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Applications

Applications of fractional Laplacian

Fractional Laplacian is a mathematical tool to describe anomalous
diffusion. Some applications of fractional Laplacian include:

diffusion on porous media is accelerated by capillary action

cellular biology and active transport

financial derivatives pricing, when underlying asset price can ”jump”

turbulence and non-linear flows

population migration in epidemiological model
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Parabolic PDE

Ordinary diffusion – discrete case

Consider a diffusion problem on a line. There are many small cubes, each
with different concentration of certain substance. Two neighbouring
compartments are connected, so substance can flow between them:

Fig. 1. Ordinary diffusion, discrete version
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Parabolic PDE

Ordinary diffusion – discrete case

Let us denote concentration at compartment x at time t as u(t, x).
The rate of change in concentration in compartment x can be modeled as:

a2Cdx[u(t, x− dx)− u(t, x)︸ ︷︷ ︸
net flow to the left

+u(t, x+ dx)− u(t, x)︸ ︷︷ ︸
net flow to the right

]

= a2Cdx[u(t, x− dx)− 2u(t, x) + u(t, x+ dx)],

where a is diffusion coefficient (the bigger a, the faster diffusion) and dx is
distance between two neighboring compartments and Cdx is normalization
constant to ensure consistency as dx changes.

Now, taking limit dx → 0+, we get the rate of change of concentration is

a2
∂2u(t, x)

∂x2
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Parabolic PDE

Parabolic partial differential equations

To describe standard diffusion, we use parabolic partial differential
equation. In case of one spatial variable x, the equation has form:

∂u(t, x)

∂t
= a2

∂2u(t, x)

∂x2
= a2∆u(t, x)

with some initial condition u(t, x)|t=0 = u0(x). Parameter a is called
diffusion coefficient. Operator ∆ is called Laplace operator.

Note that diffusion rate depends on second partial derivative, which is
local operator: it can be calculated from arbitrary small neighborhood of x,
e.g. via limit:

∂2u(t, x)

∂x2
= lim

h→0

u(t, x− h)− 2u(t, x) + u(t, x+ h)

h2
.
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Parabolic PDE

Cosine initial condition

Let us solve diffusion equation with cosine initial condition:

∂u(t, x)

∂t
= a2

∂2u(t, x)

∂x2
, u0(x) = Aω · cos(ωx)

One might expect a solution that is just scaled cosine:

Fig. 2. Solution to diffusion equation with cosine initial condition

J. Gašper (Comenius University) Fractional laplacian 2023-09-20 6 / 33



Parabolic PDE

Cosine initial condition

Formally, suppose that solution is really just scaled cosine function:

u(t, x) = f(t) cos(ωx)

Then, its partial derivatives are:

∂u(t, x)

∂t
=

df(t)

dt
cos(ωx)

∂2u(t, x)

∂x2
= −f(t)ω2 cos(ωx)

Substituting these into original equation yields ordinary differential
equation for f :

df(t)

dt
cos(ωx) = −f(t) · a2ω2 cos(ωx)
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Parabolic PDE

Cosine initial condition

The equation for scaling function f can be solved explicitly:

df(t)

dt
cos(ωx) = −f(t) · a2ω2 cos(ωx) / : cos(ωx)

df(t)

dt
= −f(t) · a2ω2

f(t) = f(0) exp
(
−a2ω2t

)
with f(0) = Aω, to match initial condition u(0, x) = Aω cos(ωx).
Therefore a solution to diffusion equation is:

u(t, x) = Aω exp
(
−a2ω2t

)
cos(ωx)
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Parabolic PDE

Fourier series

The diffusion equation is linear. If solution for initial condition
u0(x) = Aω cos(ωx) has form:

u(t, x) = Aω exp
(
−a2ω2t

)
cos(ωx),

then solution for initial condition: u0(x) =
∑
i
Aωi cos(ωix) has form:

u(t, x) =
∑
i

Aωi exp
(
−a2ω2

i t
)
cos(ωix).
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Parabolic PDE

Note on central limit theorem

Consider any displacement function with finite variance, e.g. substance can
diffuse up to 50 compartments to the left or to the right. To approximate
distribution after a long time, we can use central limit theorem:

Fig. 3. Displacement function approaches Gaussian distribution
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Anomalous diffusion

Anomalous diffusion – discrete case

Let us consider a discrete diffusion problem. We discretize x-axis into
small interval of length dx. However, imagine that particles are so
energized, that they can jump not only to any compartments:

Fig. 4. Anomalous diffusion, discrete version
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Anomalous diffusion

Power-law jump rates

We can model diffusion rates between x and x+ s · dx as governed by
power-law:

a2Cdx,α
u(t, x+ s · dx)− u(t, x)

|s · dx|1+α

where a is diffusion coefficient, α ∈ (0, 2] is describing how far can
particles jump and Cdx,α is a normalization constant.
Then, total rate of change in concentration at compartment x is:

Cdx,α

∑
s ̸=0

u(t, x+ s · dx)− u(t, x)

|s · dx|1+α

As compartment size gets infinitesimally small, we get to integral:

c1,α p.v.

