme nazyvat’ aj pracovna verzia
zavislej Svovej kontiry. Ked’Ze porovnanie geometrickej predlohy a zavislej Svovej kontiry
sa neda riesit’ ekvivalenciou, rieSime to podobnost'ou. Pre naSe potreby je to dostacujice,
lebo v odevnom priemysle je tolerancia dand ,,mnoZstvom prijatel'nej odchylky od uré¢eného
merania, od ktorého je mozné vystrihnit’ kisky vzoru, pridat komponenty alebo S§it’ Svy*
[5]. Na porovnavanie podobnosti existuji rozne metddy, ale v existujicom algoritme sa
vyuziva Minkowského suma.

Standardnd tolerancia v odevnom priemysle je radovo vys§ia ako v inych odvetviach,
pretoze sucasné technologické postupy neumoznuji rezat’ latku tak presne, ako iné

materidly. V existujicej rekonstrukcii sa preto zvolila tolerancia Imm.

1.5.1. Minkowského suma

,Minkowského suma mnozin A a B je bodovd mnoZina UnepA®, kde AP je mnoZina
A posunuté o vektor b, teda mnoZina: A® = {a + b|a € A} . Minkowského suma mnoZzin A a B
sa oznacuje A @ B.“ [4].

V naSom pripade sa pocita Minkowského suma nad polygénmi, ktoré maji
nekonvexny tvar. Na ziskanie plochy sa pouZiva bodovd mnoZina tvaru diamantu, ktory je

vzdy konvexného tvaru a preto je to 'ahSia obmena tohto vypoctu.

10

A
i

Obr. ¢.10 — obiehajiici diamant

Na obrazku 10 mo6Zeme vidiet' obiehajici diamant, ktory je zobrazeny cervenou
farbou a reprezentuje bodovi mnozinu B. Raz obieha po vnitornej strane geometrickej
predlohy, ktord je zobrazend modrou farbou a reprezentuje bodovi mnoZinu A a spolu
vytvoria jednu Minkowského sumu. Druhy raz obieha po vonkajSej strane mnoziny A a tak
vytvoria druhi Minkowského sumu. Tymto vznikne bodova mnoZina C, ktord je vysledkom
tychto dvoch sim a na obrazku 10 je ohrani¢end hranicami zobrazenymi fialovou farbou.
Tieto hranice urcuju plochu C (nielen jej velkost, ale aj tvar), v ktorej ked’ sa nachiadza

pracovna verzia zavislého Sva, tak o nej prehldsime, Ze je v tolerancii (pozri obrazok ¢.11).

PN

Obr. ¢.11 — konstruovany sev

11

Na obrazku 11 je zelenou farbou zobrazeny zavisly Sev, ktory je svojou plochou

v tolerancii podl'a geometrickej predlohy, teda v mnoZine C.
7 o e

| AZLTN,

Obr. ¢.12 — konstruovany Sev mimo toleranciu

Na obrazku 12 mdzeme vidiet’ Cervenou farbou vysrafované zobrazenie plochy, ktord
je mimo tolerancie podl'a geometrickej predlohy. Pracovnd verzia zdvislého $va je mimo
toleranciu a miesta, na ktorych vychddza z tolerancnej plochy si oznaené Cervenymi

bodmi. Tieto body nazyvame ako body odchylky a ukazuji ndm kde nastava problém.

1.5.2. Odchylkové plochy

Obr. ¢.13 — odchylkové plochy
12

Na obriazku 13 mdzeme vidiet, Ze pracovnd mnoZina Svovej kontdry, ktord je
zobrazena zelenou farbou sa odchylila a vychadza z toleran¢nej oblasti (mnoZina C), ktora
je zobrazend fialovou farbou. Odchylkové plochy st vyplnené Cervenym Srafovanim a
hovoria ndm o tom, ako by sme mali zmodifikovat’ Sev, aby sme sa dostali do tolerancie.
Ohranicenia ploch sa delia na dve Casti. Prva ¢ast’ zobrazend zelenou farbou je nasa pracovna
Svova kontdra. Druhd cast’ zobrazena Ciernou farbou predstavuje tvar, ktory chceme

dosiahnut’.

1.6. Proces rekonstrukcie

V podkapitole proces rekonStrukcie opiSeme podrobnejSie pojmy, ktoré st pouZzité

v navrhovej kapitole (pozri obrazok ¢.14).

i

Obr. ¢.14 — zobrazenie rekonstrukcie

Na obrazku 14 je zobrazena rekonStrukcia zavislého Sva. Proces rekonStrukcie zac¢ina

na hlavnej kontire (zobrazena Ciernou farbou) a pomocou aplikovania konstrukénych

13

pravidiel sa snazi dosiahnut’ tvar geometrickej predlohy (zobrazeny modrou farbou). Na
mieste, kde pracovna verzia zdvislého Sva vychddza z tolerancie geometrickej predlohy sa

vytvoria odchylkové body (vychadzajuci bod je zobrazeny Cervenou farbou, vchadzajici

.....

stupniované vel’kosti, (pozri obrazok ¢.15).

Obr. ¢.15 — zobrazenie rekonstrukcie vo vSetkych stupniovanych velkostiach

Obrazok 15 zobrazuje proces rekonstrukcie vo vSetkych stupnovanych velkostiach.
Vidime, Ze sa ndm nepodarilo dosiahnut’ tvar geometrickej predlohy. V dolnej Casti sa malo
pouzit’ konstrukéné pravidlo zastrihnuty roh a v hornej Casti sa malo pouzit' konstrukéné
pravidlo volny Sev (budeme zobrazovat’ ruZovou farbou). Viac o tychto problémoch sa

dozvieme v ndvrhovej kapitole.

Ked'Ze budeme rieSit problém konStrukéného pravidla vol'ného Sva abudeme
v navrhovej kapitole doplhat trajektérie, budeme potrebovat zobrazovat jednotlivé

vel'kostné vrstvy v pomocnom zobrazovacom nastroji pre vel'kostné vrstvy, (pozri obrazok

¢.16).

14

Obr. ¢.16 — zobrazenie velkostnych vrstiev s trajektoriami

Obrazok 16 zobrazuje tvar konStruovaného dielu medzi odchylkovymi bodami
z obrazku 15. Ciernou farbou si zobrazené odchylkové body, ktoré tvoria kompletné
trajektorie (Cervend priamka spdjajuca tieto body). V tomto pomocnom zobrazovacom
nastroji pre vel’kostné vrstvy budi Sedou farbou zobrazované zlomové body a krivkové body

budu zobrazované zltou farbou.

1.7. Globalna optimalizacia

,Jednoducho povedané, optimalizicia je pokus maximalizovat’ poZadované
vlastnosti systému a sti¢asne minimalizovat’ jeho neZiadtce vlastnosti. Co si tieto vlastnosti
a ako efektivne sa daju vylepsit, zdlezi na danom probléme” [6]. Algoritmus firemnej
aplikdcie cad.assyst, nazyvany globdlny optimalizdtor rieSi kategériu optimalizacie

nekonvexnych problémov.

Vysledok hodnotiacej funkcie je zaloZeny na sucte odchylenia dvoch ploch:

geometrickej predlohy (zobrazend modrou farbou) apracovnej verzie zdvislého Sva

15

(zobrazena zelenou farbou). Odchylkové plochy su zobrazené Cervenym Srafovanim, (pozri

obrazok ¢.17).

//////////
/////

/1

/L
Yz
Obr. ¢.17 — plochy odchylenia

Suctom takychto ploch ziskame hodnotu, pomocou ktorej vieme povedat’ na kol’ko
sa priblizujeme pracovnou verziou zavislého Sva ku geometrickej predlohe. Z toho vyplyva,
Ze ¢im menSie odchylkové plochy dosahujeme, tym mensSiu hodnotu dostidvame, a teda sa

priblizujeme ku geometrickej predlohe.

Globdlny optimalizator potrebuje na svoje fungovanie hodnotiacu funkciu, ktora
urci, ¢i sa priblizujeme k ciel’'u alebo sa od neho vzd’alujeme. Softvérovy modul pouZiva na
vyhodnocovanie plochu oblasti, ktord vznikla medzi dvomi Minkowského sumami (diamant
obiehajuci zvnitra a zvonku kontdry), (pozri obrazok ¢.12). Problém hl'adania definicie
zéavislého Sva je vysoko nekonvexny apreto sa v naSom pripade pouZiva prave tento

algoritmus na rieSenie danej problematiky.

1.8. Stcasny stav rekonStrukcie

Podkapitola sticasného stavu rekonstrukcie popisuje softvérovy modul sekvenénym
UML diagramom a obsahuje Givodnu analyzu, ktord vysvetl'uje podrobnejsie problematiku,

ktorud sa chystame riesit’.

16

1.8.1. Sekven¢ny diagram

“Sekvencné diagramy modeluji interakcie medzi objektami. Rovnako ako diagramy
aktivit predstavuju aj procesy, ale zameriavaji sa na vymenu sSprav a nie na prezenticiu

vSetkych moZznych procesnych ciest” [9].

sd Dependent Seam J

| :AIIanneSolvevl I : SetSampled I | :GlobaIAndFixSolverl | :BestComerAIISolver” : ReleaseCornersOnl ” :
: Ulser T T [

L

| |
1: calc Seam(.y)| |
|

2: solve(...)

