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Chapter 1

Description Logics

Description logics (DLs) [16, 2, 1] are a family of languages used for knowl-

edge representation. They formally describe an application domain in a

structured, clear and understandable way. The word description from the

name is derived from the fact that an application domain is represented by

concept descriptors, which are the expressions created from atomic concepts

(unary predicates) and atomic roles (binary predicates) connected with the

constructors of the specific DL language. The word logic from the name

comes from the logic-based semantics of DLs that is pretty similar to first-

order logic (FOL) semantics.

DLs have their predecessors, early knowledge representations, such as

semantic networks and frames, which were very intuitive and comprehensive

so they were readable and easily understood. On the other hand, they did

not have a precise meaning and their interpretation could differ from person

to person. This caused trouble while reasoning. Therefore, description logics

were developed with the aim of preserving their intuitive representation and

adding formal semantics to overcome the ambiguity of interpretation.

Unlike FOL, most DL languages are decidable (Def. 1.0.1). Research in

3
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the field of DL is mainly interested in decidable DL fragments, so decidability

becomes a necessary condition for DL languages.

Definition 1.0.1 (Decidability [16]) A class of problems is called decid-

able if there is a generic algorithm that can take any problem instance as an

input and provide a yes-or-no answer after a finite time.

In the context of logics, the common generic problem is entailment. If

any of the logic problems is decidable, sometimes the logic itself is called

decidable. As already mentioned, there are different DL languages. They

differ in constructors that they use. More constructors typically mean more

expressivity. In this chapter, we will focus on a specific DL language called

ALCHO, which is the most suitable for understanding our work. We will go

through its syntax, semantics and other important notions.

1.1 Syntax of ALCHO

DL is composed of three basic types of entities: individual names, concept

names and role names. Individual names represent concrete objects from

an application domain. For example, a concrete person tim, a pet fluffy or

an object stool527. Concept names contain names that represent types or

categories of objects that usually have similar properties. They also can be

viewed as classes of objects. For instance, we can have concept name Person,

Professor, Pet or Furniture. Role names contain names that represent bi-

nary relations that can occur between any two objects of a domain. For

example, hasPet or teaches. We usually refer to these three sets of entities as

Vocabulary (Def. 1.1.1).

Definition 1.1.1 (Vocabulary) A DL vocabulary consists of three count-

able mutually disjoint sets:
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• set of individuals NI = {a, b, ...}

• set of atomic concepts NC = {A,B, ...}

• set of roles NR = {R,S, ...}

According to a convention, concept names are capitalized while individual

and role names are written in lowercase. Camel case is used for names that

were created from multi-word notions.

Example 1.1.1 (Vocabulary) Let us have a domain of pets and people.

Vocabulary for this domain can be:

• NI = {tim, eva, erik, fluffy, pluto, falco}

• NC = {Person,Owner,Good,Happy,Pet,Dog,Cat}

• NR = {likes, owns}

In ALCHO DL it is possible to define the concept by enumerating the

individuals that should belong to it. These types of concepts are referred to

as nominals (Def. 1.1.2).

Definition 1.1.2 (Nominals) Nominals (nominal concepts) are concept ex-

pressions of the form:

{a1, a2, ..., an}

where {a1, a2, ..., an} ⊆ NI .

We can use nominals when we want to refer to some concrete individuals.

That way we do not have to create an artificial concept name for these

individuals.



CHAPTER 1. DESCRIPTION LOGICS 6

Sometimes it is necessary to express more complex descriptions. We may,

for instance, want to express happy people from our example domain without

the need to create another concept name which would correspond to it. For

these purposes, we have complex concepts. Complex concepts (Def. 1.1.3),

also called non-atomic concepts or concepts, are recursively constructed from

atomic concepts and constructors. Different DL languages use different sets

of constructors to create complex concepts. Constructors used in ALCHO

DL are: complement (¬), intersection (u), union (t), existential restriction

(∃), value restriction (∀).

The meaning of these constructors is very similar to the operations of the

same name from set theory.

Definition 1.1.3 (Complex concepts) Concepts are recursively constructed

as the smallest set of expressions of the forms:

C,D ::= A | ¬C | C uD | C tD | ∃R.C | ∀R.C | {a}

where a ∈ NI , A ∈ NC , R ∈ NR, and C, D are concepts.

