UNIVERZITA KOMENSKEHO V BRATISLAVE
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

ANIMACIA A VIZUALIZACIA DIAGRAMOV V
SOFTVEROVOM INZINIERSTVE
DIPLOMOVA PRACA

2025 Bc. KARIN KUBINOVA

UNIVERZITA KOMENSKEHO V BRATISLAVE

FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

ANIMACIA A VIZUALIZACIA DIAGRAMOV V
SOFTVEROVOM INZINIERSTVE

étudij ny program:
Studij ny odbor:

Skoliace pracovisko:

Skolitel:

Bratislava, 2025

DIPLOMOVA PRACA

Aplikované informatika
Informatika

Katedra aplikovanej informatiky
Ing. Lukas Radosky

Be. Karin Kubinova

85675011

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZAVERECNEJ PRACE

Meno a priezvisko Studenta: Bc. Karin Kubinova

Studijny program: aplikovana informatika (Jednoodborové stadium,
magistersky II. st., denna forma)

Studijny odbor: informatika

Typ zaverecnej prace: diplomova

Jazyk zaverecnej prace: slovensky

Sekundarny jazyk: anglicky

Nazov: Animdcia a vizualizacia diagramov v softvérovom inZinierstve

Anotacia:

Ciel’:

Literatura:

KPucové
slova:

Veduci:

Animation and visualisation of software engineering diagrams

Abstrakcia je v softvérovom inzinierstve klIiovym néstrojom. Softvérové
systémy s dnes znacne zloZité a tato zloZitost’ neustale narastd. NajzndmejSim
sposobom abstrakcie nad softvérovymi systémami st UML diagramy. Hoci
v praxi nie je ich notacia striktne dodrziavané, aj spontanne vytvarané diagramy
Casto dodrziavaju vybrané konvencie UML notécie. Diagramy spostredkuji
pochopenie systému omnoho rychlejsie nez stadium zdrojového kodu. Preto méa
zmysel sa nimi zaoberat’, hl'adat’ ich zlepSenia a mozné doplnky. Prikladom je
animovanie, ktoré statickym UML diagramom dodava dynamiku a interaktivitu.

Analyzujte existujice moznosti a pristupy vizualizdcie a animacie
diagramov v softvérovom inZinierstve. Navrhnite vhodny sposob zobrazovania
a animovania diagramov, napriklad diagramu aktivit v softvéri AnimArch.
Implementujte prototyp tohto navrhu. Svoje rieSenie overte na vhodne
zvolenom priklade vstupného zdrojového kddu, pripadne diagramu, v zavislosti
od navrhnutého rieSenia. Implementaciu overte aj pomocou pouzivatel'ského
testovania. Dosiahnuté vysledky vhodne analyzujte a zhodnot'te.

Névrh, implementécia a evaludcia nového sposobu vizualizacie a animacie
zvoleného typu diagramu v softvérovom inzinierstve

Yigitbas, E., Gorissen, S., Weidmann, N. et al. Design and evaluation of
a collaborative UML modeling environment in virtual reality. Softw Syst Model
22, 13971425 (2023). https://doi.org/10.1007/s10270-022-01065-2

Kucecka, J., Vincur, J., Kapec, P., & Cicak, P. (2022). UML-based Live
Programming Environment in Virtual Reality. 2022 Working Conference on
Software Visualization (VISSOFT), 177-181.

M. Ferenc, 1. Polasek and J. Vincur, "Collaborative Modeling and Visualization
of Software Systems Using Multidimensional UML", 2017 IEEE Working
Conference on Software Visualization (VISSOFT), Shanghai, China, 2017, pp.
99-103, doi: 10.1109/VISSOFT.2017.19.

Softvérové inzinierstvo, Modelovanie softvéru, UML diagram, Vizualizécia,
Animacia

Ing. Lukas Radosky

85675011

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

Katedra: FMFI.KALI - Katedra aplikovanej informatiky
Veduci katedry: doc. RNDr. Tatiana Jajcayova, PhD.

Sposob spristupnenia elektronickej verzie prace:
bez obmedzenia

Datum zadania: 08.11.2023

Datum schvalenia: 11.11.2023 prof. RNDr. Roman Durikovi¢, PhD.

garant $tudijného programu

Student veduci prace

Cestne vyhlasujem, Ze som tito diplomova pracu vypracovala samostatne, len s po-
mocou uvedenej literatury a pod starostlivym dohladom vediceho mojej diplomove;j

prace.

V Bratislave, 9.5.2025 Be. Karin Kubinova

Pod’akovanie: Dakujem predovietkym mojmu skolitelovi Ing. Lukasovi Rados-
kému za cenné rady, ochotu a odborné vedenie. f)akujem aj mojej rodine a priatelom

za ich podporu a povzbudenie.

X

Abstrakt

V tejto préaci sa zaoberame analyzou existujucich pristupov vizualizacie a animaécie
UML diagramov, s dérazom na dynamické a interaktivne prvky, ktoré mozu zvysit ich
efektivnost. Hlavnym cielom je navrh a implementacia animacie UML diagramu aktivit
v softvéri AnimArch.

Implementovali sme vizualizovanie a animovanie diagramu aktivit, ktory sa gene-
ruje z kodu v jazyku OAL, ktory pouZivatel zvoli na zaciatku animacie. RieSenie sme
overili pomocou pouZzivatelského testovania, kde tcastnici riegili dve tlohy, pricom vy-
uzivali bud animovany diagram aktivit v AnimArchu, alebo staticky diagram aktivit
vytvoreny inym nastrojom. Vysledky testovania ukézali, Ze Gspesnost rieSenia tloh sa
vyraznejsie neliila v zavislosti od pouzitého nastroja. Uéastnici hodnotili animovany
diagram aktivit pozitivne. Ukazalo sa ale, Ze by potrebovali viac ¢asu na plnohodnotné
osvojenie si systému. Z toho mozeme usudit, Ze sa ndm podarilo vhodne implementovat
vizualizovanie a animovanie diagramu aktivit, ktory ma potencial prispiet k lepsiemu
porozumeniu vykonavaného kodu, ked si pouzivatelia navykni na tento Styl zobrazo-

vania.

Krluacové slova: Softvérové inzinierstvo, Modelovanie softvéru, UML diagram, Vizu-

alizacia, Animacia

Abstract

In this work, we analyze existing approaches for visualizing and animating UML dia-
grams, with an emphasis on dynamic and interactive features that can enhance their
effectiveness. The main goal is the design and implementation of UML activity diagram
animation in AnimArch software.

We have implemented the visualization and animation of the activity diagram,
which is generated from the OAL code that the user selects at the beginning of the
animation. We validated the solution through user testing, where participants solved
two tasks using either an animated activity diagram in AnimArch or a static activity
diagram created by another tool. The results of the testing showed that the success rate
of solving the tasks did not vary significantly depending on the tool used. Participants
rated the animated activity diagram positively. However, it appeared that they would
need more time to fully learn the system. From this we can conclude that we were able
to implement visualizing and animating the activity diagram appropriately, which has
the potential to contribute to a better understanding of the code being executed once

users become accustomed to this style of display.

Keywords: Software engineering, Software modelling, UML diagram, Visualisation,

Animation

X1

xii

Obsah

Uvod

1 Uvod do problematiky

1.1 Modelovanie softvéru
1.2 UML
1.3 Techniky vyvoja softvéru
1.4 Spustitelné UML

1.41 OAL
1.5 Diagram aktivit

2 Nastroje na vizualizovanie softvéru
2.1 AnimArch
22 VILLE

2.3 Iné néstroje

3 Poziadavky a navrh rozsirenia aplikacie
3.1 Poziadavky
3.2 Navrh aplikacie

4 Implementacia
4.1 Statické zobrazenie

4.2 Dynamické zobrazenie

5 Evaluacia vysledkov
5.1 Navrh testovania
5.2 Vyhodnotenie testovania
5.2.1 Demografické udaje acastnikov
5.2.2 Vyhodnotenie riesSenia tloh . . .

5.2.3 Vyhodnotenie SUS dotaznika .

5.2.4 Vyhodnotenie NASA-TLX dotaznika
5.2.5 Celkové vyhodnotenie L.
5.2.6 Diskusia

© 0 N e~ w W

15
15
15
17

21
21
22

29
30
35

Zaver 55

Priloha A: PouZivatel'ské testovanie 61
Uloha 1 61
Uloha 2 65

Priloha B: Elektronicka priloha 69

Xiv

Zoznam obrazkov

1.1
1.2

1.3
1.4

1.5
1.6
1.7
1.8
1.9
1.10

2.1
2.2
2.3
24
2.5
2.6

3.1

3.2

3.3
3.4
3.5

Vodopadovy model vyvoja softvérut. L. 4

Prehlad pouzitia strukturalnych UML diagramov na zaklade prieskumu,

data prevzaté z [1].o 5
Diagram tried, in§pirované z [2].o L 6

Prehl'ad pouzitia behavioralnych UML diagramov na zaklade prieskumu,

data prevzaté z [1].o 6
Diagram pripadov pouzitia, inSpirované z [2|. 7
Vztahy medzi pristupmi MDA, MDD, MDE a MBE, prevzaté z [3]. 8
Zakladné koncepty xXUML, prelozené z [4]. 9
Metamodel diagramu aktivit, prevzaté z [5]. 11
Notacia zakladnych casti diagramu aktivit. 12
Priklad diagramu aktivit, inspirované z [6]. 13
Domovska obrazovka softvéru AnimArch. 0L 16
Zobrazenie zasobniku volani vo VILLE, prevzaté z [7].. 16

Ukazka kolaborativneho modelovania triedneho diagramu, prevzaté z [8]. 17
Ukazka zobrazenia UML diagramov, prevzaté z [9]. 17
Ukazka kolaborativnej 3D aplikacie, prevzaté z [10]. 18

Ukazka prostredia na kolaborativne programovanie vo VR, prevzaté z [11]. 19

Ukéazka navrhu zobrazenia rdznych vrstiev diagramov. Prva vrstva pre
diagram tried a druha vrstva pre diagram objektov sa v AnimArchu
uz zobrazuju. Zobrazenie zvyraznenej tretej vrstvy pre diagram aktivit

budeme implementovat v nasej praci. 22

Sekvenény diagram zobrazujici proces generovania diagramov v Ani-

mArchu. 24
Struktira diagramu aktivit s podmienkou.o 25
Struktira diagramu aktivit s foreach cyklom.. 26
Struktira diagramu aktivit s while cyklom. 27

XV

4.1

4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3
5.4
2.9
2.6
2.7
5.8

2.9

5.10

5.11

5.12

5.13

5.14

5.15
5.16

Ukézka zobrazenia troch vrstiev diagramov. Na prvej vrstve sa zobrazuje
diagram tried. Na druhej vrstve sa postupne pocas animécie vytvara
diagram objektov. Na tretej vrstve sa bude zobrazovat diagram aktivit.
Proces vytvarania a zobrazovania viacerych diagramov aktivit.
Ukéazka zobrazenia jednoduchej podmienky v diagrame aktivit.
Ukéazka zobrazenia vnorenej podmienky v diagrame aktivit.
Ukézka zobrazenia foreach cyklu v diagrame aktivit.
Ukazka zobrazenia while cyklu v diagrame aktivit.

Ukézka animovania diagramu aktivit s podmienkou.

Ukazka animovania diagramu aktivit pocas vykonavania tela while cyklu.

Vyvojovy diagram opisujici priebeh testovania.
Subjektivne hodnotenie znalosti Gcastnikov v analyze a navrhu softvéru.
Zmalost softvéru AnimArch.
Uspesnost rieSenia tlohy 1.
Uspesnost rieenia tlohy 2.
Krabicovy diagram SUS skoére pre AnimArch a staticky diagram aktivit.
Huslovy diagram NASA-TLX skore pre AnimArch.
Korela¢na teplotna mapa znazornujuca vztahy medzi ispesnostou riese-

nia tlohy 1 pomocou AnimArchu a zvySnymi datami z dotazniku.

Korelacna teplotna mapa znézoriujuca vztahy medzi tspesnostou riese-

nia tilohy 1 pomocou statického diagramu a zvysSnymi datami z dotazniku.

Korela¢na teplotné mapa znazornujtuca vztahy medzi ispesnostou riese-
nia tlohy 2 pomocou AnimArchu a zvySnymi datami z dotazniku.

Korela¢na teplotnd mapa znazornujica vztahy medzi tispesnostou riese-

nia tilohy 2 pomocou statického diagramu a zvysSnymi datami z dotazniku.

Korela¢na teplotné mapa znazornujuca vztahy medzi ispesnostou riese-
nia oboch tloh a odpovedami na NASA-TLX otazky.
Animovany diagram aktivit v AnimArchu pre alohu 1.
Staticky diagram aktivit pre alohu 1.
Animovany diagram aktivit v. AnimArchu pre alohu 2.

Staticky diagram aktivit pre tlohu 2.

Xvi

29
32
33
34
35
36
36
37

39
41
41
42
43
45
46

47

49

50

52

Zoznam algoritmov

1.1
1.2
4.1
4.2

4.3
4.4
4.5

Ukazka pisania podmienky v OAL, prevzaté z [12]. 10
Ukazka pisania foreach cyklu v OAL, prevzaté z [12]. 10
Pseudokoéd vytvarania a mazania diagramov aktivit. 30

Pseudokod rekurzivnej metody, ktora ma na starosti pridavanie aktivit

do diagramu. 31
Pseudokoéd pridavania podmienky do diagramu aktivit. 32
Pseudokod pridavania foreach cyklu do diagramu aktivit. 34
Pseudokod pridavania while cyklu do diagramu aktivit. 35

Xvil

XViil

Terminologia

Skratky
e CIM - Model nezavisly od vypoctu, z anglického Computation Independent Mo-
del.
e MASL - Model Action Specification Language.
e MDA - Architektira riadena modelom, z anglického Model-Driven Architecture.
e MDD - Vyvoj riadeny modelom, z anglického Model-Driven Developmnet.
e MDE - Inzinierstvo riadené modelom, z anglického Model-Driven Engineering.

e MBE - InZinierstvo zalozené na modeloch, z anglického Model-Based Enginee-

ring.
e OAL - Object Action Language.
e OMG - Object Management Group.
e OMT - Technika objektového modelovania, z anglického Object Modeling Tech-

nique.
e PIM - Model nezavisly od platformy, z anglického Platform Independent Model.
e PSM - Model specificky pre platformu, z anglického Platform Specific Model.

e SADT - Struktirovana analyza a technika navrhu, z anglick¢ho Structured Ana-

lysis and Design Technique.

e SDLC - Zivotny cyklus vyvoja softvéru, z anglického Software Development Life
Cycle.

e UML - Unified Modeling Language.

e xXUML - Spustitelné UML, z anglického Executable UML.
e SUS - System Usability Scale.

e NASA-TXL - NASA Task Loader Index.

XX

XX

Uvod

Vizualizacia UML diagramov zohréava v softvérovom inzinierstve kli¢ova ulohu. Soft-
vérové systémy su ¢asto velmi zlozité a ich vnitorné struktiry nie st priamo viditelné.
Prave preto vyuzivame vizualizaciu prostrednictvom UML diagramov, aby sme mohli
lepsie pochopit architektaru systému, urcit jeho komponenty, ich vztahy a sprévanie.
UML diagramy zaroven slizia ako komunikacny prostriedok medzi analytikmi, vyvo-
jarmi a ostnatymi zainteresovanymi stranami, ¢im sa vyrazne ulahcuje navrh, vyvoj aj
udrzba softvéru.

Prave preto sme sa rozhodli implementovat novy diagram do systému AnimArch,
ktory sluzi na vizualizdciu a animéciu diagramov. V. AnimArchu sa aktuédlne animuje
triedny a objektovy diagram, ktoré reprezentuju strukturalne aspekty systému. V na-
Sej praci implementujeme prave diagram aktivit, aby sme umoznili reprezentaciu aj
behavioralnych vlastnosti systému. Diagram aktivit budeme v AnimArchu zobrazo-
vat za uz existujucim triednym a objektovym diagramom a budeme ho vytvarat po
spusteni animéacie OAL kodu, ktory zvolil pouzivatel. Aktivity sa do diagramu akti-
vit pridaju pri volani metody, pricom budeme aktivity vykreslovat rozne, podla typu
prikazu, kedZe zobrazovanie podmienok a cyklov méa v diagrame aktivit zauzivana kon-
venciu. Pri volani novej metody tieZ vykreslime dalsi diagram aktivit, ktory budeme
zobrazovat za povodnym diagramom aktivit, ¢im budeme zobrazovat pomyselny zasob-
nik volani. Diagram aktivit budeme navySe animovat, ¢im sa pokusime pouzivatelovi
ulah¢it pochopenie procesov v danom kode.

Vysledné rieSenie budeme evaluovat pomocou pouZzivatelského testovania, kedy bu-
deme porovnavat tspesnost rieSenia uloh pomocou nasho animovaného diagramu ak-
tivit a pomocou statického diagramu aktivit. Budeme tiez zistovat, ako pouzivatelia
hodnotili pouZitelnost animovaného diagramu aktivit, v porovnani so statickym dia-
gramom. NavySe budeme merat aj zataz, ktoru ucastnici testovania vnimali, pri rieSeni
tloh.

V nasledujtcej kapitole 1 sa venujeme modelovaniu softvéru. OpiSeme techniky
vyvoja softvéru, UML a spustitelné UML, pricom opiSeme aj jazyk OAL. Zadefinujeme
tiez diagram aktivit a jeho zakladné Casti, ktory budeme v nasej praci implementovat.
V kapitole 2 opiSeme rozne nastroje na modelovanie a vizualizovanie softvéru, vratane

systému AnimArch, ktory rozsirujeme o novi funkcionalitu. Zakladné poziadavky na

2 UVOD

roz§irenie systému zadefinujeme a ich implementéaciu navrhneme v kapitole 3. Samotnu
implementaciu potom opiSeme v kapitole 4. V kapitole 5 navrhneme pouZzivatelské

testovanie nasho riesenia a vyhodnotime jeho vysledky.

Kapitola 1
Uvod do problematiky

Medzi neoddelitelné vlastnosti softvéru patria zloZitost, prispésobivost, menitelnost
a neviditelnost [13|. Softvérovy systém pozostava z mnohych ¢asti, ktoré funguju roz-
nymi sposobmi a nelinearne medzi sebou interaguji, ¢im sa vyrazne zvySuje kom-
plexnost systému. KedZe softvér nemé vizualnu reprezentéciu, ¢asto prichadza k jeho
nepochopeniu, ¢o méze viest k réznym chybéam vo vyvoji. Prave na to slizi modelovanie

softvéru, ktoré si blizsie priblizime v tejto kapitole.

