
Univerzita Komenského v Bratislave

Fakulta matematiky, fyziky a informatiky

Animácia a vizualizácia diagramov v
softvérovom inžinierstve

Diplomová práca

2025 Bc. Karin Kubinová

Univerzita Komenského v Bratislave

Fakulta matematiky, fyziky a informatiky

Animácia a vizualizácia diagramov v
softvérovom inžinierstve

Diplomová práca

Študijný program: Aplikovaná informatika
Študijný odbor: Informatika
Školiace pracovisko: Katedra aplikovanej informatiky
Školiteľ: Ing. Lukáš Radoský

Bratislava, 2025 Bc. Karin Kubinová

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Karin Kubinová
Študijný program: aplikovaná informatika (Jednoodborové štúdium,

magisterský II. st., denná forma)
Študijný odbor: informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: slovenský
Sekundárny jazyk: anglický

Názov: Animácia a vizualizácia diagramov v softvérovom inžinierstve
Animation and visualisation of software engineering diagrams

Anotácia: Abstrakcia je v softvérovom inžinierstve kľúčovým nástrojom. Softvérové
systémy sú dnes značne zložité a táto zložitosť neustále narastá. Najznámejším
spôsobom abstrakcie nad softvérovými systémami sú UML diagramy. Hoci
v praxi nie je ich notácia striktne dodržiavané, aj spontánne vytvárané diagramy
často dodržiavajú vybrané konvencie UML notácie. Diagramy spostredkujú
pochopenie systému omnoho rýchlejšie než štúdium zdrojového kódu. Preto má
zmysel sa nimi zaoberať, hľadať ich zlepšenia a možné doplnky. Príkladom je
animovanie, ktoré statickým UML diagramom dodáva dynamiku a interaktivitu.

Analyzujte existujúce možnosti a prístupy vizualizácie a animácie
diagramov v softvérovom inžinierstve. Navrhnite vhodný spôsob zobrazovania
a animovania diagramov, napríklad diagramu aktivít v softvéri AnimArch.
Implementujte prototyp tohto návrhu. Svoje riešenie overte na vhodne
zvolenom príklade vstupného zdrojového kódu, prípadne diagramu, v závislosti
od navrhnutého riešenia. Implementáciu overte aj pomocou používateľského
testovania. Dosiahnuté výsledky vhodne analyzujte a zhodnoťte.

Cieľ: Návrh, implementácia a evaluácia nového spôsobu vizualizácie a animácie
zvoleného typu diagramu v softvérovom inžinierstve

Literatúra: Yigitbas, E., Gorissen, S., Weidmann, N. et al. Design and evaluation of
a collaborative UML modeling environment in virtual reality. Softw Syst Model
22, 1397–1425 (2023). https://doi.org/10.1007/s10270-022-01065-2

Kucecka, J., Vincur, J., Kapec, P., & Cicák, P. (2022). UML-based Live
Programming Environment in Virtual Reality. 2022 Working Conference on
Software Visualization (VISSOFT), 177-181.

M. Ferenc, I. Polasek and J. Vincur, "Collaborative Modeling and Visualization
of Software Systems Using Multidimensional UML", 2017 IEEE Working
Conference on Software Visualization (VISSOFT), Shanghai, China, 2017, pp.
99-103, doi: 10.1109/VISSOFT.2017.19.

Kľúčové
slová:

Softvérové inžinierstvo, Modelovanie softvéru, UML diagram, Vizualizácia,
Animácia

Vedúci: Ing. Lukáš Radoský

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

Katedra: FMFI.KAI - Katedra aplikovanej informatiky
Vedúci katedry: doc. RNDr. Tatiana Jajcayová, PhD.

Spôsob sprístupnenia elektronickej verzie práce:
bez obmedzenia

Dátum zadania: 08.11.2023

Dátum schválenia: 11.11.2023 prof. RNDr. Roman Ďurikovič, PhD.
garant študijného programu

študent vedúci práce

Čestne vyhlasujem, že som túto diplomovú prácu vypracovala samostatne, len s po-
mocou uvedenej literatúry a pod starostlivým dohľadom vedúceho mojej diplomovej
práce.

. .
V Bratislave, 9.5.2025 Bc. Karin Kubinová

Poďakovanie: Ďakujem predovšetkým môjmu školiteľovi Ing. Lukášovi Rados-
kému za cenné rady, ochotu a odborné vedenie. Ďakujem aj mojej rodine a priateľom
za ich podporu a povzbudenie.

ix

Abstrakt

V tejto práci sa zaoberáme analýzou existujúcich prístupov vizualizácie a animácie
UML diagramov, s dôrazom na dynamické a interaktívne prvky, ktoré môžu zvýšiť ich
efektívnosť. Hlavným cieľom je návrh a implementácia animácie UML diagramu aktivít
v softvéri AnimArch.

Implementovali sme vizualizovanie a animovanie diagramu aktivít, ktorý sa gene-
ruje z kódu v jazyku OAL, ktorý používateľ zvolí na začiatku animácie. Riešenie sme
overili pomocou používateľského testovania, kde účastníci riešili dve úlohy, pričom vy-
užívali buď animovaný diagram aktivít v AnimArchu, alebo statický diagram aktivít
vytvorený iným nástrojom. Výsledky testovania ukázali, že úspešnosť riešenia úloh sa
výraznejšie nelíšila v závislosti od použitého nástroja. Účastníci hodnotili animovaný
diagram aktivít pozitívne. Ukázalo sa ale, že by potrebovali viac času na plnohodnotné
osvojenie si systému. Z toho môžeme usúdiť, že sa nám podarilo vhodne implementovať
vizualizovanie a animovanie diagramu aktivít, ktorý má potenciál prispieť k lepšiemu
porozumeniu vykonávaného kódu, keď si používatelia navyknú na tento štýl zobrazo-
vania.

Kľúčové slová: Softvérové inžinierstvo, Modelovanie softvéru, UML diagram, Vizu-
alizácia, Animácia

x

Abstract

In this work, we analyze existing approaches for visualizing and animating UML dia-
grams, with an emphasis on dynamic and interactive features that can enhance their
effectiveness. The main goal is the design and implementation of UML activity diagram
animation in AnimArch software.

We have implemented the visualization and animation of the activity diagram,
which is generated from the OAL code that the user selects at the beginning of the
animation. We validated the solution through user testing, where participants solved
two tasks using either an animated activity diagram in AnimArch or a static activity
diagram created by another tool. The results of the testing showed that the success rate
of solving the tasks did not vary significantly depending on the tool used. Participants
rated the animated activity diagram positively. However, it appeared that they would
need more time to fully learn the system. From this we can conclude that we were able
to implement visualizing and animating the activity diagram appropriately, which has
the potential to contribute to a better understanding of the code being executed once
users become accustomed to this style of display.

Keywords: Software engineering, Software modelling, UML diagram, Visualisation,
Animation

xi

xii

Obsah

Úvod 1

1 Úvod do problematiky 3
1.1 Modelovanie softvéru . 3
1.2 UML . 4
1.3 Techniky vývoja softvéru . 7
1.4 Spustiteľné UML . 8

1.4.1 OAL . 9
1.5 Diagram aktivít . 10

2 Nástroje na vizualizovanie softvéru 15
2.1 AnimArch . 15
2.2 VILLE . 15
2.3 Iné nástroje . 17

3 Požiadavky a návrh rozšírenia aplikácie 21
3.1 Požiadavky . 21
3.2 Návrh aplikácie . 22

4 Implementácia 29
4.1 Statické zobrazenie . 30
4.2 Dynamické zobrazenie . 35

5 Evaluácia výsledkov 39
5.1 Návrh testovania . 39
5.2 Vyhodnotenie testovania . 40

5.2.1 Demografické údaje účastníkov 40
5.2.2 Vyhodnotenie riešenia úloh . 42
5.2.3 Vyhodnotenie SUS dotazníka 44
5.2.4 Vyhodnotenie NASA-TLX dotazníka 45
5.2.5 Celkové vyhodnotenie . 46
5.2.6 Diskusia . 54

xiii

Záver 55

Príloha A: Používateľské testovanie 61
Úloha 1 . 61
Úloha 2 . 65

Príloha B: Elektronická príloha 69

xiv

Zoznam obrázkov

1.1 Vodopádový model vývoja softvéru1. 4

1.2 Prehľad použitia štrukturálnych UML diagramov na základe prieskumu,
dáta prevzaté z [1]. 5

1.3 Diagram tried, inšpirované z [2]. 6

1.4 Prehľad použitia behaviorálnych UML diagramov na základe prieskumu,
dáta prevzaté z [1]. 6

1.5 Diagram prípadov použitia, inšpirované z [2]. 7

1.6 Vzťahy medzi prístupmi MDA, MDD, MDE a MBE, prevzaté z [3]. . . 8

1.7 Základné koncepty xUML, preložené z [4]. 9

1.8 Metamodel diagramu aktivít, prevzaté z [5]. 11

1.9 Notácia základných častí diagramu aktivít. 12

1.10 Príklad diagramu aktivít, inšpirované z [6]. 13

2.1 Domovská obrazovka softvéru AnimArch. 16

2.2 Zobrazenie zásobníku volaní vo VILLE, prevzaté z [7]. 16

2.3 Ukážka kolaboratívneho modelovania triedneho diagramu, prevzaté z [8]. 17

2.4 Ukážka zobrazenia UML diagramov, prevzaté z [9]. 17

2.5 Ukážka kolaboratívnej 3D aplikácie, prevzaté z [10]. 18

2.6 Ukážka prostredia na kolaboratívne programovanie vo VR, prevzaté z [11]. 19

3.1 Ukážka návrhu zobrazenia rôznych vrstiev diagramov. Prvá vrstva pre
diagram tried a druhá vrstva pre diagram objektov sa v AnimArchu
už zobrazujú. Zobrazenie zvýraznenej tretej vrstvy pre diagram aktivít
budeme implementovať v našej práci. 22

3.2 Sekvenčný diagram zobrazujúci proces generovania diagramov v Ani-
mArchu. 24

3.3 Štruktúra diagramu aktivít s podmienkou. 25

3.4 Štruktúra diagramu aktivít s foreach cyklom. 26

3.5 Štruktúra diagramu aktivít s while cyklom. 27

xv

4.1 Ukážka zobrazenia troch vrstiev diagramov. Na prvej vrstve sa zobrazuje
diagram tried. Na druhej vrstve sa postupne počas animácie vytvára
diagram objektov. Na tretej vrstve sa bude zobrazovať diagram aktivít. 29

4.2 Proces vytvárania a zobrazovania viacerých diagramov aktivít. 32
4.3 Ukážka zobrazenia jednoduchej podmienky v diagrame aktivít. 33
4.4 Ukážka zobrazenia vnorenej podmienky v diagrame aktivít. 34
4.5 Ukážka zobrazenia foreach cyklu v diagrame aktivít. 35
4.6 Ukážka zobrazenia while cyklu v diagrame aktivít. 36
4.7 Ukážka animovania diagramu aktivít s podmienkou. 36
4.8 Ukážka animovania diagramu aktivít počas vykonávania tela while cyklu. 37

5.1 Vývojový diagram opisujúci priebeh testovania. 39
5.2 Subjektívne hodnotenie znalostí účastníkov v analýze a návrhu softvéru. 41
5.3 Znalosť softvéru AnimArch. 41
5.4 Úspešnosť riešenia úlohy 1. 42
5.5 Úspešnosť riešenia úlohy 2. 43
5.6 Krabicový diagram SUS skóre pre AnimArch a statický diagram aktivít. 45
5.7 Husľový diagram NASA-TLX skóre pre AnimArch. 46
5.8 Korelačná teplotná mapa znázorňujúca vzťahy medzi úspešnosťou rieše-

nia úlohy 1 pomocou AnimArchu a zvyšnými dátami z dotazníku. . . . 47
5.9 Korelačná teplotná mapa znázorňujúca vzťahy medzi úspešnosťou rieše-

nia úlohy 1 pomocou statického diagramu a zvyšnými dátami z dotazníku. 49
5.10 Korelačná teplotná mapa znázorňujúca vzťahy medzi úspešnosťou rieše-

nia úlohy 2 pomocou AnimArchu a zvyšnými dátami z dotazníku. . . . 50
5.11 Korelačná teplotná mapa znázorňujúca vzťahy medzi úspešnosťou rieše-

nia úlohy 2 pomocou statického diagramu a zvyšnými dátami z dotazníku. 52
5.12 Korelačná teplotná mapa znázorňujúca vzťahy medzi úspešnosťou rieše-

nia oboch úloh a odpoveďami na NASA-TLX otázky. 53
5.13 Animovaný diagram aktivít v AnimArchu pre úlohu 1. 63
5.14 Statický diagram aktivít pre úlohu 1. 64
5.15 Animovaný diagram aktivít v AnimArchu pre úlohu 2. 66
5.16 Statický diagram aktivít pre úlohu 2. 67

xvi

Zoznam algoritmov

1.1 Ukážka písania podmienky v OAL, prevzaté z [12]. 10
1.2 Ukážka písania foreach cyklu v OAL, prevzaté z [12]. 10
4.1 Pseudokód vytvárania a mazania diagramov aktivít. 30
4.2 Pseudokód rekurzívnej metódy, ktorá má na starosti pridávanie aktivít

do diagramu. 31
4.3 Pseudokód pridávania podmienky do diagramu aktivít. 32
4.4 Pseudokód pridávania foreach cyklu do diagramu aktivít. 34
4.5 Pseudokód pridávania while cyklu do diagramu aktivít. 35

xvii

xviii

Terminológia

Skratky

• CIM - Model nezávislý od výpočtu, z anglického Computation Independent Mo-
del.

• MASL - Model Action Specification Language.

• MDA - Architektúra riadená modelom, z anglického Model-Driven Architecture.

• MDD - Vývoj riadený modelom, z anglického Model-Driven Developmnet.

• MDE - Inžinierstvo riadené modelom, z anglického Model-Driven Engineering.

• MBE - Inžinierstvo založené na modeloch, z anglického Model-Based Enginee-
ring.

• OAL - Object Action Language.

• OMG - Object Management Group.

• OMT - Technika objektového modelovania, z anglického Object Modeling Tech-
nique.

• PIM - Model nezávislý od platformy, z anglického Platform Independent Model.

• PSM - Model špecifický pre platformu, z anglického Platform Specific Model.

• SADT - Štruktúrovaná analýza a technika návrhu, z anglického Structured Ana-
lysis and Design Technique.

• SDLC - Životný cyklus vývoja softvéru, z anglického Software Development Life
Cycle.

• UML - Unified Modeling Language.

• xUML - Spustiteľné UML, z anglického Executable UML.

• SUS - System Usability Scale.