∞∫
−∞

u(t, x+ s)− u(t, x)

|s|1+α
ds,

which we denote as ∆α/2u(t, x)
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Fractional parabolic PDE

Fractional parabolic partial differential equations

To describe non-standard diffusion, we use parabolic partial differential
equation. In case of one spatial variable x, the equation has form:

∂u(t, x)

∂t
= a2∆α/2u(t, x)

with some initial condition u(t, x)|t=0 = u0(x).

Parameter c1,α is scaling
constant with value

c1,α =
−1

2Γ(−α) cos
(
απ
2

)
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Fractional parabolic PDE

Note on principal value

Riemann integral would diverge for s → 0. That’s why we need to have
”principal value” integral, i.e. integral everywhere but small (symmetric)
neighborhood of s = 0:

p.v.

∞∫
−∞

u(t, x+ s)− u(t, x)

|s|1+α
ds =

lim
ε→0+

 −ε∫
−∞

u(t, x+ s)− u(t, x)

|s|1+α
ds+

∞∫
ε

u(t, x+ s)− u(t, x)

|s|1+α
ds


This is analogous to sum through s ̸= 0.
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Fractional parabolic PDE

Integral regularization

One can manipulate the principal value integral to get standard improper
integral:

lim
ε→0+

 −ε∫
−∞

u(t, x+ s)− u(t, x)

|s|1+α
ds+

∞∫
ε

u(t, x+ s)− u(t, x)

|s|1+α
ds


= lim

ε→0+

 ∞∫
ε

u(t, x− s)− u(t, x)

|s|1+α
ds+

∞∫
ε

u(t, x+ s)− u(t, x)

|s|1+α
ds


= lim

ε→0+

 ∞∫
ε

u(t, x− s)− 2u(t, x) + u(t, x+ s)

|s|1+α
ds


=

∞∫
0

u(t, x− s)− 2u(t, x) + u(t, x+ s)

s1+α
ds
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Fractional parabolic PDE

Cosine initial condition

Again, consider initial condition u0(x) = Aω cos(ωx). Our guess is that
solution might be still separable:

u(t, x) = f(t) cos(ωx)

Partial derivative with respect to time is:

∂u(t, x)

∂t
=

df(t)

dt
cos(ωt)

Fractional Laplacian of the function is a little harder.
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Fractional parabolic PDE

Cosine initial condition

∆α/2u(t, x)

=

∫ ∞

0

f(t) cos(ω(x− s))− 2f(t) cos(ωx) + f(t) cos(ω(x+ s))

s1+α
ds

=f(t)

∫ ∞

0

cos(ω(x− s))− 2 cos(ωx) + cos(ω(x+ s))

s1+α
ds

Manipulating numerator of function inside integral gives us:

cos(ω(x− s))− 2 cos(ωx) + cos(ω(x+ s))

= cos(ωx− ωs))− 2 cos(ωx) + cos(ωx+ ωs)

= cos(ωx) cos(ωs)−((((((((
sin(ωx) sin(ωs) − 2 cos(ωx)

+ cos(ωx) cos(ωs) +((((((((
sin(ωx) sin(ωs)

=2 cos(ωx)(cos(ωs)− 1)

J. Gašper (Comenius University) Fractional laplacian 2023-09-20 17 / 33



Fractional parabolic PDE

Cosine initial condition

Continuing calculation:

∆α/2u(t, x)

=f(t)

∫ ∞

0

2 cos(ωx)(cos(ωs)− 1)

s1+α
ds

=2f(t) cos(ωx)

∫ ∞

0

cos(ωs)− 1

s1+α
ds

=(trust me)

=2f(t) cos(ωx)|ω|α cos
(απ

2

)
Γ(−α)

Without loss of generality we may assume ω ≥ 0:

∆α/2u(t, x) = 2f(t) cos(ωx)ωα cos
(απ

2

)
Γ(−α)
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Fractional parabolic PDE