1.1 Modelovanie softvéru

Aby bol proces vyvoja softvéru ¢o najefektivnejsi, je vhodné poznat a riadit sa pravid-
lami definovanymi v SDLC, z anglického Software Development Life Cycle, alebo aj
zivotny cyklus vyvoja softvéru. Je to proces jasnej definicie poziadaviek, cielov a faz
tvorby softvéru a zvy¢ajne pozostava zo siedmych hlavnych etap [14].

Prvou etapou je Pldnovanie, kde sa definuju hlavné ciele a poziadavky, identifikuja
sa jednotlivé zainteresované strany a vypracuje sa harmonogram. Druhou etapou, ktora
je Casto spajana s planovanim, je Analyjza. V tejto faze sa zhromazduju detailnejsie po-
ziadavky od zainteresovanych stran, na zaklade ktorych sa potom vytvori $pecifikacia.
f)alej nasleduje Ndvrh, kde sa navrhne Struktura softvéru, ako buda jednotlivé kom-
ponenty vzajomne komunikovat, ale aj celkovy dizajn pouzivatelského rozhrania. Po
navrhu prichadza samotny Vyvoj softvéru, ktory zahina pisanie kodu na zaklade Speci-
fikacii, integrovanie roznych ¢asti softvéru ¢i jednotkové testovanie jednotlivych kompo-
nentov. Piatou etapou je Testovanie, kedy sa vykonéva viacero irovni testovania celého
softvéru, odstranuju sa ndjdené chyby a problémy, a taktiez sa overuje splnenie defino-
vanych poziadaviek. Nasleduje Nasadenie softvéru do prevadzky a jeho spristupnenie
koncovym pouzivatelom. Poslednou etapou je Udrzba. T4 trva pocas celého obdobia
pouzivania softvéru a zahina aktualizaciu softvéru ¢i opravu chyb a nedostatkov, ktoré

objavili pouzivatelia.

4 KAPITOLA 1. UVOD DO PROBLEMATIKY

Préve vo fazach analyzy a navrhu softvéru sa zvyknu vytvarat rozne diagramy, ktoré
vizualizuja jednotlivé aspekty softvéru a maju za ciel pomoct pochopit komplexné sys-
témy a predist tak nespravnej implementacii. Zaroven sluzia ako sucast dokumentécie,
kedy sa nimi mézu vyvojari riadit pocas implementécie.

Na obrazku 1.1 vidime vodopadovy model, ktory je jednou z najzékladnejsich SDLC
metodologii [14]. Spociva v linedrnom spdsobe vyvoja softvéru, pricom kazda faza pro-

cesu musi byt dokon¢ené predtym, ako sa pokracuje na nasledujtcu.

Planovanie

Implementacia

Testovanie

Nasadenie

Obr. 1.1: Vodopadovy model vyvoja softvérul.

Proces vytvarania abstraktnej reprezentacie softvéru nazyvame modelovanie soft-
véru a sluzi na lepSie pochopenie fungovania softvéru, analyzu jeho spravania a interak-
cii medzi jednotlivymi komponentmi [15]. Takato abstraktna reprezentécia sa nazyva

model.

1.2 UML

UML, z anglického Unified Modeling Language, je graficky jazyk, ktory je standardom
pre vizualizaciu, Specifikiciu a dokumentaciu softvéru [16]. Diagram UML je graficka
reprezentacia modelu systému a obsahuje UML uzly spojené hranami, ktoré predsta-
vuju prvky v modeli. Tradi¢ne sa rozlisuji dva hlavné aspekty systémov a to Struk-
turdlny a behavioralny aspekt. UML sa tiez riadi tymto delenim, a preto sa UML

diagramy delia na dva hlavné typy, Strukturalne a behavioralne [17].

!Prelozené z https://www.educba.com/waterfall-model/.

https://www.educba.com/waterfall-model/

1.2. UML)

Strukturalne UML diagramy popisuji staticka Struktaru systému a jeho casti na
viacerych trovniach abstrakcie. Patri sem diagram tried, diagram objektov, diagram
balickov, diagram zlozenej Struktury, diagram komponentov, diagram nasadenia a dia-
gram profilov [2].

Behavioralne diagramy popisuju spravanie systému, a teda ako systém funguje, na-
priklad prostrednictvom sérii zmien, ktoré sa udeji v systéme za urcity cas. Medzi
behavioralne UML diagramy sa radi diagram pripadov pouzitia, diagram aktivit a sta-
vovy diagram. Sekvenc¢ny diagram, diagram komunikacie, diagram ¢asovania a diagram
prehladu interakcii popisuju interakciu medzi jednotlivymi ¢astami systému a radia sa
do podskupiny diagramov interakeii [2].

V roku 2016 bola vypracovana studia [1], kedy sa prostrednictvom dotazniku zisto-
valo, ¢ su respondenti oboznameni s Formalnymi metédami, SADT a OMT, ¢i systé-
movi inzinieri pouzivaji nastroje na spravu poziadaviek, ako vytvaraji UML diagramy
z poziadaviek, ¢i potrebuji nastroje alebo techniky, ktoré ulah¢uju proces od ziskava-
nia poziadaviek k navrhu softvéru a aké su podla nich najpouZivanejsie, respektive
najpotrebnejsie UML diagramy. Dotaznik vyplnilo 92 Tudi z akademického alebo IT

odvetvia, pricom 85 z nich bolo oboznamenych so zédkladnymi konceptami UML.

80
T
> 60
[=]
€
@
=}
]
2 40
[30
©
Q)
& 20
13 12
o i
0
Diagram tried Diagram Diagram Diagram Diagram Diagram Diagram
objektov komponentov nasadenia bali¢kov zloZenegj profilov
’ Struktary

Typ Strukturélneho UML diagramu -

Obr. 1.2: Prehl'ad pouzitia Strukturalnych UML diagramov na zéklade prieskumu, data

prevzaté z [1].

Na obrazku 1.2 vidime najcastejSie pouzivané Strukturdlne UML diagramy, pricom
66 respondentov urcilo ako najcastejsie pouzivany diagram tried. Ten znazornuje lo-
gicky a fyzicky navrh systému na trovni tried a rozhrani a popisuje ich vlastnosti
a vztahy. Priklad diagramu tried vidime na obrézku 1.3. St tu zobrazené rozne triedy,

entity a rozhrania s ich atribatmi. Takisto st tu znézornené rézne vztahy medzi nimi

6 KAPITOLA 1. UVOD DO PROBLEMATIKY

ako asociacia, generalizicia, agregacia a kompozicia.

Kniha
abstraktna trieda | sgy. String [0.1] fid} o .
- ar atribut
nazow: String 1 1.+ ¥ R .
absah = ~_Imena: String datovy typ
vydavatelstvo biografia: String] enumeracia
datum vydania
Jazyk
wenumeration»
& kardinalita stavUétu
il HUSEWD
generalizacia T == aktivry
| zablokovany
H .
wentitysKniZna polozka wentity» Uget : sy
Liarowy kod: String [0] {idy Q.12 Eislo fid} ‘b(:
zmacka: RFID [0U1] {id} zaloZeny: Date L __
,——’ﬁ 0.3 staw: StavidEtu
stereotypna =
trieda
* - *
agregacia
asociacia
< KniZnica
zaznammy mena
o 2dresa
1 f

Katalég kompozicia

Obr. 1.3: Diagram tried, inspirované z [2].

80 B e e e e i e s e B e e T s A AT e i S T i
T
~ 60
o
£
(]
©
5
o 40
(]
.
[
nw
o
a 20
0
Diagram Sekvenény Diagram Stavovy Diagram Diagram Diagram
pripadov diagram aktivit diagram prehladu €asovania komunikacie
pouzitia interakcif

Typ behavioralneho UML diagramu -

Obr. 1.4: Prehl'ad pouzitia behavioralnych UML diagramov na zéklade prieskumu, déata

prevzaté z [1].

Na obrézku 1.4 st znazornené najcastejSie pouzivané behavioralne UML diagramy,

pricom 69 respondentov urcilo za najpouzivanejsi diagram pripadov pouzitia. Ten zo-

1.3. TECHNIKY VYVOJA SOFTVERU 7

brazuje mnozinu akcii, pripadov pouzitia, ktoré sa mozu v systéme vykonat v spolupraci
s externymi pouzivatelmi systému, aktérmi. Na obrazku 1.5 je priklad takého diagramu
pripadov pouzitia, pri¢om si zobrazeni dvaja aktéri, ktori mozu vykonat roézne akcie.
Takisto st zobrazené vztahy dedenia medzi aktérmi, asociacie medzi aktérom a pripa-
dom pouzitia, ale aj vztah rozsirenia (extend) a zahrnutia (include) medzi pripadmi

pouZitia.

— subjekt

«Business» . .
asociacia Letisko pripad pouZitia
akter

.

T \‘.’ Skupinovy

Check-In

Sprievodca I - vztah include
wincludes Ilzl---"

Individudlny
Check—ln
wextends ™

Check-In
BatoZiny /

Bezpetnostna
Kontrola

genera zacia

medzi aktérm
S

———
—
akteér 1.

PasaZier “V\

_ vztah extend

g
/-

kardinalita

.

bod rozsirenia

Obr. 1.5: Diagram pripadov pouZitia, inSpirované z [2].

1.3 Techniky vyvoja softvéru

Architektura riadend modelom, z anglicktho Model-Driven Architecture (MDA), je
pristup, ktory umoznuje Specifikdciu systémov pomocou modelov. Model je forméalna
Specifikacia funkcie, struktary a spravania systému v danom kontexte a zvycajne sa
reprezentuje pouzitim UML. Architektira systému je Specifikicia ¢asti a konektorov
systému, pricom si definované aj pravidla, ako jednotlivé c¢asti interaguji pomocou
danych konektorov. V. MDA si tieto casti, konektory a pravidla definované pomo-
cou modelov [18]. MDA taktiez umoziuje definovanie modelov na réznych trovniach
abstrakcie. Prvym je model nezavisly od vypoctu, z anglickétho Computational Inde-
pendent Model (CIM). Reprezentuje kontext a poziadavky systému, pri¢om odhliada
od struktary a technologickych detailov systému [18, 19]. Druhym je model nezavisly
od platformy, z anglického Platform Independent Model (PIM), pri¢om pod platformou

8 KAPITOLA 1. UVOD DO PROBLEMATIKY

sa rozumeju technolégie, ktoré poskytujia sibor funkcii, napriklad operacné systémy,
programovacie jazyky, databazy a iné [18]. PIM teda Specifikuje systém nezavisle od
technologii potrebnych na jeho implementaciu. Tretim modelom je model Specificky pre
platformu, z anglického Platform Specific Model (PSM), a rozsiruje PIM o podrobnosti
tykajuce sa pouZivania konkrétnej platformy [18, 19].

Vyvoj riadeny modelom, z anglického Model-Driven Development (MDD), je tech-
nika vyvoja, ktora pouziva modely ako primarny artefakt vyvojového procesu, pricom
sa zameriava najmé na fazy poziadaviek, analyzy, navrhu a implementacie [20]. Od
MDA sa lisi tym, Ze nedodrziava Standardy vytvorené konzorciom OMG [21], a preto
mozno chapat MDD ako zovSeobecnenie alebo nadmnozinu MDA.

InZinierstvo riadené modelom, z anglicktho Model-Driven Engineering (MDE), je
pristup, kedy st modely kIi¢ové pocas celého inzinierskeho procesu, teda nielen pocas
vyvoja, ale aj pocas naslednej evolicie ¢i migracie softvéru 20|, takZe opat mozno
chapat MDE ako nadmnozinu MDD.

Naopak, ak modely nie st klic¢ovymi artefaktmi inzinierskeho procesu, hoci stéle
zohravaju dolezitd dlohu, jedna sa o techniku inZinierstva zalozeného na modeloch,
z anglického Model-Based Engineering (MBE), a moze sa vnimat ako nadmnozina

MDE |[3]. Vztahy medzi tymito pristupmi st zobrazené na obrazku 1.6.

Obr. 1.6: Vztahy medzi pristupmi MDA, MDD, MDE a MBE, prevzaté z [3].

1.4 Spustitelné UML

Spustitelné UML, z anglického Executable UML (xUML), je zaloZené na UML s vysSou
uroviou abstrakcie, pricom odhliada od konkrétnych programovacich jazykov a struk-
tary systému, takze Specifikicia vytvorena v xXUML méze byt nasadené v réznych pro-
strediach bez zmeny [22, 23|. xUML je zaroven jednym z pilierov architektury riadene;j

modelom |22, 23|, ktora je opisana vyssie. Vdaka preciznosti xUML $pecifikicie, sa

1.4. SPUSTITELNE UML 9

umoziuje automatickd konverzia modelov do programovacieho jazyka na nizsej trovni
abstrakcie, a taktiez ich nasledné vykonéavanie. Pri $pecifikicii sa vyuzivaji predovset-
kym triedne a stavové UML diagramy, aby bol zabezpeceny ako strukturalny, tak aj
behavioralny aspekt systému, no zvyknua sa vyuzit aj diagramy aktivit [24], pre lepsie
znazornenie procesov v danom systéme.

Zakladné modelovacie koncepty xUML st znézornené na obrazku 1.7. Kazdy sys-
tém je najskor rozdeleny do domén, pricom tie su dalej rozdelené do tried. Kazda
trieda moze mat svoj stavovy stroj, ktory spractva asynchronne signély vykonavanim

stavovych akcii, a tiez operacie, ktoré spracuvaju synchronne signaly [4].

<7:: Domény

Lt R kel
- -
. Triedy
- N -~
= Target
.t =
el i) e gev 1
s Ve W (W
3 L= ||| Stavy
— T = =

L4

L.sunlno Engagement
. | p
Akcie ,—.? :

Obr. 1.7: Zakladné koncepty xUML, prelozené z [4].

Aby boli UML modely spustatelné, je potrebné systém este blizSie Specifikovat,
a to definovanim jednotlivych systémovych zavislosti od akcii a ¢asu, kedy sa maja
jednotlivé zmeny vykonat [23]. Na to sluzia jazyky akcii, z anglického Action Languages,
ktoré umoznuju zachovanie vysokej irovne abstrakcie modelov, a teda aj ich nasledny

preklad do spustitelného kodu.

1.4.1 OAL

Object Action Language (OAL) je jednym z existujtcich jazykov akcii a definuje séman-
tiku spracovania, ktoré prebieha pocas akcie [12]. Pod akciou sa rozumeju modelované
prvky ako stavy, funkcie, triedne operacie a iné. Kazda akcia sa pritom sklada z viace-

rych prikazov, ¢i uz jednoduchsich, ako je pristup k atribiitom triedy, alebo zlozitejsich,

10 KAPITOLA 1. UVOD DO PROBLEMATIKY

ako napriklad podmienky alebo cykly [12]. Syntax jazyka OAL sa vyznacuje rozlisova-
nim velkosti pisma a pisanim bodkociarky na konci kazdého prikazu. Na ukazke kodu
1.1 vidime priklad podmienky v jazyku OAL, kedy sa priradi do premennej x rozne
¢islo, na zéklade mena v premennej meno. Na ukizke kodu 1.2 je priklad pisania cyklu.
Kedze prikazy v cykle mozu byt vykonavané aj paralelne, odporica sa vyuzivat fore-
ach cykly, ktoré iteruju cez vsetky prvky v kolekcii, namiesto cyklov s iterovanim cez

premennu [12].

if (meno == "John")
x = 1;
elif (meno == "Bill")
X = 2;
elif (meno == "Michael")
x = 3;
else
X = 4;
end if;

Alg. 1.1: Ukazka pisania podmienky v OAL, prevzaté z [12].

// D je klucove pssmeno pre objekt typu Dieta.

// deti je implicitne typovana premenna obsahujuca mnozinu
instancii <instance handle set> typu D.

select many deti from instances of D;

for each dieta in deti
generate D1:'cas ist spat' () to dieta;

end for;

Alg. 1.2: Ukazka pisania foreach cyklu v OAL, prevzaté z [12].

Medzi vyvojové prostredia, ktoré slizia na navrh, simulaciu a generovanie kdédu
z xUML patri napriklad platforma BridgePoint [25], ktoré je zalozena na vyvojovom
prostredi Eclipse. BridgePoint podporuje dva jazyky akcii, medzi ktoré patri uz spome-
nuty Object Action Language (OAL) a Model Action Specification Language (MASL)
[26].

1.5 Diagram aktivit

Diagram aktivit je typ behavioralneho UML diagramu, ktory zachytéava dynamiku sys-
tému, pracovné toky, z anglického workflows, a vypoctové, ale aj organizacné procesy

systému |27, 6]. Taktiez umoziiuje zobrazovat aj procesy, ktoré sa vykonavaju para-

1.5. DIAGRAM AKTIVIT 11

lelne. V $pecifikacii UML 1.z boli diagramy aktivit vnimané ako Specialny typ stavo-
vych diagramov, ¢o ale neumoznovalo plnohodnotné modelovanie pracovnych tokov.
To sa zmenilo vo verzii UML 2.0, ¢im sa umoznilo lepsie modelovanie komplexnejsich
procesov [2, 6]. Pre lepsie pochopenie struktury diagramu aktivit slazi metamodel zo-
brazeny na obrazku 1.8. Centralnym prvkom je metatrieda Activity, ktora sa sklada z
triedy ActivityNode, ktora predstavuje jednotlivé uzly v diagrame, ktoré sa vyuzivaju
na znazornenie procesov, a triedy ActivityEdge, ktoré sluzi na zobrazenie prechodov
medzi uzlami. ObjectNode predstavuje objektovy uzol, abstraktny uzol aktivity, ktory
sa pouziva na definovanie toku dat v aktivite. ControlNode predstavuje riadiaci uzol,
ktory sluzi na usmernenie toku medzi ostatnymi uzlami. Medzi riadiace uzly patria pod-
triedy InitialNode, DecisionNode, MergeNode, JoinNode, ForkNode a FinalNode,
ktora sa dalej Specifikuje na triedy ActivityFinalNode a FlowFinalNode. Tieto
triedy predstavuju rézne typy uzlov, ktoré sa mozu nachadzat v diagrame aktivit,

pricom su blizsie Specifikované nizsie.

activity node
Activity T " ActivityNode
0..1
0.1 Y activity target 1 Z%
source| 1
* edge
incoming
ActivityEdge ou1g*oing ObjectNode ControlNode
ForkNode JoinNode MergeNode DecisionNode InitiaINode FinalNode

T

ActivityFinalNode FlowFinalNode

Obr. 1.8: Metamodel diagramu aktivit, prevzaté z [5].

