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Kapitola 1
Uvod

V tejto kapitole uvedieme zakladné pojmy a notacie, ktoré buda pouzivané v tomto
reporte. Predpokladame znalost zakladnych pojmov teorie grafov, avSak pre tuplnost

stru¢ne pripomenieme definicie, ktoré su dolezité pre nasledujice casti.

1.1 Zakladné pojmy

Grafom rozumieme kone¢ny jednoduchy neorientovany graf G = (V,E), kde V je
mnozina vrcholov a E je mnozina hran. Stupeh vrcholu v € V(G), oznacovany ako
deg(v), je polet hran incidentnych s vrcholom v. Graf nazyvame kubickym, alebo
3-regularnym, ak kazdy jeho vrchol ma stupen préave tri.

Strom je suvisly graf bez cyklov, ktory je teda maximéalne acyklicky a miniméalne
savisly. Podgraf T' grafu G nazyvame kostrou (spanning tree), ak 7" je strom a obsahuje
vSetky vrcholy grafu GG. Je zname, Ze kazda kostra grafu s n vrcholmi obsahuje prave
n — 1 hran.

Parenie v grafe G je podmnozina hran taka, kde ziadne dve hrany nemaju spolo¢ny
vrchol. Ak pérenie pokryva kazdy vrchol grafu, nazyvame ho perfektnym parenim.

Podgraf nazyvame k-regularnym, ak kazdy jeho vrchol mé stupen presne k. Kon-
krétne 2-regularny graf je nutne disjunktnym zjednotenim kruznic. Preto sa ¢asto ozna-
¢uje aj ako mnozina kruznic.

Graf G nazyvame suvisly, ak medzi kazdymi dvoma vrcholmi existuje cesta. Mno-
zinu hran, ktorej odstrdnenim sa graf nesuvisly, nazyvame rez grafu. Rez nazyvame
cyklicky, ak kazda z komponent obsahuje cyklus. Graf je cyklicky k-hranovo suvisly, ak
kazdy cyklicky rez mé velkost aspon k.

Pod rozkladom grafu vo vSeobecnosti rozumieme rozdelenie jeho mnoziny hran na
niekolko navzajom disjunktnych podmnozin tak, aby kazd& hrana patrila prave do
jednej mnoziny. Kazda z tychto podmnozin potom urcuje podgraf povodného grafu.

Rozklady grafov na podgrafy so $pecifickymi vlastnostami predstavuja vyznamny né-
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Obr. 1.1: Petersenov graf

stroj pri stadiu Struktiry grafov.

1.2 Motivacia

Dolezitym pristupom v teorii grafov je skiimanie grafov prostrednictvom ich podgrafov
a roznych typov rozkladov. Rozklad grafu na jednoduchsie Struktiry casto umoznuje
presnejSie opisat jeho vlastnosti a formulovat v§eobecné tvrdenia o jeho Struktire. V
tejto stvislosti sa casto Studujua rozklady na stromy, parenia alebo regularne podgrafy,
ktoré poskytuji informéaciu o globalnych vlastnostiach grafu [3, 4].

Trieda kubickych grafov je dostato¢ne jednoduché ale zaroven vykazuje bohaté
Strukturalne vlastnosti. Vdaka ¢omu umoziuje formuléaciu viacerych typickych prob-
lémov tedrie grafov, ako napriklad problémov tykajtcich sa Hamiltonovskych kruznic
alebo hranového farbenia. Okrem toho sa mnohé otazky z teorie grafov daji vhodnymi
transforméciami alebo redukciami previest na kubické grafy

Zndmym prikladom je Petersenov graf, ktory je kubicky, ale zaroven neobsahuje Ha-
miltonovskid kruznicu a zohrava doélezita ulohu ako protipriklad v mnohych tvrdeniach
[4].

Rozklady regularnych grafov sa vyskytuji v réznych podobach. Klasickym prikla-
dom je rozklad grafu na perfektné parenia, ktory tuzko sivisi s hranovym farbenim. V
pripade kubickych grafov je graf 3-hranovo zafarbitelny prave vtedy, ked jeho mnoZinu
hran mozno rozdelif na tri perfektné parenia [4, 3|. Dalsim ¢asto Studovanym typom
st rozklady na 2-faktory, ktoré zohravaji vyznamnu tlohu pri $tidiu Hamiltonovskych
kruznic a Struktiry reguldrnych grafov.