Cosine initial condition

Substituting these results into fractional diffusion equation:

∂u(t, x)

∂t
= a2∆α/2u(t, x)

df(t)

dt
cos(ωt) = a2��c1,α �2f(t) cos(ωx)ω

α

���������
cos

(απ
2

)
Γ(−α)

df(t)

dt
cos(ωt) = a2f(t) cos(ωx)ωα

which leads to ordinary differential equation for f :

df(t)

dt
= a2ωαf(t).
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Fractional parabolic PDE

Cosine initial condition

The equation for scaling function f can be solved explicitly:

df(t)

dt
= −f(t) · a2ωα

f(t) = f(0) exp
(
−a2ωαt

)
with f(0) = Aω, to match initial condition u(0, x) = Aω cos(ωx).
Therefore a solution to diffusion equation is:

u(t, x) = Aω exp
(
−a2ωαt

)
cos(ωx)
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Fractional parabolic PDE

Fourier series

The diffusion equation is linear. If solution for initial condition
u0(x) = Aω cos(ωx) has form:

u(t, x) = Aω exp
(
−a2ωαt

)
cos(ωx),

then solution for initial condition: u0(x) =
∑
i
Aωi cos(ωix) has form:

u(t, x) =
∑
i

Aωi exp
(
−a2ωα

i t
)
cos(ωix).
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Numerical results

Numerical results

We applied the method to initial condition

u0(x) = cos(x/2) + cos(x) + cos(10x).

You will notice ”wrinkles”vanishing faster when α goes higher.
The method is applicable to any initial condition with Neumann boundary
conditions:

∂u(t, x)

∂x

∣∣∣∣
x=0

= 0 =
∂u(t, x)

∂x

∣∣∣∣
x=L

,

with L being period of the function in x direction.
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Numerical results

Numerical results

Fig. 5. Diffusion of order α = 1
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Numerical results

Numerical results

Fig. 6. Diffusion of order α = 1.2
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Numerical results

Numerical results

Fig. 7. Diffusion of order α = 1.4
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Numerical results

Numerical results

Fig. 8. Diffusion of order α = 1.6
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Numerical results

Numerical results

Fig. 9. Diffusion of order α = 1.8
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Numerical results

Numerical results

Fig. 10. Diffusion of order α = 2.0
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Numerical methods

Numerical methods

For more general diffusion, we discredized x-axis into sub-intervals with
length dx such that there are 256 sub-intervals. We used midpoint of each
interval as representatives.

Fig. 11. Example of midpoint discretization on 16 sub-intervals
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Numerical methods

Numerical methods

Next, we constructed a system of 256 ordinary differential equations:

d

dt
u(t, x = dx/2) = a2∆α/2u(t, x)

∣∣
x=dx/2

d

dt
u(t, x = 3dx/2) = a2∆α/2u(t, x)

∣∣
x=3dx/2

d

dt
u(t, x = 5dx/2) = a2∆α/2u(t, x)

∣∣
x=5dx/2

...

d

dt
u(t, x = 511dx/2) = a2∆α/2u(t, x)

∣∣
x=511dx/2

This system was solved by Runge-Kutta method. Other numerical method
would also be suitable.
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Numerical methods

Numerical methods

To evaluate ∆α/2u(t, x) at all requiered points, we used discrete cosine
transform type II. This is a efficient way to represent sampled function as a
sum of cosines.
If the function is periodic with period L, then DCT can calculate
coeffiecient Aω for ω ∈

{
0, πxL , 2πxL , . . .

}
such that f(x) =

∑
ω Aω cos(ωx)

at each sampled point.
This way we could evaluate fractional Laplacian on right-hand side very
fast. To evaluate it at all n points we need O(n log n) operations, which is
much better than O(n2) operations with näıve approach.

J. Gašper (Comenius University) Fractional laplacian 2023-09-20 31 / 33



Numerical methods

Future work

Our aim is to apply this diffusion process to epidemiological model in
which non-linear terms are present.
Susceptible individuals can become infectious after encountering already
infectious individual. Infectious individuals overcome disease and get
immunity spontaneously. This process can be described by transitions:

S
βSI−−→ I

I
γI−→ R

Model is formulated by system of differential equations:

∂S(t, x)

∂t
= −βS(t, x)I(t, x) + ∆α/2S(t, x)

∂I(t, x)

∂t
= βS(t, x)I(t, x)− γI(t, x) + ∆α/2I(t, x)

∂R(t, x)

∂t
= γI(t, x) + ∆α/2R(t, x)
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Thank you for your attention
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