Diagram aktivit sa sklada z viacerych zakladych ¢asti, ktoré moézeme vidiet na
obrazku 1.9.

Aktivita Specifikuje vykonéavanie akcii pomocou toku riadenia [27]. Pod akciou
sa teda rozumie jeden atomicky krok aktivity. Akcie mézu byt vyjadrené aj jazykom
akcii, vdaka ¢omu su jedinym vykonatelnym vrcholom UML [2], ¢o umoziuje spustat
dalsie akcie, pristupovat k objektom a menit objekty, alebo ich spajat a vytvarat tak

zlozitejsie akcie. Akcie byvaju znézornené obdlznikmi so zaoblenymi rohmi.

12 KAPITOLA 1. UVOD DO PROBLEMATIKY

o ® ®©

zatiatoCny uzol koniec toku koncovy uzol

O —_— —

uzol rozhodovania/ zlucenia uzol paralelného rozvetvenia/ spojenia riadiaci tok
(decision/ merge node) {fork/ join node)

Obr. 1.9: Notéacia zékladnych ¢asti diagramu aktivit.

Zaciato¢ny uzol, znazoriiovany Ciernym bodom, predstavuje zaciatok toku, ked
je aktivita vyvolana. Aktivita mdZze mat viacero zaciato¢nych uzlov, v takom pripade
kazdy z nich spusti samostatny tok [2].

Koniec toku ukonc¢uje tok aktivity, pricom ale nema ziadny efekt na ostatné toky
v aktivite [2]. Reprezentuje sa kruhom so symbolom “X” uprostred.

Koncovy uzol sa znazornuje kruhom s ¢iernym bodom uprostred a ukoncuje vsetky
toky v aktivite.

Uzol rozhodovania, z anglického decision node, oznac¢uje miesto, kedy sa tok
rozdeluje. M4 jednu vstupnd hranu a niekolko vystupnych hran, pricom vystupna
hrana sa uréi na zaklade toho, ktora z navzajom sa vylucujucich podmienok bude
splnena [2]. Podmienka byva znazornené v hranatych zatvorkéach pri uzli rozhodovania
alebo pri hrane, ku ktorej patri. Uzol rozhodovania sa oznacuje kosostvorcom.

Uzol zlucenia, z anglického merge node, sa taktiez oznacuje kosostvorcom a ozna-
¢uje miesto, kedy sa toky spajaji. Ma teda viacero vstupnych hran a jednu vystupnua
hranu.

Uzol paralelného rozvetvenia, z anglického fork node, predstavuje rozvetvenie
toku do viacerych subeznych tokov, ktoré sa budu vykonavat paralelne [2|. Znazornuje
sa hrubsou ¢iarou.

Uzol paralelného spojenia, z anglického join node, oznacuje synchronizaciu su-
beznych tokov a taktiez sa znazoriuje hrubsou ¢iarou.

Riadiaci tok predstavuje chod riadenia medzi jednotlivymi akciami a oznacuje sa
sipkami.

Na obrazku 1.10 sa nachadza jednoduchy priklad diagramu aktivit. Vykonéavanie
sa zaCne v zacCiatonom uzli. Nasledne sa vykona akcia prijatie objedndvky. Po jej vy-
konani sa tok rozdvoji v uzle paralelného rozvetvenia do dvoch paralelnych tokov, ¢o
znamend, ze akcie prijatie objedndvky a odoslanie faktiry (a nasledujice) sa mozu vy-
konat v Tubovolnom poradi, pripadne aj suc¢asne. Napriklad, za¢ne sa plnit objednavka,

potom sa odogle faktira, doru¢i sa objednavka a nakoniec sa prijme platba, alebo sa

1.5. DIAGRAM AKTIVIT 13

platba prijme pocas dorucovania tovaru. Postupnost akcii medzi paralelnymi tokmi je
irelevantné, pricom ale v jednotlivom paralelnom toku sa akcie nadalej vykonévaju
postupne. Ked st oba paralelné toky dokon¢ené, opét sa synchronizujia v uzle paralel-
ného spojenia a vykonavanie pokracuje akciou ukoncenie objedndvky. Po jej dokonceni
sa tok ukonéi koncovym uzlom. Na diagrame je taktiez znédzornena podmienka, kedy
sa po vykonani akcie spracovanie objedndvky tok rozdeli rozhodovacim uzlom, a podla
priority objednévky sa bud vykona akcia dorucenie cez noc, alebo beiné dorucenie.
Vetva, ktora nesplita podmienku, sa oznacuje pojmom [inak]|, resp. po anglicky [else].

Po vykonani prislusnej vetvy sa toky opét spoja v uzle zlucenia.

..
"~ zatiato&ny uzol
| prijatie objednavky |
uzol paralelného rozvetvenia
(fork) “=--.__
“a — —
akcia
| V.
lspracovanie ob]ednéuky] odoslanie faktiry
uzol rozhodovania
,+-*" (decision)
[prioritna objednévkal Y linak
doruCenie cez noc beZné dorucenie prijatie platby
- /\ il
> -
.
uzol zli€enia -
(merge)
uzol paralelného spojenia
(join)
[ukonéenie objednavky I

koncowvy uzol

Obr. 1.10: Priklad diagramu aktivit, in3pirované z [6].

14

KAPITOLA 1. UVOD DO PROBLEMATIKY

Kapitola 2
Nastroje na vizualizovanie softvéru

V tejto kapitole st opisané rézne nastroje na modelovanie a vizualizovanie softvéru.

2.1 AnimArch

Kedze cielom tejto prace je implementovat zobrazovanie a animovanie diagramu aktivit
v softvéri AnimArch, je najskor potrebné sa s nim oboznamit. AnimArch je komplexny
nastroj vyvinuty v Unity pouzitim jazyka C# . Zaobera sa dvoma hlavnymi oblastami
vyskumu, a to vizualizdciou a animaciou UML diagramov a generovanim zdrojového
kodu z kombinacie UML diagramu a skriptu v jazyku OAL [28]. Na obrazku 2.1 je
zobrazena domovské obrazovka néstroja AnimArch.

AnimArch umoznuje vytvorit, editovat a nacitat triedny diagram, ktory sa néasledne
vykresli do 3D priestoru. Po nacitani diagramu je mozné ho aj animovat pomocou ani-
macii definovanych v jazyku OAL. Po nacitani a spusteni animécie sa taktiez vytvara
diagram objektov, ktory sa nachadza v priestore za triednym diagramom a zobrazuje
objekty vytvarané pocas vykonavania OAL kodu. Po nacitani triedneho diagramu a ani-
mécie s OAL kodom je taktiez mozné vygenerovat spustatelny kod v jazyku Python,

¢im sa uplatiuje technika vyvoja MDD.

2.2 VILLE

Dalsim vizualizacnym nastrojom je jazykovo nezéavisly nastroj VILLE, ktory umoziuje
vytvaranie a editovanie programovacich prikladov v réznych programovacich jazykoch
[7]. Takisto umoziiuje pozorovanie roznych udalosti pocas vykonavania tychto prikla-
dov. Pre kazdy riadok kédu sa tiez automaticky generuje slovné vysvetlenie toho, ¢o
dany prikaz robi, ¢o moze byt uzitoéné najma pri vyucbe. Pocas vykonavania kédu
je pouzivatelovi tieZz umoZnené pohybovat sa medzi prikazmi o krok vpred, ¢ vzad,

¢o ulah¢uje pouzivatelovi pochopenie vykonévanych prikazov. Pocas vykonavania sa

15

16

- Jaoflolal~NC)

Zadat'text...

KAPITOLA 2. NASTROJE NA VIZUALIZOVANIE SOFTVERU

i ~
i A~
ACi

Maskovanie @

Animacia

Zobrazit vztahy grafov

&

Obr. 2.1: Domovska obrazovka softvéru AnimArch.

zobrazuje aj zasobnik volani, ktory mozeme vidiet na obrazku 2.2, kde sa zobrazuju

jednotlivé volania metdd a ich navratové hodnoty. Tento pristup je inSpiraciou pre tuto

diplomovi pracu, avsak s tym rozdielom, Ze v naSej praci budeme jednotlivé prikazy

vizualizovat pomocou diagramu aktivit.

VILLE

visual learning tool

Animation cantrols

([« | [|EE|E |

Call stack | variable states

Execution speed Choose program language
-

v Java h

Factorial

1 public static woid main{String[] args){

2 system.out.println{"Factorial of mumber § is "+factoriall
3 Systew,.out.printlni”. . and nunber 10 "+factorial(l0));

4}

5§ public static int factorial(int luku){

6 if (luku == 1}{

7 return 1;

8 |

9 else|

10 raturn luku * factorial (luku-l):

i1)

12}

< >

factorial(5)
‘lpublic static int factorial(int luku)(~
if (luku == 1)(

return 1;
}
else(

Return value

24

Program line explanation Program oukput

Return 120 Factorial of number § is 120

State of variables

factorial(10): luku == 10
factorial {9): luku == 9
factorial (§): luku == &
factorial (7): luku == 7
factorial (6): luku == §
factorial(5): luku == 5

University of Turku
Department of Information Technology

o

Obr. 2.2: Zobrazenie zasobniku volani vo VILLE, prevzaté z [7].

2.3. INE NASTROJE 17

2.3 Iné nastroje

E. Yigitbas a kol. vytvorili modelovacie prostredie vo virtuédlnej realite, ktoré slizi na
kolaborativne modelovanie UML triednych diagramov [8]. Potencial tohto prostredia
otestovali s 24 tcastnikmi a zistili, Ze modelovanie vo virtualnej realite bolo pre pou-
zivatelov sice menej efektivne, no mali pocit, Ze sa nachadzaji v tej istej miestnosti
ako ich spolupracovnici, ¢o zaroven dopomohlo k prirodzenejsej spolupréci. Ukazka

kolaborativneho modelovania v tomto prostredi je zobrazena na obrazku 2.3.

Obr. 2.3: Ukazka kolaborativneho modelovania triedneho diagramu, prevzaté z [8].

L. Gregorovi¢ a I. Polasek navrhli pristup vizualizovania UML diagramov v 3D
priestore, a to prostrednictvom automatického generovania objektovych a triednych
diagramov zo sekven¢nych diagramov [9]. Diagram objektov bol automaticky odvo-
deny zo sekven¢ného diagramu a diagram tried sa nésledne vytvoril z objektového
diagramu, kde asociacie sa odvodili z interakcii v sekvenénom diagrame a metody tried
sa extrahovali z pozadovanych operacii v tychto interakcidch. Vdaka tomu, Ze sa dia-
gramy zobrazovali v 3D priestore bolo tiez mozné zobrazit viacero diagramov za sebou

v roznych vrstvach, ako je zobrazené na obrazku 2.4.

30 UML Render Window sl

Obr. 2.4: Ukazka zobrazenia UML diagramov, prevzaté z [9].

I[. Polések spolu s M. Ferencom a J. Vincirom nadviazali na predoslu pracu, kde

18 KAPITOLA 2. NASTROJE NA VIZUALIZOVANIE SOFTVERU

k viacvrstvovym diagramom pridali moznost synchronizovanej kolaboracie a komuni-
kicie medzi pouzivatelmi v redlnom ¢ase [10]. Systém teda vizualizovali pomocou 2D
UML diagramov na prepojenych vrstvach v 3D priestore. Do aplikacie implementovali
rozne funkcie, ako oznamenie o prihlaseni nového pouzivatela do aplikicie, evidenciu
historie tkonov pouZzivatela, ¢i ¢asovi os historie projektu. TaktieZ implementovali aj
funkciu éetu medzi pouZivatelmi. Cielom tychto funkcii bolo zlepsit spolupracu, zvy-
Sit efektivitu prace a minimalizovat potrebu komunikacie medzi pouzivatel mi. Ukazka

tejto aplikicie je zobrazené na obrazku 2.5.

001 - p 0 e L 6 losm

Obr. 2.5: Ukazka kolaborativnej 3D aplikacie, prevzaté z [10].

J. Kucecka a kol. vytvorili prostredie vo virtualnej realite (VR) pre kolaborativne
programovanie, ktoré je zobrazené na obrazku 2.6. Umoznuje vyvojarom pisat, genero-
vat, upravovat a spustat zdrojovy kod [11]. Zarovenn umoziiuje, aby sa zmeny vykonané
v UML diagrame premietli do zdrojového koédu a naopak. Navrhnuté prostredie tiez
evaluovali pomocou stidie s 20 tcastnikmi, pricom sa sustredili najméa na to, ¢i sa
moze vyvoj softvéru vo VR rovnat klasickému vyvoju na 2D monitore, ¢i moze vyvoj
vo VR zlepsit pouzivatelov zazitok z vyvoja a ¢i moze vyvoj softvéru vo VR skrétit
¢as potrebny na kodovanie pocitacovych programov. Zistilo sa, ze z hladiska pouziva-
telnosti a atraktivnosti ac¢astnici lepsie ohodnotili VR IDE. Av8ak, ¢o sa tyka rychlosti
dokoncenia zadania, to trvalo vo VR IDE o nieco dlhsie. Pouzivatelia tiez navrhli urcité
zlepSenia, napr. zavedenie VR klavesnice s vy$sim rozliSenim, kedZe stic¢asna implemen-
tacia vyuzivajuca sledovanie klavesnice mala urcité obmedzenia.

Vécsina spomenutych néstrojov vyuzivala pri vizualizovani a modelovani softvéru
virtualnu realitu. Nad jej implementaciou do nastroja AnimArch, ktory v tejto praci

rozsirujeme o novu funkciu, sa ale momentalne neuvazuje, aj kvoli mensej efektivnosti,

2.3. INE NASTROJE 19

tabletCanvas.GetComponent<TabletHandler> () .showCan
vas(5);

¥
UpdateController

removeEdge GameObject edge,
type, GNode toNode, GNode auto

GEdge gEdge = getGEdge

type == et.generalization

tabletCanvas .GetComponent <AddContro
odeNithEdge(type, fromNode, toNode):
}

Funkcie:

mponent <HomeCantrollers () .isInT

tabletCanvas .GetCo
odewathEdge
} ¥ tvare '+ funkcia(): typ'

Vymazat triedu

Obr. 2.6: Ukazka prostredia na kolaborativne programovanie vo VR, prevzaté z [11].

ktora pouzivatelia vykazovali oproti klasickému pristupu. Mo6zeme sa ale inSpirovat
prave sposobom evaluacie, ktora sa vyuzila na analyzovanie danych nastrojov, pocas

hodnotenia nasej vyslednej prace.

20

KAPITOLA 2. NASTROJE NA VIZUALIZOVANIE SOFTVERU

Kapitola 3

Poziadavky a navrh rozsirenia

aplikacie

V tejto kapitole zadefinujeme ciele a poziadavky na rozsirenie predoslej aplikicie a na-

vrhneme ich postup implementéacie.

3.1 Poziadavky

Cielom nasej prace je navrhnit, implementovat a evaluovat novy sposob vizualizacie
a animacie diagramu aktivit v softvéri AnimArch. V AnimArchu sa aktualne vizuali-
zuju a animuja diagramy tried a objektov, teda len strukturalne diagramy, preto sme
sa rozhodli implementovat prave diagram aktivit, ktory bude reprezentovat aj behavi-
oralne vlastnosti nac¢itaného kodu. Zaroven sme sa tiez inSpirovali nastrojom VILLE,
blizsie opisanym v sekcii 2.2. V fiom sa pocas vykonavania kdédu zobrazuje zasobnik
volani, kde sa zobrazuju volané metody a ich navratové hodnoty, ¢o v nasom pripade
budeme zobrazovat pomocou diagramu aktivit. Samotnt implementaciu budeme na-
sledne overovat aj pomocou pouZzivatel'ského testovania.

Medzi zakladné poziadavky na naSe rozsirenie AnimArchu teda patri:
e vytvorit nova vrstvu na zobrazovanie diagramu aktivit,

e implementovat vytvaranie diagramu aktivit po spusteni animacie,
e implementovat zobrazovanie viacerych diagramov aktivit za sebou,
e animovat diagram aktivit poc¢as behu animacie,

e evaluovat vytvorené rieSenie.

21

22 KAPITOLA 3. POZIADAVKY A NAVRH ROZSIRENIA APLIKACIE
3.2 Navrh aplikacie

V softvéri AnimArch st aktualne dve vrstvy diagramov. V prvej vrstve sa zobrazuje
diagram tried a v druhej vrstve, ktora je umiestnena za prvou vrstvou, sa zobrazuje
diagram objektov. Diagram aktivit budeme zobrazovat v tretej vrstve za diagramom
objektov. Na obrézku 3.1 je zobrazena ukazka névrhu zobrazenia réznych vrstiev pre
diagram tried, diagram objektov a zvyraznené je prave vrstva pre diagram aktivit,

ktort budeme implementovat.

?

Citatel vybera knihu

v

Skontrolovat dostupnost knihy

ﬁ gns Dostupna? N'E—¢
Vytvorit zdznam vypoZiéky Zobrazit "Kniha nedostupna"
Alica: Citatel ¥
citatellD = "M00O1" lihy na "nedostupna"”
meno = "Alica" }

) ispesnej vypozZicke

vytvara

© citater v {
e—————————————————— » . 2 I/' \I
o citatellD: String : V'ypoiléka @)
o meno: String »sti = "2025-05-01"
e poziciatKnihu(kniha: Kniha): Vypozictka
1 pre
vytvara ¥
780812969092"
@ Vypozicka Hamlet"
= false

o datumSplatnosti: Date
o vypocitatDatumsSplatnosti(): Date

1
pre

© kniha

o ISBN: String
o nazov: String
o dostupna: Boolean

o aktualizovatStav(dostupna: Boolean): void

Obr. 3.1: Ukazka navrhu zobrazenia réznych vrstiev diagramov. Prva vrstva pre dia-
gram tried a druha vrstva pre diagram objektov sa v AnimArchu uZ zobrazuju. Zo-
brazenie zvyraznenej tretej vrstvy pre diagram aktivit budeme implementovat v nasej

praci.