Example 1.1.2 (Complex concepts and nominals) We use the vocab-

ulary from example 1.1.1.

¬Person This complex concept refers to all objects that are not people.

Happy u Person This complex concept refers to all objects that are happy

and people at the same time. So, simply put, it refers to happy people.

Person t Pet This complex concept refers to all objects that are people or

pets.
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∃hasPet.Dog This complex concept refers to all objects that are in relation

hasPet with an object that is a dog. So, in natural language, we can

say that it corresponds to all people that have a dog as a pet.

∀likes.{falco} This complex concept refers to all objects for which holds that

if they like anything it has to be the individual falco. So, it refers to all

objects that like only falco or nothing at all.

∃hasPet.Dog u ∀likes.{falco, fluffy} We can also create a concept from com-

plex concepts. This concept refers to all objects that have a dog as a

pet and, at the same time, any object they like is either falco or fluffy.

Another simplification, syntactic sugar, is the top concept and bottom

concept (Def. 1.1.4). In some cases, we may want to refer to all objects

from a domain (top concept), or, on the contrary, we want to express that

something does not apply to any object, that is, to somehow express an

empty set (bottom concept).

Definition 1.1.4 (Top and bottom concepts) The top (>) and bottom

(⊥) concepts are defined as syntactic shorthands:

• > is a placeholder for A t ¬A

• ⊥ is a placeholder for A u ¬A

where A is any atomic concept.

Now that we are familiar with the basic entity types and concepts, it is

time to look at how we formally represent domain knowledge. This domain

knowledge is captured in a knowledge base (Def. 1.1.7).

We distinguish between two basic types of knowledge: intensional knowl-

edge and extensional knowledge. Intensional knowledge is general knowledge
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or terminology of a domain that describes concepts and roles, and relation-

ships between them. For example, we can have a relationship between the

concepts Owner and Person: all owners are people, and that would be part of

intensional knowledge. Extensional knowledge is knowledge about individu-

als and is often referred to as empirical knowledge or facts. For instance, we

can say that individual fluffy is a pet.

Because of this knowledge division, the knowledge base is also divided

into two parts: TBox (Def. 1.1.5) and ABox (Def. 1.1.6). TBox contains

intensional knowledge while ABox contains extensional knowledge.

Definition 1.1.5 (TBox) A TBox T is a finite set of GCI and RIA axioms

φ of the form:

• φ ::= C v D

• φ ::= R v S

where C, D are any concepts and R,S ∈ NR.

The term GCI stands for general concept inclusion and term RIA for role

inclusion axiom. They are subsumption axioms.

Definition 1.1.6 (ABox) An ABox A is a finite set of assertion axioms

(assertions) φ of the form:

• φ ::= a : C (concept assertion)

• φ ::= a, b : R (role assertion)

where a, b ∈ NI , R ∈ NR, and C is any concept.
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Let us also define assertion a, b : ¬R as a shortcut for a : ∀R.¬b, where

a, b ∈ NI and R ∈ NR. We will refer to this expression as a negated role

assertion.

We can come across an alternative notation of assertions, that is often

used. Concept assertion might be denoted as C(a) where a ∈ NI and C is

any concept. Role assertion might be denoted as R(a, b) where a, b ∈ NI and

R ∈ NR. These alternative notations have the exact same meaning as those

from the definition and might be used interchangeably.

Definition 1.1.7 (Knowledge base) A DL knowledge base (KB) K = (T ,A)

is a pair consisting of a TBox T and an ABox A.

Example 1.1.3 (Knowledge base) We will use vocabulary from example

1.1.1 and create a concise knowledge base K = (T ,A) about people and pets.

T = {Owner v Person,

Owner v ∃owns.Pet,

Dog t Cat v Pet,

owns v likes,

∃owns.(Good u Pet) v Happy}

A = {eva : Owner,

fluffy : Dog,

fluffy : Good,

tim, fluffy : owns}

In some materials [16], we can also see a different division of the knowledge

base: Abox, TBox and RBox. In such cases, the axioms that describe the
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roles and their relationships are contained in RBox. In ALCHO DL, RBox

would contain RIA axioms. The TBox would then contain only descriptions

of the concepts and their relationships, so GCI axioms. Thus, intensional

knowledge would be divided into TBox and RBox.