Vyznamnu tlohu pri stadiu kubickych grafov zohravaju aj vysledky tykajice sa
existencie §pecidlnych podgrafov. Tutteho veta o existencii perfektného parenia v ku-

bickych grafoch bez mostov [16]| patri medzi zakladné vysledky z perfektnych pareni.
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V tomto smere nadvizuji aj otazky tykajice sa rozkladov hran kubického grafu na
podgrafy s roznymi usporiadaniami, medzi ktoré patri aj rozklad na kostru, cykly a
péarenie formulovany v Hoffmann-Ostenhofovej hypotéze [9].

Pri skimani takychto problémov sa v mnohych pripadoch ukazuje ako uzito¢né
kombinovat teoretické a vypoctové pristupy. Pocitacové experimenty umoziuju ana-
lyzovat velké mnoziny grafov, identifikovat Specifické alebo extrémne pripady a for-
mulovat nové hypotézy, ktoré mozno nasledne teoreticky analyzovat. Tento pristup sa
v poslednych rokoch stal beznou stucastou vyskumu v kombinatorike a teérii grafov,
napriklad pri experimentalnom $tudiu vlastnosti kubickych grafov a ich rozkladov [12].

Téato diplomovéa praca zapada do uvedeného rdmca tym, Ze sa zameriava na Struk-
turdlne vlastnosti kubickych grafov stuvisiace s existenciou Specidlnych typov kostier a

na vyuzitie vypoc¢tovych metod pri ich skimani.
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Kapitola 2

Hoffman-Ostenhofova hypotéza a

zname vysledky

Jednym z problémov typu rozkladu kubického grafu je Hoffmann-Ostenhofova hypo-
téza, ktord bola formulovana v roku 2011. Hypotéza sa tyka moznosti rozdelit mnozinu
hran kubického grafu na tri podgrafy s jednoduchou struktirou: kostru, mnozinu kruz-
nic a parenie. Tieto tri typy podgrafov patria medzi zakladné $truktiry v oblasti teorie
grafov a ich vlastnosti boli intenzivne skiitmané v mnohych navzajom réznych stvislos-
tiach.

2.1 Formulacia hypotézy

Hypotéza 2.1 (Hoffmann-Ostenhof [8]). KaZdy kubicky graf mozno rozloZit na tri hra-
novo disjunkiné podgrafy: kostru grafu, 2-requldrny podgraf ,teda disjunktni mnoZinou

kruznic, a pdrente.

Takyto rozklad sa zvycajne oznacuje ako 3-dekompozicia kubického grafu. Hypotéza
teda tvrdi, Ze hrany 'ubovolného kubického grafu mozno rozdelif na tri asti tak, aby
kazda z nich mala jednoducht Strukttiru a kazd& hrana patrila presne do jednej z
tychto ¢asti. Nutno podotknit, ze mnozina kruznic pri takejto dekompozicii je nutne
neprazdna ale parenie moze byt prazdne.

Hoffmann-Ostenhofova hypotéza bola dokdzand pre viaceré Specialne triedy kubic-
kych grafov, napriklad pre planarne kubické grafy [9], ako aj pre dalsie triedy definované
strukturdlnymi obmedzeniami. Napriek tymto ¢iastkovym vysledkom zostava jej plat-
nost pre vSeobecné kubické grafy otvorenym problémom. 7 tohto dovodu je hypotéza
predmetom stuc¢asného vyskumu, a to ako z teoretického, tak aj z vypoc¢tového hladiska.