Proces vytvéarania diagramov v AnimArchu je zobrazeny na nasledujticom sekvenc-
nom diagrame 3.2, pricom zvyraznené hrubym si procesy, ktoré implementujeme v na-

Sej praci. Spustenim AnimArchu sa ziskaju referencie na diagram tried a diagram ob-

3.2. NAVRH APLIKACIE 23

jektov z Unity scény. Tu pridame tiez ziskavanie referencie na diagram aktivit, ktorého
generovanie budeme implementovat. Pouzivatel dalej zvoli subor triedneho diagramu,
ktory sa vygeneruje a zobrazi. Taktiez k nemu moéze vybrat animéaciu, ktora obsahuje
kod v jazyku OAL, ktory sa bude animovat.

Po spusteni animécie sa jednotlivé prikazy z OAL priradia k prislusnym triedam
reprezentujucim typ daného prikazu, s ktorymi sa v AnimArchu dalej pracuje. Napri-
klad, volanie metédy je reprezentované triedou EXEScopeMethod, podmienka triedou
EXEScopeCondition, foreach cyklus triedou EXEScopeForEach a vratenie navratovej
hodnoty alebo ukoncenie metoédy je reprezentované triedou EXECommandReturn. f)alej
sa vytvori druha vrstva pre diagram objektov, kde pridame taktiez vytvorenie tretej
vrstvy pre diagram aktivit. Nasledne sa postupne vykonavaju vSetky prikazy z nacita-
ného kodu.

Pocas vykonavania prikazov implementujeme odchytavanie EXEScopeMethod prika-
zov, kedy sa bude vytvarat novy diagram aktivit. Rekurzivne budeme prechadzat cez
vSetky prikazy danej metody a kazdy pridame do diagramu aktivit. Pred pridanim pr-
vej aktivity taktiez pridame zaciato¢ny uzol a po poslednej aktivite pridame koncovy
uzol. Zaroven tiez budeme pridavat aj Sipky medzi aktivitami znazornujice riadiaci
tok. Ak pocas vykonéavania prikazov narazime na dalsi prikaz typu EXEScopeMethod,
vytvori sa novy diagram aktivit, ktory sa bude zobrazovat za pévodnym diagramom
aktivit a bude obsahovat prikazy, ktoré sa vykonavaju v tejto metode.

Taktiez budeme zachytévat aj prikazy typu EXECommandReturn, ktoré predstavuju
koniec vykonavania metody. Vtedy, ak sa zobrazuje viacero diagramov aktivit, diagram
aktivit prislusnej metody, ktorej patri dany EXECommandReturn prikaz, zmazeme. Ak
sa zobrazuje iba jeden diagram aktivit, ten sa mazat nebude, aby ho mal pouZivatel
nadalej k dispozicii aj po skonéeni vykonavania animécie.

Pri samotnom vytvarani aktivit budeme tiez rozlisSovat medzi réznymi typmi prika-
zov, pretoze vykreslovanie cyklov a podmienok si vyzaduje odlisny pristup v porovnani
s beznymi prikazmi. Bezné prikazy budeme pridavat do diagramu aktivit pod seba.

Pri zobrazovani podmienky najskor zobrazime uzol rozhodovania, ktory reprezen-
tuje rozvetvenie toku vykonavania podla splnenia danej podmienky. K uzlu rozhodo-
vania tiez zobrazime samotni podmienku v hranatych zatvorkach. Prikazy, ktoré sa
vykonaju v pripade, Ze je podmienka splnend, budi umiestnené pod uzlom rozhodo-
vania. Naopak prikazy, ktoré sa maju vykonat, ak podmienka nie je splnena, budu
zobrazené odsadené doprava. Sipku smerujicu od uzla rozhodovania k prikazu, ktory
sa méa vykonat, ak podmienka nie je splnena navySe oznacime slovom , else” (v pre-
klade ,jinak“), pre jasnejsie porozumenie. Po vykresleni vSetkych prikazov prislusnych k
obom vetvam sa tieto vetvy spoja v uzle zlucenia, pod ktorym budu dalej umiestnené
nasledovné prikazy. Obrazok 3.3 zobrazuje, ako bude vyzerat vysledny diagram aktivit

obsahujici podmienku, ktory budeme vytvarat.

24 KAPITOLA 3. POZIADAVKY A NAVRH ROZSIRENIA APLIKACIE

T

PN . . . - - -
Pousivatel :AnimArch :FileLoader ‘ l.CIasleagramBmlder‘ | :Animation

spusti AnimArch I

Awake()
- Find("CIassDiagram"}.Gethmponenthlas5Diagram>[)
> Find("ObjectDiagram"}.Gettomponent‘:ﬁbjectDiag ram=(}
Find("ActivityDiagram").GetComponent<ActivityDiagram>()
; v ;
nahra triedny diagram i i |
LoadDiagramCoroutine() _ | | |
LoadDiagram() |)
> |
f i
L : |
graf | |
nahra animaciu ! ! !
LoadAnimationCoroutine()_ ' ! !
< | i |
spusti animaciu)))
| StartAnimation() | | |
! ! ! CreateObjectDiagram()
|)) CreateActivityDiagram()
3 E E loop /| [foreach d in € dStack]
|)) alt [command is EXECommandQueryCreate]
|)) AddObjectToObjectDiagram()
! ! ! I ;is EXEScop i
| | | opt__J [ActivityDiagrams.Count() > 0]
| i i CreateNew ActivityDiagram()
| | | \
! ! ! loop /J [foreach d in d.C ds]
| ' ' AddActivity ToActivity Diagram()
! , , T d|is EXEC dReturn]
i ' ' opt /) [ActivityDiagrams.Count() > 1]
| | | RemovelastCreatedActivityDiagram()
! L | | =
Pouzivatel :AnimArch :FileLoader ‘ | :ClassDiagramBuilder | | :Animation

Obr. 3.2: Sekvenc¢ny diagram zobrazujuci proces generovania diagramov v AnimArchu.

3.2. NAVRH APLIKACIE 25

prikazy pred
podmienkou

. else
uzol rozhodovania ----- >

[podmienkal

prikazy v prikazy v
if vetve v else vetve

I |

<> @

prikazy po
podmienkou

Obr. 3.3: Struktara diagramu aktivit s podmienkou.

Pri zobrazovani foreach cyklu najskér zobrazime uzol zlucenia, ktory sluzi ako
vstupny bod cyklu. Pod tento uzol zobrazime uzol rozhodovania, v ktorom sa bude
tok vykonavania rozvetvovat podla toho, ¢i existuje dalsi prvok v kolekcii, cez ktoru sa
iteruje. Tento uzol rozhodovania ozna¢ime textom , another prvok* (v preklade ,dalsi
prvok®), kde za prvok dosadime nazov premennej pouzitej v cykle. Z uzla rozhodovania
budu viest dve Sipky. Prva $ipka, oznacena slovom ,,yes* (v preklade ,ano*), smeruje
k aktivitam, ktoré predstavuju telo cyklu. Tieto prikazy zobrazime odsadené doprava,
aby bolo zrejmé, ze patria do cyklu. Po vykonani tychto prikazov sa tok opéat vrati
k uzlu zlucenia, ¢im sa zabezpedi opakovanie cyklu pre dalsi prvok v kolekcii. Druhéa
Sipka, oznacena slovom ,,no“ (v preklade ,nie”), vedie k aktivitam, ktoré sa vykonaja po
skonceni cyklu, teda v pripade, Ze v kolekcii uz nie je ziadny d'alsi prvok. Tieto prikazy
zobrazime pod rozhodovacim uzlom, ¢im vizualne oddelime casti patriace do cyklu
od tych, ktoré nasleduji po jeho ukonceni. Vysledny diagram aktivit, ktory obsahuje

foreach cyklus je zobrazeny na obrazku 3.4.

While cyklus budeme zobrazovat rovnako ako foreach cyklus. Hlavny rozdiel bude
v oznaceni §ipok, kedy §ipku vedicu od uzla rozhodovania k telu cyklu oznac¢ime textom
»while podmienka* (v preklade ,kym podmienka®), kde za podmienka dosadime samotni

podmienku while cyklu. Sipku veducu od uzla rozhodovania k aktivitdm, ktoré nasle-

26 KAPITOLA 3. POZIADAVKY A NAVRH ROZSIRENIA APLIKACIE

prikazy pred

cyklom
uzol zliéenia ----- > «
another prvok
es
uzol rozhodovania ----- »> [yes]
[no] -
) 4
prikazy po
cykle
v
. prikazy v
cykle

4

Obr. 3.4: Struktara diagramu aktivit s foreach cyklom.

duju po ukonceni cyklu, teda v pripade, ze podmienka cyklu nie je splnena, oznac¢ime
slovom , else* (v preklade ,jinak®). Vyslednu strukturu diagramu aktivit, ktory obsahuje

while cyklus vidime na obrazku 3.5.

3.2. NAVRH APLIKACIE

prikazy pred
cyklom

uzol zliéenia

uzol rozhodovania

prikazy po
cykle

Obr. 3.5: Struktara diagramu aktivit s while cyklom.

l

v
A

while podmienka

]_

—

| prikazy v

cykle

28

KAPITOLA 3. POZIADAVKY A NAVRH ROZSIRENIA APLIKACIE

Kapitola 4
Implementacia

Aby sme umoznili vytvaranie diagramu aktivit v softvéri AnimArch, najskor sme pri-
dali tretiu vrstvu pre diagram aktivit, ktory budeme zobrazovat za diagramom tried
a diagramom objektov, ktoré sa uz v AnimArchu vizualizuju. Nova vrstva pre diagram
aktivit sa vytvori po spusteni animécie, pricom samotné vytvaranie diagramu aktivit je
popisané v nasledujuicej sekcii 4.1. Rozne vrstvy pre diagramy tried, objektov a aktivit

si zobrazené na obrazku 4.1.

Obr. 4.1: Ukazka zobrazenia troch vrstiev diagramov. Na prvej vrstve sa zobrazuje

diagram tried. Na druhej vrstve sa postupne pocas animécie vytvara diagram objektov.

Na tretej vrstve sa bude zobrazovat diagram aktivit.

balej sme vytvorili takzvané prefabrikaty, ktoré slizia ako Sablony pre jednotlivé
prvky, ktoré mozeme zobrazovat v diagrame aktivit, konkrétne pre zaciatoény a kon-

covy uzol, pre uzly rozhodovania, zlucenia, paralelného rozvetvenia, paralelného spo-

29

30 KAPITOLA 4. IMPLEMENTACIA

jenia, a taktiez pre samotné aktivity a Sipky oznacujice riadiaci tok, pricom sme sa

drzali zauzivanej notéacie, ktorti sme Specifikovali v sekcii 1.5.

4.1 Statické zobrazenie

Diagram aktivit zacneme vytvarat po spusteni animacie, kedy sa postupne vykonévaju
prikazy z nacitaného kodu OAL. Pri vykonavani prikazov sme implementovali odchyté-
vanie prikazov typu EXEScopeMethod a EXECommandReturn, ako je zobrazené na ukazke
pseudokodu 4.1.

V pripade, ze prave vykonévany prikaz je typu EXEScopeMethod, teda volanie me-
tody, vytvorime novy diagram aktivit, do ktorého zaroven pridame zaciatocny uzol. Da-
lej rekurzivne prejdeme cez vietky prikazy metody a priddme ich do diagramu aktivit.
Budeme tiez rozliSovat medzi réznymi typmi prikazov, kedze vykreslenie podmienok
a cyklov si vyzaduje odlisny pristup. Tento proces rekurzivneho prechédzania a vy-
kreslovania prikazov metody je zachyteny pseudokdédom na ukazke 4.2. Po vykresleni
poslednej aktivity pridame aj koncovy uzol. Zaroven pridavame aj $ipky medzi jednot-
livymi vrcholmi v diagrame, ktoré znazornuju riadiaci tok. Ak sa potom opét vykona
prikaz typu EXEScopeMethod, vytvorime novy diagram aktivit, ktory zobrazime v dal-
Sej vrstve, za povodnym diagramom aktivit, odkial sa metdda vyvolala. Prikazy v tele
vyvolanej metody dalej vykreslujeme do novovytvoreného diagramu aktivit.

Ked sa vykonava prikaz typu EXECommandReturn, teda vykonévanie volanej metody
kon¢i, a zobrazujeme viacero diagramov aktivit, prislusny diagram aktivit zmazeme
a dalej budeme zobrazovat uz iba péovodny diagram aktivit. Ak je v8ak zobrazeny iba
jeden diagram aktivit, ten sa mazat nebude, aby ho mal pouzivatel nadalej k dispozicii

aj po skonceni vykonavania.

IF CurrentCommand is of type EXEScopeMethod THEN
Create a new activity diagram
Add initial activity to diagram
AddActivity (CurrentCommand)
Add final activity to diagram
Add diagram to ActivityDiagramManager stack

ELSE IF CurrentCommand is of type EXECommandReturn THEN
IF ActivityDiagramManager has more than one diagram THEN
Remove current diagram from stack
Set diagram to the peek diagram in stack
END IF
END IF

Alg. 4.1: Pseudokéd vytvarania a mazania diagramov aktivit.

4.1. STATICKE ZOBRAZENIE 31

FUNCTION AddActivity(command)
IF command is NOT EXEScopeMethod THEN
SWITCH (type of command)
CASE EXEScopeCondition:
AddCondition (command)
BREAK
CASE EXEScopeForEach:
AddForEach (command)
BREAK
CASE EXEScopeLoopWhile:
AddWhile (command)
BREAK
DEFAULT:
Add activity to diagram
Connect last activity to this one
Update last activity
BREAK
END SWITCH
ELSE
FOR EACH subCommand in method
AddActivity (subCommand)
END FOR
END IF
END FUNCTION

Alg. 4.2: Pseudokod rekurzivnej metody, ktora ma na starosti pridédvanie aktivit do

diagramu.

Na obrazku 4.2 moézeme vidiet proces vytvarania a zobrazovania viacerych diagra-

mov aktivit za sebou.

1. V prvom kroku sa po spusteni animécie vytvorila prazdna vrstva pre diagram
aktivit.

2. V druhom kroku sa pocas vykonévania EXEScopeMethod prikazu rekurzivne pre-
slo cez v8etky jeho prikazy a vykreslili sa do diagramu aktivit, spolu so zaciatoc-

nym a koncovym uzlom a $ipkami medzi aktivitami.

3. V tretom kroku sa zavolala nova metoda, teda sa opat vykonal EXEScopeMethod
prikaz, a teda sa vytvorila nova vrstva a novy diagram aktivit, ktory opatovne

naplitame rekurzivnym prechadzanim cez prikazy tejto metody.

32 KAPITOLA 4. IMPLEMENTACIA

4. V stvrtom kroku sa skoncilo vykonévanie volanej metody, teda sa vykonal prikaz
typu EXECommandReturn. Preto sa prislusny diagram aktivit zmazal a dalej sa
zobrazuje uz iba pdvodny diagram aktivit. f)alej sa pokracuje vo vykonavani
prikazov povodnej metody. Ked sa potom skon¢i vykonavanie aj tejto metody,

tento diagram aktivit sa mazat nebude a ostane zobrazeny aj nadale;j.

! ! !

a=5; a=5; a=5;
create object instance create object instance create object instance
classB of Bb; classB of Bb; T classB of Bb;
1 |
% b = classB.calculate(a, a); % b = classB.calculate(a, a); | % b = classB.calculate(a, a);
write("b ="); write("b ="); write("b = ");
write(b); write(b); write(b);

6 6 6

Obr. 4.2: Proces vytvarania a zobrazovania viacerych diagramov aktivit.

Vykreslenie zlozitejsich prikazov, ako st podmienky a cykly, prebieha v samostat-
nych funkciach, pretoze si vyzaduju rozli¢ny pristup.

Pri podmienke najskor vykreslime uzol rozhodovania, ktory rozdeli vykonavanie do
viacerych vetiev. Prikazy v if vetve, teda tie, ktoré sa vykonajua, ak plati podmienka, sa
vykreslia pod uzlom rozhodovania. Prikazy, ktoré sa vykonaji, ak podmienka neplati,
sa vykreslia posunuté doprava. Po vykresleni vSetkych prikazov v danych vetvach sa
tieto vetvy opét spoja v uzli zlicenia. Samotnt podmienku zobrazujeme v hranatych
zatvorkach pri uzli rozhodovania a sipku smerujicu od uzla rozhodovania k aktivite,
ktora sa vykona, ak podmienka nie je splnend, ozna¢ime slovom ,else (v preklade

sinak“). Pseudokod vykreslovania podmienok je zobrazeny na ukazke kodu 4.3.

FUNCTION AddCondition (command)
Add decision node

Connect last activity to decision node

FOR EACH subCommand in ifBranch
AddActivity (subCommand)
END FOR

FOR EACH subCommand in elifBranch
AddActivity (subCommand) // with increased indentation
END FOR

4.1. STATICKE ZOBRAZENIE 33

FOR EACH subCommand in elseBranch

AddActivity (subCommand) // with increased indentation
END FOR

Add merge node below all branches
Connect if, elif and else branches to merge node
Update last activity

END FUNCTION

Alg. 4.3: Pseudokod pridavania podmienky do diagramu aktivit.

Na obrazku 4.3 je zobrazeny vygenerovany diagram aktivit, ktory obsahuje jed-

noduchtt podmienku a na obrézku 4.4 vidime diagram aktivit obsahujici aj vnorent

podmienku.
vek =17;
) if (vek >=18)
write("Pristup povoleny.");
else
vek = 17; write("Pristup zamietuty.");
write("Musite mat aspon 18 rokov.");
end if;
<> sise write("Overenie veku dolkon&ené.");
[vek >= 18]

write("Pristup

write("Pristup povoleny."); Zamietnuty.”):

write("Musite mat aspon

| 18 rokov.");

write("Overenie veku
dokonéené.");

Obr. 4.3: Ukazka zobrazenia jednoduchej podmienky v diagrame aktivit.

Pri zobrazovani foreach cyklu najskoér vykreslime uzol zlucenia, ktory predstavuje
zafiatok cyklu. Néasledne vykreslime uzol rozhodovania, kde sa tok rozvetvi, podla
toho, ¢ existuje dalsi prvok v kolekcii, cez ktoru sa iteruje. Jednotlivé prikazy v tele
cyklu dalej vykreslime odsadené doprava. K uzlu rozhodovania tieZ pridame oznacenie
sanother” (v preklade ,dalsi) a ndzov premennej, ktora sa pouziva v cykle. Pseudo-
kod zobrazovania foreach cyklu je zobrazeny na ukazke kodu 4.4. Priklad vytvoreného

diagramu aktivit, ktory obsahuje foreach cyklus je zobrazeny na obrazku 4.5.