If we were to apply this different division to our knowledge base from

example 1.1.3, the only change would be to move the axiom owns v likes to

RBox.

1.2 Semantics of ALCHO

Now that we got familiar with the syntax, we will look at the ALCHO DL

semantics. DLs semantics belongs to model-theoretic semantics. In this

type of semantics, models are used to interpret symbols of the language. A

model is a mathematical structure that represents some possible “state of the

world”. Usually, it is not the state of the whole world but only some small

part, an application domain. A model maps symbols from the vocabulary to

the model elements. It consists of a domain which contains elements and an

interpretation function which ensures the mapping. We can imagine model

elements to be some concrete objects of our world. They can be represented

in different ways, e.g. numbers, words or pictures. The number of these

elements can be infinite. The interpretation function then maps the symbols

to elements from the model domain. Every symbol from the vocabulary has

to have its interpretation. However, there is no need to use all elements from

the domain to interpret something.

In DLs, these model structures are called interpretations (Def. 1.2.1)

and they are used to describe the meaning of DL entities.

As we mentioned in the chapter introduction, the semantics of DLs are
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very similar to FOL semantics. FOL also has model-theoretic semantics.

Instead of the term interpretation, FOL uses the term structure to denote

model structure.

Definition 1.2.1 (Interpretation) An interpretation of a given vocabulary

is a pair I = (∆I , ·I) which contains:

• a non-empty domain ∆I

• an interpretation function ·I, such that:

– aI ∈ ∆I for all a ∈ NI

– AI ⊆ ∆I for all A ∈ NC

– RI ⊆ ∆I ×∆I for all R ∈ NR

• for any concepts C, D, role R and individuals a1, ..., an ∈ NI the in-

terpretation of complex concepts is recursively defined as follows:

– ¬CI = ∆I \ CI

– C uDI = CI ∩DI

– C tDI = CI ∪DI

– ∃R.CI = {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ RI ∧ yI ∈ CI}

– ∀R.CI = {x ∈ ∆I | ∀y ∈ ∆I : (x, y) ∈ RI =⇒ yI ∈ CI}

– {a1, ..., an}I = {aI1 , ..., aIn}

Example 1.2.1 (Interpretation) In the example, we will show an inter-

pretation I = (∆I , ·I) of the vocabulary from example 1.1.1.

∆I = { , , , , , , , , , , , , , },
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timI = , PersonI = { }, ownsI = {( , ), ( , )},

evaI = , OwnerI = { , }, likesI = {( , )}

erikI = , HappyI = { },

fluffyI = , GoodI = { },

plutoI = , PetI = { },

falcoI = , DogI = { },

CatI = {},

Interpretation I is only one possible example. There are infinite possible

interpretations of a given vocabulary, in which also different domains can be

used.

In addition to symbols, we must also look at axioms in the context of

interpretations. Axioms are some kind of statements usually given in the

form of a knowledge base. Since the interpretation is some concrete state of

the world, it is interesting for us to know whether these statements are valid

in the given interpretation. So, we are interested in whether the axiom is

satisfied in the given interpretation (Def. 1.2.2).

Definition 1.2.2 (Satisfaction) Given an axiom φ, an interpretation I =

(∆I , ·I) satisfies φ (I |= φ) depending on its type:

• C v D : I |= C v D iff CI ⊆ DI

• R v S : I |= R v S iff RI ⊆ SI

• a : C : I |= a : C iff aI ∈ CI

• a,b : R : I |= a, b : R iff (aI , bI) ∈ RI

where C, D are any concepts, R, S ∈ NR and a,b ∈ NI .
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Since we have defined the satisfaction of axioms, now we can determine

whether a given interpretation satisfies a knowledge base. An interpreta-

tion that satisfies a knowledge base is called a model of a given knowledge

base (not to be confused with the term model as a mathematical structure

mentioned at the beginning of this section). We can imagine knowledge base

models as the states of the world in which the statements from the knowledge

base hold.

Definition 1.2.3 (Model) An interpretation I = (∆I , ·I) is a model of a

DL KB K = (T ,A) iff I satisfies every axiom in T and A.