3: solve(»!
|

|
4: solve(...) | »
T

I
I
T
I I

b : _fesult E?e_"dﬁnissaﬁl _________

5: solve(.)

I I
I I
T T T
I I I
I I I
o ____l ____ __ resultldependentseam _ _ 1 __ _________

. dependent seam [final] _ _|

Obr. ¢.18 — sekvencny diagram zobrazujiici vytvorenie zdavislého sva

Na obrazku 18 je zobrazeny scendr, kde pouzivatel’ zadd poziadavku na spocitanie
zévislého Sva podla danej geometrickej predlohy. Po vytvoreni poziadavky na spocitanie sa
zavold algoritmus AllInOneSolver, ktory ndsledne v sekvencii krokov vold jednotlivé
algoritmy, ktoré aplikuju konStrukéné pravidla a tym rozSiruju a upravuji pracovnu verziu
zéavislého Sva scielom dosiahnut ekvivalentni podobu ku geometrickej predlohe.
Algoritmus SetSampled analyticky aplikuje paralelné a neparalelné konsStruk¢né pravidlo
a Svovy schodik na elementoch. Algoritmus GlobalAndFix aplikuje paralelné konStrukéné
pravidla na elementoch a pouZiva globalnu optimalizaciu, kde sa snazi pribliZit' najmense;j
hodnote, ktord dostane z hodnotiacej funkcie. Algoritmus BestCornerAllSolver analyticky
aplikuje pravidld typu zastrihnuty roh, zrkadleny roh akolmy roh. Algoritmus
ReleaseCornersOnFreeElements sa pozerd na rohové elementy, ktorym nebolo priradené

17

Ziadne konstruk¢né pravidlo a pri zlepSeni hodnoty, ktord dostaneme z hodnotiacej funkcie
sa toto pravidlo pouZije. Na konci sa vold FreeSeamSolver, ktory doplni do pracovnej verzie
zavislého Sva v miestach medzi bodmi odchylky (nezdvisly) volny Sev, ktory vystrihne
z predlohy. St to miesta, ktoré sa nedali vytvorit pomocou ostatnych konStrukénych
pravidiel inych ako volny Sev. A zdaroven vrati zavisld Svova konttru, ktord je v tolerancii

k povodnej predlohe.

1.8.2. Analyza problematiky

Kompletnd analyza dit vychddza z mnoZiny 300 konS$truovanych dielov, (pozri

obrazok ¢.19).

Analyza vysledkov existujucej rekonstrukcie

£=

1. spravne zrekonstruované data

= 2. nespravne zrekonstruované data, ktoré mali obsahovat volny Sev
= 3. nespravne zrekonstruované data, ktoré mali obsahovat zastrihnuty roh

4. nespravne zrekon$truované data, ktoré mali obsahovat ostatné konstrukéné pravidla

Obr. ¢.19 — tivodnd analyza ddt

Uvodnou analyzou sme sa dopracovali k poznatkom, Ze najvicsia Cast
problémovych pripadov nastdva prave pri vytvarani konstrukéného pravidla volny Sev. Na
obrazku 19 vidiet, Ze %/, dat sa podarilo zrekonStruovat’ si¢asnému softvérovému modulu.
Zo zvyS$nej tretiny sa % nepodarilo dosiahnut’ kvoli konstrukénému pravidlu vol'ny Sev. Zo
zostavajicej Y4 dat sa 2/, nepodarilo dosiahnut’ kvoli konStrukénému pravidlu zastrihnuty

roh. Ostdvajicu skupinu dét tvoria ostatné konStrukéné pravidl4.

18

2. Navrh

V kapitole navrhu sa venujeme opisu navrhovanych modulov, ktoré riesSia jednotlivé
skupiny problémovych dat. Najskor rozoberieme preco stcasny softvérovy modul nedokazal
vyrieSit' tieto skupiny dat a ndsledne navrhneme vlastné rieSenie problému. Navrhnuté

moduly musia spihat’ softvérové poziadavky firmy.

Vychadzame z Gvodnej kompletnej analyzy dat, (pozri obrazok ¢.19), kde mézeme
vidiet’, Ze najvidcSiu skupinu problémovych dét tvori konstrukéné pravidlo volny Sev.
Nasledujica skupina je tvorend konStrukénym pravidlom zastrihnuty roh. Z toho vyplyva,

Ze hlavny doraz budeme klast’ prave na tieto dve skupiny dat.

Specifikécia poziadaviek pre softvérové moduly v jednotlivych bodoch:

e Navrhnut softvérovy modul, ktory vyriesi najvacsie problémové skupiny dat
s konStrukénymi pravidlami vol'ny Sev, zastrihnuty roh.

e Naimplementovat’ ¢asovo nendrocné algoritmy, ktoré budid pouZzite'né
stic¢asnym softvérovym modulom.

e Vytvorit konStruk¢né pravidlo vol'ny Sev na potrebnych miestach

e Zjednotit’ vol'no-Svové oblasti v bezprostrednej blizkosti vedla seba

e Doplnit’ zlomové body spolu s trajektériami, na miestach, ktoré boli
odignorované

e Spravne ndjst rohové elementy, na ktorych sa ma pouZzit' konsStrukéné
pravidlo zastrihnuty roh

e KonStrukénému pravidlu zastrihnuty roh prednastavit geometrické
parametre, aby globdlny optimalizator dokédzal dokoncit’ vypocet a dostal sa

ku geometrickej predlohe

19

2.1. Volny Sev

Problémovi skupinu dat s vol'nym Svom rozdelime do dvoch podkapitol. V prve;j
podkapitole budeme rieSit problém, ktory vznikol nerovnakym poctom odchylkovych
bodov. V druhej podkapitole budeme riesit' problém stratenia zlomovych bodov spolu

s nekompletnymi trajektoriami.

2.1.1. Doplnenie odchylkovych bodov

V prvej podkapitole rieSime problém, kde v niektorych stupiiovanych velkostiach
zmizli body odchylky a teda nastal stav, kedy nemdme rovnaky pocet bodov vo vsetkych
velkostiach, (pozri obrdazok ¢.20). Tento problémovy pripad nastal, pretoZze sa pouZilo
konstrukéné pravidlo kolmy roh (pozri kapitolu konStrukéné pravidld), ale ked’Ze je to
konStrukény diel z iného CAD softvéru, cad.assyst nemd definované Specidlne rohové
pravidlo pre takyto druh rohového elementu. V takychto pripadoch bolo doteraz pouzivané

konStrukcné pravidlo vol'ny Sev.

Obr. ¢.20 — nerovnaky pocet odchylkovych bodov

Povodny softvérovy modul predpokladal rovnaky pocet bodov odchylky naraz vo
vSetkych velkostiach a preto takito skupinu dat odignoroval. Takyto jav nastal v momente,
kedy pracovnd verzia zdvislého Sva (ilustrovand zelenou farbou) bola v niektorej zo

stupiiovanych vel’kosti v tolerancii (miesto zobrazuje Cervend Sipka). To spdsobilo, Ze sa

20

v takejto vel'kosti nevytvorili body odchylky (zobrazené ako zelené a ervené body), (pozri

obrazok ¢.20).

Obr. ¢.21 — rozkopirovanie bodov odchylky

Tento problém sme navrhli rieSit' kopirovacim modulom, ktorym rozkopirujeme
body zo vsetkych velkosti do zdkladnej vel'kosti, aby sme dokdzali zachytit’ aj také useky,
ktoré neobsahuji body odchylky (body ilustrované cervenou a zelenou farbou), (pozri
obrazok ¢.21). Tieto body odchylky su zakddované na Svovej konture a preto budeme
potrebovat’ vytvorit’ transforma¢ny modul, ktorym premapujeme jednotlivé body na hlavnu

konturu.

Pri rozkopirovani odchylkovych bodov moZe vzniknidt situdcia, kedy sa vytvoria
volno-§vové oblasti vedla seba. Podlasoftvérovej Specifikdcie musime predist’
vzniknutému problému, teda vytvaraniu vol'no-Svovych oblasti (ilustrované ruzovou farbou)

na elementoch v bezprostrednej blizkosti vedl'a seba, (pozri obrazok ¢.22).

21

Obr. ¢.22 —volno-svové oblasti v bezprostrednej blizkosti

Tento problém sme navrhli rieSit posunutim rozkopirovanych bodov na Svovej
kontire a to tym sposobom, Ze miesto, na ktorom pracovna verzia zdvislého Sva vychadza
z tolerancie posunieme smerom dolava a miesto, v ktorom vchddza do tolerancie posunieme

s Vs

smerom doprava, (na miesto posunu ukazuje ¢ervend Sipka), (pozri obrazok ¢.23)

_,//
{
x

End point

TS

° Start point

Obr. ¢.23 — zZjednotenie odchylkovych bodov posunutim

Tymto spdsobom zabezpeCime, Ze sa body odchylok zjednotia. Posunutim
o konStantu zabrdnime vytvdraniu malych volno-§vovych oblasti na elementoch
v bezprostrednej blizkosti vedl'a seba. Pri takomto posune ale musime davat’ pozor, aby sme
vybrali spravny usek, teda zaciatok a koniec zjednotenych oblasti, (‘start point’ ako bod
zaciatku a ‘end point’ ako bod konca), preto si vytvorime funkciu hl'adania zac¢iatku vol'no-
Svovych oblasti.