V nasledujtcich c¢astiach tejto kapitoly strucne zhrnieme zname vysledky tykajtce
sa Hoffmann-Ostenhofovej hypotézy a uvedieme triedy kubickych grafov, pre ktoré bola

jej platnost dokazané.
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Obr. 2.1: 3-dekompozicia

2.2 Zname vysledky

Hoffmann-Ostenhofova hypotéza je v plnej vSeobecnosti otvorena, avsak v literatiure
existuje viacero Ciastkovych vysledkov, ktoré dokazuju jej platnost pre Specidlne triedy
kubickych grafov. Typickym pristupom je bud vyuZitie typickej Struktary danej triedy
grafov (napr. planarnost alebo absencia uréitych indukovanych podgrafov), alebo kon-

Struktivny dokaz, v ktorom sa priamo zostavi pozadovany rozklad.

2.2.1 Planarne kubické grafy

Zésadnym vysledkom je dokaz hypotézy pre plandrne kubické grafy. Hoffmann-Ostenhof,
Kaiser a Ozeki ukazali, ze kazdy planarny kubicky graf pripusta 3-dekompoziciu [9].
Tento vysledok je dolezity aj preto, Ze tato trieda kubickych grafov tvori prirodzeni
a rozsiahlu rodinu grafov, ktord sa casto vyskytuje v aplikidciach aj v teoretickych

avahéach.

Okrem samotného tvrdenia obsahuje uvedenad praca aj viaceré pomocné Struktu-
ralne tvrdenia a techniky, ktoré sa v literatire vyuzivaju aj pri skimani dalsich tried
grafov. V kontexte ide o reprezentativny priklad, kde je hypotéza dokazana konstruk-
tivne. A teda poskytuje aj intuitivny obraz o tom, prec¢o rozklad na tieto tri komponenty

moze existovat.

2.2.2 Dalsie triedy kubickych grafov

Hypotéza bola dokdzana aj pre dalsie triedy kubickych grafov definované ich Struktu-
ralnymi obmedzeniami. Jednym z prikladov sa traceable kubické grafy (t. j. kubické
grafy obsahujice Hamiltonovski cestu), pre ktoré mozno rozklad odvodit vyuZitim
existencie takejto cesty a vhodnym doplnenim hran do pozadovanych komponentov
[13]. Dalsim prikladom st claw-free kubické grafy, pri ktorych absencia indukovaného

podgrafu K 3 poskytuje dodato¢nu $truktiru vyuzitelna pri konstrukeii rozkladu [14].
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2.3 Zjemnenie poslednej zlozky rozkladu

Pri skimani Hoffmann-Ostenhofovej hypotézy sa v literattire objavuji aj jej zjemne-
nia a pribuzné formulacie. Ich vyznam spociva v tom, Ze casto poskytuji cCiastocné
vysledky alebo alternativne pohlady, ktoré mozu prispiet jednak k lepSiemu pochope-
niu Struktdry kubickych grafov ale aj samotnému rozkladu ich hranovej mnoziny.
Jednym z prirodzenych zjemneni je oslabenie poziadavky, aby tretia zlozka rozkladu
bola parenie. Namiesto parenia sa uvazuje mnozina vrcholovo disjunktnych ciest, pri-
c¢om kazda z ciest ma najviac dve hrany. V tomto zmysle bolo dokazané, ze kazdy suvisly
kubicky graf mozno rozlozit na kostru, mnozinu kruznic a taktto mnozinu vrcholovo
disjunktnych ciest dizky najviac dva [5]. Tento vysledok mozno chapat ako oslabenti
verziu Hoffmann-Ostenhofovej hypotézy, kedze parenie predstavuje Specidlny pripad,

v ktorom maji vietky cesty dlzku jedna.

2.4 Pristupy cez perfektné parenia

KedZe v kubickych grafoch zohravaju perfektné parenia zasadnu ulohu, prirodzenym
smerom je pokusit sa odvodit pozadovany rozklad z vhodne zvoleného perfektného
parenia. Po odstraneni perfektného parenia z kubického grafu totiz vznik& 2-regularny
podgraf, teda mnozina kruznic, a problém sa redukuje na konstrukciu kostry z vhodnej
podmnoziny zostavajicich hran.