• NASA-TXL - NASA Task Loader Index.

xix

xx

Úvod

Vizualizácia UML diagramov zohráva v softvérovom inžinierstve kľúčovú úlohu. Soft-
vérové systémy sú často veľmi zložité a ich vnútorné štruktúry nie sú priamo viditeľné.
Práve preto využívame vizualizáciu prostredníctvom UML diagramov, aby sme mohli
lepšie pochopiť architektúru systému, určiť jeho komponenty, ich vzťahy a správanie.
UML diagramy zároveň slúžia ako komunikačný prostriedok medzi analytikmi, vývo-
jármi a ostnatými zainteresovanými stranami, čím sa výrazne uľahčuje návrh, vývoj aj
údržba softvéru.

Práve preto sme sa rozhodli implementovať nový diagram do systému AnimArch,
ktorý slúži na vizualizáciu a animáciu diagramov. V AnimArchu sa aktuálne animuje
triedny a objektový diagram, ktoré reprezentujú štrukturálne aspekty systému. V na-
šej práci implementujeme práve diagram aktivít, aby sme umožnili reprezentáciu aj
behaviorálnych vlastností systému. Diagram aktivít budeme v AnimArchu zobrazo-
vať za už existujúcim triednym a objektovým diagramom a budeme ho vytvárať po
spustení animácie OAL kódu, ktorý zvolil používateľ. Aktivity sa do diagramu akti-
vít pridajú pri volaní metódy, pričom budeme aktivity vykresľovať rôzne, podľa typu
príkazu, keďže zobrazovanie podmienok a cyklov má v diagrame aktivít zaužívanú kon-
venciu. Pri volaní novej metódy tiež vykreslíme ďalší diagram aktivít, ktorý budeme
zobrazovať za pôvodným diagramom aktivít, čím budeme zobrazovať pomyselný zásob-
ník volaní. Diagram aktivít budeme navyše animovať, čím sa pokúsime používateľovi
uľahčiť pochopenie procesov v danom kóde.

Výsledné riešenie budeme evaluovať pomocou používateľského testovania, kedy bu-
deme porovnávať úspešnosť riešenia úloh pomocou nášho animovaného diagramu ak-
tivít a pomocou statického diagramu aktivít. Budeme tiež zisťovať, ako používatelia
hodnotili použiteľnosť animovaného diagramu aktivít, v porovnaní so statickým dia-
gramom. Navyše budeme merať aj záťaž, ktorú účastníci testovania vnímali, pri riešení
úloh.

V nasledujúcej kapitole 1 sa venujeme modelovaniu softvéru. Opíšeme techniky
vývoja softvéru, UML a spustiteľné UML, pričom opíšeme aj jazyk OAL. Zadefinujeme
tiež diagram aktivít a jeho základné časti, ktorý budeme v našej práci implementovať.
V kapitole 2 opíšeme rôzne nástroje na modelovanie a vizualizovanie softvéru, vrátane
systému AnimArch, ktorý rozširujeme o novú funkcionalitu. Základné požiadavky na

1

2 ÚVOD

rozšírenie systému zadefinujeme a ich implementáciu navrhneme v kapitole 3. Samotnú
implementáciu potom opíšeme v kapitole 4. V kapitole 5 navrhneme používateľské
testovanie nášho riešenia a vyhodnotíme jeho výsledky.

Kapitola 1

Úvod do problematiky

Medzi neoddeliteľné vlastnosti softvéru patria zložitosť, prispôsobivosť, meniteľnosť
a neviditeľnosť [13]. Softvérový systém pozostáva z mnohých častí, ktoré fungujú rôz-
nymi spôsobmi a nelineárne medzi sebou interagujú, čím sa výrazne zvyšuje kom-
plexnosť systému. Keďže softvér nemá vizuálnu reprezentáciu, často prichádza k jeho
nepochopeniu, čo môže viesť k rôznym chybám vo vývoji. Práve na to slúži modelovanie
softvéru, ktoré si bližšie priblížime v tejto kapitole.

1.1 Modelovanie softvéru

Aby bol proces vývoja softvéru čo najefektívnejší, je vhodné poznať a riadiť sa pravid-
lami definovanými v SDLC, z anglického Software Development Life Cycle, alebo aj
životný cyklus vývoja softvéru. Je to proces jasnej definície požiadaviek, cieľov a fáz
tvorby softvéru a zvyčajne pozostáva zo siedmych hlavných etáp [14].

Prvou etapou je Plánovanie, kde sa definujú hlavné ciele a požiadavky, identifikujú
sa jednotlivé zainteresované strany a vypracuje sa harmonogram. Druhou etapou, ktorá
je často spájaná s plánovaním, je Analýza. V tejto fáze sa zhromažďujú detailnejšie po-
žiadavky od zainteresovaných strán, na základe ktorých sa potom vytvorí špecifikácia.
Ďalej nasleduje Návrh, kde sa navrhne štruktúra softvéru, ako budú jednotlivé kom-
ponenty vzájomne komunikovať, ale aj celkový dizajn používateľského rozhrania. Po
návrhu prichádza samotný Vývoj softvéru, ktorý zahŕňa písanie kódu na základe špeci-
fikácii, integrovanie rôznych častí softvéru či jednotkové testovanie jednotlivých kompo-
nentov. Piatou etapou je Testovanie, kedy sa vykonáva viacero úrovní testovania celého
softvéru, odstraňujú sa nájdené chyby a problémy, a taktiež sa overuje splnenie defino-
vaných požiadaviek. Nasleduje Nasadenie softvéru do prevádzky a jeho sprístupnenie
koncovým používateľom. Poslednou etapou je Údržba. Tá trvá počas celého obdobia
používania softvéru a zahŕňa aktualizáciu softvéru či opravu chýb a nedostatkov, ktoré
objavili používatelia.

3

4 KAPITOLA 1. ÚVOD DO PROBLEMATIKY

Práve vo fázach analýzy a návrhu softvéru sa zvyknú vytvárať rôzne diagramy, ktoré
vizualizujú jednotlivé aspekty softvéru a majú za cieľ pomôcť pochopiť komplexné sys-
témy a predísť tak nesprávnej implementácii. Zároveň slúžia ako súčasť dokumentácie,
kedy sa nimi môžu vývojári riadiť počas implementácie.

Na obrázku 1.1 vidíme vodopádový model, ktorý je jednou z najzákladnejších SDLC
metodológií [14]. Spočíva v lineárnom spôsobe vývoja softvéru, pričom každá fáza pro-
cesu musí byť dokončená predtým, ako sa pokračuje na nasledujúcu.

Obr. 1.1: Vodopádový model vývoja softvéru1.

Proces vytvárania abstraktnej reprezentácie softvéru nazývame modelovanie soft-
véru a slúži na lepšie pochopenie fungovania softvéru, analýzu jeho správania a interak-
cií medzi jednotlivými komponentmi [15]. Takáto abstraktná reprezentácia sa nazýva
model.

1.2 UML

UML, z anglického Unified Modeling Language, je grafický jazyk, ktorý je štandardom
pre vizualizáciu, špecifikáciu a dokumentáciu softvéru [16]. Diagram UML je grafická
reprezentácia modelu systému a obsahuje UML uzly spojené hranami, ktoré predsta-
vujú prvky v modeli. Tradične sa rozlišujú dva hlavné aspekty systémov a to štruk-
turálny a behaviorálny aspekt. UML sa tiež riadi týmto delením, a preto sa UML
diagramy delia na dva hlavné typy, štrukturálne a behaviorálne [17].

1Preložené z https://www.educba.com/waterfall-model/.

https://www.educba.com/waterfall-model/

1.2. UML 5

Štrukturálne UML diagramy popisujú statickú štruktúru systému a jeho častí na
viacerých úrovniach abstrakcie. Patrí sem diagram tried, diagram objektov, diagram
balíčkov, diagram zloženej štruktúry, diagram komponentov, diagram nasadenia a dia-
gram profilov [2].

Behaviorálne diagramy popisujú správanie systému, a teda ako systém funguje, na-
príklad prostredníctvom sérií zmien, ktoré sa udejú v systéme za určitý čas. Medzi
behaviorálne UML diagramy sa radí diagram prípadov použitia, diagram aktivít a sta-
vový diagram. Sekvenčný diagram, diagram komunikácie, diagram časovania a diagram
prehľadu interakcií popisujú interakciu medzi jednotlivými časťami systému a radia sa
do podskupiny diagramov interakcií [2].

V roku 2016 bola vypracovaná štúdia [1], kedy sa prostredníctvom dotazníku zisťo-
valo, či sú respondenti oboznámení s Formálnymi metódami, SADT a OMT, či systé-
moví inžinieri používajú nástroje na správu požiadaviek, ako vytvárajú UML diagramy
z požiadaviek, či potrebujú nástroje alebo techniky, ktoré uľahčujú proces od získava-
nia požiadaviek k návrhu softvéru a aké sú podľa nich najpoužívanejšie, respektíve
najpotrebnejšie UML diagramy. Dotazník vyplnilo 92 ľudí z akademického alebo IT
odvetvia, pričom 85 z nich bolo oboznámených so základnými konceptami UML.

Obr. 1.2: Prehľad použitia štrukturálnych UML diagramov na základe prieskumu, dáta
prevzaté z [1].

Na obrázku 1.2 vidíme najčastejšie používané štrukturálne UML diagramy, pričom
66 respondentov určilo ako najčastejšie používaný diagram tried. Ten znázorňuje lo-
gický a fyzický návrh systému na úrovni tried a rozhraní a popisuje ich vlastnosti
a vzťahy. Príklad diagramu tried vidíme na obrázku 1.3. Sú tu zobrazené rôzne triedy,
entity a rozhrania s ich atribútmi. Takisto sú tu znázornené rôzne vzťahy medzi nimi

6 KAPITOLA 1. ÚVOD DO PROBLEMATIKY

ako asociácia, generalizácia, agregácia a kompozícia.

Obr. 1.3: Diagram tried, inšpirované z [2].

Obr. 1.4: Prehľad použitia behaviorálnych UML diagramov na základe prieskumu, dáta
prevzaté z [1].

Na obrázku 1.4 sú znázornené najčastejšie používané behaviorálne UML diagramy,
pričom 69 respondentov určilo za najpoužívanejší diagram prípadov použitia. Ten zo-

1.3. TECHNIKY VÝVOJA SOFTVÉRU 7

brazuje množinu akcií, prípadov použitia, ktoré sa môžu v systéme vykonať v spolupráci
s externými používateľmi systému, aktérmi. Na obrázku 1.5 je príklad takého diagramu
prípadov použitia, pričom sú zobrazení dvaja aktéri, ktorí môžu vykonať rôzne akcie.
Takisto sú zobrazené vzťahy dedenia medzi aktérmi, asociácie medzi aktérom a prípa-
dom použitia, ale aj vzťah rozšírenia (extend) a zahrnutia (include) medzi prípadmi
použitia.

Obr. 1.5: Diagram prípadov použitia, inšpirované z [2].

1.3 Techniky vývoja softvéru

Architektúra riadená modelom, z anglického Model-Driven Architecture (MDA), je
prístup, ktorý umožňuje špecifikáciu systémov pomocou modelov. Model je formálna
špecifikácia funkcie, štruktúry a správania systému v danom kontexte a zvyčajne sa
reprezentuje použitím UML. Architektúra systému je špecifikácia častí a konektorov
systému, pričom sú definované aj pravidlá, ako jednotlivé časti interagujú pomocou
daných konektorov. V MDA sú tieto časti, konektory a pravidlá definované pomo-
cou modelov [18]. MDA taktiež umožňuje definovanie modelov na rôznych úrovniach
abstrakcie. Prvým je model nezávislý od výpočtu, z anglického Computational Inde-
pendent Model (CIM). Reprezentuje kontext a požiadavky systému, pričom odhliada
od štruktúry a technologických detailov systému [18, 19]. Druhým je model nezávislý
od platformy, z anglického Platform Independent Model (PIM), pričom pod platformou

8 KAPITOLA 1. ÚVOD DO PROBLEMATIKY

sa rozumejú technológie, ktoré poskytujú súbor funkcií, napríklad operačné systémy,
programovacie jazyky, databázy a iné [18]. PIM teda špecifikuje systém nezávisle od
technológií potrebných na jeho implementáciu. Tretím modelom je model špecifický pre
platformu, z anglického Platform Specific Model (PSM), a rozširuje PIM o podrobnosti
týkajúce sa používania konkrétnej platformy [18, 19].

Vývoj riadený modelom, z anglického Model-Driven Development (MDD), je tech-
nika vývoja, ktorá používa modely ako primárny artefakt vývojového procesu, pričom
sa zameriava najmä na fázy požiadaviek, analýzy, návrhu a implementácie [20]. Od
MDA sa líši tým, že nedodržiava štandardy vytvorené konzorciom OMG [21], a preto
možno chápať MDD ako zovšeobecnenie alebo nadmnožinu MDA.

Inžinierstvo riadené modelom, z anglického Model-Driven Engineering (MDE), je
prístup, kedy sú modely kľúčové počas celého inžinierskeho procesu, teda nielen počas
vývoja, ale aj počas následnej evolúcie či migrácie softvéru [20], takže opäť možno
chápať MDE ako nadmnožinu MDD.

Naopak, ak modely nie sú kľúčovými artefaktmi inžinierskeho procesu, hoci stále
zohrávajú dôležitú úlohu, jedná sa o techniku inžinierstva založeného na modeloch,
z anglického Model-Based Engineering (MBE), a môže sa vnímať ako nadmnožina
MDE [3]. Vzťahy medzi týmito prístupmi sú zobrazené na obrázku 1.6.

Obr. 1.6: Vzťahy medzi prístupmi MDA, MDD, MDE a MBE, prevzaté z [3].

1.4 Spustiteľné UML

Spustiteľné UML, z anglického Executable UML (xUML), je založené na UML s vyššou
úrovňou abstrakcie, pričom odhliada od konkrétnych programovacích jazykov a štruk-
túry systému, takže špecifikácia vytvorená v xUML môže byť nasadená v rôznych pro-
strediach bez zmeny [22, 23]. xUML je zároveň jedným z pilierov architektúry riadenej
modelom [22, 23], ktorá je opísaná vyššie. Vďaka precíznosti xUML špecifikácie, sa

1.4. SPUSTITEĽNÉ UML 9

umožňuje automatická konverzia modelov do programovacieho jazyka na nižšej úrovni
abstrakcie, a taktiež ich následné vykonávanie. Pri špecifikácii sa využívajú predovšet-
kým triedne a stavové UML diagramy, aby bol zabezpečený ako štrukturálny, tak aj
behaviorálny aspekt systému, no zvyknú sa využiť aj diagramy aktivít [24], pre lepšie
znázornenie procesov v danom systéme.

Základné modelovacie koncepty xUML sú znázornené na obrázku 1.7. Každý sys-
tém je najskôr rozdelený do domén, pričom tie sú ďalej rozdelené do tried. Každá
trieda môže mať svoj stavový stroj, ktorý spracúva asynchrónne signály vykonávaním
stavových akcií, a tiež operácie, ktoré spracúvajú synchrónne signály [4].

Obr. 1.7: Základné koncepty xUML, preložené z [4].