Na zdver budeme potrebovat’ zjednocovaci modul, ktorym odprojektované
odchylkové body spojime a teda vytvorime vol'no-Svové oblasti vo vSetkych velkostiach

stupiiovaného dielu.

22

2.1.2. Doplnenie trajektorii

V dalSej Casti softvérovy modul spracovdva §vové elementy a posiela ich modulu
cad.assyst, nazvanému ‘spline-line-solver®, ktory vrati vysledny zavisly Svovy element.
‘Spline-line-solver‘ sa snazi spravne aproximovat’ kontiru aplikovanim najmensieho poctu

krivkovych bodov, aby sa pribliZil k tolerancii, (pozri obrazok ¢.24).

Obr. ¢.24 — doplnenie krivkovych bodov pomocou ‘spline-line-solveru’

Na obréazku 25 vidime, Ze v tomto pripade aplikovanim krivkovych bodov vytvoril
obluk (zobrazeny Sipkou), ktory je v tolerancii ku geometrickej predlohe (zobrazena modrou
farbou). Vol'ny Sev (zobrazeny ruzovou farbou) mé tvar obliku, pretoZe odchylkovy bod
(zobrazeny cervenou farbou) v prvych dvoch velkostiach lezi na pracovnej verzii zavislého
Sva (zobrazend zelenou farbou) a nie na geometrickej predlohe (zobrazena modrou farbou),

(detailnejSie to zobrazuje obrdzok ¢.26).
©—0—90—6 .
RRRRERRERRIGE
| {| { 1 | . e | | ‘ o

0o ".IV o

Obr. ¢.25 — chybajiici zZlomovy bod

23

Existuji vSak pripady, kde pomocou aplikovania krivkovych bodov nedokdze
vytvorit’ spline, ktory je v tolerancii.

V druhej podkapitole preto budeme rieSit problém, ktory vznikne pri rieSeni
jednotlivych tsekov volno-$vovej kontdry, ktoré nedokdze modul ‘spline-line-solver*

vyriesit.

{t

o

Obr. ¢.26 — zlomovy bod, ktory neobsahuje kompletné trajektorie

Na obrazku 26 vidiet, Ze v prvych dvoch velkostiach sa stratili zlomové body
(miesto stratenia zlomovych bodov, ktoré si oznacené Sedou farbou je oznacené Cervenymi
Sipkami) a preto zlomové body, na ktoré ukazuje biela Sipka neobsahuji kompletnd
trajektoriu. (Kompletné trajektorie su ilustrované Cervenou priamkou.) Aby ‘spline-line-
solver® dokdazal spravne pracovat’ potrebuje rovnaky pocet podelementov. Z toho vyplyva,
Ze potrebujeme doplnit’ chybajici zlomovy bod a spojit’ ho s existujicimi zlomovymi

bodmi, aby sme vytvorili kompletnu trajektoriu.

T

Obr. ¢.27 — doplnenie trajektorii pre kazdy zlomovy bod

Na rieSenie tohto problému budeme musiet vytvorit softvérovy modul

,» IrajectoryCompletizer, pomocou ktorého rozkopirujeme zlomové body a doplnime

24

trajektorie. Projektujeme zlomové body, ktoré sa nachddzaji medzi dvoma kompletnymi
trajektoriami teda v oblasti voI'ného Sva. Kazdy samostatny zlomovy bod kopirujeme
pomocou pomeru na danom elemente do ostatnych velkosti a ozna¢ime ho ako krivkovy
bod. Z projektovanej vel'’kosti ostane tento bod ako zlomovy a v ostatnych si ho uloZime ako
krivkovy bod. Tymto sposobom si budeme udrziavat’ informaciu, o tom z akej vel’kosti dany
bod elementu pochddza. Na konci ho spojime s ostatnymi novovytvorenymi krivkovymi
bodmi a tym mu vytvorime kompletnu trajektériu. Tymto sposobom zaru¢ime, Ze doplnené

krivkové body s vytvorenymi trajektdriami sa nikdy neprekrizia, (pozri obrazok ¢.27).

Nasleduje proces spdjania, kde pouZzijeme techniku ,,zametacej priamky*, pomocou
ktorej budeme spdjat’ novovytvorené trajektérie. V prvom kroku ndjdeme vSetkych

potencidlnych kandidédtov na spéjanie.

stm merge trajectories)

Zaciatok : TR E AT]
l - Spdjaj trajektorie
dokondil hladanie /

nasiel kandidata

(Hl'adaj kandidatov) f Spracuj krivkovy bod) | Vytvor kandidata I
l krivkovy bod \ J _J
>

nenastal prekryv
. = = — \ nastal
. pracuj zlomovy bo konflikt
Nenasiel kandidata 2lomoyy bod

Koniec

nastal prekryv

Stvorcov Vyber najpocetnejsiu skupinu

p
Vyber najmensiu sumu rovnaka velkost]

e R
J

Obr. ¢.28 — stavovy diagram zobrazujiici hladanie kandiddtov

Stavovy diagram obrdzok 28, reprezentuje doménu, v ktorej hl'addme kandidatov
obsahujucich kompletné trajektorie. Proces hl'adania kandidatov pozostdva zo spracovania
zlomovych a krivkovych bodov na jednotlivych drovniach vel’kosti. Akondhle prichddzame
na konflikt v niektorej stupiiovanej velkosti vytvorime kandidita. Pri vytvdrani nového
kandid4ta musime kontrolovat’ ¢i nenastdva prekryv s existujicimi kandid4dtmi. Ak nastane

problém s prekryvanim kandiditov, tak vyberdme kandidita, ktory je tvoreny

25

najpocetnejSou skupinou trajektorii. Ak vSak mame rovnaky pocet rozhodujeme podla
metddy najmensej sumy Stvorcov velkosti trajektérii. Nasledne kandidata ulozime
a pokra¢ujeme v hl'adani d’alej. Na konci hladania si z kandidatov spojenim vytvorime
kompletné trajektorie a krivkové body zmenime na zlomové. Proces opakujeme, pokial’ ndm

funkcia hl'adania nendjde Ziadneho vhodného kandidata, teda ak nenastane zZiadny konflikt.

N -

Obr. ¢.29 — vysledny stav po spdjani trajektorii

Tymto postupom sme doplnili chybajice zlomové body, (na miesto doplnenia
zlomovych bodov ukazuje biela Sipka), ktorym sme doplnili chybajice trajektérie, (pozri

obrazok ¢.29).

Po doplneni trajektérii nemusi ‘spline-line-solver’ dopiiat’ krivkové body a teda
nevytvori oblik na miestach, kde mu chybali zlomové body CiZze volny Sev ma tvar

geometrickej predlohy, (pozri obrazok ¢.30).

F o F o} ™y f a1 F .} ™y F) f ™ ﬂﬂﬂﬁﬂo
W W W W W W W W[W W W W W
I 'l |
| |

R

Obr. ¢.30 — vysledny stav po doplneni chybajiicich trajektorii

26

2.2. Zastrihnuty roh

Druhd skupina problémovych dét je tvorend konStrukénym pravidlom zastrihnuty
roh. Toto rohové pravidlo je Specifikované vzdialenostou priamky a uhlom od rohového
bodu na hlavnej kontdre. Sicasny softvérovy modul pouZiva na toto pravidlo globdlny
optimalizator, ktory prednastavuje geometrické hodnoty zastrihnutému rohu, teda uhol
a vzdialenost’ od rohového bodu na hlavnej kontire. Po prednastaveni parametrov sa urci
hodnota podl’a hodnotiacej funkcie. Globédlny optimalizator sa riadi vysledkom hodnotiacej

funkcie.

- 4
~ - y ///
Obr. ¢.31 — prednastavovanie geometricky nesprdavnych hodnot

Na obrazku 31 sa pouZzilo konStrukéné pravidlo volny Sev (ilustrovany ruZovou
farbou), pricom sprdvnym vysledkom rekonstrukcie malo byt pouZite pravidla zastrihnuty
roh. Prednastavenim nespravnych hodnoét (ilustrované ¢ervenou farbou), ktoré si odchylené
od pdvodnej geometrickej predlohy sa globdlny optimalizator nedokéze priblizit' k mensej
hodnote, ktorej vysledok je uréeny podla hodnotiacej funkcie, a preto nedokdze prist’ na
spravny vysledok. Musime navrhnut rieSenie, aby sme geometricky prednastavili spravne
geometrické parametre zastrihnutému rohu. Nésledne pomocou hodnotiacej funkcie
dostaneme mensSie hodnoty a globdlny optimalizator sa za pomoci mensich hodnot dokédze
priblizit’ k cielovej geometrickej predlohe, teda nulovému vysledku hodnotiacej funkcie.
Nulovy vysledok hodnotiacej funkcie znamend, Ze pracovna verzia zdvislého Sva je

ekvivalentna s geometrickou predlohou.