34 KAPITOLA 4. IMPLEMENTACIA

pripojenie = "slabé";

it (pripojenie == "silné")
write("Pripojenie je stabilné.”);

elif (pripojenie == "slabé")

- write("Signél je slaby.");

e
write("Ziadne pripojenie.");
if (pripojenie == "nezname")

write("Skontrolujte

nastavenia.");
end if;

end if;

write("Kontrola dokonena.”);

Obr. 4.4: Ukazka zobrazenia vnorenej podmienky v diagrame aktivit.

FUNCTION AddForEach (command)
Add merge node and decision node
Connect last activity to merge node

Connect merge node to decision node

FOR EACH subCommand in loop
AddActivity (subCommand) // with increased indentation
END FOR

Update last activity
END FUNCTION

Alg. 4.4: Pseudokod pridavania foreach cyklu do diagramu aktivit.

While cykly vytvarame rovnakym sposobom ako foreach cykly, pretoze sa lisia len
v samotnej logike vykonavania daného kédu. Najskor teda pridame uzol zlicenia, pod
ktory pridame uzol rozhodovania. Telo cyklu vykreslime odsadené doprava. éipku od
uzla rozhodovania k telu cyklu oznac¢ime textom ,while (v preklade ,kym“) a pod-
mienkou cyklu, ¢im vizudlne odlisSime while cyklus od foreach cyklu. Sipku od uzla
rozhodovania k aktivitam, ktoré sa vykonaju po cykle, teda ked podmienka cyklu nie

je splnend, oznacime slovom ,,else (v preklade ,inak®). Na ukazke algoritmu 4.5 je zo-

4.2. DYNAMICKE ZOBRAZENIE 35

farby = vytvorPole();

. for each farba In farby
write("Tato farba je: "):
b write{farba.Name);
farby = vytvorPole(); end for;

write("Hotovo!®);

another farba
N\ Iyes]
(]
[no]
write("Hotovo!"); write("Tato farba je: ");
@ write(farba.Name);

Obr. 4.5: Ukazka zobrazenia foreach cyklu v diagrame aktivit.

brazeny pseudokod vytvarania while cyklu v diagrame aktivit a na obrazku 4.6 vidime

ukézku vytvoreného diagramu aktivit s while cyklom.

FUNCTION AddWhile (command)
Add merge node and decision node
Connect last activity to merge node

Connect merge node to decision node

FOR EACH subCommand in loop
AddActivity (subCommand) // with increased indentation
END FOR

Update last activity
END FUNCTION

Alg. 4.5: Pseudokod pridévania while cyklu do diagramu aktivit.

4.2 Dynamické zobrazenie

Implementovali sme aj animovanie diagramu aktivit, kedy sa aktivita zodpovedajica
prave vykonavanému prikazu zafarbi, spolu so sipkou smerujicou k danej aktivite. Pri
vykonéavani nejakého prikazu z nac¢itaného kédu sa nédjde v diagrame aktivit prislusna
aktivita zodpovedajica danému prikazu a zafarbi sa.

Pri podmienkach jednému prikazu zodpovedaja vSak dva uzly v diagrame aktivit,

a to uzol rozhodovania a uzol zlic¢enia. V tomto pripade zafarbime najskor iba uzol

36 KAPITOLA 4. IMPLEMENTACIA

xX=3;

while (x> 0)
write("Odpocftavam: ");
write(x);
X=x-1;

end while;

write("Startl");

Obr. 4.6: Ukazka zobrazenia while cyklu v diagrame aktivit.

rozhodovania. Uzol zlacenia sa zafarbi, az ked sa vykona, a teda sa aj zafarbi posledné
aktivita v niektorej z vetiev tejto podmienky. Na obrazku 4.7 vidime, ktorou vetvou

podmienky sa vykonéval kod, a teda st zafarbené prislusné aktivity a Sipky medzi nimi.

pripojenie = "slabé";
if (pripojenie == "silné")
write("Pripojenie je stabilné.");
elif (pripojenie == "slabé")
write("Signal je slaby.");
else _
write("Ziadne pripojenie.");
if (pripojenie == "neznédme")
write("Skontrolujte
nastavenia.");
end if;
end if;
write("Kontrola dokon&ena.");

Obr. 4.7: Ukazka animovania diagramu aktivit s podmienkou.

4.2. DYNAMICKE ZOBRAZENIE 37

Kedze v cykloch dochéadza k opakovanému vykonéavaniu prikazov, je potrebné pri
kazdej iteracii najskor zrusit zafarbenie vSetkych aktivit v tele cyklu a aj Sipky medzi
nimi. Tym sa zabezpeci, ze pri kazdej iteracii budu tieto prvky zafarbené nanovo, ¢o
bude spravne vizualizovat priebeh vykonavania cyklu. Na obrazku 4.8 je zobrazena

animacia pocas vykonévania prikazov v tele while cyklu.

X=3;

while (x > 0)
write("Odpocitavam:);
write(x);
Xx=x-1;

end while;

write("Start!");

Obr. 4.8: Ukazka animovania diagramu aktivit poc¢as vykonavania tela while cyklu.

38

KAPITOLA 4. IMPLEMENTACIA

Kapitola 5

Evaluacia vysledkov

V tejto kapitole navrhneme a opiSeme evaludciu nasho rieSenia.

5.1 NAavrh testovania

NaSe riesenie budeme evaluovat pomocou pouzivatelského testovania, kedy budeme

porovnavat uspesnost rieSenia tloh pomocou nasho softvéru v porovnani so statickym

diagramom aktivit. Priebeh testovania je zachyteny na obrazku 5.1.

Zaciatok
testovania

!

Vyplnenie
demografickych
udajov

l

Parny pocet

ucastnikov
[Ano] I [Nie]
Uloha1v Uloha 1v statickom
AnimArchu diagrame aktivit

Zodpovedanie
otazok k ulohe 1

}

Vyplnenie SUS
dotazniku

[

v
Parny pocet
ucastnikov
[Ano] I [Nie]
Uloha 2 v statickom Uloha 2 v
diagrame aktivit AnimArchu

Zodpovedanie
otazok k ulohe 2

}

Vyplnenie SUS a
NASA-TLX
dotaznikov

}

Koniec
testovania

Obr. 5.1: Vyvojovy diagram opisujuci priebeh testovania.

Ucastnici budi po zadani demografickych tdajov riesit dve tlohy, zodpovedajice

40 KAPITOLA 5. EVALUACIA VYSLEDKOV

roznym procesom, ktoré sme vizualizovali pomocou nasho softvéru AnimArch, aj pomo-
cou néastroja, ktory vygeneroval staticky obrazok diagramu aktivit. Kazda tlohu buda
pouZivatelia rieSit pomocou iného nastroja, teda bud pomocou animovaného diagramu
aktivit v. AnimArchu alebo pomocou statického diagramu aktivit.

Prva tloha opisuje proces objednavania tovaru, ktory zahina rézne vetvenia toku
v pripade, Ze tovar nie je na sklade alebo platba nie je tspesna. Otazky, ktoré sme
pripravili k tejto tlohe st zobrazené v prilohe A v sekcii Uloha 1. Taktiez sa tam
nachadzaju aj vytvorené diagramy aktivit, ktoré budu tcastnici vyuzivat. Animovany
diagram aktivit v AnimArchu pre tlohu 1 je zobrazeny na obrazku 5.13 a staticky
diagram aktivit tlohy 1 je zobrazeny na obrazku 5.14.

Druha tloha obsahuje proces vytvorenia zoznamu objednavok, ktoré sa nasledne
spracovavaju v cykle. Otazky k tejto tlohe st zobrazené v prilohe A v sekeii Uloha 2.
Na obrazku 5.15 je zobrazeny animovany diagram aktivit v AnimArchu pre tlohu 2
a staticky diagram aktivit je zobrazeny na obrazku 5.16.

Pouzivatelia budd mat jednotne stanoveny ¢as, a to minttu a pol, na prestudovanie
a pochopenie daného diagramu aktivit. Po tomto ¢ase sa presunt na rieSenie tlohy,
pozostavajicej z piatich otazok, ktoré overia, ako dobre si zapamétali a pochopili dany
diagram aktivit.

Ucastnici budt po kazdej tlohe odpovedat aj na otézky System Usability Scale
(SUS) [29] dotazniku, ktory bude zistovat spokojnost so systémom, ktory vyuzili. Na
zéver budu tiez odpovedat na otazky z NASA Task Loader Index (NASA-TLX) [30]
dotazniku, pomocou ktorého budeme skumat, ako zataz, ktorta uc¢astnici vnimali pocas

vypracovavania tloh, ktoré riesili pomocou animovaného diagramu v AnimArchu.

5.2 Vyhodnotenie testovania

5.2.1 Demografické idaje ucastnikov

Testovania sa zucastnilo 10 vysokoskolskych studentov aplikovanej informatiky, pricom
bolo rovnaké zastiipenie muzov a Zien.

Na obrazku 5.2 je zobrazené, ako Gc¢astnici ohodnotili svoje znalosti v oblasti analyzy
a navrhu softvéru. Nikto neuviedol, Ze by sa v tejto tematike vyznal tplne, alebo
nevyznal vobec, preto mozeme predpokladat, Ze uspesnost pouzivatelov pri rieSeni tloh
nebude ovplyvnena nedostatkom vedomosti z UML modelovania. Odpovede na prvé
dve otazky nadobuidaji tvar Gaussovho rozdelenia, ¢o naznacuje symetrické rozlozenie
odpovedi okolo priemeru, a teda vacSina z nich povazuje svoje znalosti za priemerné.
Studenti tiez uviedli, ze sa viac vyznaji v UML modelovani, oproti analyze a navrhu
softvéru vo vSeobecnosti. Najvécsie znalosti ale uviedli pri samotnom chépani UML

modelov, ¢o znaci, ze vedia UML modely skor chapat ako ich vytvérat.

5.2. VYHODNOTENIE TESTOVANIA 41

10
I Ako dobre sa vyznds v analyze a navrhu softvéru?
B Ako dobre sa vyznds v UML modelovani?
Ako dobre rozumie$S UML modelom?

8 4
>
o
€
o 61
°
C
I}
Q
(2]
4}
—_
o 41
>0
o
o

2 4

0 T T

1 2 3 4 5
Miera porozumenia (1 = vObec, 5 = Uplne)

Obr. 5.2: Subjektivne hodnotenie znalosti Gc¢astnikov v analyze a navrhu softvéru.

Utastnikov sme sa tiez pytali, na ich znalosti softvéru AnimArch. Ako je zobrazené
na obrézku 5.3, viac¢Sina z nich uviedla, Ze AnimArch poznaju a aj ho uz pouzivali.
Predchadzajtca znalost AnimArchu ale nemé zasadny vplyv na vysledky testovania,
kedZe vSetci u¢astnici mali k dispozicii rovnaké instrukcie a testovaci scenar, vdaka

¢omu boli schopni vykonat tlohy aj bez predchadzajucich skusenosti.

Ano, uz som ho pouzival/-a

Ano, pocul/-a som o fiom,
ale nepouzival/-a som ho

Miera znalosti AnimArchu

Nie, nepoznédm ho
B Poznas softvér AnimArch?

0 2 4 6 8 10
Pocet respondentov

Obr. 5.3: Znalost softvéru AnimArch.

42 KAPITOLA 5. EVALUACIA VYSLEDKOV

5.2.2 Vyhodnotenie riesenia tiloh

Polovica tcastnikov najskor riesila prva tlohu pomocou animovaného diagramu aktivit
v AnimArchu a nésledne druhu tlohu pomocou statického diagramu. Druhéa polovica
ucastnikov postupovala opacne, teda prva tlohu riesila najskor so statickym diagra-
mom aktivit a druht tlohu s animovanym diagramom v AnimArchu. Toto rozdelenie
umoznilo objektivne porovnat efektivitu oboch typov vizualizacie bez ovplyvnenia po-
stupnym poradim rieSenia tloh.

Na obréazku 5.4 je zobrazené porovnanie aspeSnosti rieSenia otazok v tulohe 1 podla
nastroja, ktory ucastnici vyuzili. Vidime, Ze Gcastnici spravne vyrie§ili viac tuloh, ak
pouzili staticky diagram aktivit. Moze to byt spdsobené tym, Ze na tento pristup si
uz zvyknuti, a teda sa v nom orientovali rychlejsie a s viac¢Sou sebaistotou. Vyrazny
rozdiel je pri prvej a Stvrtej otazke, kedy sa ucastnikom darilo lepSie, ak vyuzili staticky
diagram. Prva otazka sa zameriavala na akcie, ktoré nastant, ak tovar nie je skladom.
Animécia v diagrame aktivit zobrazovala ale druhu vetvu podmienky, ako mézeme
vidiet na obrazku 5.13, je teda mozné, Ze ucastnici venovali viac pozornosti prave
animovanym aktivitam, a preto nevedeli spravne zodpovedat tito otazku. Stvrta otézka
zistovala, aky krok nastane po tspesnej platbe. V tomto pripade animacia diagramu
zobrazovala tuto vetvu podmienky, ¢o vidime aj na obrazku 5.13. KedZe otazka bola
smerovanad na akcie v zaverecnej casti diagramu aktivit a tcastnici, ktori odpovedali
nespravne, zvolili moznost, ktora sa v diagrame vobec nevyskytovala, mozeme usudit, ze
pouzivatelia AnimArchu nevenovali dostato¢nii pozornost tejto casti diagramu aktivit,

alebo si jej obsah dostato¢ne nezapaméatali.

100 A celkovo

. ' B AnimArch
staticky

80 A diagram

60 1

Uspesnost v %

40

20 A

Otézka 1 Otézka 2 Otézka 3 Otazka 4 Otézka 5
Obr. 5.4: Uspesnost riesenia tlohy 1.
Porovnanie tspesnosti rieSenia otazok v tlohe 2 je zobrazené na obrazku 5.5. Pri

vypracovani tejto tlohy sa ucastnikom v priemere darilo rovnako dobre, bez ohladu

na to, ¢i pouzili animovany diagram aktivit v AnimArchu alebo staticky diagram. To

5.2. VYHODNOTENIE TESTOVANIA 43

moze byt preto, ze castnici po vypracovani prvej tlohy vedeli, aky styl otdzok mozu
ocakavat, a teda vedeli, na ¢o sa maji v diagrame aktivit primarne stustredit. Vyrazny
rozdiel v tspesnosti rieSenia je pri piatej otazke, ktora sa zameriavala na akciu, ktora
nastane po spracovani vSetkych objednavok, respektive po skonceni vykonévania cyklu,
v ktorom sa objednévky spractuvaju. Vidime, ze 100% ucastnikov, ktori pracovali s ani-
movanym diagramom aktivit, vyrieSilo alohu spravne, no iba 40% ucastnikov, ktori
pouzivali staticky diagram aktivit, bolo tspesnych. To mohlo byt spdsobené tym, ze
zo statického diagramu aktivit nebolo ucastnikom zrejmé, kedy nastane koniec cyklu,
a teda kedy sa spracuji vSetky objednavky. V- AnimArchu mohol ucastnik vdaka ani-
mécii jednoduchsie pochopit, kedy sa spracovali vSetky objednavky, a ktory krok sa
nasledne vykonal. Taktiez v AnimArchu vykreslujeme telo cyklov odsadené doprava,
ako mozeme vidiet na obrazku 5.15, ¢o mohlo byt pre u¢astnikov viac prehladné a Tah-

Sie zapamatatelné.

100 A -

80 1

diagram

celkovo
. . EmE AnimArch
— staticky

60 1

Uspesnost v %

40

201

Otézka 1 Otézka 2 Otazka 3 Otézka 4 Otézka 5

Obr. 5.5: Uspesnost riedenia tlohy 2.

Mozeme si tiez vSimnut, Zze pouzivatelom AnimArchu sa pri rieSeni prvej tlohy
darilo menej, ako tim, ktori vyuzivali AnimArch pri rieSeni druhej tlohy. To mohlo byt
sposobené tym, Ze venovali svoju pozornost aj inym prvkom, ktoré sa v AnimArchu
nachidzaju, a teda neboli plne ststredeni na samotnti animaciu diagramu aktivit. Pri
rieSeni druhej tlohy uz ucastnici vedeli, aky styl otazok mozu ocakéavat, a teda vedeli
na ¢o sa maju primarne sustredit, ¢o mohlo prispiet k vysSej tispesnosti ich odpovedi.

Uspesnosti rieSenia otazok pomocou animovaného diagramu aktivit v AnimArchu
a pomocou statického diagramu aktivit sme porovnali aj Statistickym testom. Navrhli

sme nasledovné hypotézy:

e Nulova hypotéza (Hp): Neexistuje vyznamny rozdiel v aspesnosti iloh pomocou

AnimArchu a statického diagramu aktivit.

e Alternativna hypotéza (H;): Existuje vyznamny rozdiel v uspesnosti tloh pomo-

44 KAPITOLA 5. EVALUACIA VYSLEDKOV
cou AnimArchu a statického diagramu aktivit.

Pre kazdy néstroj sme vytvorili vektor reprezentujuci skére tcastnikov, ktori po-
uzivali dany néstroj. Skore pre kazdého ucastnika sa vypocita ako pocet spravnych

odpovedi pri rieSeni jednej tlohy. Vysledné vektory su:

animarchSkore = [4,5,4,3,3,5,3,4,2,5]
diagramSkore = [4,5,4,4,4,5,5,5,5,5].

Na overenie nulovej hypotézy sme najskor vykonali Shapiro-Wilkov test normality
s hodnotou a = 0.05, kedy nam vysli hodnoty p = 0.19099 a p = 0.00017. KedZe jedna
hodnota p je mensia ako 0.05 data nie sit norméalne rozdelené. Preto pouzijeme Wil-
coxonov test, ktory je neparametricky a vhodny pre porovnanie dvoch skupin, prave
ak data nie su normalne rozdelené. Po pouziti Wilcoxonovho testu nam vysla hodnota
p = 0.0625, ¢o je vacsie ako hranica «a, a preto nulovii hypotézu nezamietame. Dospe-
jeme teda k zaveru, ze neexistuje Statisticky vyznamny rozdiel v tispeSnosti rieSenia
tloh pomocou roznych diagramov aktivit.

