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Kapitola 1

Úvod

V tejto kapitole uvedieme základné pojmy a notácie, ktoré budú pouºívané v tomto

reporte. Predpokladáme znalos´ základných pojmov teórie grafov, av²ak pre úplnos´

stru£ne pripomenieme de�nície, ktoré sú dôleºité pre nasledujúce £asti.

1.1 Základné pojmy

Grafom rozumieme kone£ný jednoduchý neorientovaný graf G = (V,E), kde V je

mnoºina vrcholov a E je mnoºina hrán. Stupe¬ vrcholu v ∈ V (G), ozna£ovaný ako

degG(v), je po£et hrán incidentných s vrcholom v. Graf nazývame kubickým, alebo

3-regulárnym, ak kaºdý jeho vrchol má stupe¬ práve tri.

Strom je súvislý graf bez cyklov, ktorý je teda maximálne acyklický a minimálne

súvislý. Podgraf T grafu G nazývame kostrou (spanning tree), ak T je strom a obsahuje

v²etky vrcholy grafu G. Je známe, ºe kaºdá kostra grafu s n vrcholmi obsahuje práve

n− 1 hrán.

Párenie v grafe G je podmnoºina hrán taká, kde ºiadne dve hrany nemajú spolo£ný

vrchol. Ak párenie pokrýva kaºdý vrchol grafu, nazývame ho perfektným párením.

Podgraf nazývame k-regulárnym, ak kaºdý jeho vrchol má stupe¬ presne k. Kon-

krétne 2-regulárny graf je nutne disjunktným zjednotením kruºníc. Preto sa £asto ozna-

£uje aj ako mnoºina kruºníc.

Graf G nazývame súvislý, ak medzi kaºdými dvoma vrcholmi existuje cesta. Mno-

ºinu hrán, ktorej odstránením sa graf nesúvislý, nazývame rez grafu. Rez nazývame

cyklický, ak kaºdá z komponent obsahuje cyklus. Graf je cyklicky k-hranovo súvislý, ak

kaºdý cyklický rez má ve©kos´ aspo¬ k.

Pod rozkladom grafu vo v²eobecnosti rozumieme rozdelenie jeho mnoºiny hrán na

nieko©ko navzájom disjunktných podmnoºín tak, aby kaºdá hrana patrila práve do

jednej mnoºiny. Kaºdá z týchto podmnoºín potom ur£uje podgraf pôvodného grafu.

Rozklady grafov na podgrafy so ²peci�ckými vlastnos´ami predstavujú významný ná-
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Obr. 1.1: Petersenov graf

stroj pri ²túdiu ²truktúry grafov.

1.2 Motivácia

Dôleºitým prístupom v teórii grafov je skúmanie grafov prostredníctvom ich podgrafov

a rôznych typov rozkladov. Rozklad grafu na jednoduch²ie ²truktúry £asto umoº¬uje

presnej²ie opísa´ jeho vlastnosti a formulova´ v²eobecné tvrdenia o jeho ²truktúre. V

tejto súvislosti sa £asto ²tudujú rozklady na stromy, párenia alebo regulárne podgrafy,

ktoré poskytujú informáciu o globálnych vlastnostiach grafu [3, 4].

Trieda kubických grafov je dostato£ne jednoduchá ale zárove¬ vykazuje bohaté

²trukturálne vlastnosti. V¤aka £omu umoº¬uje formuláciu viacerých typických prob-

lémov teórie grafov, ako napríklad problémov týkajúcich sa Hamiltonovských kruºníc

alebo hranového farbenia. Okrem toho sa mnohé otázky z teórie grafov dajú vhodnými

transformáciami alebo redukciami previes´ na kubické grafy

Známym príkladom je Petersenov graf, ktorý je kubický, ale zárove¬ neobsahuje Ha-

miltonovskú kruºnicu a zohráva dôleºitú úlohu ako protipríklad v mnohých tvrdeniach

[4].

Rozklady regulárnych grafov sa vyskytujú v rôznych podobách. Klasickým príkla-

dom je rozklad grafu na perfektné párenia, ktorý úzko súvisí s hranovým farbením. V

prípade kubických grafov je graf 3-hranovo zafarbite©ný práve vtedy, ke¤ jeho mnoºinu

hrán moºno rozdeli´ na tri perfektné párenia [4, 3]. �al²ím £asto ²tudovaným typom

sú rozklady na 2-faktory, ktoré zohrávajú významnú úlohu pri ²túdiu Hamiltonovských

kruºníc a ²truktúry regulárnych grafov.