27

/

Obr. ¢.32 — zobrazenie vhodného kandiddta pre pouZitie rohového konstrukcného

pravidla

Aby sme zistili, Ze mdzeme pouzit’ rohové pravidlo, musime si vytvorit’ softvérovy
modul ,,TryCutCornerSolver, ktorym skontrolujeme, Ze sa nachddzame na rohu dvoch
elementov. KedZe body odchylok st zakédované na S§vovej kontire budeme musiet’ tieto
body z elementu na Svovej konture prepocitat’ podl'a percentudlneho pomeru na element
hlavnej kontiry. Za rohového kandiddta budeme povazovat’ taky element, o ktorom zistime,
Ze vychadzajuci bod odchylky sa nachddza v rozmedzi (80%, 100%) elementu hlavnej
kontiry a vchadzajuci bod odchylky sa nachddza v rozmedzi (0%, 20%) nasledujiceho
elementu hlavnej kontury. Z toho vyplyva, Ze vysledok rozdielu indexov takychto elementov
sa rovna jednej. Vtedy mdzeme predpokladat’, Ze sme nasli vhodného kandidata rohového
elementu, (pozri obrdzok ¢.32). Nésledne si uloZime rohového kandidata ako odchylkové

body na elementoch Svovej kontury spolu s indexom rohového elementu.

28

Obr. ¢.33 — vypocet osi uhla a vzdialenosti pre zastrihnuty roh

Vieme, Ze konstrukéné pravidlo zastrihnuty roh je Specifikované vzdialenostou
priamky auhlom od rohového bodu na hlavnej kontire. KedZe sme nasli rohového
kandiddta mézeme pomocou geometrického vektora vypocitat’ uhol aj vzdialenost akou
bude zastrihnuty roh vytvoreny, (pozri obrazok ¢.33).

Ked’Ze pozname rohovy bod (oznaceny Zltou farbou) a odchylkové body na hlavne;j
konttre, (ktoré su ilustrované Cervenou a zelenou farbou) vieme si vypocitat’ jednotkové
vektory. Pomocou vektorov si vypoc¢itame bod osi uhla (ilustrovany biely bod). Podl'a bodu
osi uhla a rohového bodu si vieme vypocitat’ vektor osi uhla. Pomocou odchylkovych bodov
na Svovej konture si vypocitame Ciarovy vektor. Vysledny uhol vypocitame ako rozdiel
uhlov ciarového vektora avektora osi uhla. Vzdialenost vypocitame pomocou
odchylkovych bodov na Svovej kontire a rohového bodu.

Vypocitané geometrické parametre prednastavime zastrihnutému rohu. Nésledne
zavoldme globdlny optimalizitor, aby dokoncil vypocet a dosiahol tvar geometricke]

predlohy.

29

3. Implementacia

V kapitole implementicie sa venujeme podrobnejSie implementécii jednotlivych
softvérovych modulov, ktoré budud v silade s ndvrhom. Kapitola implementacie rozobera

implementaciu konStrukénych pravidiel: vol'ny Sev a zastrihnuty roh, ktory tvorili najvacsiu

skupinu problémovych pripadov.

Softvérové moduly budeme implementovat v programovacom prostredi eclipse
pouzitim programovacieho jazyka java, pretoze aplikdcia cad.assyst je implementovand

prave v tomto jazyku. Nase softvérové dielo nie je dostupné verejne, lebo je to firemny kéd.

Jeho funk¢nost’ som pripraveny demonsStrovat’ oponentovi prace.

3.1. Implementacia konStrukéného pravidla vol’ny Sev

Pomocou UML triednych diagramov popisujeme vizudlnu reprezentdciu, Struktiru

modulu a vztahy medzi triedami.

3.1.1. Proces doplnenia odchylkovych bodov

pkg reconstruction.seam.de J

<<interface>>
TTransform

CopyPointsAdapter

- Constant : double

+ TransformToT(double deviationPt : int, int sizelndex : int) : double
+ TrasformFromT(double T : int, int sizelndex : int) : Point2D

+ CopyPointsAdapter()

+ callAdapter(overcrossedDevPts : double(][], shapes : Shape[], seamPathinfo : List<SeamPathinfo>[]) : List<List<Point2D>>

Holderf}

reeSeam ‘.
N

A T

TTransformFerko

- seamPathinfos : List<SeamPathinfo>[]

- seamEICorDist : Map<Integer,Double>[]

- seamDistToNextPtldx : Map<Integer,Double>[]
- shapes : Shape[]

+ TTransformF h : Shapel], : List<SeamPathinfo>[))

+ TransformToT(deviationPt : double, sizelndex : int) : double

+ TransformFromT(T : double, sizelndex : int) : Point2D

+ calculateDistance(devPoint : double, sizeldx : int, seamEICorDist : Map <Integer,Double>[], seamDistToNextPtldx : Map<Integer,Double>[]) : double
+ shiftDevPtByConstant(devPoint : double, sizeldx : int, moveBy : double) : double

+ makeNewPoints(T : double, sizeldx : int) : Point2D

+ remapToMain(shapes : Shape(], seamPathlnfos : List<SeamPathinfo>[]) : void

HolderFreeSeam

- numberOfSizes : int

- pointsTId : List<Double>

- shiftedPointsTld : List<Double>
- status : List<Boolean>

ExtendUnionAdapter - indications : Integer(]

- pointlnSize : List<Integer>

- resultTransformPoints : List<Integer>

+ ExtendUnionAdapter()

+ extendUnionFunc(holderSizelnfo : HolderFreeSeam) : List<Integer>
+ detectStartPosition(holderSizelnfo : HolderFreeSeam) : int
+ makeUnionPoints(hfs : HolderFreeSeam) : void

+ HolderFreeSeam(numberOfSizes : int, indications : Integer[], resultPts : List<Integer>)
+ getNumberOfSizes() : int

+ getPointsTld() : List<Double>

+ getShiftingPointsTId(: List<Double>

+ getStatus() : List<Boolean>

+ getPointInSize() : List<Integer>

+ getindications() : Integer(]

+ getResultTransformPoints() : List<Integer>

+ insertTpoints(ptT : double, shiftedT : double, info : boolean, fromSizeldx : int) : void

Obr. ¢.34 — diagram tried zobrazujiici doplnenie odchylkovych bodov

30

Na obrazku 34 st zobrazené Strukturdlne informdcie softvérového modulu, ktory
rieSi problém odchylkovych bodov. Trieda ‘CopyPointsAdapter’ zabezpeCuje, aby sa
pretransformované body odchylok pomocou triedy ‘TTransformFerko* zdruzili zo vSetkych
velkosti do ‘java.utils.Arraylistu®. Trieda ‘TTransformFerko® implementuje funkcie
interfejsu ‘TTransform‘. Funkcie tejto transformécie maju za tlohu prepocitat’ odchylkové
body do takzvaného T Cisla, ktoré predstavuje Cislo elementu na hlavnej kontire a jeho
percentudlnu cCast’. Podla softvérovej Specifikdcie mdme zabrdnit’ vytvaraniu volno-
Svovych oblasti v bezprostrednej blizkosti ateda pouZijeme algoritmus, ktory ndm

pretransformované body odchylky posunie o zadant konsStantu, (pozri obrazok ¢€.35).

public double shiftDevPtByConstant(double dewPoint, int sizeldx, double moveBy) {
double newRatio = -1;
double moveByabs=Math. abs{moveby];
int devPtIdx = (int)Math.floor({devPoint]);
double remRatio = devPoint-devPtIdx;
if (Math. signun(moveBy)1>=0d) remRatioc=1-remRatic;
int numPolyPts=sesmDistToNextPtIdx[sizeldx].sizel);
while(newRatic < @) {
double subElLen=seamDistToNextPtIdx[sizeldx].get({devPtId:)HnumPolyPts); // special case, last element, use modulo
double remLength=subElLen*remRatio; /f remaining length
if (remLengthe=moveByhbs) |
newRatios={remlength-moveByAbs) fsubElLen;
if (Math. signun{moveBy)>=0d) newRatio=1-newRatio;
T else {
movebyhbs -=remLength;
if (Math. signun{moveBy)>=0) devPtIdicr;
else |
dewPtIdx--;
if (devPtIdi<@) devPtIdx += numPolyPts;

remRatio=1d;

¥

double result={double)((devPtId:x)%numPolyPts)+newRatio; // special case, handle if devPtIdi==0, use modulo
return result;

Obr. ¢.35 — zobrazuje algoritmus posunu odchylkovych bodov o konstantu

Trieda ‘HolderFreeSeam’ je kompozicia, ktord zabezpecuje komunikdciu medzi
triedami ‘CopyPointsAdapter’ a ‘ExtendUnionAdapter’. V triede ‘ExtendUnionAdapter’ si
pomocou vlastného komparatora utriedime T ¢isla (pretransformované odchylkové body).
Nasleduje proces hladania zaciatkov a koncov volno-Svovych oblasti ako index bodu
zaCiatku aindex bodu konca. Na zaver ‘CopyPointsAdapter’ pomocou transformécie
zakédované T cisla pretransformuje do vSetkych velkosti ako odchylkové body zaciatku
a konca vol'no-§vovej oblasti.

Pomocou takejto implementidcie dosiahneme body volno-Svovych oblasti vo

vSetkych stupniovanych velkostiach.