Example 1.2.2 (Not a model) Let us take interpretation I from example

1.2.1 and show that it is not a model of KB K from example 1.1.3. For I to

be the model of the K, it has to satisfy all axioms from K. This is not the

case. For example axiom Dog t Cat v Pet is not satisfied:

I |= Dog t Cat v Pet iff Dog t CatI ⊆ PetI

First, we formulate interpretations of the concepts Dog t Cat and Pet.

Dog t CatI = DogI ∪ CatI = { },

PetI = { }

We see that { } * { }, so I 2 Dog t Cat v Pet and then I 2 K.

Note that some other axioms were also not satisfied, for example owns v

likes. However, it is sufficient to show that it does not hold for at least one

to prove that interpretation is not a model of K.

Example 1.2.3 (Model) In this example we will show interpretation I2 =

(∆I2 , ·I2) and prove that it is a model of KB K from example 1.1.3.
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∆I2 = { , , , , , , , , , , , , , },

timI2 = , PersonI2 = { , }, ownsI2 = {( , ), ( , )},

evaI2 = , OwnerI2 = { , }, likesI2 = {( , ), ( , )},

erikI2 = , HappyI2 = { },

fluffyI2 = , GoodI2 = { },

plutoI2 = , PetI2 = { , },

falcoI2 = , DogI2 = { },

CatI2 = {},

In order to prove that I2 is indeed a model of K, we must prove that it

satisfies every axiom from K. We start with assertions.

eva : Owner :

I2 |= eva : Owner iff evaI2 ∈ OwnerI2

∈ { , }, so I2 |= eva : Owner

fluffy : Dog :

I2 |= fluffy : Dog iff fluffyI2 ∈ DogI2

∈ { }, so I2 |= fluffy : Dog

fluffy : Good :

I2 |= fluffy : Good iff fluffyI2 ∈ GoodI2

∈ { }, so I2 |= fluffy : Good

tim, fluffy : owns :

I2 |= tim, fluffy : owns iff (timI2 , fluffyI2) ∈ ownsI2

( , ) ∈ {( , ), ( , )}, so I2 |= tim, fluffy : owns
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Now, we have to prove that subsumption axioms are also satisfied in I2.

Owner v Person :

I2 |= Owner v Person iff OwnerI2 ⊆ PersonI2

{ , } ⊆ { , }, so I2 |= Owner v Person

Owner v ∃owns.Pet :

I2 |= Owner v ∃owns.Pet iff OwnerI2 ⊆ ∃owns.PetI2

∃owns.PetI2 = {x ∈ ∆I2 | ∃y ∈ ∆I2 : (x, y) ∈ ownsI2 ∧ y ∈ PetI2}

= {x ∈ ∆I2 | ∃y ∈ ∆I2 : (x, y) ∈ {( , ), ( , )} ∧ y ∈ { , }}

= { , }

{ , } ⊆ { , }, so I2 |= Owner v ∃owns.Pet

Dog t Cat v Pet :

I2 |= Dog t Cat v Pet iff Dog t CatI2 ⊆ PetI2

Dog t CatI2 = DogI2 ∪ CatI2 = { }

{ } ⊆ { , }, so I2 |= Dog t Cat v Pet

owns v likes :

I2 |= owns v likes iff ownsI2 ⊆ likesI2

{( , ), ( , )} ⊆ {( , ), ( , )}, so I2 |= owns v likes

∃owns.(Good u Pet) v Happy :

I2 |= ∃owns.(Good u Pet) v Happy iff ∃owns.(Good u Pet)I2 ⊆ HappyI2

∃owns.(Good u Pet)I2 = {x ∈ ∆I2 | ∃y ∈ ∆I2 : (x, y) ∈ ownsI2

∧y ∈ Good u PetI2}

= {x ∈ ∆I2 | ∃y ∈ ∆I2 : (x, y) ∈ ownsI2 ∧ y ∈ GoodI2 ∩ PetI2}

= {x ∈ ∆I2 | ∃y ∈ ∆I2 : (x, y) ∈ ownsI2 ∧ y ∈ { } ∩ { , }}

= {x ∈ ∆I2 | ∃y ∈ ∆I2 : (x, y) ∈ {( , ), ( , )}

∧yI2 ∈ { }}
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= { }

{ } ⊆ { }, so I2 |= ∃owns.(Good u Pet) v Happy

We showed that I2 satisfies all axioms from K, therefore we can say that

I2 is a model of K.