Významnú úlohu pri ²túdiu kubických grafov zohrávajú aj výsledky týkajúce sa

existencie ²peciálnych podgrafov. Tutteho veta o existencii perfektného párenia v ku-

bických grafoch bez mostov [16] patrí medzi základné výsledky z perfektných párení.
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V tomto smere nadväzujú aj otázky týkajúce sa rozkladov hrán kubického grafu na

podgrafy s rôznymi usporiadaniami, medzi ktoré patrí aj rozklad na kostru, cykly a

párenie formulovaný v Ho�mann-Ostenhofovej hypotéze [9].

Pri skúmaní takýchto problémov sa v mnohých prípadoch ukazuje ako uºito£né

kombinova´ teoretické a výpo£tové prístupy. Po£íta£ové experimenty umoº¬ujú ana-

lyzova´ ve©ké mnoºiny grafov, identi�kova´ ²peci�cké alebo extrémne prípady a for-

mulova´ nové hypotézy, ktoré moºno následne teoreticky analyzova´. Tento prístup sa

v posledných rokoch stal beºnou sú£as´ou výskumu v kombinatorike a teórii grafov,

napríklad pri experimentálnom ²túdiu vlastností kubických grafov a ich rozkladov [12].

Táto diplomová práca zapadá do uvedeného rámca tým, ºe sa zameriava na ²truk-

turálne vlastnosti kubických grafov súvisiace s existenciou ²peciálnych typov kostier a

na vyuºitie výpo£tových metód pri ich skúmaní.
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Kapitola 2

Ho�man-Ostenhofova hypotéza a

známe výsledky

Jedným z problémov typu rozkladu kubického grafu je Ho�mann-Ostenhofova hypo-

téza, ktorá bola formulovaná v roku 2011. Hypotéza sa týka moºnosti rozdeli´ mnoºinu

hrán kubického grafu na tri podgrafy s jednoduchou ²truktúrou: kostru, mnoºinu kruº-

níc a párenie. Tieto tri typy podgrafov patria medzi základné ²truktúry v oblasti teórie

grafov a ich vlastnosti boli intenzívne skúmané v mnohých navzájom rôznych súvislos-

tiach.

2.1 Formulácia hypotézy

Hypotéza 2.1 (Ho�mann-Ostenhof [8]). Kaºdý kubický graf moºno rozloºi´ na tri hra-

novo disjunktné podgrafy: kostru grafu, 2-regulárny podgraf ,teda disjunktnú mnoºinou

kruºníc, a párenie.

Takýto rozklad sa zvy£ajne ozna£uje ako 3-dekompozícia kubického grafu. Hypotéza

teda tvrdí, ºe hrany ©ubovo©ného kubického grafu moºno rozdeli´ na tri £asti tak, aby

kaºdá z nich mala jednoduchú ²truktúru a kaºdá hrana patrila presne do jednej z

týchto £astí. Nutno podotknú´, ºe mnoºina kruºníc pri takejto dekompozícii je nutne

neprázdna ale párenie môºe by´ prázdne.

Ho�mann-Ostenhofova hypotéza bola dokázaná pre viaceré ²peciálne triedy kubic-

kých grafov, napríklad pre planárne kubické grafy [9], ako aj pre ¤al²ie triedy de�nované

²trukturálnymi obmedzeniami. Napriek týmto £iastkovým výsledkom zostáva jej plat-

nos´ pre v²eobecné kubické grafy otvoreným problémom. Z tohto dôvodu je hypotéza

predmetom sú£asného výskumu, a to ako z teoretického, tak aj z výpo£tového h©adiska.

V nasledujúcich £astiach tejto kapitoly stru£ne zhrnieme známe výsledky týkajúce

sa Ho�mann-Ostenhofovej hypotézy a uvedieme triedy kubických grafov, pre ktoré bola

jej platnos´ dokázaná.
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Obr. 2.1: 3-dekompozícia

2.2 Známe výsledky

Ho�mann-Ostenhofova hypotéza je v plnej v²eobecnosti otvorená, av²ak v literatúre

existuje viacero £iastkových výsledkov, ktoré dokazujú jej platnos´ pre ²peciálne triedy

kubických grafov. Typickým prístupom je bu¤ vyuºitie typickej ²truktúry danej triedy

grafov (napr. planárnos´ alebo absencia ur£itých indukovaných podgrafov), alebo kon-

²truktívny dôkaz, v ktorom sa priamo zostaví poºadovaný rozklad.