Aby boli UML modely spúšťateľné, je potrebné systém ešte bližšie špecifikovať,
a to definovaním jednotlivých systémových závislostí od akcií a času, kedy sa majú
jednotlivé zmeny vykonať [23]. Na to slúžia jazyky akcií, z anglického Action Languages,
ktoré umožňujú zachovanie vysokej úrovne abstrakcie modelov, a teda aj ich následný
preklad do spustiteľného kódu.

1.4.1 OAL

Object Action Language (OAL) je jedným z existujúcich jazykov akcií a definuje séman-
tiku spracovania, ktoré prebieha počas akcie [12]. Pod akciou sa rozumejú modelované
prvky ako stavy, funkcie, triedne operácie a iné. Každá akcia sa pritom skladá z viace-
rých príkazov, či už jednoduchších, ako je prístup k atribútom triedy, alebo zložitejších,

10 KAPITOLA 1. ÚVOD DO PROBLEMATIKY

ako napríklad podmienky alebo cykly [12]. Syntax jazyka OAL sa vyznačuje rozlišova-
ním veľkosti písma a písaním bodkočiarky na konci každého príkazu. Na ukážke kódu
1.1 vidíme príklad podmienky v jazyku OAL, kedy sa priradí do premennej x rôzne
číslo, na základe mena v premennej meno. Na ukážke kódu 1.2 je príklad písania cyklu.
Keďže príkazy v cykle môžu byť vykonávané aj paralelne, odporúča sa využívať fore-
ach cykly, ktoré iterujú cez všetky prvky v kolekcii, namiesto cyklov s iterovaním cez
premennú [12].

if (meno == "John")
x = 1;

elif (meno == "Bill")
x = 2;

elif (meno == " Michael ")
x = 3;

else

x = 4;
end if;

Alg. 1.1: Ukážka písania podmienky v OAL, prevzaté z [12].

// D je klucove pssmeno pre objekt typu Dieta.

// deti je implicitne typovana premenna obsahujuca mnozinu

instancii <instance handle set > typu D.

select many deti from instances of D;
for each dieta in deti

generate D1:'cas ist spat ' () to dieta;
end for;

Alg. 1.2: Ukážka písania foreach cyklu v OAL, prevzaté z [12].

Medzi vývojové prostredia, ktoré slúžia na návrh, simuláciu a generovanie kódu
z xUML patrí napríklad platforma BridgePoint [25], ktorá je založená na vývojovom
prostredí Eclipse. BridgePoint podporuje dva jazyky akcií, medzi ktoré patrí už spome-
nutý Object Action Language (OAL) a Model Action Specification Language (MASL)
[26].

1.5 Diagram aktivít

Diagram aktivít je typ behaviorálneho UML diagramu, ktorý zachytáva dynamiku sys-
tému, pracovné toky, z anglického workflows, a výpočtové, ale aj organizačné procesy
systému [27, 6]. Taktiež umožňuje zobrazovať aj procesy, ktoré sa vykonávajú para-

1.5. DIAGRAM AKTIVÍT 11

lelne. V špecifikácii UML 1.x boli diagramy aktivít vnímané ako špeciálny typ stavo-
vých diagramov, čo ale neumožňovalo plnohodnotné modelovanie pracovných tokov.
To sa zmenilo vo verzii UML 2.0, čím sa umožnilo lepšie modelovanie komplexnejších
procesov [2, 6]. Pre lepšie pochopenie štruktúry diagramu aktivít slúži metamodel zo-
brazený na obrázku 1.8. Centrálnym prvkom je metatrieda Activity, ktorá sa skladá z
triedy ActivityNode, ktorá predstavuje jednotlivé uzly v diagrame, ktoré sa využívajú
na znázornenie procesov, a triedy ActivityEdge, ktorá slúži na zobrazenie prechodov
medzi uzlami. ObjectNode predstavuje objektový uzol, abstraktný uzol aktivity, ktorý
sa používa na definovanie toku dát v aktivite. ControlNode predstavuje riadiaci uzol,
ktorý slúži na usmernenie toku medzi ostatnými uzlami. Medzi riadiace uzly patria pod-
triedy InitialNode, DecisionNode, MergeNode, JoinNode, ForkNode a FinalNode,
ktorá sa ďalej špecifikuje na triedy ActivityFinalNode a FlowFinalNode. Tieto
triedy predstavujú rôzne typy uzlov, ktoré sa môžu nachádzať v diagrame aktivít,
pričom sú bližšie špecifikované nižšie.

Obr. 1.8: Metamodel diagramu aktivít, prevzaté z [5].

Diagram aktivít sa skladá z viacerých základých častí, ktoré môžeme vidieť na
obrázku 1.9.

Aktivita špecifikuje vykonávanie akcií pomocou toku riadenia [27]. Pod akciou
sa teda rozumie jeden atomický krok aktivity. Akcie môžu byť vyjadrené aj jazykom
akcií, vďaka čomu sú jediným vykonateľným vrcholom UML [2], čo umožňuje spúšťať
ďalšie akcie, pristupovať k objektom a meniť objekty, alebo ich spájať a vytvárať tak
zložitejšie akcie. Akcie bývajú znázornené obdĺžnikmi so zaoblenými rohmi.

12 KAPITOLA 1. ÚVOD DO PROBLEMATIKY

Obr. 1.9: Notácia základných častí diagramu aktivít.

Začiatočný uzol, znázorňovaný čiernym bodom, predstavuje začiatok toku, keď
je aktivita vyvolaná. Aktivita môže mať viacero začiatočných uzlov, v takom prípade
každý z nich spustí samostatný tok [2].

Koniec toku ukončuje tok aktivity, pričom ale nemá žiadny efekt na ostatné toky
v aktivite [2]. Reprezentuje sa kruhom so symbolom “X” uprostred.

Koncový uzol sa znázorňuje kruhom s čiernym bodom uprostred a ukončuje všetky
toky v aktivite.

Uzol rozhodovania, z anglického decision node, označuje miesto, kedy sa tok
rozdeľuje. Má jednu vstupnú hranu a niekoľko výstupných hrán, pričom výstupná
hrana sa určí na základe toho, ktorá z navzájom sa vylučujúcich podmienok bude
splnená [2]. Podmienka býva znázornená v hranatých zátvorkách pri uzli rozhodovania
alebo pri hrane, ku ktorej patrí. Uzol rozhodovania sa označuje kosoštvorcom.

Uzol zlúčenia, z anglického merge node, sa taktiež označuje kosoštvorcom a ozna-
čuje miesto, kedy sa toky spájajú. Má teda viacero vstupných hrán a jednu výstupnú
hranu.

Uzol paralelného rozvetvenia, z anglického fork node, predstavuje rozvetvenie
toku do viacerých súbežných tokov, ktoré sa budú vykonávať paralelne [2]. Znázorňuje
sa hrubšou čiarou.

Uzol paralelného spojenia, z anglického join node, označuje synchronizáciu sú-
bežných tokov a taktiež sa znázorňuje hrubšou čiarou.

Riadiaci tok predstavuje chod riadenia medzi jednotlivými akciami a označuje sa
šípkami.

Na obrázku 1.10 sa nachádza jednoduchý príklad diagramu aktivít. Vykonávanie
sa začne v začiatočnom uzli. Následne sa vykoná akcia prijatie objednávky. Po jej vy-
konaní sa tok rozdvojí v uzle paralelného rozvetvenia do dvoch paralelných tokov, čo
znamená, že akcie prijatie objednávky a odoslanie faktúry (a nasledujúce) sa môžu vy-
konať v ľubovoľnom poradí, prípadne aj súčasne. Napríklad, začne sa plniť objednávka,
potom sa odošle faktúra, doručí sa objednávka a nakoniec sa príjme platba, alebo sa

1.5. DIAGRAM AKTIVÍT 13

platba príjme počas doručovania tovaru. Postupnosť akcií medzi paralelnými tokmi je
irelevantná, pričom ale v jednotlivom paralelnom toku sa akcie naďalej vykonávajú
postupne. Keď sú oba paralelné toky dokončené, opäť sa synchronizujú v uzle paralel-
ného spojenia a vykonávanie pokračuje akciou ukončenie objednávky. Po jej dokončení
sa tok ukončí koncovým uzlom. Na diagrame je taktiež znázornená podmienka, kedy
sa po vykonaní akcie spracovanie objednávky tok rozdelí rozhodovacím uzlom, a podľa
priority objednávky sa buď vykoná akcia doručenie cez noc, alebo bežné doručenie.
Vetva, ktorá nespĺňa podmienku, sa označuje pojmom [inak], resp. po anglicky [else].
Po vykonaní príslušnej vetvy sa toky opäť spoja v uzle zlúčenia.

Obr. 1.10: Príklad diagramu aktivít, inšpirované z [6].

14 KAPITOLA 1. ÚVOD DO PROBLEMATIKY

Kapitola 2

Nástroje na vizualizovanie softvéru

V tejto kapitole sú opísané rôzne nástroje na modelovanie a vizualizovanie softvéru.

2.1 AnimArch

Keďže cieľom tejto práce je implementovať zobrazovanie a animovanie diagramu aktivít
v softvéri AnimArch, je najskôr potrebné sa s ním oboznámiť. AnimArch je komplexný
nástroj vyvinutý v Unity použitím jazyka C#. Zaoberá sa dvoma hlavnými oblasťami
výskumu, a to vizualizáciou a animáciou UML diagramov a generovaním zdrojového
kódu z kombinácie UML diagramu a skriptu v jazyku OAL [28]. Na obrázku 2.1 je
zobrazená domovská obrazovka nástroja AnimArch.

AnimArch umožňuje vytvoriť, editovať a načítať triedny diagram, ktorý sa následne
vykreslí do 3D priestoru. Po načítaní diagramu je možné ho aj animovať pomocou ani-
mácií definovaných v jazyku OAL. Po načítaní a spustení animácie sa taktiež vytvára
diagram objektov, ktorý sa nachádza v priestore za triednym diagramom a zobrazuje
objekty vytvárané počas vykonávania OAL kódu. Po načítaní triedneho diagramu a ani-
mácie s OAL kódom je taktiež možné vygenerovať spúšťateľný kód v jazyku Python,
čím sa uplatňuje technika vývoja MDD.

2.2 VILLE

Ďalším vizualizačným nástrojom je jazykovo nezávislý nástroj VILLE, ktorý umožňuje
vytváranie a editovanie programovacích príkladov v rôznych programovacích jazykoch
[7]. Takisto umožňuje pozorovanie rôznych udalostí počas vykonávania týchto príkla-
dov. Pre každý riadok kódu sa tiež automaticky generuje slovné vysvetlenie toho, čo
daný príkaz robí, čo môže byť užitočné najmä pri výučbe. Počas vykonávania kódu
je používateľovi tiež umožnené pohybovať sa medzi príkazmi o krok vpred, či vzad,
čo uľahčuje používateľovi pochopenie vykonávaných príkazov. Počas vykonávania sa

15

16 KAPITOLA 2. NÁSTROJE NA VIZUALIZOVANIE SOFTVÉRU

Obr. 2.1: Domovská obrazovka softvéru AnimArch.

zobrazuje aj zásobník volaní, ktorý môžeme vidieť na obrázku 2.2, kde sa zobrazujú
jednotlivé volania metód a ich návratové hodnoty. Tento prístup je inšpiráciou pre túto
diplomovú prácu, avšak s tým rozdielom, že v našej práci budeme jednotlivé príkazy
vizualizovať pomocou diagramu aktivít.

Obr. 2.2: Zobrazenie zásobníku volaní vo VILLE, prevzaté z [7].

2.3. INÉ NÁSTROJE 17

2.3 Iné nástroje

E. Yigitbas a kol. vytvorili modelovacie prostredie vo virtuálnej realite, ktoré slúži na
kolaboratívne modelovanie UML triednych diagramov [8]. Potenciál tohto prostredia
otestovali s 24 účastníkmi a zistili, že modelovanie vo virtuálnej realite bolo pre pou-
žívateľov síce menej efektívne, no mali pocit, že sa nachádzajú v tej istej miestnosti
ako ich spolupracovníci, čo zároveň dopomohlo k prirodzenejšej spolupráci. Ukážka
kolaboratívneho modelovania v tomto prostredí je zobrazená na obrázku 2.3.

Obr. 2.3: Ukážka kolaboratívneho modelovania triedneho diagramu, prevzaté z [8].

L. Gregorovič a I. Polášek navrhli prístup vizualizovania UML diagramov v 3D
priestore, a to prostredníctvom automatického generovania objektových a triednych
diagramov zo sekvenčných diagramov [9]. Diagram objektov bol automaticky odvo-
dený zo sekvenčného diagramu a diagram tried sa následne vytvoril z objektového
diagramu, kde asociácie sa odvodili z interakcií v sekvenčnom diagrame a metódy tried
sa extrahovali z požadovaných operácií v týchto interakciách. Vďaka tomu, že sa dia-
gramy zobrazovali v 3D priestore bolo tiež možné zobraziť viacero diagramov za sebou
v rôznych vrstvách, ako je zobrazené na obrázku 2.4.

Obr. 2.4: Ukážka zobrazenia UML diagramov, prevzaté z [9].

I. Polášek spolu s M. Ferencom a J. Vincúrom nadviazali na predošlú prácu, kde

18 KAPITOLA 2. NÁSTROJE NA VIZUALIZOVANIE SOFTVÉRU

k viacvrstvovým diagramom pridali možnosť synchronizovanej kolaborácie a komuni-
kácie medzi používateľmi v reálnom čase [10]. Systém teda vizualizovali pomocou 2D
UML diagramov na prepojených vrstvách v 3D priestore. Do aplikácie implementovali
rôzne funkcie, ako oznámenie o prihlásení nového používateľa do aplikácie, evidenciu
histórie úkonov používateľa, či časovú os histórie projektu. Taktiež implementovali aj
funkciu četu medzi používateľmi. Cieľom týchto funkcií bolo zlepšiť spoluprácu, zvý-
šiť efektivitu práce a minimalizovať potrebu komunikácie medzi používateľmi. Ukážka
tejto aplikácie je zobrazená na obrázku 2.5.

Obr. 2.5: Ukážka kolaboratívnej 3D aplikácie, prevzaté z [10].

J. Kučečka a kol. vytvorili prostredie vo virtuálnej realite (VR) pre kolaboratívne
programovanie, ktoré je zobrazené na obrázku 2.6. Umožňuje vývojárom písať, genero-
vať, upravovať a spúšťať zdrojový kód [11]. Zároveň umožňuje, aby sa zmeny vykonané
v UML diagrame premietli do zdrojového kódu a naopak. Navrhnuté prostredie tiež
evaluovali pomocou štúdie s 20 účastníkmi, pričom sa sústredili najmä na to, či sa
môže vývoj softvéru vo VR rovnať klasickému vývoju na 2D monitore, či môže vývoj
vo VR zlepšiť používateľov zážitok z vývoja a či môže vývoj softvéru vo VR skrátiť
čas potrebný na kódovanie počítačových programov. Zistilo sa, že z hľadiska používa-
teľnosti a atraktívnosti účastníci lepšie ohodnotili VR IDE. Avšak, čo sa týka rýchlosti
dokončenia zadania, to trvalo vo VR IDE o niečo dlhšie. Používatelia tiež navrhli určité
zlepšenia, napr. zavedenie VR klávesnice s vyšším rozlíšením, keďže súčasná implemen-
tácia využívajúca sledovanie klávesnice mala určité obmedzenia.