KedZe nulova hypotéza nebola zamietnutd, na dokazanie alternativnej hypotézy
nemame dostatok tdajov.

Aj napriek tomu, Ze pouzivatelia statického diagramu aktivit boli tspesnejsi pri
vySSom pocte otazok boli, neznamena to, ze animovany diagram aktivit je neefektivny:.
Naopak, kedZe ide o novy pristup, na ktory pouZivatelia nie st zvyknuti, vyzaduje
si urCity ¢as na osvojenie. Po oboznameni sa s takymto interaktivnym sposobom vi-
zualizécie diagramu aktivit by jeho potencidl mohol vyraznejsie vyniknut, najma pri
komplexnejsich procesoch, kedy by animécia vyrazne zjednodusila pochopenie daného

procesu.

5.2.3 Vyhodnotenie SUS dotaznika

SUS je nastroj na meranie pouzitelnosti systému, ktory pozostava z desiatich tvrdeni
hodnotenych na patstupnovej Likertovej Skdle. Pouzivatelia pri odpovediach vyberaju
hodnoty od 1 do 5, kde 1 znamena ,,Uplne nesthlasim” a 5 ,,Uplne stuhlasim®. Vysledkom
je ¢iselné skore od 0 do 100, ktoré odraza mieru pouzitelnosti systému z pohl'adu pou-
zivatela. Za priemerné SUS skore sa poklada 68 [29], pricom ak je skore v rozmedzi od
50 do 70, pouzitelnost sa povazuje za priemernu alebo akceptovatelnia. SUS skore pod
hranicou 50 naznacuje slabti mieru pouzitelnosti systému. Naopak SUS skore v rozme-
dzi 70 az 80 indikuje dobru pouZiteInost systému a skore nad 80 znac¢i vybornu troven
pouzitelnosti.

SUS skore vypocitame na zaklade pozicii odpovedi uc¢astnikov na $kale. Pri parnych

otazkach ziskame skore odpocitanim danej hodnoty odpovede od 5. Pri neparnych

5.2. VYHODNOTENIE TESTOVANIA 45

otazkach odratame 1 od hodnoty odpovede. Vysledné skore ziskame séitanim tychto
hodndét a vynasobenim ¢islom 2.5, ¢im dosiahneme, Ze vysledné skére bude v rozmedzi
0 az 100.

100 A

90 1

80 1

SUS skore

701

60 1

501 o

AnimArch staticky diaéram aktivit

Obr. 5.6: Krabicovy diagram SUS skoére pre AnimArch a staticky diagram aktivit.

Na obréazku 5.6 je porovnanie vypocitanych SUS skore pre softvér AnimArch a pre
staticky diagram aktivit.

Skore pre AnimArch sa pohybovali v rozmedzi 50 az 97.5, pricom skére 50 pred-
stavuje odlahli hodnotu (outlier), ktora sa vyrazne lisi od ostatnych hodnot. Median
SUS skoére pre AnimArch bol 91.25, ¢o sa povazuje za vybornu pouzitel nost.

SUS skore pre staticky diagram aktivit malo hodnoty 65 az 100, pricom medién bol
82.5, ¢o sa tieZz poklada za vyborna mieru pouzitel nosti.

Aj napriek tomu, ze pouzivatelia pracovali s animovanym diagramom aktivit v Ani-
mArchu prvykrat, pouzitelnost hodnotili kladne, ¢o méze byt ndznak toho, Ze sme nase

rieSenie navrhli a implementovali vhodne a uzivatelsky privetivo.

5.2.4 Vyhodnotenie NASA-TLX dotaznika

NASA-TLX je néstroj, ktory sa vyuziva pri merani zataze, ktora ¢lovek vnima pri vy-
konavani nejakej tlohy. Obsahuje 6 otazok, ktoré zistuji do akej miery ¢lovek pocitoval
mentalnu a fyzickd narocnost, ¢asovy tlak, ako hodnoti svoju tspesnost, vynalozené
asilie a frustriaciu pocas vykonavania danej tlohy. Pouzivatelia hodnotili tieto aspekty
vzhladom na tulohu, ktord riesili pomocou softvéru AnimArch, pricom vyuzivali 10-

bodovu skalu.

46 KAPITOLA 5. EVALUACIA VYSLEDKOV

Mentélna naroc¢nost - ”
Casovy tlak

“

Uspesnost] “
*
e

Fyzickd naro¢nost

Vynalozené Usilie A

Frustracia -

1 2 3 4 5 6 7 8 9 10
Hodnotenie

Obr. 5.7: Huslovy diagram NASA-TLX skore pre AnimArch.

Na obréazku 5.7 je zobrazené hodnotenie jednotlivych aspektov, pricom vécsia hod-
nota znamené horsie hodnotenie, teda napriklad vicsiu narocnost, ¢asovy natlak alebo
vacsi pocit frustracie. Niektori pouzivatelia uviedli nizsiu troven mentalnej narocnosti,
zatial ¢o ini pocitovali vyssiu naro¢nost. Tento rozdiel moze suvisiet s ich predchéadza-
jucimi znalostami UML modelovania. Pouzivatelia, ktori svoje znalosti ohodnotili ako
podpriemerné, mohli mat va¢si problém s porozumenim diagramu aktivit a naslednym
rieSenim uloh. Naopak, ti, ktori sa povazovali za skusenejsich, mohli vnimat tlohy ako
menej naro¢né. Pouzivatelia prevazne nepocitovali fyzickt narocnost ani frustraciu pri
rieSeni tlohy, ¢o moze znamenat, Ze s nasim softvérom sa im pracovalo dobre a bez
vyraznejsich problémov. Pouzivatelia svoju tispesnost hodnotili rézne, ¢o tiez moze si-
visiet s hodnotenim mentalnej naro¢nosti, kedy mohli pouzivatelia, ktorym prisla tiloha
narocnejsia, oznacit svoju uspesnost za horsiu. Hodnotenie tspesnosti mé vSak v do-
tazniku opacné bodovanie, na aké mozu byt pouzivatelia bezne zvyknuti, kedze vyssia
hodnota v tomto pripade predstavuje horSiu tspeSnost. Je teda mozné, ze niektori
Ucastnici si tuto skutocnost neuvedomili, a preto uviedli vyssie ¢islo, aj ked mysleli

jeho opa¢na hodnotu.

5.2.5 Celkové vyhodnotenie

Na zéklade vysledkov testovania sme vytvorili viacero korelacnych teplotnych map, na
ktorych znazornujeme vztahy medzi réznymi détami. Pri vytvarani tychto map sme

vyuzili Pearsonov korela¢ny koeficient, ktory meria linedrnu zavislost medzi dvoma

5.2. VYHODNOTENIE TESTOVANIA 47

premennymi. Hodnota tohto koeficientu nadobiida hodnoty v rozmedzi od -1 do 1,
kde hodnota 1 predstavuje pozitivnu korelaciu, ¢o znamené, ze skiimané premenné su
navzajom priamo umerné. Hodnota —1 predstavuje negativnu koreléciu a znamena, ze
premenné st nepriamo tmerné. Hodnota 0 znadci, Ze medzi premennymi nie je Ziadna
linearna zavislost.

Pri znaceni jednotlivych dat v mapéach sme, pre lepsiu prehl'adnost, vyuzili skratené
oznacenia. Oznacenie Znalost ANS predstavuje ako tcastnici ohodnotili svoju znalost
analyzy a navrhu softvéru. Oznacenia Znalost UML a Porozumenie UML oznacuju ako
ucastnici ohodnotili svoju znalost a porozumenie UML modelov. Oznacenia SUS1T az
SUS10 predstavuju standardné otéazky, ktoré sa vyuzivaju v SUS dotaznikoch. Otéazky
z NASA-TLX st na obrazku skratene oznacené, podla aspektov, na ktoré sa zameria-
vaju, pricom su blizsie opisané v sekcii 5.2.4. Riadky a stipce, pre ktoré sa korelacia

nedala urc¢it z dévodu konstantnych hodnot, sa v korela¢nej mape zobrazujia prazdne.

1.00
Pohlavie
Znalost ANS - 0.13

Znalost UML - 0.00 0.42

Porozumenie UML - 0.41 0.00 [FH6) 0.75
Znalost AnimArch - 0.25 E 0.00 m

Ulohal - Otézkal -/ -0.33 0.00 -0.17 1.00

Ulohal - Otézka2 - 0.25 (0163 1.00 (0163 1.00 0.50

Ulohal - Otazka3 - 0.25 E 0.00

Ulohal - Otézka4 --0.25 0.13 0.41 0.25 -0.41 0.25 0.25
Ulohal - Otazka5 -
SUS1--0.41 0.22 E-o.n w 0.17 W -0.41 1.00
SUS2 -
SUS3 - -0.00 0.13 -0.22 0.13 0.13 E 0.33 1.00
SUS4 - ﬂ 7 0.41 0.41 0.41 -0.41 0.17 -0.22 000
SUSS5 - E 0.00 w -0.25 0.41 -0.25 -0.25 0.25 0.41 0.80 W 1.00

SUS6 -

SUS7 013043 [0.42 0.22 ﬁ 033 ﬁﬁ 013

Sus8 -0.33 0.00 -0.17 0.41 0.17 0.41 0.41 -0.41

SUS9 --0.25 -0.20 -0.37 0.10 -0.37 -0.37

-0.25

1.00 [-025

n
0.20 010

o
@
g
&
9
M
o
@
3

=)
o
N
=3
S
o
o
-
~
o
o
=

SUS10--0.25 0.00 FUHY 0.25 -0.41 0.25 0.25 -0.25 0.41 -0. ao 0.38 -0.50
NASA_Mentélna ﬁ -0.16 E -0.28 -0.29 -0.29 -0.29 0.28

NASA_Fyzicka - 0.40 -0.42 0.00 -0.32 0.40 0.00 0.40 0.40 -0.40

NASA_CasovyTlak - 0.25 -0.36 E -0.07 0.25 0.07 0.36 -0.27 -0.38 m 0.03 -0. 40 .
NASA_Uspesnost ﬂﬁ -0.31 0.44 0.08 0.44 0.44 m 0.32 0.16 -0.12 EX:3E M -0.30 -0.31 0.28

NASA_Usilie - 0.10 0.22 0.00 0.25 WWW 0.10
NASA_Frustracia m 0.20 —O.AOE 0.38 0.41 0.38 0.38 0.25
i i i g i i

o I

-0.20 0.41 ﬁ -0.37 0.07 0.20 0.37 m 0.15

' ' ' ' " " ' ' 0 ' -1.00
9 v 2 2 £ 4 & m < o~ © N © @ ©O ® W X ¥ o ©
S z 5 5§ 9 ©® © © © @ % w v o uw v = £ X ® 8 = 5
s < 53 35 g ¥ ¥ ¥ ¥ % =} S5 5 5 5> vw %m £ FE 2 @ 9w
=) N]) N 0 n »n v v > = N > s D5
E=R T o € W W W W © A <4 S 2 4 s
S n ¢ £ £ ¢ =& L& B S & 3 < @
& & 8 5 256 6 06 5 & s <2 & 5 2
© ' ' ' ' ' © K w
< < E o o a4 o o 9o <' a0 D| ; !
N N 5 8 © @ ® ® ®© a < o< b3
N ©° Z < u
N £ £ £ £ < < %) 2
£ @ © o o o o =z 2 = 3

s § 53 5 5 5 35 L 2

Obr. 5.8: Korela¢na teplotnd mapa znazornujtuca vztahy medzi dspesnostou rieSenia

tlohy 1 pomocou AnimArchu a zvySnymi datami z dotazniku.

Na obrazku 5.8 je znazornena korela¢né teplotna mapa, ktord zachytéva vztahy

medzi uspesnostou rieSenia ulohy 1, ked tucastnici vyuzivali animovany diagram ak-

48 KAPITOLA 5. EVALUACIA VYSLEDKOV

tivit v AnimArchu, a demografickymi tdajmi, ¢i odpovedami na SUS a NASA-TLX
dotazniky:.

Korelacia medzi znalostou analyzy a navrhu softvéru a porozumenim UML zobra-
zuje, Ze ¢im vacsiu maju ucastnici znalost analyzy a navrhu, tym lepSie vedia chapat
UML modely.

Otéazky 2 a 3 ulohy 1 overovali, ¢i GcCastnici spravne pochopili podmienky v dia-
grame aktivit. Vidime, Ze préave uspesnost rieSeni tychto otazok vyznamne koreluje so
znalostami AnimArchu, ¢o naznacuje, Ze pouzivatelom sa darilo lepsie, ak mali predoglé
sktisenosti s AnimArchom. To méze byt spésobené tym, ze sa v softvéri citili pohodl-
nejsie, kedze ho viac poznali. Znalosti analyzy a navrhu softvéru, ¢i UML modelov
nemali prili§ vyznamnua korelaciu s tspesnostou rieSenia tulohy 1.

Medzi tispesnostou rieSenia otédzky 4 a otédzkou 9 zo SUS dotaznika je negativna
korelacia, ktora predstavuje, ze pouzivatelia boli menej tspesni, hoci uviedli, Ze sa pri
pouzivani systému citili sebavedomo. To moze naznacovat, zZe systém sa im pouzival
dobre, ale na spravne vyrieSenie otazok si diagram aktivit dostato¢ne nezapaméitali
alebo ho nepochopili. Negativna korelacia medzi otdzkami 5 a 10 zo SUS dotaznika
naznacuje, ze ¢im menej sa zdal uc¢astnikom systém dobre prepojeny, tym viac veci sa
museli naucit pred pouzitim systému. To mdze naznacovat, ze systém bol pre niektorych
pouzivatelov komplexny a menej prehladny. KedZe ale animovanie diagramu aktivit
v AnimArchu bolo pre ucastnikov novou sktusenostou, je mozné, ze po dlhSom ¢ase by
si ticastnici systém osvojili a mohli by ho plnohodnotnejsie vyuzivat.

Mentalna naroc¢nost tlohy negativne koreluje s tispesnostou rieSenia otézky 4, ¢o
znaci, ze ucastnici, ktori boli pri rieSeni otdzky 4 menej tspesni pokladali tlohu za
naroc¢nejsiu. Korelacia medzi fyzickou naro¢nostou a SUS otazkou 8 predstavuje, Ze
pouzivatelia hodnotili rieSenie tlohy ako malo fyzicky naro¢né, a zaroven ohodnotili
systém ako Tahko ovladateIny. Z toho moéZzeme usudit, Ze animovany diagram aktivit
sme navrhli vhodne, tak aby sa pouZivatelom Tahko pouZival. Negativna korelacia me-
dzi pocitom ¢asového natlaku a SUS otézkou 4 naznacuje, ze tcastnici, ktori pocitovali
vyssi casovy tlak, uviedli, Ze nemali pocit potreby pomoci technicky zdatnejsej osoby.
Z toho mozeme usudit, ze hoci Gcastnici nepotrebovali pomoc technickejSej osoby, po-
trebovali by viac ¢asu na osvojenie si systému. Korelacia ohodnotenia svojej iispesnosti
a porozumenia UML modelov znaci, Ze Gcastnici, ktori oznacili svoje znalosti chapa-
nia UML modelov za vySssie, hodnotili svoju tispesnost horgie. Avsak, ako sme opisali
v predchadzajucej sekcii, je mozné, Ze pouzivatelia nespréavne pochopili hodnotenie
uspesnosti, a preto nevieme s urcitostou analyzovat tuto vlastnost. Korelacia medzi
vynaloZzenym tusilim a SUS otazkou 5 zobrazuje, Ze pouzivatelia, ktori vynalozili viac
usilia pri rieSeni dlohy, mali vA¢Si pocit, Ze systém je dobre prepojeny. Hodnotenie
vynalozeného tusilia tiez negativne koreluje s otazkou 10 zo SUS dotaznika, kedy pou-

zivatelia, ktori vynalozili viac usilia sa museli nauc¢it menej veci, pred rieSsenim tulohy.

5.2. VYHODNOTENIE TESTOVANIA

49

To moze suvisiet s tym, ze disponovali dostatoénymi znalostami alebo si systém viac

osvojili.
Pohlavie
Znalost ANS - 0.25 [N
Znalost UML- 025 -0.25 EENY

Porozumenie UML - -
Ulohal - Otazkal -
Ulohal - Otézka 2 -
Ulohal - Otazka3 -
Ulohal - Otézka4 - -0.
Ulohal - Otézka5 -
SUS1- -038 -0.
SUS2 - 051
SUS3- 013
SUS4 - 0.25
SUS5 - -0.38
SUS6 - 037
SUS7 - -0.10
SUS8 - 0.25

SUS9 -

SUS10- -0.

=}
o
@

Pohlavie -
Znalost ANS - ¢
Znalost UML
Porozumenie UML- &
Ulohal - Otazkal -
Ulohal - Otézka 2 -

Obr. 5.9: Korela¢na teplotné

- 1.00

-0.50

1.00

--0.25

--0.50

-0.75

0.80 0.87 0.18 1.00 0.13 0.87 0.80 0.07 1.00
' ' v - -1.00
m < n - o~ m < n © ~ © (=)} o
© © © wn w wn w wn w (%) w wn -
4 4 R4 > > > > > > > > > %
- & B [m) [} 7}) @) o) o >
P] £ @
o [e] o
— - —
© © ©
< = <
2 C 2
3 =) =)

mapa znazoriujica vztahy medzi tspe$nostou rieSenia

tlohy 1 pomocou statického diagramu a zvysnymi datami z dotazniku.

Na obrézku 5.9 je znazornena korelac¢né teplotné mapa, zachytavajica vztahy medzi
uspesnostou rieSenia ulohy 1, ked tcastnici vyuzivali staticky diagram aktivit, a demo-
grafickymi dajmi a odpovedami na SUS dotaznik.

Vyrazna negativna korelacia je medzi uspeSnostou rieSenia otézky 4 a znalostou
UML modelov, kedy ucastnici pravdepodobne precenili svoje znalosti a darilo sa im
horsie, ked uviedli vyssie znalosti UML modelov.