Tento pristup systematicky analyzujiu Bachtler a Krumke [2|. Vo svojej praci sku-
maji podmienky, za ktorych mozno z daného perfektného parenia skonstruovat 3-
dekompoziciu grafu. Konkrétne studuju struktiru 2-faktora vzniknutého po odstra-
neni parenia a odvodzuju dostatoéné podmienky, za ktorych je mozné vybrat podgraf
tvoriaci kostru tak, aby zvysné hrany tvorili pozadovani mnozinu kruznic. Okrem exis-
tencie takéhoto rozkladu uvadzaja aj konstruktivne postupy, ktoré umoznuja takuato
dekompoziciu nasledne zostrojit pre urcité triedy kubickych grafov.

Vysledky tohto typu ukazuji, Ze urcité Struktury predstavuji prirodzeny nastroj
pri Studiu Hoffmann-Ostenhofovej hypotézy a Ze analyza Struktiry grafu po odstraneni
danej hran daného podgrafu moze viest k ¢iastotnym vysledkom a novym pristupom

k problému.
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Kapitola 3

HIST kostry v kubickych grafoch

Ako sme uviedli v predchédzajicej kapitole, jednym z pristupov k $tidiu Hoffmann-
Ostenhofovej hypotézy je sktimanie $pecidlnych $truktir v samotnych grafoch, ako
tomu bolo pri perfektnom péareni. Osobitne vyznamni tlohu zohravaja tzv. homeomor-
ficky ireducibilné kostry, ktoré maji vyrazne obmedzenu Struktiru. V tejto kapitole

uvedieme ich definiciu a vysvetlime, preco st pre nas problém zaujimavé.

3.1 HIST kostry v kubickych grafoch

Definicia 3.1. Nech G je graf o T jeho kostra. Kostru T nazijvame homeomorficky
ireducibilnou kostrou (HIST), ak neobsahugje Ziadny vrchol stupria dva, teda pre kaZdy
vrchol v € V(T') plati

degyp(v) # 2.

V pripade kubickych grafov mé definicia HIST kostry jednoduchsiu podobu. Kedze
kazdy vrchol kubického grafu ma stupen najviac tri, preto v takejto kostre kubického
grafu mé kazdy vrchol stupen bud jeden alebo tri.

Tato vlastnost vedie k jednoduchym vztahom medzi poc¢tom listov a po¢tom vni-
tornych vrcholov. Nech T je HIST kostra kubického grafu s n vrcholmi, L pocet listov

a I pocet vnatornych vrcholov. Zo zakladnych vlastnosti stromov vyplyva, ze
L+3I=2(n-1), L+1=n,

odkial dostavame

2 —2
n -+ I:n .

L= ,
2 2

Tieto vztahy ukazujua, ze struktira HIST kostry v kubickom grafe je silne obme-

dzené, ¢o je vyhodné pri jej konsStrukcii aj pri algoritmickom vyhladavani.

9
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3.2 Vybrané vysledky o HIST kostrach

Homeomorficky ireducibilné kostry boli studované v réznych suvislostiach, od vseobec-
nych vlastnosti kostier v Tubovolnom grafe az po Specidlne vysledky pre kubické grafy.

Jednou z prvych systematickych prac o HIST kostrach je ¢lanok Albertsona, Ber-
mana, Hutchinsona a Thomassena [1]. Autori v iom zavadzaji pojem homeomorficky
ireducibilnej kostry a skimaji podmienky jej existencie vo vSeobecnych grafoch. Do-
kazuju napriklad, ze grafy s dostato¢ne velkym minimalnym stupiiom obsahuja HIST
kostru a analyzuja triedy grafov, pre ktoré mozno existenciu takejto kostry zarucit
pomocou Strukturalnych vlastnosti grafu.

Speciélne pre kubické grafy boli HIST kostry podrobnejsie tudované v praci Hoffmann—
Ostenhof, Noguchi a Ozeki [10]. Jednym 7z motivujucich problémov, ktoré autori dis-
kutuju, je otézka, ¢i pre kazdé kladné celé ¢islo k existuje cyklicky k-hranovo suvisly
kubicky graf, ktory neobsahuje homeomorficky ireducibilni kostru. Vysledky a disku-
sia v uvedenej praci ukazuju, ze existencia HIST kostry je citliva na Struktdaru grafu a
nemozno ju odvodit iba z parametrov, ako je maximalny ¢i minimalny stupen vrcholov
alebo silna suvislost.