Väčšina spomenutých nástrojov využívala pri vizualizovaní a modelovaní softvéru
virtuálnu realitu. Nad jej implementáciou do nástroja AnimArch, ktorý v tejto práci
rozširujeme o novú funkciu, sa ale momentálne neuvažuje, aj kvôli menšej efektívnosti,

2.3. INÉ NÁSTROJE 19

Obr. 2.6: Ukážka prostredia na kolaboratívne programovanie vo VR, prevzaté z [11].

ktorú používatelia vykazovali oproti klasickému prístupu. Môžeme sa ale inšpirovať
práve spôsobom evaluácie, ktorá sa využila na analyzovanie daných nástrojov, počas
hodnotenia našej výslednej práce.

20 KAPITOLA 2. NÁSTROJE NA VIZUALIZOVANIE SOFTVÉRU

Kapitola 3

Požiadavky a návrh rozšírenia
aplikácie

V tejto kapitole zadefinujeme ciele a požiadavky na rozšírenie predošlej aplikácie a na-
vrhneme ich postup implementácie.

3.1 Požiadavky

Cieľom našej práce je navrhnúť, implementovať a evaluovať nový spôsob vizualizácie
a animácie diagramu aktivít v softvéri AnimArch. V AnimArchu sa aktuálne vizuali-
zujú a animujú diagramy tried a objektov, teda len štrukturálne diagramy, preto sme
sa rozhodli implementovať práve diagram aktivít, ktorý bude reprezentovať aj behavi-
orálne vlastnosti načítaného kódu. Zároveň sme sa tiež inšpirovali nástrojom VILLE,
bližšie opísaným v sekcii 2.2. V ňom sa počas vykonávania kódu zobrazuje zásobník
volaní, kde sa zobrazujú volané metódy a ich návratové hodnoty, čo v našom prípade
budeme zobrazovať pomocou diagramu aktivít. Samotnú implementáciu budeme ná-
sledne overovať aj pomocou používateľského testovania.

Medzi základné požiadavky na naše rozšírenie AnimArchu teda patrí:

• vytvoriť novú vrstvu na zobrazovanie diagramu aktivít,

• implementovať vytváranie diagramu aktivít po spustení animácie,

• implementovať zobrazovanie viacerých diagramov aktivít za sebou,

• animovať diagram aktivít počas behu animácie,

• evaluovať vytvorené riešenie.

21

22 KAPITOLA 3. POŽIADAVKY A NÁVRH ROZŠÍRENIA APLIKÁCIE

3.2 Návrh aplikácie

V softvéri AnimArch sú aktuálne dve vrstvy diagramov. V prvej vrstve sa zobrazuje
diagram tried a v druhej vrstve, ktorá je umiestnená za prvou vrstvou, sa zobrazuje
diagram objektov. Diagram aktivít budeme zobrazovať v tretej vrstve za diagramom
objektov. Na obrázku 3.1 je zobrazená ukážka návrhu zobrazenia rôznych vrstiev pre
diagram tried, diagram objektov a zvýraznená je práve vrstva pre diagram aktivít,
ktorú budeme implementovať.

Obr. 3.1: Ukážka návrhu zobrazenia rôznych vrstiev diagramov. Prvá vrstva pre dia-
gram tried a druhá vrstva pre diagram objektov sa v AnimArchu už zobrazujú. Zo-
brazenie zvýraznenej tretej vrstvy pre diagram aktivít budeme implementovať v našej
práci.

Proces vytvárania diagramov v AnimArchu je zobrazený na nasledujúcom sekvenč-
nom diagrame 3.2, pričom zvýraznené hrubým sú procesy, ktoré implementujeme v na-
šej práci. Spustením AnimArchu sa získajú referencie na diagram tried a diagram ob-

3.2. NÁVRH APLIKÁCIE 23

jektov z Unity scény. Tu pridáme tiež získavanie referencie na diagram aktivít, ktorého
generovanie budeme implementovať. Používateľ ďalej zvolí súbor triedneho diagramu,
ktorý sa vygeneruje a zobrazí. Taktiež k nemu môže vybrať animáciu, ktorá obsahuje
kód v jazyku OAL, ktorý sa bude animovať.

Po spustení animácie sa jednotlivé príkazy z OAL priradia k príslušným triedam
reprezentujúcim typ daného príkazu, s ktorými sa v AnimArchu ďalej pracuje. Naprí-
klad, volanie metódy je reprezentované triedou EXEScopeMethod, podmienka triedou
EXEScopeCondition, foreach cyklus triedou EXEScopeForEach a vrátenie návratovej
hodnoty alebo ukončenie metódy je reprezentované triedou EXECommandReturn. Ďalej
sa vytvorí druhá vrstva pre diagram objektov, kde pridáme taktiež vytvorenie tretej
vrstvy pre diagram aktivít. Následne sa postupne vykonávajú všetky príkazy z načíta-
ného kódu.

Počas vykonávania príkazov implementujeme odchytávanie EXEScopeMethod príka-
zov, kedy sa bude vytvárať nový diagram aktivít. Rekurzívne budeme prechádzať cez
všetky príkazy danej metódy a každý pridáme do diagramu aktivít. Pred pridaním pr-
vej aktivity taktiež pridáme začiatočný uzol a po poslednej aktivite pridáme koncový
uzol. Zároveň tiež budeme pridávať aj šípky medzi aktivitami znázorňujúce riadiaci
tok. Ak počas vykonávania príkazov narazíme na ďalší príkaz typu EXEScopeMethod,
vytvorí sa nový diagram aktivít, ktorý sa bude zobrazovať za pôvodným diagramom
aktivít a bude obsahovať príkazy, ktoré sa vykonávajú v tejto metóde.

Taktiež budeme zachytávať aj príkazy typu EXECommandReturn, ktoré predstavujú
koniec vykonávania metódy. Vtedy, ak sa zobrazuje viacero diagramov aktivít, diagram
aktivít príslušnej metódy, ktorej patrí daný EXECommandReturn príkaz, zmažeme. Ak
sa zobrazuje iba jeden diagram aktivít, ten sa mazať nebude, aby ho mal používateľ
naďalej k dispozícii aj po skončení vykonávania animácie.

Pri samotnom vytváraní aktivít budeme tiež rozlišovať medzi rôznymi typmi príka-
zov, pretože vykresľovanie cyklov a podmienok si vyžaduje odlišný prístup v porovnaní
s bežnými príkazmi. Bežné príkazy budeme pridávať do diagramu aktivít pod seba.

Pri zobrazovaní podmienky najskôr zobrazíme uzol rozhodovania, ktorý reprezen-
tuje rozvetvenie toku vykonávania podľa splnenia danej podmienky. K uzlu rozhodo-
vania tiež zobrazíme samotnú podmienku v hranatých zátvorkách. Príkazy, ktoré sa
vykonajú v prípade, že je podmienka splnená, budú umiestnené pod uzlom rozhodo-
vania. Naopak príkazy, ktoré sa majú vykonať, ak podmienka nie je splnená, budú
zobrazené odsadené doprava. Šípku smerujúcu od uzla rozhodovania k príkazu, ktorý
sa má vykonať, ak podmienka nie je splnená navyše označíme slovom „else“ (v pre-
klade „inak“), pre jasnejšie porozumenie. Po vykreslení všetkých príkazov príslušných k
obom vetvám sa tieto vetvy spoja v uzle zlúčenia, pod ktorým budú ďalej umiestnené
nasledovné príkazy. Obrázok 3.3 zobrazuje, ako bude vyzerať výsledný diagram aktivít
obsahujúci podmienku, ktorý budeme vytvárať.

24 KAPITOLA 3. POŽIADAVKY A NÁVRH ROZŠÍRENIA APLIKÁCIE

Obr. 3.2: Sekvenčný diagram zobrazujúci proces generovania diagramov v AnimArchu.

3.2. NÁVRH APLIKÁCIE 25

Obr. 3.3: Štruktúra diagramu aktivít s podmienkou.

Pri zobrazovaní foreach cyklu najskôr zobrazíme uzol zlúčenia, ktorý slúži ako
vstupný bod cyklu. Pod tento uzol zobrazíme uzol rozhodovania, v ktorom sa bude
tok vykonávania rozvetvovať podľa toho, či existuje ďalší prvok v kolekcii, cez ktorú sa
iteruje. Tento uzol rozhodovania označíme textom „another prvok “ (v preklade „ďalší
prvok “), kde za prvok dosadíme názov premennej použitej v cykle. Z uzla rozhodovania
budú viesť dve šípky. Prvá šípka, označená slovom „yes“ (v preklade „áno“), smeruje
k aktivitám, ktoré predstavujú telo cyklu. Tieto príkazy zobrazíme odsadené doprava,
aby bolo zrejmé, že patria do cyklu. Po vykonaní týchto príkazov sa tok opäť vráti
k uzlu zlúčenia, čím sa zabezpečí opakovanie cyklu pre ďalší prvok v kolekcii. Druhá
šípka, označená slovom „no“ (v preklade „nie“), vedie k aktivitám, ktoré sa vykonajú po
skončení cyklu, teda v prípade, že v kolekcii už nie je žiadny ďalší prvok. Tieto príkazy
zobrazíme pod rozhodovacím uzlom, čím vizuálne oddelíme časti patriace do cyklu
od tých, ktoré nasledujú po jeho ukončení. Výsledný diagram aktivít, ktorý obsahuje
foreach cyklus je zobrazený na obrázku 3.4.

While cyklus budeme zobrazovať rovnako ako foreach cyklus. Hlavný rozdiel bude
v označení šípok, kedy šípku vedúcu od uzla rozhodovania k telu cyklu označíme textom
„while podmienka“ (v preklade „kým podmienka“), kde za podmienka dosadíme samotnú
podmienku while cyklu. Šípku vedúcu od uzla rozhodovania k aktivitám, ktoré nasle-

26 KAPITOLA 3. POŽIADAVKY A NÁVRH ROZŠÍRENIA APLIKÁCIE

Obr. 3.4: Štruktúra diagramu aktivít s foreach cyklom.

dujú po ukončení cyklu, teda v prípade, že podmienka cyklu nie je splnená, označíme
slovom „else“ (v preklade „inak“). Výslednú štruktúru diagramu aktivít, ktorý obsahuje
while cyklus vidíme na obrázku 3.5.

3.2. NÁVRH APLIKÁCIE 27

Obr. 3.5: Štruktúra diagramu aktivít s while cyklom.

28 KAPITOLA 3. POŽIADAVKY A NÁVRH ROZŠÍRENIA APLIKÁCIE

Kapitola 4

Implementácia

Aby sme umožnili vytváranie diagramu aktivít v softvéri AnimArch, najskôr sme pri-
dali tretiu vrstvu pre diagram aktivít, ktorý budeme zobrazovať za diagramom tried
a diagramom objektov, ktoré sa už v AnimArchu vizualizujú. Nová vrstva pre diagram
aktivít sa vytvorí po spustení animácie, pričom samotné vytváranie diagramu aktivít je
popísané v nasledujúcej sekcii 4.1. Rôzne vrstvy pre diagramy tried, objektov a aktivít
sú zobrazené na obrázku 4.1.

Obr. 4.1: Ukážka zobrazenia troch vrstiev diagramov. Na prvej vrstve sa zobrazuje
diagram tried. Na druhej vrstve sa postupne počas animácie vytvára diagram objektov.
Na tretej vrstve sa bude zobrazovať diagram aktivít.

Ďalej sme vytvorili takzvané prefabrikáty, ktoré slúžia ako šablóny pre jednotlivé
prvky, ktoré môžeme zobrazovať v diagrame aktivít, konkrétne pre začiatočný a kon-
cový uzol, pre uzly rozhodovania, zlúčenia, paralelného rozvetvenia, paralelného spo-

29

30 KAPITOLA 4. IMPLEMENTÁCIA

jenia, a taktiež pre samotné aktivity a šípky označujúce riadiaci tok, pričom sme sa
držali zaužívanej notácie, ktorú sme špecifikovali v sekcii 1.5.

4.1 Statické zobrazenie

Diagram aktivít začneme vytvárať po spustení animácie, kedy sa postupne vykonávajú
príkazy z načítaného kódu OAL. Pri vykonávaní príkazov sme implementovali odchytá-
vanie príkazov typu EXEScopeMethod a EXECommandReturn, ako je zobrazené na ukážke
pseudokódu 4.1.

V prípade, že práve vykonávaný príkaz je typu EXEScopeMethod, teda volanie me-
tódy, vytvoríme nový diagram aktivít, do ktorého zároveň pridáme začiatočný uzol. Ďa-
lej rekurzívne prejdeme cez všetky príkazy metódy a pridáme ich do diagramu aktivít.
Budeme tiež rozlišovať medzi rôznymi typmi príkazov, keďže vykreslenie podmienok
a cyklov si vyžaduje odlišný prístup. Tento proces rekurzívneho prechádzania a vy-
kresľovania príkazov metódy je zachytený pseudokódom na ukážke 4.2. Po vykreslení
poslednej aktivity pridáme aj koncový uzol. Zároveň pridávame aj šípky medzi jednot-
livými vrcholmi v diagrame, ktoré znázorňujú riadiaci tok. Ak sa potom opäť vykoná
príkaz typu EXEScopeMethod, vytvoríme nový diagram aktivít, ktorý zobrazíme v ďal-
šej vrstve, za pôvodným diagramom aktivít, odkiaľ sa metóda vyvolala. Príkazy v tele
vyvolanej metódy ďalej vykresľujeme do novovytvoreného diagramu aktivít.

Keď sa vykonáva príkaz typu EXECommandReturn, teda vykonávanie volanej metódy
končí, a zobrazujeme viacero diagramov aktivít, príslušný diagram aktivít zmažeme
a ďalej budeme zobrazovať už iba pôvodný diagram aktivít. Ak je však zobrazený iba
jeden diagram aktivít, ten sa mazať nebude, aby ho mal používateľ naďalej k dispozícii
aj po skončení vykonávania.

IF CurrentCommand is of type EXEScopeMethod THEN

Create a new activity diagram
Add initial activity to diagram
AddActivity (CurrentCommand)
Add final activity to diagram
Add diagram to ActivityDiagramManager stack

ELSE IF CurrentCommand is of type EXECommandReturn THEN

IF ActivityDiagramManager has more than one diagram THEN

Remove current diagram from stack
Set diagram to the peek diagram in stack

END IF

END IF

Alg. 4.1: Pseudokód vytvárania a mazania diagramov aktivít.

