
Rail Scheduling Problem

Fedir Kovalov

January 26, 2024

1 The problem

In the project description, I did not address the project goal and the problem
description properly, which I am going to address in this section.

1.1 Motivation

Consider the following image :

Figure 1: In the image, you can see a piece of track, with two types of trains:
blue, which must arrive at the point B(go towards the right side), and red, which
must arrive at the point A(go towards the left side).

Now consider the following question: which trains should yield, and which
should have priority?. Also consider, that the trains might have different speeds,
acceleration rates, lengths, and how the schedule needs to change if one of the
trains breaks down. Such problem not only has no straight forward optimal
solution, but in practice those kinds of problems often need to be solved in real
time.

The project aims to generalize and solve those types of problems using a
computer model.

1.2 Model

In order to solve the mentioned above problem we need a proper representation
of the system, which is going to be represented as follows:

• Rail network is represented as a directed graph of Tracks, which are
grouped into Sections, such that the train is able to move from one track
to another if and only if there is a corresponding edge in a graph.

1



• Section, is a piece of the rail network such that if two trains move onto
it, they will inevitably collide with each other. Those are not necessarily
comprised out of one track, but rather some set of tracks that cross each
other at some point. For example, an x-crossing is a single section made
of two crossing tracks. This is necessary for routing.

• Track, is a vertex in our graph that represents an actual piece of rail.

Typically, railroad operators already have the track divided into sections, as
this is the way rail traffic is traditionally managed: Semaphores are placed on
the entrances to the section, and one train must wait at the semaphore until
the other leaves.

For example, our system from the Figure 1, would look like this:

Figure 2: Colored divisions are sections, and the black vertices are tracks.

Trains, and their schedule specifically is represented as a path in this graph.
The specifics of the definition of paths are addressed in the Solution section
below.

2 Solution

This section describes the results of (still ongoing) research on the problem, and
possible practical solution of it (see section ”Were is the code?”).

2.1 Conflict Resolution Problem(CRP)

We say, that a conflict occurs, when two trains want access to the same section
at the same time.(https://doi.org/10.1016/j.ejor.2006.10.034) Solving
such a conflict boils down to deciding on which one of the trains must wait.
This process in an integral part of creating a schedule. (the problem we are
solving is commonly known as the Conflict resolution problem(CRP) ).

2.1.1 Job-Shop scheduling

This method of solving the CRP is sourced from the articles:
https://doi.org/10.1016/S0377-2217(01)00338-1

2

https://doi.org/10.1016/j.ejor.2006.10.034
https://doi.org/10.1016/S0377-2217(01)00338-1


https://doi.org/10.1016/j.ejor.2006.10.034

The idea of this approach is to represent the CRP in the same way as the
job-shop problem, where each train is a job, and each section is a machine. The
schedule then, is represented as an alternative graph G = (N,F,A), where each
node is train passing through some Section. I won’t go into malicious details of
the alternative graph model here, my sources describe it quite well already.

Figure 3: Example of the alternative graph model for the two trains: The top
part of the graph represents schedule for the train T1, and the bottom one
is the schedule for the train T2. Each vertex π contains a section x being
occupied, and the time tπ at which the train is entering it. Normal(stable)
edges, drawn as a normal line, on the other hand contain time constraint fπ
such that tθ >= tπ + fπ, where θ is the vertex the edge is pointing towards.

What are the alternative edges (drawn as dashed lines) (η, β) (γ, ϵ) ? Those
are our conflicts: edge (η, β) has weight fηβ , meaning that job(as is the job-
shop model) β can only start after fηβ time since η started, or tβ >= tη + fηβ
(otherwise the train would occupy the position that is previous to η at the
same time as the other train occupies position at β, and we can’t allow that).
Similarly we have an edge (γ, ϵ), which means that tϵ >= tγ + fγϵ. The CRP
then, reduces to identifying such conflicts, and changing operation starting time
in such a way that exactly one of the conditions imposed is satisfied.

The original paper (https://doi.org/10.1016/j.ejor.2006.10.034) talks
about dummy nodes(start(also known as planning horizon) and the finish node),
and cycles in this graph. In the same paper, authors actually built a simple al-
gorithm, that just tries all the possibilities one-by-one. One of the results that
they have shown indicated that schedules calculated by the computer had a lot
less delay then those generated by more conventional methods of routing trains.

2.1.2 Solutions to the problem

Right now, figuring out the exacts of the solution to the CRP is in the work-
ing. There are overwhelming amount of different solutions to this problem with
overwhelming amount of different complicated proofs. Some of the solutions
considered:

• https://doi.org/10.1016/j.trb.2009.05.004 - tabu search

• https://doi.org/10.1016/j.cor.2022.105859

3

https://doi.org/10.1016/j.ejor.2006.10.034
https://doi.org/10.1016/j.ejor.2006.10.034
https://doi.org/10.1016/j.trb.2009.05.004
https://doi.org/10.1016/j.cor.2022.105859


3 Where is the code?

You may have noticed that there is no code attached to the winter report. This
is the result of the fact that this task has proven to be a lot more difficult than
anticipated. From the start, I tried to solve this problem in a much more naive
way (more detail in the section below). Unfortunately, this has proven to be a
waste of time, as many of the problems of my model have arose and I decided
to scrap it(I talk about why below).

3.1 My original model and solution

The model I have originally created is a lot more simple than the one described
above: it represents train routes as sequences of vertices in the network graph.
The i-th vertex in a path represents position of the respective train after i
amount of time since the planning horizon. The algorithm that I have tried
using in this model was also quite simple: it looked for the train that would
spend the least amount of time on the contested section, and made every other
train wait it, by extending time spent on the previous vertex.

3.2 Why was I wrong?

Let’s first address the algorithm: the inefficiency of this approach was a direct
result of the https://doi.org/10.1016/j.ejor.2006.10.034 paper. The re-
searchers compared their method to the one similar to mine, and found out
theirs to be much more efficient(relative to the produced delay). In fact, this
method is one of those traditionally used for train scheduling.

As for the model, there are many problems, but the largest one probably is
that my model does not allow for any additional information to be added for the
scheduler(like time constraints for arriving to the station, transfers, etc). The
Job-shop model on the other hand allows to do this with ease, and generally
looks like a superior model to mine.

4 Conclusion

The problem of train scheduling turned out to be a lot more complicated than
I anticipated. After trying a more naive solution, and eventually proving my
own solution wrong, I am now looking for a better solution in the literature on
the topic.

4

https://doi.org/10.1016/j.ejor.2006.10.034

	The problem
	Motivation
	Model

	Solution
	Conflict Resolution Problem(CRP)
	Job-Shop scheduling
	Solutions to the problem


	Where is the code?
	My original model and solution
	Why was I wrong?

	Conclusion