31

3.1.2. Proces doplnenia trajektorii

pkg reconstruction.seam.de)

TrajectoryCompletizer

- log : Logger = Logger.getLogger(TrajectoryCompletizer.class)

+ TrajectoryCompletizer()

+ processCopy(pieceData : PieceData) : void

+ copyAllTurnPoints(th : TrajectoryHolder) : void

+ processMerge(pieceData : PieceData) : PieceData

+ makeNewPiecelLayer(thm : TrajectoryHolder, pieceLayer : PieceLayer) : PieceLayer
+ findCandidatesForMerge(thm : TrajectoryHolder) : List<Candidate>

+ updateTurnPointVector(thm : TrajectoryHolder, turnPtVector : int[], tridx : int, direction : int) : boolean
+ updateDistanceBtwTrajectories(thm : TrajectoryHolder, ¢ : Candidate) : void

+ initializeTemporary(thm : TrajectoryHolder, value : int) : int[]

+ initializeTemporary(thm : TrajectoryHolder, value : double) : double[]

+ mergeTrajectories(thme : TrajectoryHolder) : void

V4 S

TrajectoryHolder

- piecePoints : Points[]

- geometryData : GeometryData
- trajectory : Trajectory

- currentTrajectory : int[]

- nextTrajectory : int[]

Candidate

- indexFrom : int
- indexTo : int
- width : double

+ Candidate(from : int, to : int, width : double)

- temporaryTrajectories : List<int[]>

- dynamicTrajectory : DynamicTrajectory
- sortedTrajecotryldx : List<Integer>

+ TrajectoryHolder(piecePoints : Points[], geometryData : GeometryData, trajectory : Trajectory)
+ setCurrentTrajectory(currentTrajectory : int[]) : void
+ setNextTrajectory(nextTrajectory : int[]) : void

Obr. ¢.36 — diagram tried zobrazujiici doplnenie trajektorii

Na obrazku 36 st zobrazené Strukturdlne informdcie softvérového modulu, ktory
rie$i problém nekompletnych trajektérii. Pomocou triedy ‘TrajectoryCompletizer’ rieSime
doplnenie zlomovych bodov aknim kompletné trajektérie. Funkcia ‘processCopy’
rozkopiruje zlomové body, ktoré nemaji kompletné trajektérie do ostatnych velkosti ako
krivkové body v pomere, v akom sa nachadzali na pé6vodnom stupfiovanom elemente
avytvori znich novi kompletnu trajektériu. Na ulozZenie informdcii pouzivame triedy
‘Candidate’ a ‘TrajectoryHolder’, pomocou ktorych ostatné funkcie komunikujd. Funkcia
‘processMerge’, ktorej cielom je spdjat novovytvorené

trajektorie, potrebuje

vyhodnocovaciu funkciu ‘findCandidatesForMerge*, (pozri obrazok €.37).

32

SfFunction that finds warious disjoint subsets
public List<candidate: findcandidatesFormergeiTrajectoryHolder thm)
List<Candidate: groupsToMerge=mad arraylist<Candidate:();
List<Integer: currentGroup=nes ArraylList<Integer:{);
imt[] turnFtvector=null;
boolean conflict=false;
imt ick=8;
turnFtvector = initializeTemporary(thm, &);
while{ick< < thm.sortedTrajectoryIc.sizefd) {
im trIds = thm.sortedTrajectoryIc. get (ic);

if (leog.isDebugEnabled())

Log.debugi "TrIck:" + bt + " trajectoryIndes: "+trIck+" | “+currentcroup.tostringls;
conflict=updateTurnPointvector{thm, turnrtvector, trIds, a); 77 test for conflict
if{!lconflict) {

currentGroup. addic;

conflict=updateTurnPointwector {thm, turnFtvector, trIck, 1); / uvpdate turn points wector

Tiki++;

} else{ Jf remove first trajectory

imt from = currentGroup.getial;

im to = currentGroup.get{currentGroup.sizedi-1);

Candidate ¢ = new Candidate{from, to, -1);

if {currentGroup.size()»1) { fJ check for overlap candidates

imt uts=groupsToMerge.sizel);
if{uts » @) {
Candidate lastC=groupsTomerge.getiuts-1);
imt toLast=lastC.indexTo;
if {frome=toLast) {
imt diff={lastc.indexTo-lastC.indexFrom)- {to-from);
if {lastc.width<ad) updateDistanceEtwTrajectories(thm, lastc);
updatepistanceEtwTrajectories{thm, c);
if (diffed || (diff=—0 && lastC.width » c.width)) {
groupsToMerge. removeiuts-1);
1 else
c=null;

F

T

if {cl=mull} groupsToverge.addic);
T
Siupdate turn pt wector
imt trId = thm.sortedTrajectoryIc. get (from);
conflict=updateTurnPointvector {thm, turnrtvector, trId, -1);
currentGroup.removedal ;
conflict=Ffalse; f/ assume no conflict anymore

T
T
return groups ToMer ge;

Obr. ¢.37 — funkcia hladania kandiddtov

Na obrazku 37 je zobrazeny proces hladania kandididtov vhodnych na spédjanie.
Kandidatov ukladdame ako mnoZinu novovytvorenych trajektérii. Po tspeSnom ndjdeni
kandidétov, tieto jednotlivé mnoZiny spojime a vytvorime novi trajektdriu. Proces hl'adania
opakujeme, az pokial ndm funkcia hladania vhodnych kandiddtov nevréti Ziadneho
kandidata na spdjanie. Na konci sa vytvori nova vel'’kostna vrstva, ktord obsahuje doplnené

vysledné zlomové body s kompletnymi trajektoriami.

33

3.2. Implementacia konStrukéného pravidla zastrihnuty
roh

pkg reconstruction.seam.de J

TryCutCornerSolver

- iterationLogFreq : int

- bestWorstMinDiff : double

- maxitersWithoutChange : int

- npFactor : int

- F :double

- Cr : double

- algo : AlgoType

- cornerldx2sizeldx : Map <Integer,Integer>
- orgAttrA : CornerSeamAttributes(]

+ TryCutCornerSolver(piece : SeamReconstructionPiece, consumer : SolutionConsumer, tp : ToleranceProvider) : void

+ solve() : void

+ findCandidates(cornerldx2Sizeldx : Map <Integer,Integer>) : Map<Integer,Integer>

+ findOvercrossedOutPoint(seaminfo : List<SeamPathinfo>, overcrossedDevPts : double[], cornerldx : int) : double

+ findOvercrossedinPoint(seaminfo : List<SeamPathinfo>, overcrossedDevPts : double[], cornerldx : int) : double

+ remapPoint(subEl : int, ratio : double, seamContourPoints : List<Point2D>) : Point

+ remapToMain(shape : Shape, seamPathinfo : List<SeamPathinfo>, seamEICorDist : Map<integer,Double>, seamDistToNextPtldx : Map<Integer,Double>, seamContourPoints : List<Point2D>) : void
+ calculateDistance(devPoint : double, seamPathinfo : List<SeamPathinfo>, seamEICorDist : Map<Integer,Double>, seamDistToNextPtldx : Map<Integer,Double>) : double

+ getCost(sizeldx : int) : double
T

'
: Extends - CornerChndidate
I | \
' i
i PreSetCutCorner
Extends 1 | - cornerC: CornerCandidate

|:|\‘ ' + PreSetCutCorner(piece : SeamReconstructionPiece, consumer : SolutionConsumer, tp : ToleranceProvider, cornerCandidate : CornerCandidate)
. | - solve() : void
' '
' '

DESeamSolver
—

CornerCandidate

I
' - cornerldx : int JAN
t | - sizeldx : int
! - pointOut : Point
- pointin : Point

Extends

+ CornerCandidate(cornerldx : int, sizeldx : int, pointOut : Point, pointin : Point)
+ getCornerldx(: int

' + getSizeldx(: int - log : Logger
: + getPointOut() : Point - orgAttrA : CornerSeamAttributes(]
' + getPointin() : Point

CutCornerDESeamSolver

+ CutCornerDeSeamSolver()
+ solve() : void
o e S R A i) # generateRandomPopulation() : void
"""""""""""" # evaluateFunction(x : double[], iteration : int, executor : ExecutorService) : void

Obr. ¢.38 — diagram tried zobrazujiici pravidlo zastrihnutého rohu

Pomocou UML diagramov opiSeme vizudlnu reprezentaciu systémového modulu
spolu s Struktdrou. Na obrazku 38 vidime, Ze trieda ‘TryCutCornerSolver’, ktora
implementuje funkciu ‘solve’ z nadtriedy ‘SeamSolver’, v tele funkcie pouziva metédu
‘findCandidates’, ktorej ciel'om je odchylkové body premapovat’ na hlavnd kontiru a zistit,
ze odchylkovy bod, ktory vychddza z tolerancie sa nachddza v rozmedzi (80%, 100%)
elementu hlavnej kontiry a vchadzajici bod odchylky sa nachddza v rozmedzi (0%, 20%)
nasledujiceho elementu hlavnej kontiry. Tymto spdsobom zaru¢ime, Ze sa nachddzame na
rohovom elemente hlavnej kontiry a moZeme pouzit rohové konStrukéné pravidlo.
Rohového kandidata si ukladdme v triede ‘CornerCandidate’, ktord obsahuje index elementu
na hlavnej kontudre, vel'kost’ v ktorej sa nachddza a odchylkové body na Svovej konture. Této
trieda je kompozicia medzi triedami ‘TryCutCornerSolver’ a ‘PreSetCutCorner’. Trieda
‘PreSetCutCorner’ dostdva referenciu na rohového kandidita. Cielom tejto triedy je
v metéde ‘solve’ geometricky sprdvne prednastavit hodnoty zastrihnutému rohu, teda

vzdialenost’ a uhol rohovému elementu na hlavnej konttre, (pozri obrdzok ¢.39).