1.3 Basic decision problems

In the previous sections, we showed how to represent knowledge using lan-

guage ALCHO DL. However, that is not the only thing we can do. Once we

capture knowledge in a logical representation, a DL knowledge base, we can

further reason with this knowledge.

The basic reasoning task is drawing consequences (implicit knowledge)

from explicit knowledge that is captured in a knowledge base. This means

that when we have a statement in the form of an axiom and we want to

know whether this statement follows from a knowledge base. This decision

problem is called entailment (Def.1.3.1).

Definition 1.3.1 (Entailment (Logical consequence)) An axiom φ is

entailed by a KB K (denoted K |= φ) iff for every I, such that I |= K,

holds I |= φ.

In our case, it is enough to limit ourselves to problems related to ABox.

Therefore, we will be interested in the entailment of assertion axioms. This

decision problem is also referred to as instance checking. There are two

types of assertion axioms, so we also have two types of instance checking:

concept instance checking (Def. 1.3.2) and role instance checking (Def. 1.3.3).
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Definition 1.3.2 (Concept instance checking) An individual a is an in-

stance of a concept C w.r.t. a DL KB K (denoted K |= a : C) iff aI ∈ CI in

all models I of K.

Definition 1.3.3 (Role instance checking) A pair of individuals (a, b) is

an instance of a role R w.r.t. a DL KB K (denoted K |= (a, b) : R) iff

(aI , bI) ∈ RI in all models I of K.

Another important reasoning task is to decide if a knowledge base is

consistent (Def. 1.3.4).

Definition 1.3.4 (ABox consistency) A DL KB K = (T ,A) is consis-

tent (also, A is consistent w.r.t. T ) iff it has at least one model.

There may, indeed, be knowledge bases in which there is some kind of

conflict and then it is not possible to construct an interpretation that would

satisfy them. Let us show it in an example 1.3.1.

Example 1.3.1 (Inconsistent knowledge base) We will use vocabulary

from example 1.1.1. Let K2 = (T2,A2) be our DL knowledge base, such that:

T2 = {Dog t Cat v Pet,

∃owns.(Good u Pet) v Happy}

A2 = {fluffy : Dog,

fluffy : Good,

tim, fluffy : owns,

tim : ¬Happy}
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We can try to create a model of K2, but eventually, we will run into a

conflict.

Individual fluffy belongs to concept Dog, so from axiom Dog t Cat v Pet

it belongs to concept Pet. So individual fluffy belongs to concepts Good and

Pet.

Individual tim is in relation owns with fluffy, therefore tim belongs to

concept ∃owns.(GooduPet). Then, according to axiom ∃owns.(GooduPet) v

Happy, tim must belong to concept Happy.

In K2, however, tim belongs to concept ¬Happy. So, there is a conflict,

tim cannot belong to Happy and ¬Happy at the same time. We are not able

to create any model, so K2 is inconsistent.

Some decision problems can be simplified and reformulated into another

decision problem that is easier to solve. We can, for example, reduce the

problem of instance checking to a consistency check (Lemmata 1.3.1, 1.3.2).

Lemma 1.3.1 (Reduction of concept instance checking) Given a DL

KB K = (T ,A), an individual a and a concept C:

K |= a : C iff K′ = (T ,A ∪ {a : ¬C}) is inconsistent.

Lemma 1.3.2 (Reduction of role instance checking) Given a DL KB

K = (T ,A), individuals a, b and a role R:

K |= (a, b) : R iff K′ = (T ,A ∪ {(a, b) : ¬R}) is inconsistent.

These lemmata come from an idea based on the definition of entailment

and consistency. An entailed axiom must be satisfied in all models of knowl-

edge base K. If we add its negation to K, then we should come to a conflict,

because it is not possible to satisfy an axiom and its negation at the same

time.
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Example 1.3.2 (Concept instance checking) We will use vocabulary

from example 1.1.1. Let K3 = (T3,A3) be our DL knowledge base, such that:

T3 = {Dog t Cat v Pet,

∃owns.(Good u Pet) v Happy}

A3 = {fluffy : Dog,

fluffy : Good,

tim, fluffy : owns}

Let us show that axiom fluffy : Pet is entailed by K3.