7 hladiska algoritmickej zloZitosti je relevantny aj vSeobecny problém hladania
kostier s obmedzeniami na stupne vrcholov. V klasickych vysledkoch o ohranicenych
kostrach v kubickych grafoch sa ukazuje, Ze rozhodovanie o existencii takejto kostry je
NP-tplny problém |[6]. KedZze HIST kostra v kubickych grafoch je $pecidlnym pripa-
dom, v ktorej st stupne vrcholov obmedzené, tak aj urcenie HIST kostry je vypoctovo

naro¢ny problém.

3.3 Kostri s malym poc¢tom listov

S existenciou HIST kostier tizko suvisi aj v8eobecnej$i problém : hladanie kostier s
velkym poc¢tom listov. Tento problém bol intenzivne preskimany v roznych triedach
grafov, pretoze pocet listov do znacnej miery urcuje Struktiru stromu.

Kleitman a West |11] dokazali vieobecné dolné odhady na pocet listov v kostrach
stvislych grafov v zavislosti od minimalneho stupha. Ich vysledky ukazuji, 7e grafy s
VACSIm minimalnym stupiiom obsahuja kostry s relativne velkym poc¢tom listov. Pod-
poruje to intuiciu, ze v hustejSich grafoch je jednoduchsie najst aj kostry bez vrcholov
stupna dva.

Pre kubické grafy boli podobné otazky Studované napriklad Griggsom a Wu [7],
ktori analyzovali maximélny pocet listov v kostrach kubickych grafov a ukézali, Ze
aj pri silnom obmedzeni stupiiov vrcholov mozno zarucit existenciu kostier s velkym
poc¢tom listov. Tieto vysledky st relevantné aj pri studiu HIST kostier, kedZe takato

kostra v kubickom grafe mé presne uréeny pocet listov dany vztahom uvedenym vysgie.
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Obr. 3.1: 3-dekompozicia v Petersenovom grafe indukovana HIST kostrou

3.4 Vztah k Hoffmann—Ostenhofovej hypotéze

HIST kostry su dolezité aj z hladiska Hoffmann-Ostenhofovej hypotézy. Ukazuje sa
totiz, ze existencia takejto kostry v kubickom grafe poskytuje prirodzeny sposob, ako
zostrojit pozadovany rozklad hran. Intuitivne, ak T je HIST kostra grafu G, potom
komplement ku kostre 7" ur¢uje mnozinu kruznic. Teda HIST kostra jednoznac¢ne urcuje
3-dekompoziciu.

Tento vztah bol poukdzany v praci Hoffmann-Ostenhof, Noguchi a Ozeki [10], kde
autori skiimaji podmienky existencie HIST kostier v kubickych grafoch a ich vztah k
rozkladom grafov. Vysledky ukazuju, ze stidium HIST kostier predstavuje prirodzeny
a uc¢inny pristup k skiimaniu Hoffmann-Ostenhofovej hypotézy.

Takze HIST kostry predstavuju prirodzeny zaujem z hladiska $tudia struktury gra-
fov aj z pohladu algoritmickych problémov. Preto je zaujimavé sktumat ich existenciu
a pocet najméa v kubickych grafoch, ktoré maju dostatoc¢ne jednoduchi struktaru, ale

zaroven vykazuja zaujimavé vlastnosti.
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Kapitola 4

Pocitacovy pristup pre riesenie

hypotéz

Pri skiimani struktir grafov sa v poslednych rokoch ¢astejsie vyuzivaji vypoctové me-
tody. Typickym pristupom je formulovat problém ako rozhodovaci alebo optimaliza¢ny
problém a nasledne pouzit v§eobecné algoritmické néastroje, napriklad SAT solvers alebo
systematické prehladéavanie.