Otazka 4 zo SUS dotazniku vyrazne koreluje s uvedenymi znalostami analyzy a na-
vrhu softvéru, ¢o naznacuje priamu timeru medzi znalostami tcastnika a pocitom po-
treby technicky zdatnejSej osoby pri pouZivani statického diagramu, aj ked by sme
predpokladali opak. Znalost UML modelovania tieZz vyznamne koreluje s odpovedou
8 na SUS dotaznik, kedy ¢im vysSiu znalost ucastnici uviedli, tym tazsie sa im sta-
ticky diagram ovladal. Otézka 8 tiez vyrazne negativne koreluje s tispesnostou rieSenia

otazky 4, ktora zistovala, ¢i u¢astnici spravne pochopili vykreslenie podmienky v dia-

50 KAPITOLA 5. EVALUACIA VYSLEDKOV

) v

grame. To znadi, Ze pouzivatelia, ktorym sa tazsie ovladal staticky diagram boli aj
menej uspesni pri rieSeni otazky 4. Z toho mozeme usudit, ze staticky diagram aktivit
nebol dostacujuici, na to aby ho ticastnici spravne interpretovali, a teda boli pri rieSeni
otazky uspesni. Taktiez negativne koreluji SUS otézky 3 a 10, kedy tucastnici, ktorym
sa systém Tahko pouZzival, mali aj pocit, Ze sa museli naucit menej veci, aby ho mohli
pouzivat.

Korela¢na teplotnd mapa zobrazujuca vztahy medzi tspe$nostou rieSenia tulohy
2, ktortu ucastnici riesili pomocou animovaného diagramu aktivit, a demografickymi

udajmi a odpovedami na SUS a NASA-TLX dotazniky je zobrazena na obrazku 5.10.

1.00
Pohlavie
Znalost ANS - 0.25
Znalost UML - 0.25 -0.25
Porozumenie UML--0.37 037 0.75
Znalost AnimArch - 0.25 0.38 0.38 ﬁ

Uloha2 - Otézkal --0.25 0.25 BRI -0.38 -0.37
Uloha2 - Otézka2 - L 0.50
Uloha2 - Otazka3 --0.25 0.25 -0.38 -0.37
Uloha2 - Otéazka4 FE 0.25 0.25 -0.38 0.25 -0.25
Uloha2 - Ot4zka5 -
Sus1 jﬁ 0.13 047 E-O.IB
SUS2 --0.20-0.13 EXE] 0.37 0.13
SUS3 - 0.25 037 ﬁ-ozs 037
sus4 ﬁ -0.41 -0.41 0.10 0.41
SUSS -»o.1om -0.15
SUS6 --0.13 ﬁ 0.47 :|
SuUSs7 m 0.41 0.41 -0.10 -0.41
SUS8 -
SUS9 - 0.00 -0.00 -0.46 0.00 0.00 0.00
SUS10 ﬂ -0.41 -0.41 0.10 0.41 0.41

NASA_Mentalna --0.09 -0.34m 0.51 0.30 ﬂ -0.09

--0.25

1.00

-0.50
0.00 -0. 21
NASA_Fyzicka ﬂ -0.41 -0.41 0.10 0.41 0.41 (EX31 -0. 21
NASA_CasovyTlak M 0.29 -o.zo -0.29 -0.29 [-0.16 -0.24 0. ! 1:1(-0.42 -0. 0.36 0.08 (v 0.08 075
NASA_Uspesnost - 0.31 0.46 0.46 -0.46 -0.46 0.31 0.45 -0.31 0.13 -0.19 0.44 -0.13 M 0.13 0.37 0.13 -0.24
NASA_Usilie - 0.35 006 -0. os 0.35 -0.12 -0.03 0.23 -0.33 0.38 -0.12 0.33 -0.11 033 -0.33 0.07 [UE:E]

c
3
[
)
S

=3
S

NASA_Frustracia --0. osm 0.08 w 008 -0.08 -0.08 ﬁﬁmmﬁmﬂ ﬂm 0.0 m oum 028 m
' ' ' ' ' ' ' -1.00
@ v o 4N m Y M o N Mmoo ! © N @ © X B0 ®
sz = s § 3 9% % ¥ 82 38 38 8 K R & S 2 ¢S 2 =
T < 35 3 & ¥ ¥ ¥ ¥ ¥ 2 2 2 2 2 2 2 2 o2 v % 2 E & @ 9w
= v - AN R R RO B 0 B 2 LN > o D5
S % % ¢ £ &8 =8 8 £ O a t > 39 (T
a o o s c o o o o [e] L | 3 a < Bl
© © v < | T V \ \ Zl < L 2 ey
NS E v &N & & & o < 2 0O (=
N 3 8 ®© @ ®© @© ®© @ < by
y 2= £ £ £ £ < P<d = < v %
£ @ © o o o o = 2 < g
g & 2 5 5 5 S s =

Obr. 5.10: Korela¢na teplotnd mapa znézornujica vztahy medzi tspesnostou riesenia

tlohy 2 pomocou AnimArchu a zvySnymi datami z dotazniku.

Zaujimava je negativna korelacia medzi porozumenim UML a znalostou analyzy
a navrhu softvéru, kedy ¢im vysSie porozumenie UML modelov ti¢astnici uviedli, tym
mali mensiu znalost analyzy a navrhu softvéru. Z toho mozeme usudit, ze ucastnici
radsej chapu UML modely, kedZe v nich maju vacsie znalosti, ako analyzuju a navrhuja
softvér vo vSeobecnosti.

Negativna koreldcia medzi znalostami UML a tspeSnostou rieSenia otédzok 1 a 3

5.2. VYHODNOTENIE TESTOVANIA 51

moze suvisiet s tym, Ze Studenti presne neodhadli svoje znalosti, teda sa im darilo
menej, hoci uviedli vyssie znalosti UML modelovania. Otazka 1 pritom skimala, ¢i
pouzivatelia spravne pochopili podmienku v tele cyklu, zatial ¢o otézka 3 zistovala,
¢i si pouzivatelia dostato¢ne zapaméatali obsah diagramu. Predosla znalost AnimArchu
vyrazne nekoreluje s tuspesnostou rieSenia jednotlivych otézok, a teda sa Studentom
darilo rovnako, bez ohladu na ich predoslé skusenosti s AnimArchom.

Jednotlivé otédzky SUS dotazniku medzi sebou vyrazne korelujd, ¢i uz negativne
alebo pozitivne. Najvicsie negativne korelacie st medzi SUS otézkami 4 a 7, kde sa
ukazalo, Ze ¢im menej castnici citili potrebu pomoci technicky zdatnejsej osoby pri po-
uzivani AnimArchu, tym viac sa priklanali k nazoru, ze vac¢sina ['udi by sa tento systém
naucila pouzivat vel'mi rychlo. Taktiez vyrazne negativne koreluju otazky 7 a 10, kedy
sa ukézalo, Ze ¢im viac si ucastnici mysleli, Ze vac8ina Tudi sa nau¢i AnimArch pouZzivat
rychlo, tym menej novych veci sa sami museli naucit predtym, nez ho zacali pouzivat.
7 toho tiez vyplyva vyrazna korelacia medzi otdzkami 4 a 10 zo SUS dotaznika, ¢o
naznacuje, ze ¢im menej Ucastnici potrebovali pomoc technicky zdatnejsej osoby, tym
menej novych veci sa museli naucit, pred samotnym pouzivanim AnimArchu. Z toho
mozeme usudit, Ze pouZzitie diagramu aktivit v AnimArchu bolo pre ucastnikov Tahko
pochopitelné a nevyzadovalo si velké predchadzajuce znalosti ani technicku podporu.

Pomerne vyrazna negativna korelacia sa vyskytuje aj v porovnani mentélnej naroc-
nosti ulohy a tuspesnostou rieSenia otazok 1 a 3. To naznacuje, ze pouzivatelia, ktori
uviedli nizku mentalnu zataz boli pri rieSeni otédzok 1 a 3 tspesnejsi. Taktiez vyrazne
koreluje fyzicka narocnost pri rieSeni tlohy a SUS otazky 4 a 10 a negativne koreluje
s otédzkou 7 zo SUS dotaznika. Nizka fyzickda naro¢nost opat sivisi s tym, ze tcastnici
pocitovali nizku potrebu technicky zdatnejSej osoby, mysleli si, Ze vacgina [udi sa nauci
AnimArch pouzivat rychlo a bez potreby ucenia novych veci. Korelacia medzi tym, ako
ucastnik ohodnotil svoju tspesnost, a jeho znalostou AnimArchu méze naznacovat, ze
ucastnici, ktori uviedli vyssie znalosti AnimArchu ohodnotili svoju tispesnost horsie.
KedZe je ale mozné, Ze niektori acastnici nepochopili spravne hodnotenie svojej aspes-
nosti, tiuto vlastnost nevieme presne interpretovat. Vysoka koreldcia medzi tym, ako
ucastnici ohodnotili frustraciu pocas riesenia tulohy a otézkou 2 zo SUS dotaznika su-
visi s tym, Ze pouzivatelia pocitovali nizku frustraciu a zaroven si mysleli, Ze systém nie
je zbytocne zlozity. Z toho mdzeme usudit, Ze animovany diagram aktivit v AnimArchu
sa ucastnikom pouzival I'ahko, a teda bol dobre navrhnuty a implementovany.

Na obrazku 5.11 je znazornené korelacné teplotna mapa, zachytavajuca vztahy
medzi uspe$nostou rieSenia tlohy 2, ked ucastnici vyuzivali staticky diagram aktivit,
a demografickymi udajmi a odpovedami na SUS dotaznik.

Uspesnost riesenia otazky 5 negativne koreluje s porozumenim UML modelov, ¢o
znamena, ze ucastnikom sa darilo menej, hoci uviedli vyssie porozumenie UML mode-

lov. Piata otazka pritom skiimala, ako ticastnici pochopili a zapamétali si dany diagram

52 KAPITOLA 5. EVALUACIA VYSLEDKOV

aktivit. Mozeme teda usudit, Ze icastnici precenili svoje schopnosti chapania UML mo-
delov.

Otazka 3 zo SUS dotaznika je v korelécii s porozumenim UML modelov, kedy ucast-
nici, ktori ohodnotili, Ze systém sa l'ahko pouZiva, uviedli aj lepsie porozumenie UML
modelov. Tato otazka tiez negativne koreluje s tispeSnostou rieSenia otazky 5, kedy
sa ucastnikom darilo horsie, hoci uviedli, Ze systém sa pouziva Tahko. SUS otazka 7
vyznamne koreluje so znalostami analyzy a navrhu softvéru a porozumenim UML mo-
delov. To znadi, Ze ucastnici, ktori predpokladali, Zze va¢sina Iudi by sa naucila systém
Tahko pouzivat mali aj viacSie znalosti z analyzy a navrhu softvéru a porozumenia UML
modelov. Tato otézka je tiez v negativnej korelacii s otdzkou 1 zo SUS dotaznika, kedy
ucastnici uviedli, Ze by menej radi pouzivali tento systém do budicna, hoci si mysleli,
7e vacsina l'udi by sa naucila ho I'ahko pouzivat. Z toho méze vyplyvat, Ze pouzivatelia
neboli dostato¢ne spokojni so statickym zobrazenim diagramu aktivit, aj ked sa pouZi-
val Tahko. Korelacia SUS otézky 6 a 8 naznacuje, Ze ucastnici, ktori povazovali systém
za menej uceleny, zaroven urcili, Ze sa ovlada tazsie. Z toho mozeme usudit, Ze staticky

diagram aktivit posobil na ucastnikov nekonzistentne, a preto sa im tazsie pouzival.

- 1.00
Pohlavie

Znalost ANS - 0.13 ES¥G)

Znalost UML- 0.00 & 0.42 B 0.75

Porozumenie UML - 0.41 BEZAN 0.00 MG

Uloha2 - Otézkal -
-0.50
Uloha2 - Otazka2 -

Uloha2 -

Uloha2 -

Uloha2 -

SUSL -+

SUS2 -

SUS3 -

Sus4 -

SUSS -

Otézka3 -

Otazka4 -

Otézka5 - -0.

-0.25

-0.00

-0.25 EEVEES 0.00 ﬂ d
0.51 ﬂ -0.27 KNS IR 0.05 -0.34 [

0.47 0.29 WXL}

--0.25

SUS6 -

SUS7 -

SUS8 - -

SUS9 -

SUS10 - -0.

Obr. 5.11:

-0.25

0.15

o b
=
=B

=)
i
=)

Pohlavie -

Znalost ANS -

0.00

0.05

Znalost UML - ¢
Porozumenie UML - ¢

Uloha2 - Otazkal -

Uloha2 - Otézka2 -

Uloha2 - Otazka3 -

Uloha2 - Otazka4 -

0.3

Uloha2 - Otazka5 -

o
o
©

Sus2

&
0

SUS3 -

SuUs4 -

g
o

SUS10

- -0.50

-0.75

-1.00

Korela¢na teplotnad mapa znézornujica vztahy medzi tspesnostou rieSenia

tlohy 2 pomocou statického diagramu a zvySnymi dédtami z dotazniku.

5.2. VYHODNOTENIE TESTOVANIA 93

1.00
Znalost ANS

Znalost UML- 0.29 K
Porozumenie UML - -0.00 0.14 ¥ 0.75

Ulohal - Otédzkal- -0.00 0.2 -0.16 [N

Ulohal - Otdzka2 - 053 0.06 025 -0.22 WK
-0.50
Ulohal - Otédzka3- 053 | 0.06 025 -0.22 EENESEN
Ulohal - Otézka4 - 0.32 E 015 022 033 033 @SR
Ulohal - Otazka5 - 0.25
Uloha2 - Otézkal - 0.00 E 025 -022 -011 -011 033 1.00
Uloha2 - Otazka2 -
- 0.00
Uloha2 - Otézka3 - 0.00 E 025 -022 -011 -011 033 1.00 1.00
Uloha2 - Otézka4 - -0.00 0.06 -0.25 -022 -0.11 -0.11 -0.33 -0.11 EREN 1.00
Uloha2 - Otazka5 - -0.35 0.2 052 022 -022 022 0.22 022 -022 [JERN [-025
NASA_Mentdlna- -0.33 | 050 | 015 005 -0.38 -0.38 KX 0.21 021 014 -018 [EENY
NASA_Fyzickd - -0.31 -013 -022 -020 023 023 -0.30 0.23 023 -010 002 038 [
- -0.50
NASA_CasovyTlak - -4 | 029 043 013 -0.25 -0.03 20.03 -030 -023 037 -0.11 [N
NASA_Uspenost | 047 | -0.05 004 -005 025 025 -0.05 -0.25 0.25 025 E 003 -012 010 [EEN
- -0.75
NASA_Usilie- 0.00 032 005 008 -035 -0.35 035 -0.23 040 -038 037 1.00
NASA_Frustracia- 0.42 -019 -015 036 033 033 020 011 2011 -011 -022 -003 023 003 [016 KN
W 2 2 4 N Mm% o 4 N Mm% o m om X % 9w
= s = © © © © © © © © © < c ~ © 2 = S
< > > ~ N x N N N N x N N] 2 5 c 3 i
% ¢ £ =& £ = £ = £ ®E £ ®B T 2 ¥ % T F
2 o S o o o o o o o o o o 2 < 3 2 b >
© ' , . ; : : : : :] . =
S c € — — — - — ~ ~ ~ ~ ~ < Pl S > = |
N N 2 © © © © © © © © © © a < | < <
< < < < < < < < < < P =z <] 9
2 S el S] el S] S] S B g < <
S =1 > =1 = > =1 > =1 > =1 < z

Obr. 5.12: Korelac¢na teplotna mapa znazornujica vztahy medzi tispesnostou rieSenia
oboch tloh a odpovedami na NASA-TLX otazky.

Na obrazku 5.12 je znézornena korelacné teplotnd mapa vztahov medzi tspesnos-
tami rieSenia oboch tloh a demografickymi tidajmi a odpovedami na NASA-TLX do-
taznik.

Medzi tspesnostou rieSenia otézok 2 a 3 v tlohe 1 a znalostou analyzy a navrhu
softvéru je stredne silna korelacia. To naznacuje, ze ¢im vyssiu znalost analyzy a navrhu
ucastnici uvideli, tym lepsie sa im darilo. Naopak medzi tspeSnostami rieSenia otézky
4 v tlohe 1, otazky 1 a otézky 3 v tlohe 2 a znalostami UML modelov je stredne
silna negativna korelacia. To znamena, Ze icastnici boli v rieSeni tychto otdzok menej
uspesni, hoci uviedli vyssie znalosti UML modelov. Z toho méZzeme usudit, Ze niektori
tcastnici nevedeli spravne odhadnut mieru svojich znalosti UML modelov.

Vyrazna negativna korelacia je medzi pocitom mentélnej zataze pri rieSeni tlohy
a uspesnostou rieSenia otazky 4 v tlohe 1, kedy pouzivatelia, ktori uviedli vyssiu men-
talnu naro¢nost, boli aj menej uspesni. Pocit ¢asového natlaku tiez stredne negativne
koreluje so znalostami analyzy a navrhu softvéru a tspesnostami rieSenia otazok 2 a 3
v tlohe 1. To naznacuje, ze ¢im nizs$i Casovy natlak tcastnici pocitovali, tym vyssie

znalosti analyzy a navrhu mali, a tiez boli iispesnejsi pri rieSeni otazok. Z toho mozeme

54 KAPITOLA 5. EVALUACIA VYSLEDKOV

usudit, Zze ucastnici s vacsimi znalostami analyzy a modelovania boli pri rieSeni viac

sebavedomi a efektivni, a preto pocitovali mensi ¢asovy tlak.

5.2.6 Diskusia

Ucastnici vo veobecnosti hodnotili tilohy, ktoré riesili pomocou animovaného diagramu
aktivit v. AnimArchu, ako malo fyzicky nérocné. Zaroven tiez pocitovali nizku frustré-
ciu, nepocitovali potrebu pomoci technicky zdatnejSej osoby a mysleli si, Ze vacsina [udi
by sa naucila animovany diagram aktivit v AnimArchu pouzivat rychlo a bez potreby
ucenia novych veci.