We will proceed according to lemma 1.3.1. Firstly, we construct a new

knowledge base K′
3 = (T3,A3 ∪ {fluffy : ¬Pet}). Secondly, we show that K′

3 is

inconsistent.

We try to construct a model of K′
3, but eventually, we will run into a

conflict.

Individual fluffy belongs to concept Dog, so from axiom Dog t Cat v Pet

he belongs to concept Pet. In K′
3, however, fluffy belongs to concept ¬Pet.

So, there is a conflict because fluffy cannot belong to both Pet and ¬Pet.

We are not able to create any model, so K′
3 is inconsistent and from that,

K′
3 |= fluffy : Pet.

Finally, it is important to note that if a knowledge base is inconsistent,

then it entails any axiom.
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Chapter 6

Evaluation

In this chapter, we will describe two experiments we conducted to test our

MHS-MXP algorithm. In the first experiment, we will examine how the

length and the number of explanations affect the algorithm runtime. In the

second experiment, we will look at what results the algorithm achieves on a

group of various real-world ontologies. In both experiments, we will compare

our algorithm with the classic MHS algorithm.

In the previous work [3], various optimizations of the MHS-MXP algo-

rithm were developed and tested. However, since none of them brought a

significant improvement, we will use the classic version, which contains only

Reiter’s pruning optimizations.

We created one jar file of our implementation. Both algorithms, MHS

and MHS-MXP, are included in our implementation. We can specify the

algorithm in the input file. Since they are in the same implementation, their

comparison is more accurate and there are no implementation differences.

However, we must note that this is not a plain version of the MHS al-

gorithm, because it uses small optimizations (which are also used in MHS-

MXP), such as removing unnecessary axioms from the models, which can

26
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reduce the size of the HS-tree that needs to be constructed.

6.1 Experiment 1

In the first experiment, we decided to repeat the part of the previous evalu-

ation [3] where the focus is on comparing our MHS-MXP algorithm and the

classic MHS algorithm. We also want to observe the effect of the explana-

tions’ length and their count on the MHS-MXP algorithm runtime.

We no longer have to modify the used ontology and create auxiliary con-

cepts and axioms in it. This kind of approach was necessary for the previous

version due to the limitations caused by the restrictive acquisition of models

(described in chapter 4). Since this issue has been fixed, we can make a

proper comparison with different types of observations in inputs.

Unlike the previous evaluation, we will also include inputs with negated

assertions in the explanations. We have also created some new test cases that

better suit our needs when examining the impact of the explanation count.

6.1.1 Dataset

In this experiment, we used the LUBM (Lehigh University Benchmark [9])

ontology for all our test cases. The application domain of this ontology is

the university and it contains concepts such as Student, Institute, Employee,

Publication and ResearchWork. The LUBM ontology is considered a standard

benchmark for testing various reasoning capabilities of OWL knowledge base

systems. The basic metrics of this ontology are shown in table 6.1.

concepts roles individuals GCI RIA logical axioms
43 25 0 48 5 93

Table 6.1: Basic metrics of LUBM ontology.
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6.1.2 Methodology

The LUBM ontology has a suitable size in terms of the concept count. How-

ever, it does not have a sufficiently complex structure, which is reflected in

the length of explanations. As a result, simple observations in form of an

atomic concept assertion return explanations with a length of 1 at most. In

the experiment, we want to obtain explanations of different lengths. There-

fore, we use complex observations, which were created as follows:

a : A1 u … u An

where A1,…, An are atomic concepts from the ontology and a is a new indi-

vidual (since the ontology does not contain any individuals).

An observation constructed in this way will have the largest explana-

tion with a length of at most n. If A1,…, An are independent and have no

subconcepts, there will be no explanation (there would be only one possible

explanation {A1,…, An} which is not relevant). In case they are independent

and have subconcepts, there will be at least 1 explanation and all obtained

explanations will have length n. If these concepts are dependent, we get

shorter explanations.