4.1. STATICKÉ ZOBRAZENIE 31

FUNCTION AddActivity (command)
IF command is NOT EXEScopeMethod THEN

SWITCH (type of command)
CASE EXEScopeCondition :

AddCondition (command)
BREAK

CASE EXEScopeForEach :
AddForEach (command)
BREAK

CASE EXEScopeLoopWhile :
AddWhile (command)
BREAK

DEFAULT :
Add activity to diagram
Connect last activity to this one
Update last activity
BREAK

END SWITCH

ELSE

FOR EACH subCommand in method
AddActivity (subCommand)

END FOR

END IF

END FUNCTION

Alg. 4.2: Pseudokód rekurzívnej metódy, ktorá má na starosti pridávanie aktivít do
diagramu.

Na obrázku 4.2 môžeme vidieť proces vytvárania a zobrazovania viacerých diagra-
mov aktivít za sebou.

1. V prvom kroku sa po spustení animácie vytvorila prázdna vrstva pre diagram
aktivít.

2. V druhom kroku sa počas vykonávania EXEScopeMethod príkazu rekurzívne pre-
šlo cez všetky jeho príkazy a vykreslili sa do diagramu aktivít, spolu so začiatoč-
ným a koncovým uzlom a šípkami medzi aktivitami.

3. V treťom kroku sa zavolala nová metóda, teda sa opäť vykonal EXEScopeMethod
príkaz, a teda sa vytvorila nová vrstva a nový diagram aktivít, ktorý opätovne
napĺňame rekurzívnym prechádzaním cez príkazy tejto metódy.

32 KAPITOLA 4. IMPLEMENTÁCIA

4. V štvrtom kroku sa skončilo vykonávanie volanej metódy, teda sa vykonal príkaz
typu EXECommandReturn. Preto sa príslušný diagram aktivít zmazal a ďalej sa
zobrazuje už iba pôvodný diagram aktivít. Ďalej sa pokračuje vo vykonávaní
príkazov pôvodnej metódy. Keď sa potom skončí vykonávanie aj tejto metódy,
tento diagram aktivít sa mazať nebude a ostane zobrazený aj naďalej.

Obr. 4.2: Proces vytvárania a zobrazovania viacerých diagramov aktivít.

Vykreslenie zložitejších príkazov, ako sú podmienky a cykly, prebieha v samostat-
ných funkciách, pretože si vyžadujú rozličný prístup.

Pri podmienke najskôr vykreslíme uzol rozhodovania, ktorý rozdelí vykonávanie do
viacerých vetiev. Príkazy v if vetve, teda tie, ktoré sa vykonajú, ak platí podmienka, sa
vykreslia pod uzlom rozhodovania. Príkazy, ktoré sa vykonajú, ak podmienka neplatí,
sa vykreslia posunuté doprava. Po vykreslení všetkých príkazov v daných vetvách sa
tieto vetvy opäť spoja v uzli zlúčenia. Samotnú podmienku zobrazujeme v hranatých
zátvorkách pri uzli rozhodovania a šípku smerujúcu od uzla rozhodovania k aktivite,
ktorá sa vykoná, ak podmienka nie je splnená, označíme slovom „else“ (v preklade
„inak“). Pseudokód vykresľovania podmienok je zobrazený na ukážke kódu 4.3.

FUNCTION AddCondition (command)
Add decision node
Connect last activity to decision node

FOR EACH subCommand in ifBranch
AddActivity (subCommand)

END FOR

FOR EACH subCommand in elifBranch
AddActivity (subCommand) // with increased indentation

END FOR

4.1. STATICKÉ ZOBRAZENIE 33

FOR EACH subCommand in elseBranch
AddActivity (subCommand) // with increased indentation

END FOR

Add merge node below all branches
Connect if , elif and else branches to merge node
Update last activity

END FUNCTION

Alg. 4.3: Pseudokód pridávania podmienky do diagramu aktivít.

Na obrázku 4.3 je zobrazený vygenerovaný diagram aktivít, ktorý obsahuje jed-
noduchú podmienku a na obrázku 4.4 vidíme diagram aktivít obsahujúci aj vnorenú
podmienku.

Obr. 4.3: Ukážka zobrazenia jednoduchej podmienky v diagrame aktivít.

Pri zobrazovaní foreach cyklu najskôr vykreslíme uzol zlúčenia, ktorý predstavuje
začiatok cyklu. Následne vykreslíme uzol rozhodovania, kde sa tok rozvetví, podľa
toho, či existuje ďalší prvok v kolekcii, cez ktorú sa iteruje. Jednotlivé príkazy v tele
cyklu ďalej vykreslíme odsadené doprava. K uzlu rozhodovania tiež pridáme označenie
„another “ (v preklade „ďalší“) a názov premennej, ktorá sa používa v cykle. Pseudo-
kód zobrazovania foreach cyklu je zobrazený na ukážke kódu 4.4. Príklad vytvoreného
diagramu aktivít, ktorý obsahuje foreach cyklus je zobrazený na obrázku 4.5.

34 KAPITOLA 4. IMPLEMENTÁCIA

Obr. 4.4: Ukážka zobrazenia vnorenej podmienky v diagrame aktivít.

FUNCTION AddForEach (command)
Add merge node and decision node
Connect last activity to merge node
Connect merge node to decision node

FOR EACH subCommand in loop
AddActivity (subCommand) // with increased indentation

END FOR

Update last activity
END FUNCTION

Alg. 4.4: Pseudokód pridávania foreach cyklu do diagramu aktivít.

While cykly vytvárame rovnakým spôsobom ako foreach cykly, pretože sa líšia len
v samotnej logike vykonávania daného kódu. Najskôr teda pridáme uzol zlúčenia, pod
ktorý pridáme uzol rozhodovania. Telo cyklu vykreslíme odsadené doprava. Šípku od
uzla rozhodovania k telu cyklu označíme textom „while“ (v preklade „kým“) a pod-
mienkou cyklu, čím vizuálne odlíšime while cyklus od foreach cyklu. Šípku od uzla
rozhodovania k aktivitám, ktoré sa vykonajú po cykle, teda keď podmienka cyklu nie
je splnená, označíme slovom „else“ (v preklade „inak“). Na ukážke algoritmu 4.5 je zo-

4.2. DYNAMICKÉ ZOBRAZENIE 35

Obr. 4.5: Ukážka zobrazenia foreach cyklu v diagrame aktivít.

brazený pseudokód vytvárania while cyklu v diagrame aktivít a na obrázku 4.6 vidíme
ukážku vytvoreného diagramu aktivít s while cyklom.

FUNCTION AddWhile (command)
Add merge node and decision node
Connect last activity to merge node
Connect merge node to decision node

FOR EACH subCommand in loop
AddActivity (subCommand) // with increased indentation

END FOR

Update last activity
END FUNCTION

Alg. 4.5: Pseudokód pridávania while cyklu do diagramu aktivít.

4.2 Dynamické zobrazenie

Implementovali sme aj animovanie diagramu aktivít, kedy sa aktivita zodpovedajúca
práve vykonávanému príkazu zafarbí, spolu so šípkou smerujúcou k danej aktivite. Pri
vykonávaní nejakého príkazu z načítaného kódu sa nájde v diagrame aktivít príslušná
aktivita zodpovedajúca danému príkazu a zafarbí sa.

Pri podmienkach jednému príkazu zodpovedajú však dva uzly v diagrame aktivít,
a to uzol rozhodovania a uzol zlúčenia. V tomto prípade zafarbíme najskôr iba uzol

36 KAPITOLA 4. IMPLEMENTÁCIA

Obr. 4.6: Ukážka zobrazenia while cyklu v diagrame aktivít.

rozhodovania. Uzol zlúčenia sa zafarbí, až keď sa vykoná, a teda sa aj zafarbí posledná
aktivita v niektorej z vetiev tejto podmienky. Na obrázku 4.7 vidíme, ktorou vetvou
podmienky sa vykonával kód, a teda sú zafarbené príslušné aktivity a šípky medzi nimi.

Obr. 4.7: Ukážka animovania diagramu aktivít s podmienkou.

4.2. DYNAMICKÉ ZOBRAZENIE 37

Keďže v cykloch dochádza k opakovanému vykonávaniu príkazov, je potrebné pri
každej iterácii najskôr zrušiť zafarbenie všetkých aktivít v tele cyklu a aj šípky medzi
nimi. Tým sa zabezpečí, že pri každej iterácii budú tieto prvky zafarbené nanovo, čo
bude správne vizualizovať priebeh vykonávania cyklu. Na obrázku 4.8 je zobrazená
animácia počas vykonávania príkazov v tele while cyklu.

Obr. 4.8: Ukážka animovania diagramu aktivít počas vykonávania tela while cyklu.

38 KAPITOLA 4. IMPLEMENTÁCIA

Kapitola 5

Evaluácia výsledkov

V tejto kapitole navrhneme a opíšeme evaluáciu nášho riešenia.

5.1 Návrh testovania

Naše riešenie budeme evaluovať pomocou používateľského testovania, kedy budeme
porovnávať úspešnosť riešenia úloh pomocou nášho softvéru v porovnaní so statickým
diagramom aktivít. Priebeh testovania je zachytený na obrázku 5.1.

Obr. 5.1: Vývojový diagram opisujúci priebeh testovania.

Účastníci budú po zadaní demografických údajov riešiť dve úlohy, zodpovedajúce

39

40 KAPITOLA 5. EVALUÁCIA VÝSLEDKOV

rôznym procesom, ktoré sme vizualizovali pomocou nášho softvéru AnimArch, aj pomo-
cou nástroja, ktorý vygeneroval statický obrázok diagramu aktivít. Každú úlohu budú
používatelia riešiť pomocou iného nástroja, teda buď pomocou animovaného diagramu
aktivít v AnimArchu alebo pomocou statického diagramu aktivít.

Prvá úloha opisuje proces objednávania tovaru, ktorý zahŕňa rôzne vetvenia toku
v prípade, že tovar nie je na sklade alebo platba nie je úspešná. Otázky, ktoré sme
pripravili k tejto úlohe sú zobrazené v prílohe A v sekcii Úloha 1. Taktiež sa tam
nachádzajú aj vytvorené diagramy aktivít, ktoré budú účastníci využívať. Animovaný
diagram aktivít v AnimArchu pre úlohu 1 je zobrazený na obrázku 5.13 a statický
diagram aktivít úlohy 1 je zobrazený na obrázku 5.14.

Druhá úloha obsahuje proces vytvorenia zoznamu objednávok, ktoré sa následne
spracovávajú v cykle. Otázky k tejto úlohe sú zobrazené v prílohe A v sekcii Úloha 2.
Na obrázku 5.15 je zobrazený animovaný diagram aktivít v AnimArchu pre úlohu 2
a statický diagram aktivít je zobrazený na obrázku 5.16.

Používatelia budú mať jednotne stanovený čas, a to minútu a pol, na preštudovanie
a pochopenie daného diagramu aktivít. Po tomto čase sa presunú na riešenie úlohy,
pozostávajúcej z piatich otázok, ktoré overia, ako dobre si zapamätali a pochopili daný
diagram aktivít.

Účastníci budú po každej úlohe odpovedať aj na otázky System Usability Scale
(SUS) [29] dotazníku, ktorý bude zisťovať spokojnosť so systémom, ktorý využili. Na
záver budú tiež odpovedať na otázky z NASA Task Loader Index (NASA-TLX) [30]
dotazníku, pomocou ktorého budeme skúmať, ako záťaž, ktorú účastníci vnímali počas
vypracovávania úloh, ktoré riešili pomocou animovaného diagramu v AnimArchu.

5.2 Vyhodnotenie testovania

5.2.1 Demografické údaje účastníkov

Testovania sa zúčastnilo 10 vysokoškolských študentov aplikovanej informatiky, pričom
bolo rovnaké zastúpenie mužov a žien.

Na obrázku 5.2 je zobrazené, ako účastníci ohodnotili svoje znalosti v oblasti analýzy
a návrhu softvéru. Nikto neuviedol, že by sa v tejto tematike vyznal úplne, alebo
nevyznal vôbec, preto môžeme predpokladať, že úspešnosť používateľov pri riešení úloh
nebude ovplyvnená nedostatkom vedomostí z UML modelovania. Odpovede na prvé
dve otázky nadobúdajú tvar Gaussovho rozdelenia, čo naznačuje symetrické rozloženie
odpovedí okolo priemeru, a teda väčšina z nich považuje svoje znalosti za priemerné.
Študenti tiež uviedli, že sa viac vyznajú v UML modelovaní, oproti analýze a návrhu
softvéru vo všeobecnosti. Najväčšie znalosti ale uviedli pri samotnom chápaní UML
modelov, čo značí, že vedia UML modely skôr chápať ako ich vytvárať.

5.2. VYHODNOTENIE TESTOVANIA 41

Obr. 5.2: Subjektívne hodnotenie znalostí účastníkov v analýze a návrhu softvéru.

Účastníkov sme sa tiež pýtali, na ich znalosti softvéru AnimArch. Ako je zobrazené
na obrázku 5.3, väčšina z nich uviedla, že AnimArch poznajú a aj ho už používali.
Predchádzajúca znalosť AnimArchu ale nemá zásadný vplyv na výsledky testovania,
keďže všetci účastníci mali k dispozícii rovnaké inštrukcie a testovací scenár, vďaka
čomu boli schopní vykonať úlohy aj bez predchádzajúcich skúseností.

Obr. 5.3: Znalosť softvéru AnimArch.

42 KAPITOLA 5. EVALUÁCIA VÝSLEDKOV

5.2.2 Vyhodnotenie riešenia úloh

Polovica účastníkov najskôr riešila prvú úlohu pomocou animovaného diagramu aktivít
v AnimArchu a následne druhú úlohu pomocou statického diagramu. Druhá polovica
účastníkov postupovala opačne, teda prvú úlohu riešila najskôr so statickým diagra-
mom aktivít a druhú úlohu s animovaným diagramom v AnimArchu. Toto rozdelenie
umožnilo objektívne porovnať efektivitu oboch typov vizualizácie bez ovplyvnenia po-
stupným poradím riešenia úloh.

Na obrázku 5.4 je zobrazené porovnanie úspešnosti riešenia otázok v úlohe 1 podľa
nástroja, ktorý účastníci využili. Vidíme, že účastníci správne vyriešili viac úloh, ak
použili statický diagram aktivít. Môže to byť spôsobené tým, že na tento prístup sú
už zvyknutí, a teda sa v ňom orientovali rýchlejšie a s väčšou sebaistotou. Výrazný
rozdiel je pri prvej a štvrtej otázke, kedy sa účastníkom darilo lepšie, ak využili statický
diagram. Prvá otázka sa zameriavala na akcie, ktoré nastanú, ak tovar nie je skladom.
Animácia v diagrame aktivít zobrazovala ale druhú vetvu podmienky, ako môžeme
vidieť na obrázku 5.13, je teda možné, že účastníci venovali viac pozornosti práve
animovaným aktivitám, a preto nevedeli správne zodpovedať túto otázku. Štvrtá otázka
zisťovala, aký krok nastane po úspešnej platbe. V tomto prípade animácia diagramu
zobrazovala túto vetvu podmienky, čo vidíme aj na obrázku 5.13. Keďže otázka bola
smerovaná na akcie v záverečnej časti diagramu aktivít a účastníci, ktorí odpovedali
nesprávne, zvolili možnosť, ktorá sa v diagrame vôbec nevyskytovala, môžeme usúdiť, že
používatelia AnimArchu nevenovali dostatočnú pozornosť tejto časti diagramu aktivít,
alebo si jej obsah dostatočne nezapamätali.