2.2.1 Planárne kubické grafy

Zásadným výsledkom je dôkaz hypotézy pre planárne kubické grafy. Ho�mann-Ostenhof,

Kaiser a Ozeki ukázali, ºe kaºdý planárny kubický graf pripú²´a 3-dekompozíciu [9].

Tento výsledok je dôleºitý aj preto, ºe táto trieda kubických grafov tvorí prirodzenú

a rozsiahlu rodinu grafov, ktorá sa £asto vyskytuje v aplikáciách aj v teoretických

úvahách.

Okrem samotného tvrdenia obsahuje uvedená práca aj viaceré pomocné ²truktu-

rálne tvrdenia a techniky, ktoré sa v literatúre vyuºívajú aj pri skúmaní ¤al²ích tried

grafov. V kontexte ide o reprezentatívny príklad, kde je hypotéza dokázaná kon²truk-

tívne. A teda poskytuje aj intuitívny obraz o tom, pre£o rozklad na tieto tri komponenty

môºe existova´.

2.2.2 �al²ie triedy kubických grafov

Hypotéza bola dokázaná aj pre ¤al²ie triedy kubických grafov de�nované ich ²truktu-

rálnymi obmedzeniami. Jedným z príkladov sú traceable kubické grafy (t. j. kubické

grafy obsahujúce Hamiltonovskú cestu), pre ktoré moºno rozklad odvodi´ vyuºitím

existencie takejto cesty a vhodným doplnením hrán do poºadovaných komponentov

[13]. �al²ím príkladom sú claw-free kubické grafy, pri ktorých absencia indukovaného

podgrafu K1,3 poskytuje dodato£nú ²truktúru vyuºite©nú pri kon²trukcii rozkladu [14].
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2.3 Zjemnenie poslednej zloºky rozkladu

Pri skúmaní Ho�mann-Ostenhofovej hypotézy sa v literatúre objavujú aj jej zjemne-

nia a príbuzné formulácie. Ich význam spo£íva v tom, ºe £asto poskytujú £iasto£né

výsledky alebo alternatívne poh©ady, ktoré môºu prispie´ jednak k lep²iemu pochope-

niu ²truktúry kubických grafov ale aj samotnému rozkladu ich hranovej mnoºiny.

Jedným z prirodzených zjemnení je oslabenie poºiadavky, aby tretia zloºka rozkladu

bola párenie. Namiesto párenia sa uvaºuje mnoºina vrcholovo disjunktných ciest, pri-

£om kaºdá z ciest má najviac dve hrany. V tomto zmysle bolo dokázané, ºe kaºdý súvislý

kubický graf moºno rozloºi´ na kostru, mnoºinu kruºníc a takúto mnoºinu vrcholovo

disjunktných ciest d¨ºky najviac dva [5]. Tento výsledok moºno chápa´ ako oslabenú

verziu Ho�mann-Ostenhofovej hypotézy, ke¤ºe párenie predstavuje ²peciálny prípad,

v ktorom majú v²etky cesty d¨ºku jedna.

2.4 Prístupy cez perfektné párenia

Ke¤ºe v kubických grafoch zohrávajú perfektné párenia zásadnú úlohu, prirodzeným

smerom je pokúsi´ sa odvodi´ poºadovaný rozklad z vhodne zvoleného perfektného

párenia. Po odstránení perfektného párenia z kubického grafu totiº vzniká 2-regulárny

podgraf, teda mnoºina kruºníc, a problém sa redukuje na kon²trukciu kostry z vhodnej

podmnoºiny zostávajúcich hrán.

Tento prístup systematicky analyzujú Bachtler a Krumke [2]. Vo svojej práci skú-

majú podmienky, za ktorých moºno z daného perfektného párenia skon²truova´ 3-

dekompozíciu grafu. Konkrétne ²tudujú ²truktúru 2-faktora vzniknutého po odstrá-

není párenia a odvodzujú dostato£né podmienky, za ktorých je moºné vybra´ podgraf

tvoriaci kostru tak, aby zvy²né hrany tvorili poºadovanú mnoºinu kruºníc. Okrem exis-

tencie takéhoto rozkladu uvádzajú aj kon²truktívne postupy, ktoré umoº¬ujú takúto

dekompozíciu následne zostroji´ pre ur£ité triedy kubických grafov.