Test cases in the previous version of the evaluation [3] were generated so

that A1, ..., An were always independent. They were grouped into 5 groups,

S1, S2, S3, S4 and S5, according to the length of the explanations, so that Si

contained all inputs with the explanations’ length i. Each group contained

10 test cases. However, these groups were not evenly distributed as regards

another parameter: the count of explanations. In this experiment, we would

also like to emphasize the explanations count and its influence on the effec-

tiveness of our algorithm, therefore we replaced some test cases with newly
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generated ones.

Evaluation process

...

6.1.3 Results

...

6.2 Experiment 2

In the second experiment, we wanted to test our algorithm on real-world

ontologies, which would have different sizes and structure complexity. We

were deeply inspired by article [12], which gave us suggestions on which

ontologies we can choose from and how we can generate observations. We

will also compare the MHS-MXP algorithm with the MHS algorithm again.

In this part, we will not allow explanations with negated assertions since,

in Experiment 1, we showed their negative influence on our MHS-MXP al-

gorithm. We already know that MHS-MXP has no advantage in such cases,

so we focus on its strengths.

6.2.1 Dataset

The ontologies that we will use in the experiment were chosen from ORE

2015 Reasoner Competition Corpus 1. This corpus was created to compare

the capabilities of reasoners with various reasoning tasks.

Reasoner corpus contains 1920 ontology files. Among these ontologies,

there are many which are not suitable for us. For example, there are in-
1https://zenodo.org/record/18578#.Y3tygXbMJPb
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consistent ontologies in which there is no point in looking for explanations.

Another example is ontologies for which the consistency check takes more

than a minute (this is not suitable, because in our algorithm, the consistency

check is called a considerable number of times). Therefore, we decided to

explore these ontologies, find out their basic metrics and filter out the ones

that are not suitable for us.

For the needs of this experiment, the sufficient number of ontologies is

20. Therefore, we could apply various filters to these ontologies in order to

get only those that really interest us. First, we removed already mentioned

inconsistent ontologies and ontologies whose consistency check took too long.

Next, we filtered out excessively large ontologies that have more than 10,000

axioms. We removed ontologies that had less than 10 concept subsumptions.

We also limited the number of individuals to a maximum of 100. The last

limitation was the number of assertions to be at least 10 (they will be used

for generating the observations).

In the end, we were left with 218 ontologies in the resulting group, and

we randomly chose 20 of them. The basic metrics of selected ontologies are

shown in table xx.

6.2.2 Methodology

In this experiment, we tried to generate observations non-randomly. ...

Evaluation process

...



CHAPTER 6. EVALUATION 31

6.2.3 Results

...



Conclusion

Conclusion text.

32



Bibliography

[1] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-

Schneider, editors. The Description Logic Handbook: Theory, Imple-

mentation, and Applications. Cambridge University Press, 2003.

[2] F. Baader, I. Horrocks, C. Lutz, and U. Sattler. An Introduction to

Description Logic. Cambridge University Press, 2017.

[3] I. Balintová. Heuristic optimization of the mhs-mxp algorithm. Master’s

thesis, Comenius University in Bratislava, 2022.

[4] S. Bechhofer, R. Möller, and P. Crowther. The DIG description logic

interface. In D. Calvanese, G. D. Giacomo, and E. Franconi, editors,

Proceedings of the 2003 International Workshop on Description Log-

ics (DL2003), Rome, Italy September 5-7, 2003, volume 81 of CEUR

Workshop Proceedings. CEUR-WS.org, 2003.

[5] I. Dickinson. Implementation experience with the dig 1.1 specification.

Hewlett Packard, Digital Media Sys. Labs, Bristol, Tech. Rep. HPL-

2004-85, 2004.

[6] C. Elsenbroich, O. Kutz, and U. Sattler. A case for abductive reasoning

over ontologies. In B. C. Grau, P. Hitzler, C. Shankey, and E. Wallace,

editors, Proceedings of the OWLED*06 Workshop on OWL: Experiences

33



BIBLIOGRAPHY 34

and Directions, Athens, Georgia, USA, November 10-11, 2006, volume

216 of CEUR Workshop Proceedings. CEUR-WS.org, 2006.

[7] K. Fabianová. Optimization of an abductive reasoner for description

logics. Master’s thesis, Comenius University in Bratislava, 2019.