34

@verride
public void solve() {
int elemIn = cornerc.getCornerIdsx);
int elemiut = (elemIn-1 »= @) ¢ elemIn-1 : (elemIn-1)+piece.elementseamAttributes.length;
int size = cornerC.getsizeldsx();
Foint2D[] pointscut = piece.mainContourFineApproximatedElements[size][elemout];
Foint2D ptoen= pointsOut[peintsOut.length-1];
Foint2D ptost = pointsOut[pointsCut.length-2];
Point20[] peintsIn = piece.mainContourFinedpproximatedElements[size][elemIn];
Point2D ptist = peintsIn[@];
Point2D ptien = peintsIn[1];
Point startPs = new Peoint(ptist.get¥(), ptist.get¥({));
£ axis point
Wector wectorUnit = new Wector(ptost.getd()-ptoen.get¥(),ptost. gety () -ptoen. gety (), true);
Wector wectorUnit2 = new Wector(ptien.get¥()-ptist.getX(), ptien.gety()-ptist.get¥(), true);
Point wectorBi = new Point(vectorUnit2.getDue)+vecteorUnit.gethsx(), vectorUnit2.getDy()+vectorUnit.getDvi));
Point axis = new Point{ptist.getX()+vectorBi.get¥(), ptist.gety()+vectorBi.gety());
vWector bisector = new Vector(ptist.getM()-axis.getd(), ptist.getv()-axis.gety(),true);
Point pointOut = cornerC.getPeintout(); // red point
Point pointIn = cornerC.getPointIn{); // green point
#f make line vector
wvector linevector = new Vector(pointIn.getX()-pointOut.getX(), pointIn.gety()-pointOut.gety(), true);
linevector = Wector.get@rthogonalVector{linevector, false);
ffmake new cut corner
double distance = Line2D.ptiinefist{pointIn.getX(),pointIn.gety(),pointOut. getk(),polintOut. get¥(),startPs. getX(),startPs.get¥());
double angle = (linevector.getfngle()-bisector.getAnglel));
piece.cornerseamfttributes[cornerl. getCornerIdx()] = new Cut(distance, Math.tobegrees(angle),d);

Obr. ¢.39 — geometrické prednastavovanie parametrov zastrihnutého rohu

Na obrdzku 39 vidime, Ze pomocou java implementicie ‘java.util.Vector’ si
vypocitame geometrické vektory. Ked'Ze mdme zaciatok rohového elementu a odchylkové
body na hlavnej konttire, vieme si vypocitat’ vektory. Pomocou tychto dvoch vektorov
dostdvame bod osi uhla. Pomocou bodu osi uhla a bodu rohového elementu si vypocitame
vektor osi uhla. Java implementiciou ‘java.awt.geom.Line2D’ si vieme pomocou bodu
zaCiatku rohového elementu na hlavnej konture a ¢iarového vektoru vypocitaného z
odchylkovych bodov na Svovej kontire vypocitat vzdialenost’ priamky od rohového
elementu na hlavnej kontire. Uhol vypocitame ako rozdiel dvoch vektorov: ¢iarového
a vektoru osi uhla. Na koniec vytvorime zastrihnuty roh na sprdvhom rohovom indexe
hlavnej kontury. Ndsledne pomocou triedy ‘CutCornerDESeamSolver’, ktord implementuje
globdlny optimalizator z nadtriedy ‘DESeamSolver’, dokoncujeme prednastavené hodnoty.
Ur¢i sa hodnota pomocou hodnotiacej funkcie a porovna sa s hodnotou pred vytvorenim
konStruk¢ného pravidla zastrihnuty roh. Ak celkovd hodnota je menSia, priradeny

zastrihnuty roh sa ponecha pracovnej verzii zavislého Sva.

35

4. Testovanie

V kapitole testovanie sa venujeme testovaniu jednotlivych softvérovych modulov,

ktoré sme navrhovali a implementovali z najviacsich skupin problémovych dat.

Kapitola testovania teda obsahuje:

Obrazovi dokumentaciu pred implementovanim modulov

Grafické zhodnotenie s popisom pred implementovanim modulov

Obrazovu dokumentaciu po implementovani modulov

Grafické zhodnotenie s popisom po implementovani modulov

Celkové zhodnotenie s popisom softvérového modulu s moZnostami dalSieho

vyvoja

4.1. Testovanie konStruk¢éného pravidla vol’'ny Sev

Obrazok 40 zobrazuje rekonstrukciu zavislého Sva pred implementovanim doplnenia

odchylkovych bodov. Vidime, Ze sa pouzil typ rieSenia ‘all in 1°, ktory bliZSie popisuje

kapitola sicasny stav rekonstrukcie. Bielymi Sipkami su zobrazené odchylkové body, ktoré

sa v jednej velkosti vytvorili a v druhej nie. Obrdzok zobrazuje pocet iterdcii a ¢as, ktoré

algoritmus ‘all in 1’ potreboval nato, aby postupne aplikoval konStrukéné pravidla a tym

zmodifikoval pracovni verziu zdvislého Sva (zobrazena zelenou farbou), aby bola v

tolerancii ku geometrickej predlohe (zobrazend modrou farbou). Taktiez vidime, Ze

pracovna verzia zdavislého Sva nedosiahla aplikovanim Standardnych pravidiel tvar

geometrickej predlohy a preto musime pouZit’ na mieste odchylenia konStrukéné pravidlo

volny Sev.

36

Solver:

Solver type Allin 1 v
Tter, log frequence 10
Biest-worst min diff 10

Max iter, wfo change 100

Np factor 5

F 0.9

ar 0.9

Aloo typs BEST_LEIN +

Selected sizesonly [

[Solve] [Clear

Interm. soldtions |29 v:
Ready (in 2139%ms)

Obr. ¢.40 — reprezentuje rekonstrukciu zdvislého Sva pred implementdciou doplnenia

odchylkovych bodov

Grafické zhodnotenie pred implementovanim konstrukéného pravidla volny Sev
modzeme vidiet’ na obrazku 41, vychddza z mnoZiny 60 konstruovanych dielov. Vidime, Ze
2/, dat nebolo sprdvne zrekonStruovanych, pretoZe sucasny softvérovy modul ocakdval

rovnaky pocet odchylkovych bodov vo vSetkych stupfiovanych vel'kostiach.

Analyza vysledkov pred implementovanim modulu na
doplnenie odchylkovych bodov

1. spravne zrekonstruované data, obsahujuce volny Sev

= 2. nespravne zrekonstruované data, ktoré mali obsahovat volny Sev

Obr. ¢.41 — analyza pred doplnenim odchylkovych bodov

Na obrizku 42 mdzeme vidiet' rozkopirovanie odchylkovych bodov z ostatnych

stupniovanych vel'kosti a ndjdenie spravnych bodov zaciatku a konca vol'no-Svovych oblasti.

37

A zéroven vidime, Ze po implementovani modulu na doplnenie odchylkovych bodov
“spline-line-solver” pomocou aplikovania najmensieho poctu krivkovych bodov nedokazal
spravne aproximovat’ kontiru a vytvorit’ spline, ktory by bol v tolerancii ku geometricke;j

predlohe a preto vytvoril vol'ny-Sev (zobrazeny ruzovou farbou) ako priamku medzi bodmi

zaciatku a konca vol'no-§vovych oblasti.

Deviation poinfts , . -1
from another

sizes Solver:
Solver type FreeSeamz

| ~— End poif

Deviation points Iter. log frequence 10

from another sizes

—

Best-worsk min diff 10

May iter. wio change |100

’ ¢
| Mp Factar 5
Start point |
- F 0.9
] r 0.9 :
' Algo type BEST_1_EIN

I Selected sizes only =

: [Solve } [

I I Stop }

' Interm. solutions 43 ~
| Ready (in 8619ms)

Seam attrihutes:

Obr. ¢.42 — zobrazenie rekonstrukcie po implementdcii doplnenia odchylkovych bodov

Grafické zhodnotenie po implementicii doplnenia odchylkovych bodov pre
kons$trukéné pravidlo vol'ny Sev mdzeme vidiet’ na obrdzku 43. Vidime, Ze 34 dat sa ndim
podarilo spravne zrekonStruovat’, pretoZze sme sucasnému softvérovému modulu doplnili

odchylkové body vo vSetkych stupniovanych velkostiach. ¥4 dat sme po implementovani

modulu na doplnenie bodov nedokdzali vyrieSit'.

38

Analyza vysledkov po implementovani modulu na
doplnenie odchylkovych bodov

~

1. spravne zrekonstruované data, obsahujuce volny Sev

= 2. nespravne zrekonstruované data,v ktorych nastal problém s trajektériami

Obr. ¢.43 — analyza po doplneni odchylkovych bodov

Tieto problémové pripady sposobila strata zlomového bodu v niektorej zo

stupniovanych velkosti ¢o zapriCinilo nekompletné trajektdrie, (pozri obrazok ¢.44)

Incomplete trajectory

Obr. ¢.44 — zobrazenie nekompletnej trajektorie

Na obrazku 45 vidime novovytvorené trajektdrie pre kazdy zlomovy bod z obrazku

44, ktory neobsahoval Ziadnu trajektoriu.