Niektori ticastnici uviedli, Ze systém sa im zdal menej uceleny a museli sa pred po-
uzitim naucit viac veci. To mohlo byt sposobené tym, Ze mali vyhradeny pre nich prilis
kratky ¢as na to, aby si plnohodnotne osvojili animéaciu diagramu aktivit v AnimArchu,
a preto sa im mohol zdat systém menej uceleny. Ucastnici, ktorf pocitovali vyssi ¢asovy
natlak, uviedli, Ze nemali potrebu pomoci technicky zdatnejsej osoby. Z toho mozeme
usudit, Ze uc¢astnikom prislo pouzitie AnimArchu jednoduché, kedZe nepotrebovali po-
moc technickejSej osoby, avSak by potrebovali viac ¢asu na osvojenie si systému, vdaka

Ucastnici, ktori pouzivali AnimArch pri rieSeni tlohy 1 boli tspesnejsi, ak mali
s AnimArchom predoslé skiisenosti. To moze byt sposobené tym, ze sa v softvéri ci-
tili pohodlnejsie, kedze ho viac poznali. Ucastnici, ktorf mali s AnimArchom mengie
sktisenosti, mohli tiez sustredit svoju pozornost aj na zoznamenie sa so softvérom a ne-
venovali tolko pozornosti samotnému diagramu aktivit, a preto sa im darilo horgie. Pri
rieSen{ tlohy 2 pomocou AnimArchu sa ukazalo, Zze predoslé skiisenosti s AnimArchom
nemali Ziadny vplyv na dspesnost rieSenia tlohy.

Vo vSeobecnosti teda mozeme usudit, ze tcastnikom sa nardbalo s animovanym
diagramom aktivit jednoducho, nepocitovali frustraciu ani potrebu pomoci technicky
zdatnejSej osoby. KedZe sa jedné o novy sposob vizualizovania diagramu aktivit pro-
strednictvom animovania v AnimArchu, s ktorym tucastnici nemali doterajsie skuse-
nosti, na plnohodnotné osvojenie tohto spésobu by potrebovali viac ¢asu. Aj napriek
tomu ohodnotili animovany diagram aktivit v AnimArchu ako dobre pouZitelny, a teda
mozeme tvrdit, Ze naSe rieSenie sme navrhli a implementovali vhodne.

Zavery su vyvodzované len z dostupnych dat, ktorych vypovedna hodnota méze byt

obmedzené, vzhladom na pocet ucastnikov testovania.

Zaver

Do softvéru AnimArch sme implementovali vizualizovanie a animovanie diagramu ak-
tivit. Ten sa generuje z nacitaného kodu OAL, ktory pouzivatel zvoli na zaciatku
animéacie. Vdaka animécii sa v diagrame zvyraziuju aktualne vykonavané prikazy, ¢o
moze prispiet k jednoduchsiemu pochopeniu vykonavaného kdédu, najma pri zlozitejsich
procesoch. Implementovali sme tiez zobrazovanie viacerych diagramov aktivit za sebou.
V pripade, Ze sa pocas vykonavania zavola nova metoda, vytvori sa novy diagram ak-
tivit, ktory sa zobrazuje za povodnym diagramom aktivit, ¢im vytvarame pomyselny
zasobnik volani.

NaSe rieSenie sme evaluovali pomocou pouZivatel'ského testovania. Testovania sa
zucastnilo 10 ucastnikov, ktori riesili dve tilohy pomocou réznych nastrojov. Polovica
ucastnikov riesila prva dlohu pomocou animovaného diagramu aktivit v AnimArchu
a druhi tlohu riesila pomocou statického diagramu aktivit. Druha polovica postupovala
v opa¢nom poradi, a teda najskor vyuzili staticky diagram a potom animovany diagram
aktivit. Z testovania sa ukazalo, Ze obom skupinam sa darilo priblizne rovnako dobre,
bez vyrazného rozdielu v uspesnosti rieSeni. Z vysledkov tiez méZeme urcit, Ze systém sa
im pouzival I'ahko, avSak by potrebovali viac ¢asu, aby si systém plnohodnotne osvojili.

Ucastnici tiez hodnotili pouzitelnost systému, kde vysledné SUS skére malo hodnotu
91.25, ¢o sa povazuje za vybornu pouzitelnost. Zistovali sme tiez zataz ucastnikov pri
riegeni tloh. Utastnici pocifovali nizku fyzicku zataz a frustraciu, ¢o moze naznacovat,
Ze sa im s animovanym diagramom aktivit v AnimArchu pracovalo dobre.

V budtcnosti by sa mohlo implementovat aj animovanie diagramu aktivit pri para-
lelnom vykonévani. Taktiez by sa mohlo uskuto¢nit testovanie s va¢sim poctom tcast-
nikov, ktoré by mohlo poskytnuat cenné informécie, ako vylepsit zobrazovanie diagramu
aktivit, aby boli pouzivatelia tspesnejsi, oproti vyuzitiu statického diagramu aktivit,
a tiez rozne iné poznatky, ktoré by ucastnici navrhli pridat alebo upravit. Do soft-
véru AnimArch by sa mohlo v budiicnosti tiez pridat animovanie dalsieho UML dia-
gramu, napriklad sekven¢ného diagramu. V AnimArchu sa aktualne zobrazuje diagram
tried, diagram objektov a nasa praca implementovala zobrazenie diagramu aktivit. Vo
vysledku sa teda animuju dva typy strukturalnych UML diagramov a iba jeden be-
havioralny UML diagram, preto by mohla pribudnut prave vizualizacia sekvenéného

diagramu, ktory by zobrazoval dalsie behavioralne vlastnosti systému.

25

o6

ZAVER

Literattra

1]

2|

13l

4]

[5]

(6]

7l

8]

9]

Omer Salih and Abd-El-Kader Sahraoui. From Requirements Engineering to UML
using Natural Language Processing — Survey Study. Furopean Journal of Engine-

ering Research and Science, 01 2017.

The Unified Modeling Language. Dostupné na https://www.uml-diagrams.org.
[Citované: 2024-11-17].

Clarifying concepts: MBE vs MDE vs MDD vs MDA. Dostupné na https://mo
deling-languages.com/clarifying-concepts-mbe-vs-mde-vs-mdd-vs-mda/.
[Citované: 2024-12-04].

Executable UML. Dostupné na https://abstractsolutions.co.uk/our-ser
vices/executable-uml/. [Citované: 2024-10-20].

Uwe Zdun, Carsten Hentrich, and Schahram Dustdar. Modeling process-driven
and service-oriented architectures using patterns and pattern primitives. TWEDB,
1, 09 2007.

Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling
Language. Addison-Wesley Longman Publishing Co., Inc., USA, 3 edition, 2003.

Teemu Rajala, Mikko-Jussi Laakso, Erkki Kaila, and Tapio Salakoski. VILLE
— A Language-Independent Program Visualization Tool. In Proceedings of the
Seventh Baltic Sea Conference on Computing Education Research - Volume 88,
page 151-159. Australian Computer Society, Inc., 11 2007.

Enes Yigitbas, Simon Gorissen, Nils Weidmann, and Gregor Engels. Design and
evaluation of a collaborative UML modeling environment in virtual reality. Softw.
Syst. Model., 22(5):1397-1425, November 2022.

Lukas Gregorovic and Ivan Polasek. Analysis and design of object-oriented soft-
ware using multidimensional uml. In Proceedings of the 15th International Con-
ference on Knowledge Technologies and Data-Driven Business, i-KNOW ’15, New
York, NY, USA, 2015. Association for Computing Machinery.

57

https://www.uml-diagrams.org
https://modeling-languages.com/clarifying-concepts-mbe-vs-mde-vs-mdd-vs-mda/
https://modeling-languages.com/clarifying-concepts-mbe-vs-mde-vs-mdd-vs-mda/
https://abstractsolutions.co.uk/our-services/executable-uml/
https://abstractsolutions.co.uk/our-services/executable-uml/

58 LITERATURA

[10] Matej Ferenc, Ivan Polasek, and Juraj Vincur. Collaborative modeling and visu-
alization of software systems using multidimensional UML. In 2017 IEEE Working
Conference on Software Visualization (VISSOFT), pages 99-103, 09 2017.

[11] Jakub Kucecka, Juraj Vincur, Peter Kapec, and Pavel Cicak. UML-based live
programming environment in virtual reality. In 2022 Working Conference on Soft-
ware Visualization (VISSOFT), pages 177-181, 10 2022.

[12] Project Technology Inc. Object Action Language Reference Manual, 2008. Do-
stupné na http://www.ooatool.com/docs/0ALO8. pdf.[Citované: 2024-11-30).

[13] Frederick Brooks, Jr. No Silver Bullet Essence and Accidents of Software Engine-
ering. IEEE Computer, 20(4):10-19, 04 1987.

[14] Mohammad Hossain. Software Development Life Cycle (SDLC) Methodologies for
Information Systems Project Management. International Journal For Multidis-
ciplinary Research, 09 2023.

[15] Marc I Kellner, Raymond J Madachy, and David M Raffo. Software process simula-
tion modeling: Why? what? how? Journal of Systems and Software, 46(2):91-105,
1999.

[16] Nenad Medvidovic, David Rosenblum, David Redmiles, and Jason Robbins. Mode-
ling software architectures in the Unified Modeling Language. Medvidovic, N. and
Rosenblum, D.S. and Redmiles, D.G. and Robbins, J.E. (2002) Modeling software
architectures in the unified modeling language. ACM Transactions on Software
Engineering and Methodology, 11 (1). pp. 2-57. ISSN 1049331X, 11, 01 2002.

[17] Gregor Engels, Reiko Heckel, and Stefan Sauer. UML - A universal modeling
language? In Proceedings of the 21st International Conference on Application and
Theory of Petri Nets, ICATPN’00, Berlin, Heidelberg, 10 2000. Springer-Verlag.

[18] Frank Truyen. The Fast Guide to Model Driven Architecture, The Basics of Model
Driven Architecture. Cephas Consulting Corp, 2006.

[19] David Ameller, Xavier Burgués, Dolors Costal, Carles Farré, and Xavier Franch.
Non-functional requirements in model-driven development of service-oriented ar-

chitectures. Science of Computer Programming, 168:18-37, 2018.

[20] Alberto Silva. Model-driven engineering: A survey supported by a unified concep-
tual model. Computer Languages, Systems € Structures, 20, 06 2015.

[21] Martin Fowler. Language Workbenches and Model Driven Architecture. Dostupné
na https://martinfowler.com/articles/mdaLanguageWorkbench.html, 05
2005. [Citované: 2024-12-04].

http://www.ooatool.com/docs/OAL08.pdf
https://martinfowler.com/articles/mdaLanguageWorkbench.html

LITERATURA 59

22|

23]

[24]

[25]

26]

27]

28]

[29]

[30]

Marc Balcer and Ivar Jacobson. Executable UML: A Foundation for Model-Driven
Architectures. 01 2002.

Miguel Luz and Alberto Rodrigues da Silva. Running and Debugging UML Mo-
dels. Lisboa, Portugal, 2004. INESC-ID.

Federico Ciccozzi, Ivano Malavolta, and Bran Selic. Execution of UML models:

a systematic review of research and practice. Software € Systems Modeling,
18(3):2313-2360, 06 2019.

BridgePoint IDE. Dostupné na https://xtuml.org/. [Citované: 2024-12-01].

Keith E. Brown. Navigating the rover with xtUML. In ACM/IEEE International

Conference on Model Driven Engineering Languages and Systems, 2018.

Martin Siebenhaller and Michael Kaufmann. Drawing activity diagrams. In Pro-
ceedings of the 2006 ACM Symposium on Software Visualization, SoftVis '06, page
159-160, New York, NY, USA, 2006. Association for Computing Machinery.

Lukas Radosky and Ivan Polasek. Executable multi-layered software models. In
Proceedings of the 1st International Workshop on Designing Software, Designing
24, page 4651, New York, NY, USA, 2024. Association for Computing Machinery.

James R. Lewis and Jeff Sauro. Item benchmarks for the system usability scale.
J. Usability Studies, 13(3):158-167, May 2018.

Anjana Ramkumar, Pieter Jan Stappers, W.J. Niessen, Sonja Adebahr, Tanja
Schimek-Jasch, Ursula Nestle, and Wolf Song. Using goms and nasa-tlx to evaluate
human-computer interaction process in interactive segmentation. International
Journal of Human-Computer Interaction, 33:1-12, 09 2016.

https://xtuml.org/

60

LITERATURA

Priloha A: Pouzivatel'ské testovanie

Tato priloha obsahuje tilohy, ktoré riesili Gic¢astnici testovania.

Uloha 1

V tlohe 1 tc¢astnici vyuzivali niektory z diagramov zobrazenych na obrazku 5.13 a 5.14.

Po prestudovani diagramu tcastnici odpovedali na nasledovné otazky:

1. Co sa stane, ak tovar nie je skladom?

Proces pokracuje k vyberu sposobu platby.

Objednavka je zrusena.

Systém automaticky objedné tovar od dodavatela.

Objednavka sa odlozi na neskor.

2. Aké moznosti platby st akceptované podla diagramu?

Karta, Prevod

Dobierka, Karta

Karta, Hotovost

Hotovost, Dobierka

3. Co sa stane, ak platba nie je tispesna?

Objednavka pokracuje bez platby.

Pouzivatel je poziadany o opravu tdajov.

Pouzivatel je informovany a objednavka je zruena.

Pouzivatel je presmerovany na dobierku.
4. Ktory krok nasleduje po tuspesnej platbe?

e Informovanie pouzivatela o stave objednavky.

e (Odoslanie objednavky.

61

62

PRILOHA A: POUZIVATELSKE TESTOVANIE

e ZruSenie objednavky.

e Presmerovanie pouzivatela na hlavné menu.
5. Aké podmienky musia byt splnené, aby objednavka mohla byt odoslana?

e Tovar musi byt na sklade a platba musi byt uspesna.
e Tovar musi byt na sklade a platba musi byt vykonana kartou.
e Platba musi byt tspesné, ale dostupnost tovaru nie je doélezita.

e Objednéavka moze byt odosland bez ohladu na dostupnost tovaru.

PRILOHA A: POUZIVATELSKE TESTOVANIE

Obr. 5.13: Animovany diagram aktivit v AnimArchu pre tulohu 1.

63

64 PRILOHA A: POUZIVATELSKE TESTOVANIE

?

[f Prijatie objednavky]

v

-
Spracovanie objednavky zadalo |

-

L,

Tovar skladom?

/ N ™,
Tovar je dostupny] | Tovar nie je skladom, automaticky sa objedné od dodédvatela |

v

' !
| Ojednavka je zrudena |

®

*‘ Y
[Vyber spbsobu platby]

v

&

[sposobPlatby = "Karta” 1]

*" |
sposobPlatby == "Karta">—)<sp-nsnbl3'latb,r == "Prevod"
Ano iﬁ.nn
. v K L Y
Objednavka je uhradend] [Cakanie na Uhradu |
o . e 4
| Objednévka je uhradena |
. .
¥ 7 ¥ ¥
7 A0~ o ednavka je ubradena? e 1

Odoslanie objednévky | [\Chyba pri platbe, objednavka je zrusena
h, _4 !

-, ., -

®

¥

| Objednévka bola odoslana
b

®

Obr. 5.14: Staticky diagram aktivit pre tlohu 1.

-,
)

-

PRILOHA A: POUZIVATELSKE TESTOVANIE 65

Uloha 2

V tlohe 2 ucastnici vyuzivali niektory z diagramov zobrazenych na obrazku 5.15 a 5.16.

Po prestudovani diagramu d'alej odpovedali na nasledovné otazky:
1. Co sa stane, ak objednévka nie je na sklade?

e Objednavka sa spracuje a odosle.
e Objednavka sa preskodci.
e Objednavka sa odstrani zo zoznamu.

e Objednavka sa oznac¢i ako vybavena.
2. Kol'ko objednéavok sa vytvori v metode vytvorObjednavky?

o 1

[]
H~ w [}

3. Aky je stav atributu naSklade pre objednavka2?

e TRUE
e FALSE
e NULL

e Nie je definovany.
4. Co sa vykona pre objednavku, ktora je na sklade?

e Objednavka sa preskodci.
e Objednavka sa odosle.
e Objednavka sa odstrani zo zoznamu.

e Objednavka sa oznaé¢i ako nevybavené.

5. Co sa stane po spracovani vSetkych objednévok?

Zoznam objednavok sa vymaze.

Systém oznami, ze vSetky objednavky boli spracované.

Objednavky sa znova spracuju.

e Proces sa ukon¢i bez vystupu.

PRILOHA A: POUZIVATELSKE TESTOVANIE

Obr. 5.15: Animovany diagram aktivit v AnimArchu pre tlohu 2.

PRILOHA A: POUZIVATELSKE TESTOVANIE

?

|r objednavky = [objednavkal, objednavka2, objednavka3] \|

¥

,r’- T
| objednavkal.naSklade = TRUE]

v

-
objednavka2.naSklade = FALSE |

h A

v

l/" ",
| objednavka3.naSklade = TRUE]

¥

e %
| Zafiatok spracovania objednédvok]

A

(=0)

-

-

F

e

-
| aktualnaObjednavka = objednavky[i]

v

Fi ™y
Kontrola dostupnosti aktuélinej objednévky |

_ ¥ |
Ano Mie

¢ aktualnaObjednavka.nasklade? ¢

e

-

A ™y
(Dbjednévka na sklade, odosielam] | Objednévka nie je na sklade, preskakujem | A

l,-f" Y
| Odoslanie objednavky]

' o
-
[i=i+1 |

", A

v

i < objednavky.size()

v

Vietky objednavky boli spracované]

®

Obr. 5.16: Staticky diagram aktivit pre tlohu 2.

68

PRILOHA A: POUZIVATELSKE TESTOVANIE

Priloha B: Elektronicka priloha

Elektronicka priloha obsahuje zdrojovy kod aplikécie.
Zdrojovy kod sa nachadza aj online na adrese https://github.com/karkub/AnimAr
ch.

69

https://github.com/karkub/AnimArch
https://github.com/karkub/AnimArch

	Úvod
	Úvod do problematiky
	Modelovanie softvéru
	UML
	Techniky vývoja softvéru
	Spustiteľné UML
	OAL

	Diagram aktivít

	Nástroje na vizualizovanie softvéru
	AnimArch
	VILLE
	Iné nástroje

	Požiadavky a návrh rozšírenia aplikácie
	Požiadavky
	Návrh aplikácie

	Implementácia
	Statické zobrazenie
	Dynamické zobrazenie

	Evaluácia výsledkov
	Návrh testovania
	Vyhodnotenie testovania
	Demografické údaje účastníkov
	Vyhodnotenie riešenia úloh
	Vyhodnotenie SUS dotazníka
	Vyhodnotenie NASA-TLX dotazníka
	Celkové vyhodnotenie
	Diskusia

	Záver
	Príloha A: Používateľské testovanie
	Úloha 1
	Úloha 2

	Príloha B: Elektronická príloha