[8] J. Gablíková. Abductive reasoner for description logics combining mhs

and mxp. Master’s thesis, Comenius University in Bratislava, 2021.

[9] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL knowledge

base systems. J. Web Semant., 3(2-3):158–182, 2005.

[10] M. Homola, J. Pukancová, I. Balintová, and J. Boborová. Hybrid MHS-

MXP abox abduction solver: First empirical results. In O. Arieli,

M. Homola, J. C. Jung, and M. Mugnier, editors, Proceedings of the

35th International Workshop on Description Logics (DL 2022) co-located

with Federated Logic Conference (FLoC 2022), Haifa, Israel, August 7th

to 10th, 2022, volume 3263 of CEUR Workshop Proceedings. CEUR-

WS.org, 2022.

[11] M. Homola, J. Pukancová, J. Gablíková, and K. Fabianová. Merge, ex-

plain, iterate. In S. Borgwardt and T. Meyer, editors, Proceedings of the

33rd International Workshop on Description Logics (DL 2020) co-located

with the 17th International Conference on Principles of Knowledge Rep-

resentation and Reasoning (KR 2020), Online Event [Rhodes, Greece],

September 12th to 14th, 2020, volume 2663 of CEUR Workshop Proceed-

ings. CEUR-WS.org, 2020.

[12] P. Koopmann, W. Del-Pinto, S. Tourret, and R. A. Schmidt. Signature-

based abduction for expressive description logics. In D. Calvanese, E. Er-

dem, and M. Thielscher, editors, Proceedings of the 17th International



BIBLIOGRAPHY 35

Conference on Principles of Knowledge Representation and Reasoning,

KR 2020, Rhodes, Greece, September 12-18, 2020, pages 592–602, 2020.

[13] J. Pukancová and M. Homola. Tableau-based abox abduction for the

ALCHO description logic. In A. Artale, B. Glimm, and R. Kontchakov,

editors, Proceedings of the 30th International Workshop on Description

Logics, Montpellier, France, July 18-21, 2017, volume 1879 of CEUR

Workshop Proceedings. CEUR-WS.org, 2017.

[14] J. Pukancová and M. Homola. Abox abduction for description logics:

The case of multiple observations. In M. Ortiz and T. Schneider, editors,

Proceedings of the 31st International Workshop on Description Logics co-

located with 16th International Conference on Principles of Knowledge

Representation and Reasoning (KR 2018), Tempe, Arizona, US, October

27th - to - 29th, 2018, volume 2211 of CEUR Workshop Proceedings.

CEUR-WS.org, 2018.

[15] R. Reiter. A theory of diagnosis from first principles. Artif. Intell.,

32(1):57–95, 1987.

[16] S. Rudolph. Foundations of description logics. In A. Polleres, C. d’Am-

ato, M. Arenas, S. Handschuh, P. Kroner, S. Ossowski, and P. F. Patel-

Schneider, editors, Reasoning Web. Semantic Technologies for the Web

of Data - 7th International Summer School 2011, Galway, Ireland, Au-

gust 23-27, 2011, Tutorial Lectures, volume 6848 of Lecture Notes in

Computer Science, pages 76–136. Springer, 2011.

[17] K. M. Shchekotykhin, D. Jannach, and T. Schmitz. Mergexplain: Fast

computation of multiple conflicts for diagnosis. In Q. Yang and M. J.

Wooldridge, editors, Proceedings of the Twenty-Fourth International



BIBLIOGRAPHY 36

Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,

Argentina, July 25-31, 2015, pages 3221–3228. AAAI Press, 2015.



List of Figures

37


	Introduction
	I State of the art
	Description Logics
	Syntax of ALCHO
	Semantics of ALCHO
	Basic decision problems

	Abduction
	MHS algorithm
	Our approach
	MHS-MXP algorithm
	QuickXplain
	MergeXplain


	Original implementation
	Problem of the original implementation

	Acquisition of a model
	OWLKnowledgeExplorerReasoner
	DIG Interface
	JFact Reasoner


	II My contribution
	Implementation
	Evaluation
	Experiment 1
	Dataset
	Methodology
	Results

	Experiment 2
	Dataset
	Methodology
	Results


	Conclusion