39

Obr. ¢.45 — doplnenie trajektorii pre kaZdy zlomovy bod

Na obrizku 46 vidime, Ze po procese hladania kandiditov a spdjania
novovytvorenych trajektorii sme spravne doplnili kompletnu trajektériu zlomovym bodom,

ktoré predtym neobsahovali Ziadnu trajektoriu.

Obr. ¢.46 — doplnend trajektoria

Na obrazku 47 vidime, Ze po implementovani modulov pre konstruk¢né pravidlo

volny Sev sme uspeSne dosiahli tvar geometrickej predlohy. Na potrebnych miestach sa

40

vytvoril volny Sev (ruZovou farbou), ktory bol pred implementovanim naSich modulov

odignorovany.

FHUUIIuL:

Solver:
Solver bype FreeSeams
Iter, log frequence 10

Best-waorst min diff 10

Maee iker, wia change |100

Mp Factor 5

F 0.9

Zr 0.2

Algo type BEST_1_EIN

Selected sizes only

| Salve | |

| Stop |

Inkerm. solukions 47 -

Ready (in 1034ms)

Seam attributes:

| Delete | | C

| Delete all |

| Incr st ba | |

Obr. ¢.47 — zobrazuje vysledok procesu doplnenia trajektorit

Na obrazku 48 vidime grafické zhodnotenie po implementovani softvérového
modulu na doplnenie trajektorii. Vidime, Ze vicSinu pripadov pre konStrukéné pravidlo
volny Sev sa ndm podarilo tspesSne zrekonStruovat. Nesprdvne zrekonStruované data
obsahovali nesuvislé elementy alebo nekorektné stupniovanie uz pred samotnou

rekonStrukciou.

41

Analyza vysledkov po implementovani modulu na
doplnenie trajektorii

\

1. spravne zrekonstruované data, obsahujuce volny Sev

= 2. nespravne zrekonstruované data,v ktorych nastal problém

Obr. ¢.48 — analyza po doplnent trajektorit

Na obrédzku 49 vidime vysledok rekonStrukcie zavislého Sva v aplikdcii cad.assyst
pred implementovanim softvérovych modulov. Miesta ktoré vychddzaji z tolerancne;j

plochy st oznacené bielymi Sipkami.

-
)
=l

s
L
|

o |
C
o

Obr. ¢.49 — zobrazenie rekonstrukcie zavislého sva v aplikdcii cad.assyst

42

Na obrazku 50 vidime dspes$ny vysledok rekonStrukcie zavislého $va v aplikdcii

cad.assyst po implementécii naSich softvérovych modulov.

Obr. ¢.50 — zobrazenie rekonstrukcie zavislého sva v aplikdcii cad.assyst

4.2. Testovanie konStruk¢ného pravidla zastrihnuty roh

Na obrazku 51 vidime, Ze pred implementovanim softvérového modulu pre
zastrihnuty roh sme sa nedokdzali pribliZit' ku geometrickej predlohe (zobrazend modrou
farbou). Proces rekonStrukcie skoncil s nedokoncenou verziou zdvislého Sva. V aplikacii

cad.assyst by sa ndm zobrazil takyto diel Zltou farbou ako chybovy.

43

Misc:

Cost function:

Round2:

[OXORONONS

Solver:
Solver bype Allin 1 -
Iter. log frequence |10
Best-worst min diff 10
Max iter, wio change 100
Mp Factor 5
F 0.9
cr 0.9
Algo type EEST_1_BIN

Selected sizes only [

[Sahve] [Clear

Inkerm. solutions 3 v
Ready (in 1973ms)

Seam attributes; —————————————— c

[Delete | [peletefresseam |

Delete all

[Incrstbg] [Incr st ed]
|

[Incrmrbg Incrmred |

Obr. ¢.51 — rekonstrukcia zdavislého sva pred implementdciou zastrihnutého rohu

Grafické zhodnotenie pred implementovanim konStrukéného pravidla zastrihnuty
roh mdzeme vidiet’ na obrazku 52, vychddza z mnoziny 35 konStruovanych dielov. Vidime,
Ze 1/, dat nebola spravne zrekonStruovand, pretoze sicasny softvérovy modul geometricky

nespravne prednastavoval hodnoty zastrihnutému rohu.

Analyza vysledkov pred implementovanim modulu na
prednastavovanie geometrickych parametrov

|

-

1. spravne zrekonstruované data, obsahujuce zastrihnuty roh

= 2. nespravne zrekonstruované déta, ktoré mali obsahovat zastrihnuty roh

Obr. ¢.52 — analyza pred implementovanim prednastavovania geometrickych

parametrov

Na obréazku 53 vidime, Ze po implementovani modulov pre konStrukéné pravidla:

volny Sev a zastrihnuty roh sme tspesne dosiahli tvar geometrickej predlohy. Na miesto,

44

ktoré zobrazuje biela Sipka sme prednastavili zastrihnuty roh ,,Cut® s parametrami pre

vzdialenost’ a uhol k rohovému elementu na hlavnej konture.

L

[Delete] [Delete free

Delete 4l

[Incr st by

Incrste

J
Incr mr bg] [Incr mr ¢

Inelste

Inel st bg

Inel Inelst)

alue!

[seam walue: -10.0
-4 Corner: 0
- @ Element: 0
-4 Corner; 1
- # Element: 1
& Corner: 2
- Element: 2
ERm|crre

-[7] Element: 3
D Carner: 4
-] Element: 4

-~ & Cormner: 5

#.F7 Flemert

[[

Obr. ¢.53 — rekonstrukcia zdvislého sva po implementdcii zastrihnutého rohu a volného

Sva

Na obriazku 54 vidime, Ze sa ndm pomocou spravneho prednastavovania

geometrickych hodndt podarilo dosiahnut’ priaznivé vysledky. Ostdvajuice pripady, ktoré sa

spravne nezrekonsStruovali obsahovali problém s nespravnym stupfiovanim hlavnej kontury.

Analyza vysledkov po implementovani modulu na
prednastavovanie geometrickych parametrov

A

1. spravne zrekonstruované data, obsahujuce zastrihnuty roh

= 2. nespravne zrekonstruované data, ktoré mali obsahovat zastrihnuty roh

Obr. ¢.54 — analyza po implementovani prednastavovania geometrickych

parametrov

45

Na obrédzku 55 vidime vysledok rekonStrukcie zavislého Sva v aplikdcii cad.assyst
pred implementovanim softvérovych modulov. Miesta ktoré vychddzaji z tolerancne;j

plochy st oznacené bielymi Sipkami.

Obr. ¢.55 — zobrazenie rekonstrukcie zdavislého sva v aplikdcii cad.assyst

Na obrazku 56 vidime uspesny vysledok rekonstrukcie zavislého Sva v aplikdcii
cad.assyst po implementécii naSich softvérovych modulov. Miesto pouZitia konStrukéného

pravidla zastrihnuty roh je zobrazené modrym kurzorom.

Obr. ¢.56 — zobrazenie rekonstrukcie zavislého sva v aplikdcii cad.assyst

46

4.3. Mozinosti rozSirenia automatickej rekonstrukcie

Na obrizku 19 vidime, Ze moZnosti na rozSirenie je eSte mnoho. Najvicsie
problémové skupiny s volnym Svom a zastrihnutym rohom sa ndm podarilo uspeSne
pripadov vyskytuje problém s rozkiskovanymi elementami. KedZe tieto elementy su
nestvislé musime opakovane pohybovat’ pracovni mnozinu zavislého $va na jednotlivych
elementoch. Takyto posun tzko stvisi s casom rekonsStrukcie, pretoZze musime aplikovat
konsStrukéné pravidla na kazdy z elementov osobitne a Castokridt nedosiahneme spravny
vysledok.

Riesenim takéhoto problému by bolo este pred samotnou rekonstrukciou vyhladat’
na hlavnej kontire nesuvislé elementy a v pripade existencie ich spojit’ do jedného elementu.
Tymto spdsobom by sme zabranili nespravnym vysledkom a odlahcili ¢asovi narocnost’

rekonStrukcie zavislého Sva.

4.4. Hodnotenie softvérového modulu

Na obrdzku 57 vidime naskenovanu képiu slovného ohodnotenia, v ktorej sa ku
naimplementovanym softvérovym modulom vyjadril externy Skolitel’ a vedica testovacieho

timu. Doveryhodnost’ tohto dokumentu doty¢né osoby vyjadrili vlastnoru¢nym podpisom.

47

Bewertung Bachelor Thesis

FrantiSek Tomana

Firma Assyst ist einer der Top-5-Softwarehersteller auf dem Markt der Bekleidungsindustrie
weltweit. Um diesen Trend auch weiter erhalten zu koénnen, sind kontinuierliche Software
Verbesserungen und Innovationen unabdingbar.

Herrn Tomana wurde der Stand der Entwicklung im Bereich der Datenkonvertierung
vorgestellt, mit Fokus auf das Modul der automatischen Semantics-Rekonstruktion. Herr Tomana
hat von Anfang an groBes Interesse gezeigt, sich in das Thema eingearbeitet und den Kunden-
Workflow verstanden. Er hat Strategie entwickelt und vorgestellt, um méglichst viele existierende
Liicken in dem Softwaremodul mit relativ wenig Aufwand zu schlieRen. Hierzu hat er seine
theoretischen Kenntnisse zielgenau vertieft, hat sich mit dem Qualititssicherungsteam mégliche
Testmethoden angeschaut, analysiert und festgehalten. Seiner Strategie nach hat er sorgfiltig die
primére Kategorisierung der Testergebnisse durchgefiihrt, die dann als Basis fiir die nachstehenden
Verbesserungen fungierte. Diese wurden spiter in Absprache mit dem Entwicklungsteam
implementiert, erneut getestet und entsprechend dem Bedarf nachjustiert. Das Softwaremodul hat
dadurch eine entscheidende Verbesserung in der Zuverlassigkeit der Funktionalitit erhalten.