Obr. 5.4: Úspešnosť riešenia úlohy 1.

Porovnanie úspešnosti riešenia otázok v úlohe 2 je zobrazené na obrázku 5.5. Pri
vypracovaní tejto úlohy sa účastníkom v priemere darilo rovnako dobre, bez ohľadu
na to, či použili animovaný diagram aktivít v AnimArchu alebo statický diagram. To

5.2. VYHODNOTENIE TESTOVANIA 43

môže byť preto, že účastníci po vypracovaní prvej úlohy vedeli, aký štýl otázok môžu
očakávať, a teda vedeli, na čo sa majú v diagrame aktivít primárne sústrediť. Výrazný
rozdiel v úspešnosti riešenia je pri piatej otázke, ktorá sa zameriavala na akciu, ktorá
nastane po spracovaní všetkých objednávok, respektíve po skončení vykonávania cyklu,
v ktorom sa objednávky spracúvajú. Vidíme, že 100% účastníkov, ktorí pracovali s ani-
movaným diagramom aktivít, vyriešilo úlohu správne, no iba 40% účastníkov, ktorí
používali statický diagram aktivít, bolo úspešných. To mohlo byť spôsobené tým, že
zo statického diagramu aktivít nebolo účastníkom zrejmé, kedy nastane koniec cyklu,
a teda kedy sa spracujú všetky objednávky. V AnimArchu mohol účastník vďaka ani-
mácii jednoduchšie pochopiť, kedy sa spracovali všetky objednávky, a ktorý krok sa
následne vykonal. Taktiež v AnimArchu vykresľujeme telo cyklov odsadené doprava,
ako môžeme vidieť na obrázku 5.15, čo mohlo byť pre účastníkov viac prehľadné a ľah-
šie zapamätateľné.

Obr. 5.5: Úspešnosť riešenia úlohy 2.

Môžeme si tiež všimnúť, že používateľom AnimArchu sa pri riešení prvej úlohy
darilo menej, ako tím, ktorí využívali AnimArch pri riešení druhej úlohy. To mohlo byť
spôsobené tým, že venovali svoju pozornosť aj iným prvkom, ktoré sa v AnimArchu
nachádzajú, a teda neboli plne sústredení na samotnú animáciu diagramu aktivít. Pri
riešení druhej úlohy už účastníci vedeli, aký štýl otázok môžu očakávať, a teda vedeli
na čo sa majú primárne sústrediť, čo mohlo prispieť k vyššej úspešnosti ich odpovedí.

Úspešnosti riešenia otázok pomocou animovaného diagramu aktivít v AnimArchu
a pomocou statického diagramu aktivít sme porovnali aj štatistickým testom. Navrhli
sme nasledovné hypotézy:

• Nulová hypotéza (H0): Neexistuje významný rozdiel v úspešnosti úloh pomocou
AnimArchu a statického diagramu aktivít.

• Alternatívna hypotéza (H1): Existuje významný rozdiel v úspešnosti úloh pomo-

44 KAPITOLA 5. EVALUÁCIA VÝSLEDKOV

cou AnimArchu a statického diagramu aktivít.

Pre každý nástroj sme vytvorili vektor reprezentujúci skóre účastníkov, ktorí po-
užívali daný nástroj. Skóre pre každého účastníka sa vypočíta ako počet správnych
odpovedí pri riešení jednej úlohy. Výsledné vektory sú:

animarchSkore = [4, 5, 4, 3, 3, 5, 3, 4, 2, 5]

diagramSkore = [4, 5, 4, 4, 4, 5, 5, 5, 5, 5].

Na overenie nulovej hypotézy sme najskôr vykonali Shapiro-Wilkov test normality
s hodnotou α = 0.05, kedy nám vyšli hodnoty p = 0.19099 a p = 0.00017. Keďže jedna
hodnota p je menšia ako 0.05 dáta nie sú normálne rozdelené. Preto použijeme Wil-
coxonov test, ktorý je neparametrický a vhodný pre porovnanie dvoch skupín, práve
ak dáta nie sú normálne rozdelené. Po použití Wilcoxonovho testu nám vyšla hodnota
p = 0.0625, čo je väčšie ako hranica α, a preto nulovú hypotézu nezamietame. Dospe-
jeme teda k záveru, že neexistuje štatisticky významný rozdiel v úspešnosti riešenia
úloh pomocou rôznych diagramov aktivít.

Keďže nulová hypotéza nebola zamietnutá, na dokázanie alternatívnej hypotézy
nemáme dostatok údajov.

Aj napriek tomu, že používatelia statického diagramu aktivít boli úspešnejší pri
vyššom počte otázok boli, neznamená to, že animovaný diagram aktivít je neefektívny.
Naopak, keďže ide o nový prístup, na ktorý používatelia nie sú zvyknutí, vyžaduje
si určitý čas na osvojenie. Po oboznámení sa s takýmto interaktívnym spôsobom vi-
zualizácie diagramu aktivít by jeho potenciál mohol výraznejšie vyniknúť, najmä pri
komplexnejších procesoch, kedy by animácia výrazne zjednodušila pochopenie daného
procesu.

5.2.3 Vyhodnotenie SUS dotazníka

SUS je nástroj na meranie použiteľnosti systému, ktorý pozostáva z desiatich tvrdení
hodnotených na päťstupňovej Likertovej škále. Používatelia pri odpovediach vyberajú
hodnoty od 1 do 5, kde 1 znamená „Úplne nesúhlasím“ a 5 „Úplne súhlasím“. Výsledkom
je číselné skóre od 0 do 100, ktoré odráža mieru použiteľnosti systému z pohľadu pou-
žívateľa. Za priemerné SUS skóre sa pokladá 68 [29], pričom ak je skóre v rozmedzí od
50 do 70, použiteľnosť sa považuje za priemernú alebo akceptovateľnú. SUS skóre pod
hranicou 50 naznačuje slabú mieru použiteľnosti systému. Naopak SUS skóre v rozme-
dzí 70 až 80 indikuje dobrú použiteľnosť systému a skóre nad 80 značí výbornú úroveň
použiteľnosti.

SUS skóre vypočítame na základe pozícií odpovedí účastníkov na škále. Pri párnych
otázkach získame skóre odpočítaním danej hodnoty odpovede od 5. Pri nepárnych

5.2. VYHODNOTENIE TESTOVANIA 45

otázkach odrátame 1 od hodnoty odpovede. Výsledné skóre získame sčítaním týchto
hodnôt a vynásobením číslom 2.5, čím dosiahneme, že výsledné skóre bude v rozmedzí
0 až 100.

Obr. 5.6: Krabicový diagram SUS skóre pre AnimArch a statický diagram aktivít.

Na obrázku 5.6 je porovnanie vypočítaných SUS skóre pre softvér AnimArch a pre
statický diagram aktivít.

Skóre pre AnimArch sa pohybovali v rozmedzí 50 až 97.5, pričom skóre 50 pred-
stavuje odľahlú hodnotu (outlier), ktorá sa výrazne líši od ostatných hodnôt. Medián
SUS skóre pre AnimArch bol 91.25, čo sa považuje za výbornú použiteľnosť.

SUS skóre pre statický diagram aktivít malo hodnoty 65 až 100, pričom medián bol
82.5, čo sa tiež pokladá za výbornú mieru použiteľnosti.

Aj napriek tomu, že používatelia pracovali s animovaným diagramom aktivít v Ani-
mArchu prvýkrát, použiteľnosť hodnotili kladne, čo môže byť náznak toho, že sme naše
riešenie navrhli a implementovali vhodne a užívateľsky prívetivo.

5.2.4 Vyhodnotenie NASA-TLX dotazníka

NASA-TLX je nástroj, ktorý sa využíva pri meraní záťaže, ktorú človek vníma pri vy-
konávaní nejakej úlohy. Obsahuje 6 otázok, ktoré zisťujú do akej miery človek pociťoval
mentálnu a fyzickú náročnosť, časový tlak, ako hodnotí svoju úspešnosť, vynaložené
úsilie a frustráciu počas vykonávania danej úlohy. Používatelia hodnotili tieto aspekty
vzhľadom na úlohu, ktorú riešili pomocou softvéru AnimArch, pričom využívali 10-
bodovú škálu.

46 KAPITOLA 5. EVALUÁCIA VÝSLEDKOV

Obr. 5.7: Husľový diagram NASA-TLX skóre pre AnimArch.

Na obrázku 5.7 je zobrazené hodnotenie jednotlivých aspektov, pričom väčšia hod-
nota znamená horšie hodnotenie, teda napríklad väčšiu náročnosť, časový nátlak alebo
väčší pocit frustrácie. Niektorí používatelia uviedli nižšiu úroveň mentálnej náročnosti,
zatiaľ čo iní pociťovali vyššiu náročnosť. Tento rozdiel môže súvisieť s ich predchádza-
júcimi znalosťami UML modelovania. Používatelia, ktorí svoje znalosti ohodnotili ako
podpriemerné, mohli mať väčší problém s porozumením diagramu aktivít a následným
riešením úloh. Naopak, tí, ktorí sa považovali za skúsenejších, mohli vnímať úlohy ako
menej náročné. Používatelia prevažne nepociťovali fyzickú náročnosť ani frustráciu pri
riešení úlohy, čo môže znamenať, že s naším softvérom sa im pracovalo dobre a bez
výraznejších problémov. Používatelia svoju úspešnosť hodnotili rôzne, čo tiež môže sú-
visieť s hodnotením mentálnej náročnosti, kedy mohli používatelia, ktorým prišla úloha
náročnejšia, označiť svoju úspešnosť za horšiu. Hodnotenie úspešnosti má však v do-
tazníku opačné bodovanie, na aké môžu byť používatelia bežne zvyknutí, keďže vyššia
hodnota v tomto prípade predstavuje horšiu úspešnosť. Je teda možné, že niektorí
účastníci si túto skutočnosť neuvedomili, a preto uviedli vyššie číslo, aj keď mysleli
jeho opačnú hodnotu.

5.2.5 Celkové vyhodnotenie

Na základe výsledkov testovania sme vytvorili viacero korelačných teplotných máp, na
ktorých znázorňujeme vzťahy medzi rôznymi dátami. Pri vytváraní týchto máp sme
využili Pearsonov korelačný koeficient, ktorý meria lineárnu závislosť medzi dvoma

5.2. VYHODNOTENIE TESTOVANIA 47

premennými. Hodnota tohto koeficientu nadobúda hodnoty v rozmedzí od -1 do 1,
kde hodnota 1 predstavuje pozitívnu koreláciu, čo znamená, že skúmané premenné sú
navzájom priamo úmerné. Hodnota −1 predstavuje negatívnu koreláciu a znamená, že
premenné sú nepriamo úmerné. Hodnota 0 značí, že medzi premennými nie je žiadna
lineárna závislosť.

Pri značení jednotlivých dát v mapách sme, pre lepšiu prehľadnosť, využili skrátené
označenia. Označenie Znalosť ANS predstavuje ako účastníci ohodnotili svoju znalosť
analýzy a návrhu softvéru. Označenia Znalosť UML a Porozumenie UML označujú ako
účastníci ohodnotili svoju znalosť a porozumenie UML modelov. Označenia SUS1 až
SUS10 predstavujú štandardné otázky, ktoré sa využívajú v SUS dotazníkoch. Otázky
z NASA-TLX sú na obrázku skrátene označené, podľa aspektov, na ktoré sa zameria-
vajú, pričom sú bližšie opísané v sekcii 5.2.4. Riadky a stĺpce, pre ktoré sa korelácia
nedala určiť z dôvodu konštantných hodnôt, sa v korelačnej mape zobrazujú prázdne.

Obr. 5.8: Korelačná teplotná mapa znázorňujúca vzťahy medzi úspešnosťou riešenia
úlohy 1 pomocou AnimArchu a zvyšnými dátami z dotazníku.

Na obrázku 5.8 je znázornená korelačná teplotná mapa, ktorá zachytáva vzťahy
medzi úspešnosťou riešenia úlohy 1, keď účastníci využívali animovaný diagram ak-

48 KAPITOLA 5. EVALUÁCIA VÝSLEDKOV

tivít v AnimArchu, a demografickými údajmi, či odpoveďami na SUS a NASA-TLX
dotazníky.

Korelácia medzi znalosťou analýzy a návrhu softvéru a porozumením UML zobra-
zuje, že čím väčšiu majú účastníci znalosť analýzy a návrhu, tým lepšie vedia chápať
UML modely.

Otázky 2 a 3 úlohy 1 overovali, či účastníci správne pochopili podmienky v dia-
grame aktivít. Vidíme, že práve úspešnosť riešení týchto otázok významne koreluje so
znalosťami AnimArchu, čo naznačuje, že používateľom sa darilo lepšie, ak mali predošlé
skúsenosti s AnimArchom. To môže byť spôsobené tým, že sa v softvéri cítili pohodl-
nejšie, keďže ho viac poznali. Znalosti analýzy a návrhu softvéru, či UML modelov
nemali príliš významnú koreláciu s úspešnosťou riešenia úlohy 1.

Medzi úspešnosťou riešenia otázky 4 a otázkou 9 zo SUS dotazníka je negatívna
korelácia, ktorá predstavuje, že používatelia boli menej úspešní, hoci uviedli, že sa pri
používaní systému cítili sebavedomo. To môže naznačovať, že systém sa im používal
dobre, ale na správne vyriešenie otázok si diagram aktivít dostatočne nezapamätali
alebo ho nepochopili. Negatívna korelácia medzi otázkami 5 a 10 zo SUS dotazníka
naznačuje, že čím menej sa zdal účastníkom systém dobre prepojený, tým viac vecí sa
museli naučiť pred použitím systému. To môže naznačovať, že systém bol pre niektorých
používateľov komplexný a menej prehľadný. Keďže ale animovanie diagramu aktivít
v AnimArchu bolo pre účastníkov novou skúsenosťou, je možné, že po dlhšom čase by
si účastníci systém osvojili a mohli by ho plnohodnotnejšie využívať.