Zhang a Szeider [17] napriklad formuluji problém 3-dekompozicie kubického grafu
ako problém splnitelnosti (SAT). V ich praci je kazda potencidlna hrana priradena k
jednej zo zloziek rozkladu a podmienky na kostru, kruznice a parenie st zapisané vo
forme logickych klauzil. Preukézali tymto smerom hypotézu za pravdivi pre vsetky
kubické grafy do 28 vrcholov. Takyto pristup umoziiuje experimentalne testovat exis-
tenciu rozkladu pre velké mnoziny grafov a analyzovat Struktaru pripadov, v ktorych
je hladanie rozkladu narocné.

Vypoctové pristupy sa pouzivaji aj pri problémoch tykajicich sa kostier s obme-
dzeniami. V oblasti tzv. degree-constrained spanning trees boli navrhnuté heuristické
algoritmy zaloZené na prehladavani validnych moznosti hoci problém je vo vSeobecnosti
vypoctovo narocny |6].

Tieto prace teda ukazuju na kombinaciu systematického generovania grafov a algo-

ritmického testovania vlastnosti ako uc¢inny pristup pri Stadiu problémov.

13



KAPITOLA 4. POCITACOVY PRISTUP PRE RIESENIE HYPOTEZ



Literatura

1]

2]

131
4]
[5]

6]

7]

18]

19]

[10]

[11]

[12]

Michael O. Albertson, David M. Berman, Joan P. Hutchinson, and Carsten Tho-
massen. Graphs with homeomorphically irreducible spanning trees. Journal of
Graph Theory, 14:247-258, 1990.

Oliver Bachtler and Sven O. Krumke. Towards obtaining a 3-decomposition from
a perfect matching. Flectronic Journal of Combinatorics, 29(4):P4.23, 2022.

J. A. Bondy and U. S. R. Murty. Graph Theory. Springer, 2008.
Reinhard Diestel. Graph Theory. Springer, 5 edition, 2017.

Genghua Fan. Hoffmann-ostenhof’s 3-decomposition conjecture. Discrete Mathe-
matics, 2025.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

J. R. Griggs and M. Wu. Spanning trees in cubic graphs with many leaves. Journal
of Graph Theory, 1996.

Arthur Hoffmann-Ostenhof. Nowhere-zero flows and structures in cubic graphs.
PhD thesis, University of Vienna, 2011.

T. Hoffmann-Ostenhof, T. Kaiser, and K. Ozeki. Decomposing planar cubic
graphs. Journal of Graph Theory, 2016.

Thomas Hoffmann-Ostenhof, Kenta Noguchi, and Kenta Ozeki. On homeomorp-
hically irreducible spanning trees in cubic graphs. Journal of Graph Theory,
89(4):393-412, 2018.

D. J. Kleitman and D. B. West. Spanning trees with many leaves. SIAM Journal
on Discrete Mathematics, 4(1):99-106, 1991.

Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, ii. Journal
of Symbolic Computation, 60:94-112, 2014.

15



16 LITERATURA

[13] Kenta Ozeki and Zigiang Ye. Decomposition of traceable cubic graphs. arXiv
preprint, 2016.

[14] Kenta Ozeki and Zigiang Ye. Decompositions of claw-free cubic graphs. arXiv
preprint, 2018.

[15] C. Thomassen. Spanning trees and the number of leaves. Combinatorica, 1989.

[16] W. T. Tutte. The factorization of linear graphs. Journal of the London Mathe-
matical Society, 22:107-111, 1947.

[17] Tianwei Zhang and Stefan Szeider. The 3-decomposition conjecture: A sat-based
approach. In Proceedings of the International Conference on Principles and Prac-

tice of Constraint Programming, 2025.



	Úvod
	Základné pojmy
	Motivácia

	Hoffman-Ostenhofova hypotéza a známe výsledky
	Formulácia hypotézy
	Známe výsledky
	Planárne kubické grafy
	Ďalšie triedy kubických grafov

	Zjemnenie poslednej zložky rozkladu
	Prístupy cez perfektné párenia

	HIST kostry v kubických grafoch
	HIST kostry v kubických grafoch
	Vybrané výsledky o HIST kostrách
	Kostri s malým počtom listov
	Vzťah k Hoffmann–Ostenhofovej hypotéze

	Počítačový prístup pre riešenie hypotéz
	Literatúra