Von dieser Verbesserung profitiert auch die Software cad.assyst, denn die automatische
Semantics-Rekonstruktion ist Teil dieser Applikation. Die positive Riickmeldung des
Qualitdtssicherungsteams mit einer Abnahme des optimierten Moduls bestitigt die Qualitét der
Implementierung in hochstem MaR. Ich gehe ganz davon aus, dass die Zufriedenheit der Kunden
dies ebenfalls zeigen wird.

In Dornach, den 27. Mai 2020

”

7.

Ulrike Reng 1/n\g Karol Zitfarsky
o . P
Qualitéatssicherung Entwncklxy;g'
c/

Obr. ¢.57 — slovné ohodnotenie po nemecky

48

Hodnotenie bakalarskej prace

FrantiSek Tomana

Firma assyst je jednym z 5-tich najlep$ich vyrobcov softvéru v odevnom priemysle na celom
svete. Na pokraCovanie v tomto trende su nevyhnutné neustale zlepSenia a inovacie softvéru.

Pan Tomana bol oboznameny so stavom vyvoja v oblasti konverzie dat so zameranim na
modul automatickej rekonstrukcie sémantiky. Od zaciatku prejavil pan Tomana velky zaujem,
oboznamil sa s danou témou a porozumel pracovnym postupom zdkaznikov. Vyvinul a predstavil
stratégiu na odstranenie ¢o najvacsicho mnozstva existujucich problémov v softvérovom module s
relativne malym usilim. Za tymto ucelom cielene prehlboval svoje teoretické znalosti, skiimal mozné
skuSobné metddy v spolupraci s timom zaistenia kvality, analyzoval ich a zaznamenaval. Podl'a svojej
stratégie starostlivo vykonal priméarnu kategorizaciu vysledkov testov, ktora potom slizila ako zéklad
pre zlepSenia uvedené nizSie. Tieto boli neskér implementované po konzultacii s vyvojovym timom,
znovu testované a podla potreby upravené. Vysledkom je, ze softvérovy modul dostal rozhodujuce
zlepSenie v spol'ahlivosti a funk¢nosti.

Softvér cas.assyst tiez tazi z toho zlepSenia, pretoze automaticka rekonstrukcia sémantiky je
sucastou tejto aplikacie. Pozitivna spitna vdzba od timu zabezpecovania kvality s prijatim
optimalizovaného modulu potvrdzuje kvalitu implementécie do najvyssej miery. Plne predpokladam,
ze to preukaze aj spokojnost’ zékaznika.

V Dornachu, 27. Maja 2020

Ulrike Reng Ing. Karol Zithansky
Zabezpecenie kvality Vyvoj

Obr. ¢.58 — slovné ohodnotenie po slovensky

Na obrazku 58 vidime slovensky preklad firemného ohodnotenia.

49

Zaver

Vysledkom naSej préace je roz$ireny softvérovy modul firmy assyst, ktory sme po
uvodnej analyze dat rozdelili do dvoch problémovych skupin. NajvacSiu problémovi
skupinu tvori konstruk¢éné pravidlo vol'ny Sev, ktorého riesSenie sme rozdelili do dvoch Casti.
Nasledujicu skupinu tvori konStrukéné pravidlo zastrihnuty roh. Jednotlivé moduly sme
implementovali v programovacom jazyku java a spolu obsahuju priblizne 1 350 riadkov

kédu.

Povodny softvérovy modul nedokdzal zachytit’ tseky, ktoré mali obsahovat’ vol'ny
Sev, z dovodu nevytvorenia odchylkovych bodov vo vSetkych stupiiovanych velkostiach.
Navrhli sme modul anésledne sme ho naimplementovali, ktorym sme rozkopirovali
odchylkové body zo vSetkych velkosti a tym sme zabranili, aby boli problémové miesta
v stupiiovanych velkostiach vynechané. Z toho vyplyva, Ze ak v niektorej zo stupiiovanych
velkosti pracovna verzia zavislého Sva vychddzala z tolerancnej oblasti, tak sme aplikovali

na tuto oblast’ voI'ny Sev vo vSetkych stupiovanych velkostiach.

Po implementdcii procesu dopliania odchylkovych bodov sme zistili, Ze softvérovy
modul nedokaze spracovat’ jednotlivé useky volno-S$vovej kontiry, z dovodu stratenia
zlomového bodu v niektorej zo stupiiovanych velkosti, teda stratenie zlomového bodu
sposobilo nekompletni trajektériu tychto bodov. Preto sme navrhli modul a nasledne ho
naimplementovali, ktorym sme pre zlomové body, ktoré neobsahovali trajektérie vytvorili
nové trajektorie. Nésledne sme z tychto novovytvorenych trajektorii vybrali vhodného
kandidata a spojili sme ich. Tymto postupom sme vytvorili novud trajektériu zlomovym
bodom. Po vytvoreni kompletnej trajektérie nemusi ‘spline-line-solver’ spravne
aproximovat cez zlomové body elementov pomocou aplikovania krivkovych bodov, z toho
vyplyva Ze dokaze vytvorit’ vol'ny Sev ekvivalentny k pdvodnej geometrickej predlohe, ktora

predstavovala nezavisld Svovu konturu.

Povodny softvérovy modul nedokéazal vytvorit’ konsStrukéné pravidlo zastrihnuty roh
na potrebnych rohovych elementoch hlavnej kontiry, 2z ddvodu nespravneho
prednastavovania geometrickych parametrov. Preto sme navrhli modul, ktory dokdze

vyhodnotit’, Ze dané odchylkové body patria rohovému elementu hlavnej kontdry. Nésledne

50

sme pomocou vektorov vypocitali a prednastavili geometricky sprdvne parametre
zastrihnutému rohu, aby mohol globdlny optimalizdtor pomocou hodnotiacej funkcie

dokoncit’ vypocet a dosiahnut’ tvar, ktory je v tolerancii s danou geometrickou predlohou.

Hlavny prinos nasej prace spociva v tom, Ze poskytujeme zakaznikom plne funk¢ny
v CAD aplikacii. Najvacsie problémové skupiny sa podarilo s vyuzitim vhodnych heuristik
uspesne implementovat’ do sicasného softvérového modulu firmy assyst. Implementované
moduly boli riadne otestované a doladené podla spitnej vizby testerov. Praca je plne

pripravena a bola spustena do prevadzky firemnej aplikdcie cad.assyst.

51

Literatura

[1] Vymena dat medzi ruznymi systémy CAD, Ing. Lubomir Cevela, &islo publikécie 01,

rok 2001. Dostupné na internete: https://automa.cz/cz/casopis-clanky/vymena-dat-mezi-

ruznymi-systemy-cad-2001_01 33435 2321/, [Citované dna: 26.10.2019]

[2] Standard practice for sewn products pattern data interchange-data format(withdrawn
2019), ASTM international, standard number ASTM D6673-10. Dostupné na internete:

https://www.astm.org/Standards/D6673.htm , [Citované dna: 09.11.2019]

[3] Advanced pattern making techniques: pattern grading, Ruth ann reyes-loiacano, 2020

Isn’that Sew, LLC. Dostupné na internete: http://isntthatsew.org/pattern-grading/,

[Citované dra: 09.11.2019]
[4] Minkowského suma, Radek Vyrut, Katedra matematiky, Fakulta aplikovanych ved,

Zapadoceskad univerzita v Plzni. Dostupné na internete: http://home.zcu.cz/~rvyrut/ WWW-

KMA/publications/ecg2006.pdf , [Citované dna: 25.01.2020]

[5] Accuracy and quality control, BBC the world’s leading public service broadcaster ,
¢islo publikécie 10, ¢lanok Textile-based materials, 2020 BBC. Dostupné na internete:

https://www.bbc.co.uk/bitesize/guides/zjc3rwx/revision/10 , [Citované dna: 25.01.2020]

[6] Differential Evolution, KennethV. Price, Rainer M. Storm, Jouni A. Lampien, Springer
Berlin Heidelber New York, Springer 2005

[7] Computer aided design and manufacturing, K. Lalit Narayan, K. Mallikarjuna, Rao,
M.M.M. Sarcar, Prentice Hall of India, New Delhi-110001, 2008

[8] Odevnicke ndzvoslovie, Christoph J. Jurga, P. Hamzik, S.Galusek, Slovenské
vydavatel'stvo technickej literatiry v Bratislave, 1963

[9] UML 2.5 Das umfassende Handbuch, Christoph Kecher, Alexander Salvanos, Ralf

Hoffmann-Elbern, Rheinwerk Computing, 2017

52

[10] Bekleidung Schnittkonstruktion fur Damenmode, Guido Hofenbitzer, Europa-
Lehrmittel, 24. August 2009

[11] Cad.assyst 7, Assyst Bullmer inteligent solutions, assyst GmbH, 2000

53