Mentálna náročnosť úlohy negatívne koreluje s úspešnosťou riešenia otázky 4, čo
značí, že účastníci, ktorí boli pri riešení otázky 4 menej úspešní pokladali úlohu za
náročnejšiu. Korelácia medzi fyzickou náročnosťou a SUS otázkou 8 predstavuje, že
používatelia hodnotili riešenie úlohy ako málo fyzicky náročné, a zároveň ohodnotili
systém ako ľahko ovládateľný. Z toho môžeme usúdiť, že animovaný diagram aktivít
sme navrhli vhodne, tak aby sa používateľom ľahko používal. Negatívna korelácia me-
dzi pocitom časového nátlaku a SUS otázkou 4 naznačuje, že účastníci, ktorí pociťovali
vyšší časový tlak, uviedli, že nemali pocit potreby pomoci technicky zdatnejšej osoby.
Z toho môžeme usúdiť, že hoci účastníci nepotrebovali pomoc technickejšej osoby, po-
trebovali by viac času na osvojenie si systému. Korelácia ohodnotenia svojej úspešnosti
a porozumenia UML modelov značí, že účastníci, ktorí označili svoje znalosti chápa-
nia UML modelov za vyššie, hodnotili svoju úspešnosť horšie. Avšak, ako sme opísali
v predchádzajúcej sekcii, je možné, že používatelia nesprávne pochopili hodnotenie
úspešnosti, a preto nevieme s určitosťou analyzovať túto vlastnosť. Korelácia medzi
vynaloženým úsilím a SUS otázkou 5 zobrazuje, že používatelia, ktorí vynaložili viac
úsilia pri riešení úlohy, mali väčší pocit, že systém je dobre prepojený. Hodnotenie
vynaloženého úsilia tiež negatívne koreluje s otázkou 10 zo SUS dotazníka, kedy pou-
žívatelia, ktorí vynaložili viac úsilia sa museli naučiť menej vecí, pred riešením úlohy.

5.2. VYHODNOTENIE TESTOVANIA 49

To môže súvisieť s tým, že disponovali dostatočnými znalosťami alebo si systém viac
osvojili.

Obr. 5.9: Korelačná teplotná mapa znázorňujúca vzťahy medzi úspešnosťou riešenia
úlohy 1 pomocou statického diagramu a zvyšnými dátami z dotazníku.

Na obrázku 5.9 je znázornená korelačná teplotná mapa, zachytávajúca vzťahy medzi
úspešnosťou riešenia úlohy 1, keď účastníci využívali statický diagram aktivít, a demo-
grafickými údajmi a odpoveďami na SUS dotazník.

Výrazná negatívna korelácia je medzi úspešnosťou riešenia otázky 4 a znalosťou
UML modelov, kedy účastníci pravdepodobne precenili svoje znalosti a darilo sa im
horšie, keď uviedli vyššie znalosti UML modelov.

Otázka 4 zo SUS dotazníku výrazne koreluje s uvedenými znalosťami analýzy a ná-
vrhu softvéru, čo naznačuje priamu úmeru medzi znalosťami účastníka a pocitom po-
treby technicky zdatnejšej osoby pri používaní statického diagramu, aj keď by sme
predpokladali opak. Znalosť UML modelovania tiež významne koreluje s odpoveďou
8 na SUS dotazník, kedy čím vyššiu znalosť účastníci uviedli, tým ťažšie sa im sta-
tický diagram ovládal. Otázka 8 tiež výrazne negatívne koreluje s úspešnosťou riešenia
otázky 4, ktorá zisťovala, či účastníci správne pochopili vykreslenie podmienky v dia-

50 KAPITOLA 5. EVALUÁCIA VÝSLEDKOV

grame. To značí, že používatelia, ktorým sa ťažšie ovládal statický diagram boli aj
menej úspešní pri riešení otázky 4. Z toho môžeme usúdiť, že statický diagram aktivít
nebol dostačujúci, na to aby ho účastníci správne interpretovali, a teda boli pri riešení
otázky úspešní. Taktiež negatívne korelujú SUS otázky 3 a 10, kedy účastníci, ktorým
sa systém ľahko používal, mali aj pocit, že sa museli naučiť menej vecí, aby ho mohli
používať.

Korelačná teplotná mapa zobrazujúca vzťahy medzi úspešnosťou riešenia úlohy
2, ktorú účastníci riešili pomocou animovaného diagramu aktivít, a demografickými
údajmi a odpoveďami na SUS a NASA-TLX dotazníky je zobrazená na obrázku 5.10.

Obr. 5.10: Korelačná teplotná mapa znázorňujúca vzťahy medzi úspešnosťou riešenia
úlohy 2 pomocou AnimArchu a zvyšnými dátami z dotazníku.

Zaujímavá je negatívna korelácia medzi porozumením UML a znalosťou analýzy
a návrhu softvéru, kedy čím vyššie porozumenie UML modelov účastníci uviedli, tým
mali menšiu znalosť analýzy a návrhu softvéru. Z toho môžeme usúdiť, že účastníci
radšej chápu UML modely, keďže v nich majú väčšie znalosti, ako analyzujú a navrhujú
softvér vo všeobecnosti.

Negatívna korelácia medzi znalosťami UML a úspešnosťou riešenia otázok 1 a 3

5.2. VYHODNOTENIE TESTOVANIA 51

môže súvisieť s tým, že študenti presne neodhadli svoje znalosti, teda sa im darilo
menej, hoci uviedli vyššie znalosti UML modelovania. Otázka 1 pritom skúmala, či
používatelia správne pochopili podmienku v tele cyklu, zatiaľ čo otázka 3 zisťovala,
či si používatelia dostatočne zapamätali obsah diagramu. Predošlá znalosť AnimArchu
výrazne nekoreluje s úspešnosťou riešenia jednotlivých otázok, a teda sa študentom
darilo rovnako, bez ohľadu na ich predošlé skúsenosti s AnimArchom.

Jednotlivé otázky SUS dotazníku medzi sebou výrazne korelujú, či už negatívne
alebo pozitívne. Najväčšie negatívne korelácie sú medzi SUS otázkami 4 a 7, kde sa
ukázalo, že čím menej účastníci cítili potrebu pomoci technicky zdatnejšej osoby pri po-
užívaní AnimArchu, tým viac sa prikláňali k názoru, že väčšina ľudí by sa tento systém
naučila používať veľmi rýchlo. Taktiež výrazne negatívne korelujú otázky 7 a 10, kedy
sa ukázalo, že čím viac si účastníci mysleli, že väčšina ľudí sa naučí AnimArch používať
rýchlo, tým menej nových vecí sa sami museli naučiť predtým, než ho začali používať.
Z toho tiež vyplýva výrazná korelácia medzi otázkami 4 a 10 zo SUS dotazníka, čo
naznačuje, že čím menej účastníci potrebovali pomoc technicky zdatnejšej osoby, tým
menej nových vecí sa museli naučiť, pred samotným používaním AnimArchu. Z toho
môžeme usúdiť, že použitie diagramu aktivít v AnimArchu bolo pre účastníkov ľahko
pochopiteľné a nevyžadovalo si veľké predchádzajúce znalosti ani technickú podporu.

Pomerne výrazná negatívna korelácia sa vyskytuje aj v porovnaní mentálnej nároč-
nosti úlohy a úspešnosťou riešenia otázok 1 a 3. To naznačuje, že používatelia, ktorí
uviedli nízku mentálnu záťaž boli pri riešení otázok 1 a 3 úspešnejší. Taktiež výrazne
koreluje fyzická náročnosť pri riešení úlohy a SUS otázky 4 a 10 a negatívne koreluje
s otázkou 7 zo SUS dotazníka. Nízka fyzická náročnosť opäť súvisí s tým, že účastníci
pociťovali nízku potrebu technicky zdatnejšej osoby, mysleli si, že väčšina ľudí sa naučí
AnimArch používať rýchlo a bez potreby učenia nových vecí. Korelácia medzi tým, ako
účastník ohodnotil svoju úspešnosť, a jeho znalosťou AnimArchu môže naznačovať, že
účastníci, ktorí uviedli vyššie znalosti AnimArchu ohodnotili svoju úspešnosť horšie.
Keďže je ale možné, že niektorí účastníci nepochopili správne hodnotenie svojej úspeš-
nosti, túto vlastnosť nevieme presne interpretovať. Vysoká korelácia medzi tým, ako
účastníci ohodnotili frustráciu počas riešenia úlohy a otázkou 2 zo SUS dotazníka sú-
visí s tým, že používatelia pociťovali nízku frustráciu a zároveň si mysleli, že systém nie
je zbytočne zložitý. Z toho môžeme usúdiť, že animovaný diagram aktivít v AnimArchu
sa účastníkom používal ľahko, a teda bol dobre navrhnutý a implementovaný.

Na obrázku 5.11 je znázornená korelačná teplotná mapa, zachytávajúca vzťahy
medzi úspešnosťou riešenia úlohy 2, keď účastníci využívali statický diagram aktivít,
a demografickými údajmi a odpoveďami na SUS dotazník.

Úspešnosť riešenia otázky 5 negatívne koreluje s porozumením UML modelov, čo
znamená, že účastníkom sa darilo menej, hoci uviedli vyššie porozumenie UML mode-
lov. Piata otázka pritom skúmala, ako účastníci pochopili a zapamätali si daný diagram

52 KAPITOLA 5. EVALUÁCIA VÝSLEDKOV

aktivít. Môžeme teda usúdiť, že účastníci precenili svoje schopnosti chápania UML mo-
delov.

Otázka 3 zo SUS dotazníka je v korelácii s porozumením UML modelov, kedy účast-
níci, ktorí ohodnotili, že systém sa ľahko používa, uviedli aj lepšie porozumenie UML
modelov. Táto otázka tiež negatívne koreluje s úspešnosťou riešenia otázky 5, kedy
sa účastníkom darilo horšie, hoci uviedli, že systém sa používa ľahko. SUS otázka 7
významne koreluje so znalosťami analýzy a návrhu softvéru a porozumením UML mo-
delov. To značí, že účastníci, ktorí predpokladali, že väčšina ľudí by sa naučila systém
ľahko používať mali aj väčšie znalosti z analýzy a návrhu softvéru a porozumenia UML
modelov. Táto otázka je tiež v negatívnej korelácii s otázkou 1 zo SUS dotazníka, kedy
účastníci uviedli, že by menej radi používali tento systém do budúcna, hoci si mysleli,
že väčšina ľudí by sa naučila ho ľahko používať. Z toho môže vyplývať, že používatelia
neboli dostatočne spokojní so statickým zobrazením diagramu aktivít, aj keď sa použí-
val ľahko. Korelácia SUS otázky 6 a 8 naznačuje, že účastníci, ktorí považovali systém
za menej ucelený, zároveň určili, že sa ovláda ťažšie. Z toho môžeme usúdiť, že statický
diagram aktivít pôsobil na účastníkov nekonzistentne, a preto sa im ťažšie používal.

Obr. 5.11: Korelačná teplotná mapa znázorňujúca vzťahy medzi úspešnosťou riešenia
úlohy 2 pomocou statického diagramu a zvyšnými dátami z dotazníku.

5.2. VYHODNOTENIE TESTOVANIA 53

Obr. 5.12: Korelačná teplotná mapa znázorňujúca vzťahy medzi úspešnosťou riešenia
oboch úloh a odpoveďami na NASA-TLX otázky.

Na obrázku 5.12 je znázornená korelačná teplotná mapa vzťahov medzi úspešnos-
ťami riešenia oboch úloh a demografickými údajmi a odpoveďami na NASA-TLX do-
tazník.

Medzi úspešnosťou riešenia otázok 2 a 3 v úlohe 1 a znalosťou analýzy a návrhu
softvéru je stredne silná korelácia. To naznačuje, že čím vyššiu znalosť analýzy a návrhu
účastníci uvideli, tým lepšie sa im darilo. Naopak medzi úspešnosťami riešenia otázky
4 v úlohe 1, otázky 1 a otázky 3 v úlohe 2 a znalosťami UML modelov je stredne
silná negatívna korelácia. To znamená, že účastníci boli v riešení týchto otázok menej
úspešní, hoci uviedli vyššie znalosti UML modelov. Z toho môžeme usúdiť, že niektorí
účastníci nevedeli správne odhadnúť mieru svojich znalostí UML modelov.

Výrazná negatívna korelácia je medzi pocitom mentálnej záťaže pri riešení úlohy
a úspešnosťou riešenia otázky 4 v úlohe 1, kedy používatelia, ktorí uviedli vyššiu men-
tálnu náročnosť, boli aj menej úspešní. Pocit časového nátlaku tiež stredne negatívne
koreluje so znalosťami analýzy a návrhu softvéru a úspešnosťami riešenia otázok 2 a 3
v úlohe 1. To naznačuje, že čím nižší časový nátlak účastníci pociťovali, tým vyššie
znalosti analýzy a návrhu mali, a tiež boli úspešnejší pri riešení otázok. Z toho môžeme

54 KAPITOLA 5. EVALUÁCIA VÝSLEDKOV

usúdiť, že účastníci s väčšími znalosťami analýzy a modelovania boli pri riešení viac
sebavedomí a efektívni, a preto pociťovali menší časový tlak.

5.2.6 Diskusia

Účastníci vo všeobecnosti hodnotili úlohy, ktoré riešili pomocou animovaného diagramu
aktivít v AnimArchu, ako málo fyzicky náročné. Zároveň tiež pociťovali nízku frustrá-
ciu, nepociťovali potrebu pomoci technicky zdatnejšej osoby a mysleli si, že väčšina ľudí
by sa naučila animovaný diagram aktivít v AnimArchu používať rýchlo a bez potreby
učenia nových vecí.

Niektorí účastníci uviedli, že systém sa im zdal menej ucelený a museli sa pred po-
užitím naučiť viac vecí. To mohlo byť spôsobené tým, že mali vyhradený pre nich príliš
krátky čas na to, aby si plnohodnotne osvojili animáciu diagramu aktivít v AnimArchu,
a preto sa im mohol zdať systém menej ucelený. Účastníci, ktorí pociťovali vyšší časový
nátlak, uviedli, že nemali potrebu pomoci technicky zdatnejšej osoby. Z toho môžeme
usúdiť, že účastníkom prišlo použitie AnimArchu jednoduché, keďže nepotrebovali po-
moc technickejšej osoby, avšak by potrebovali viac času na osvojenie si systému, vďaka
čomu by pracovali efektívnejšie, a teda by pociťovali nižší časový nátlak.

Účastníci, ktorí používali AnimArch pri riešení úlohy 1 boli úspešnejší, ak mali
s AnimArchom predošlé skúsenosti. To môže byť spôsobené tým, že sa v softvéri cí-
tili pohodlnejšie, keďže ho viac poznali. Účastníci, ktorí mali s AnimArchom menšie
skúsenosti, mohli tiež sústrediť svoju pozornosť aj na zoznámenie sa so softvérom a ne-
venovali toľko pozornosti samotnému diagramu aktivít, a preto sa im darilo horšie. Pri
riešení úlohy 2 pomocou AnimArchu sa ukázalo, že predošlé skúsenosti s AnimArchom
nemali žiadny vplyv na úspešnosť riešenia úlohy.

Vo všeobecnosti teda môžeme usúdiť, že účastníkom sa narábalo s animovaným
diagramom aktivít jednoducho, nepociťovali frustráciu ani potrebu pomoci technicky
zdatnejšej osoby. Keďže sa jedná o nový spôsob vizualizovania diagramu aktivít pro-
stredníctvom animovania v AnimArchu, s ktorým účastníci nemali doterajšie skúse-
nosti, na plnohodnotné osvojenie tohto spôsobu by potrebovali viac času. Aj napriek
tomu ohodnotili animovaný diagram aktivít v AnimArchu ako dobre použiteľný, a teda
môžeme tvrdiť, že naše riešenie sme navrhli a implementovali vhodne.

Závery sú vyvodzované len z dostupných dát, ktorých výpovedná hodnota môže byť
obmedzená, vzhľadom na počet účastníkov testovania.

Záver

Do softvéru AnimArch sme implementovali vizualizovanie a animovanie diagramu ak-
tivít. Ten sa generuje z načítaného kódu OAL, ktorý používateľ zvolí na začiatku
animácie. Vďaka animácii sa v diagrame zvýrazňujú aktuálne vykonávané príkazy, čo
môže prispieť k jednoduchšiemu pochopeniu vykonávaného kódu, najmä pri zložitejších
procesoch. Implementovali sme tiež zobrazovanie viacerých diagramov aktivít za sebou.
V prípade, že sa počas vykonávania zavolá nová metóda, vytvorí sa nový diagram ak-
tivít, ktorý sa zobrazuje za pôvodným diagramom aktivít, čím vytvárame pomyselný
zásobník volaní.

Naše riešenie sme evaluovali pomocou používateľského testovania. Testovania sa
zúčastnilo 10 účastníkov, ktorí riešili dve úlohy pomocou rôznych nástrojov. Polovica
účastníkov riešila prvú úlohu pomocou animovaného diagramu aktivít v AnimArchu
a druhú úlohu riešila pomocou statického diagramu aktivít. Druhá polovica postupovala
v opačnom poradí, a teda najskôr využili statický diagram a potom animovaný diagram
aktivít. Z testovania sa ukázalo, že obom skupinám sa darilo približne rovnako dobre,
bez výrazného rozdielu v úspešnosti riešení. Z výsledkov tiež môžeme určiť, že systém sa
im používal ľahko, avšak by potrebovali viac času, aby si systém plnohodnotne osvojili.

Účastníci tiež hodnotili použiteľnosť systému, kde výsledné SUS skóre malo hodnotu
91.25, čo sa považuje za výbornú použiteľnosť. Zisťovali sme tiež záťaž účastníkov pri
riešení úloh. Účastníci pociťovali nízku fyzickú záťaž a frustráciu, čo môže naznačovať,
že sa im s animovaným diagramom aktivít v AnimArchu pracovalo dobre.

V budúcnosti by sa mohlo implementovať aj animovanie diagramu aktivít pri para-
lelnom vykonávaní. Taktiež by sa mohlo uskutočniť testovanie s väčším počtom účast-
níkov, ktoré by mohlo poskytnúť cenné informácie, ako vylepšiť zobrazovanie diagramu
aktivít, aby boli používatelia úspešnejší, oproti využitiu statického diagramu aktivít,
a tiež rôzne iné poznatky, ktoré by účastníci navrhli pridať alebo upraviť. Do soft-
véru AnimArch by sa mohlo v budúcnosti tiež pridať animovanie ďalšieho UML dia-
gramu, napríklad sekvenčného diagramu. V AnimArchu sa aktuálne zobrazuje diagram
tried, diagram objektov a naša práca implementovala zobrazenie diagramu aktivít. Vo
výsledku sa teda animujú dva typy štrukturálnych UML diagramov a iba jeden be-
haviorálny UML diagram, preto by mohla pribudnúť práve vizualizácia sekvenčného
diagramu, ktorý by zobrazoval ďalšie behaviorálne vlastnosti systému.

55

56 ZÁVER

Literatúra

[1] Omer Salih and Abd-El-Kader Sahraoui. From Requirements Engineering to UML
using Natural Language Processing – Survey Study. European Journal of Engine-
ering Research and Science, 01 2017.

[2] The Unified Modeling Language. Dostupné na https://www.uml-diagrams.org.
[Citované: 2024-11-17].

[3] Clarifying concepts: MBE vs MDE vs MDD vs MDA. Dostupné na https://mo
deling-languages.com/clarifying-concepts-mbe-vs-mde-vs-mdd-vs-mda/.
[Citované: 2024-12-04].

[4] Executable UML. Dostupné na https://abstractsolutions.co.uk/our-ser
vices/executable-uml/. [Citované: 2024-10-20].

[5] Uwe Zdun, Carsten Hentrich, and Schahram Dustdar. Modeling process-driven
and service-oriented architectures using patterns and pattern primitives. TWEB,
1, 09 2007.

[6] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling
Language. Addison-Wesley Longman Publishing Co., Inc., USA, 3 edition, 2003.

[7] Teemu Rajala, Mikko-Jussi Laakso, Erkki Kaila, and Tapio Salakoski. VILLE
– A Language-Independent Program Visualization Tool. In Proceedings of the
Seventh Baltic Sea Conference on Computing Education Research - Volume 88,
page 151–159. Australian Computer Society, Inc., 11 2007.

[8] Enes Yigitbas, Simon Gorissen, Nils Weidmann, and Gregor Engels. Design and
evaluation of a collaborative UML modeling environment in virtual reality. Softw.
Syst. Model., 22(5):1397–1425, November 2022.

[9] Lukas Gregorovic and Ivan Polasek. Analysis and design of object-oriented soft-
ware using multidimensional uml. In Proceedings of the 15th International Con-
ference on Knowledge Technologies and Data-Driven Business, i-KNOW ’15, New
York, NY, USA, 2015. Association for Computing Machinery.

57

https://www.uml-diagrams.org
https://modeling-languages.com/clarifying-concepts-mbe-vs-mde-vs-mdd-vs-mda/
https://modeling-languages.com/clarifying-concepts-mbe-vs-mde-vs-mdd-vs-mda/
https://abstractsolutions.co.uk/our-services/executable-uml/
https://abstractsolutions.co.uk/our-services/executable-uml/

58 LITERATÚRA

[10] Matej Ferenc, Ivan Polasek, and Juraj Vincur. Collaborative modeling and visu-
alization of software systems using multidimensional UML. In 2017 IEEE Working
Conference on Software Visualization (VISSOFT), pages 99–103, 09 2017.

[11] Jakub Kucecka, Juraj Vincur, Peter Kapec, and Pavel Cicak. UML-based live
programming environment in virtual reality. In 2022 Working Conference on Soft-
ware Visualization (VISSOFT), pages 177–181, 10 2022.

[12] Project Technology Inc. Object Action Language Reference Manual, 2008. Do-
stupné na http://www.ooatool.com/docs/OAL08.pdf.[Citované: 2024-11-30].

[13] Frederick Brooks, Jr. No Silver Bullet Essence and Accidents of Software Engine-
ering. IEEE Computer, 20(4):10–19, 04 1987.

[14] Mohammad Hossain. Software Development Life Cycle (SDLC) Methodologies for
Information Systems Project Management. International Journal For Multidis-
ciplinary Research, 09 2023.

[15] Marc I Kellner, Raymond J Madachy, and David M Raffo. Software process simula-
tion modeling: Why? what? how? Journal of Systems and Software, 46(2):91–105,
1999.

[16] Nenad Medvidovic, David Rosenblum, David Redmiles, and Jason Robbins. Mode-
ling software architectures in the Unified Modeling Language. Medvidovic, N. and
Rosenblum, D.S. and Redmiles, D.G. and Robbins, J.E. (2002) Modeling software
architectures in the unified modeling language. ACM Transactions on Software
Engineering and Methodology, 11 (1). pp. 2-57. ISSN 1049331X, 11, 01 2002.

[17] Gregor Engels, Reiko Heckel, and Stefan Sauer. UML - A universal modeling
language? In Proceedings of the 21st International Conference on Application and
Theory of Petri Nets, ICATPN’00, Berlin, Heidelberg, 10 2000. Springer-Verlag.

[18] Frank Truyen. The Fast Guide to Model Driven Architecture, The Basics of Model
Driven Architecture. Cephas Consulting Corp, 2006.

[19] David Ameller, Xavier Burgués, Dolors Costal, Carles Farré, and Xavier Franch.
Non-functional requirements in model-driven development of service-oriented ar-
chitectures. Science of Computer Programming, 168:18–37, 2018.

[20] Alberto Silva. Model-driven engineering: A survey supported by a unified concep-
tual model. Computer Languages, Systems & Structures, 20, 06 2015.

[21] Martin Fowler. Language Workbenches and Model Driven Architecture. Dostupné
na https://martinfowler.com/articles/mdaLanguageWorkbench.html, 05
2005. [Citované: 2024-12-04].

http://www.ooatool.com/docs/OAL08.pdf
https://martinfowler.com/articles/mdaLanguageWorkbench.html

LITERATÚRA 59

[22] Marc Balcer and Ivar Jacobson. Executable UML: A Foundation for Model-Driven
Architectures. 01 2002.

[23] Miguel Luz and Alberto Rodrigues da Silva. Running and Debugging UML Mo-
dels. Lisboa, Portugal, 2004. INESC-ID.

[24] Federico Ciccozzi, Ivano Malavolta, and Bran Selic. Execution of UML models:
a systematic review of research and practice. Software & Systems Modeling,
18(3):2313–2360, 06 2019.

[25] BridgePoint IDE. Dostupné na https://xtuml.org/. [Citované: 2024-12-01].

[26] Keith E. Brown. Navigating the rover with xtUML. In ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems, 2018.

[27] Martin Siebenhaller and Michael Kaufmann. Drawing activity diagrams. In Pro-
ceedings of the 2006 ACM Symposium on Software Visualization, SoftVis ’06, page
159–160, New York, NY, USA, 2006. Association for Computing Machinery.

[28] Lukas Radosky and Ivan Polasek. Executable multi-layered software models. In
Proceedings of the 1st International Workshop on Designing Software, Designing
’24, page 46–51, New York, NY, USA, 2024. Association for Computing Machinery.

[29] James R. Lewis and Jeff Sauro. Item benchmarks for the system usability scale.
J. Usability Studies, 13(3):158–167, May 2018.

[30] Anjana Ramkumar, Pieter Jan Stappers, W.J. Niessen, Sonja Adebahr, Tanja
Schimek-Jasch, Ursula Nestle, and Wolf Song. Using goms and nasa-tlx to evaluate
human-computer interaction process in interactive segmentation. International
Journal of Human-Computer Interaction, 33:1–12, 09 2016.

https://xtuml.org/

60 LITERATÚRA

Príloha A: Používateľské testovanie

Táto príloha obsahuje úlohy, ktoré riešili účastníci testovania.

Úloha 1

V úlohe 1 účastníci využívali niektorý z diagramov zobrazených na obrázku 5.13 a 5.14.
Po preštudovaní diagramu účastníci odpovedali na nasledovné otázky:

1. Čo sa stane, ak tovar nie je skladom?

• Proces pokračuje k výberu spôsobu platby.

• Objednávka je zrušená.

• Systém automaticky objedná tovar od dodávateľa.

• Objednávka sa odloží na neskôr.

2. Aké možnosti platby sú akceptované podľa diagramu?

• Karta, Prevod

• Dobierka, Karta

• Karta, Hotovosť

• Hotovosť, Dobierka

3. Čo sa stane, ak platba nie je úspešná?

• Objednávka pokračuje bez platby.

• Používateľ je požiadaný o opravu údajov.

• Používateľ je informovaný a objednávka je zrušená.

• Používateľ je presmerovaný na dobierku.

4. Ktorý krok nasleduje po úspešnej platbe?

• Informovanie používateľa o stave objednávky.

• Odoslanie objednávky.

61

62 PRÍLOHA A: POUŽÍVATEĽSKÉ TESTOVANIE

• Zrušenie objednávky.

• Presmerovanie používateľa na hlavné menu.

5. Aké podmienky musia byť splnené, aby objednávka mohla byť odoslaná?

• Tovar musí byť na sklade a platba musí byť úspešná.

• Tovar musí byť na sklade a platba musí byť vykonaná kartou.

• Platba musí byť úspešná, ale dostupnosť tovaru nie je dôležitá.

• Objednávka môže byť odoslaná bez ohľadu na dostupnosť tovaru.

PRÍLOHA A: POUŽÍVATEĽSKÉ TESTOVANIE 63

Obr. 5.13: Animovaný diagram aktivít v AnimArchu pre úlohu 1.

64 PRÍLOHA A: POUŽÍVATEĽSKÉ TESTOVANIE

Obr. 5.14: Statický diagram aktivít pre úlohu 1.

PRÍLOHA A: POUŽÍVATEĽSKÉ TESTOVANIE 65

Úloha 2

V úlohe 2 účastníci využívali niektorý z diagramov zobrazených na obrázku 5.15 a 5.16.
Po preštudovaní diagramu ďalej odpovedali na nasledovné otázky:

1. Čo sa stane, ak objednávka nie je na sklade?

• Objednávka sa spracuje a odošle.

• Objednávka sa preskočí.

• Objednávka sa odstráni zo zoznamu.

• Objednávka sa označí ako vybavená.

2. Koľko objednávok sa vytvorí v metóde vytvorObjednavky?

• 1

• 2

• 3

• 4

3. Aký je stav atribútu naSklade pre objednavka2?

• TRUE

• FALSE

• NULL

• Nie je definovaný.

4. Čo sa vykoná pre objednávku, ktorá je na sklade?

• Objednávka sa preskočí.

• Objednávka sa odošle.

• Objednávka sa odstráni zo zoznamu.

• Objednávka sa označí ako nevybavená.

5. Čo sa stane po spracovaní všetkých objednávok?

• Zoznam objednávok sa vymaže.

• Systém oznámi, že všetky objednávky boli spracované.

• Objednávky sa znova spracujú.

• Proces sa ukončí bez výstupu.

66 PRÍLOHA A: POUŽÍVATEĽSKÉ TESTOVANIE

Obr. 5.15: Animovaný diagram aktivít v AnimArchu pre úlohu 2.

PRÍLOHA A: POUŽÍVATEĽSKÉ TESTOVANIE 67

Obr. 5.16: Statický diagram aktivít pre úlohu 2.

68 PRÍLOHA A: POUŽÍVATEĽSKÉ TESTOVANIE

Príloha B: Elektronická príloha

Elektronická príloha obsahuje zdrojový kód aplikácie.
Zdrojový kód sa nachádza aj online na adrese https://github.com/karkub/AnimAr
ch.

69

https://github.com/karkub/AnimArch
https://github.com/karkub/AnimArch

	Úvod
	Úvod do problematiky
	Modelovanie softvéru
	UML
	Techniky vývoja softvéru
	Spustiteľné UML
	OAL

	Diagram aktivít

	Nástroje na vizualizovanie softvéru
	AnimArch
	VILLE
	Iné nástroje

	Požiadavky a návrh rozšírenia aplikácie
	Požiadavky
	Návrh aplikácie

	Implementácia
	Statické zobrazenie
	Dynamické zobrazenie

	Evaluácia výsledkov
	Návrh testovania
	Vyhodnotenie testovania
	Demografické údaje účastníkov
	Vyhodnotenie riešenia úloh
	Vyhodnotenie SUS dotazníka
	Vyhodnotenie NASA-TLX dotazníka
	Celkové vyhodnotenie
	Diskusia

	Záver
	Príloha A: Používateľské testovanie
	Úloha 1
	Úloha 2

	Príloha B: Elektronická príloha