Výsledky tohto typu ukazujú, ºe ur£ité ²truktúry predstavujú prirodzený nástroj

pri ²túdiu Ho�mann-Ostenhofovej hypotézy a ºe analýza ²truktúry grafu po odstránení

danej hrán daného podgrafu môºe vies´ k £iasto£ným výsledkom a novým prístupom

k problému.
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Kapitola 3

HIST kostry v kubických grafoch

Ako sme uviedli v predchádzajúcej kapitole, jedným z prístupov k ²túdiu Ho�mann-

Ostenhofovej hypotézy je skúmanie ²peciálnych ²truktúr v samotných grafoch, ako

tomu bolo pri perfektnom párení. Osobitne významnú úlohu zohrávajú tzv. homeomor-

�cky ireducibilné kostry, ktoré majú výrazne obmedzenú ²truktúru. V tejto kapitole

uvedieme ich de�níciu a vysvetlíme, pre£o sú pre ná² problém zaujímavé.

3.1 HIST kostry v kubických grafoch

De�nícia 3.1. Nech G je graf a T jeho kostra. Kostru T nazývame homeomor�cky

ireducibilnou kostrou (HIST), ak neobsahuje ºiadny vrchol stup¬a dva, teda pre kaºdý

vrchol v ∈ V (T ) platí

degT (v) ̸= 2.

V prípade kubických grafov má de�nícia HIST kostry jednoduch²iu podobu. Ke¤ºe

kaºdý vrchol kubického grafu má stupe¬ najviac tri, preto v takejto kostre kubického

grafu má kaºdý vrchol stupe¬ bu¤ jeden alebo tri.

Táto vlastnos´ vedie k jednoduchým vz´ahom medzi po£tom listov a po£tom vnú-

torných vrcholov. Nech T je HIST kostra kubického grafu s n vrcholmi, L po£et listov

a I po£et vnútorných vrcholov. Zo základných vlastností stromov vyplýva, ºe

L+ 3I = 2(n− 1), L+ I = n,

odkia© dostávame

L =
n+ 2

2
, I =

n− 2

2
.

Tieto vz´ahy ukazujú, ºe ²truktúra HIST kostry v kubickom grafe je silne obme-

dzená, £o je výhodné pri jej kon²trukcii aj pri algoritmickom vyh©adávaní.

9
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3.2 Vybrané výsledky o HIST kostrách

Homeomor�cky ireducibilné kostry boli ²tudované v rôznych súvislostiach, od v²eobec-

ných vlastností kostier v ©ubovo©nom grafe aº po ²peciálne výsledky pre kubické grafy.

Jednou z prvých systematických prác o HIST kostrách je £lánok Albertsona, Ber-

mana, Hutchinsona a Thomassena [1]. Autori v ¬om zavádzajú pojem homeomor�cky

ireducibilnej kostry a skúmajú podmienky jej existencie vo v²eobecných grafoch. Do-

kazujú napríklad, ºe grafy s dostato£ne ve©kým minimálnym stup¬om obsahujú HIST

kostru a analyzujú triedy grafov, pre ktoré moºno existenciu takejto kostry zaru£i´

pomocou ²trukturálnych vlastností grafu.

�peciálne pre kubické grafy boli HIST kostry podrobnej²ie ²tudované v práci Ho�mann�

Ostenhof, Noguchi a Ozeki [10]. Jedným z motivujúcich problémov, ktoré autori dis-

kutujú, je otázka, £i pre kaºdé kladné celé £íslo k existuje cyklicky k-hranovo súvislý

kubický graf, ktorý neobsahuje homeomor�cky ireducibilnú kostru. Výsledky a disku-

sia v uvedenej práci ukazujú, ºe existencia HIST kostry je citlivá na ²truktúru grafu a

nemoºno ju odvodi´ iba z parametrov, ako je maximálny £i minimalny stupe¬ vrcholov

alebo silná súvislos´.

Z h©adiska algoritmickej zloºitosti je relevantný aj v²eobecný problém h©adania

kostier s obmedzeniami na stupne vrcholov. V klasických výsledkoch o ohrani£ených

kostrách v kubických grafoch sa ukazuje, ºe rozhodovanie o existencii takejto kostry je

NP-úplný problém [6]. Ke¤ºe HIST kostra v kubických grafoch je ²peciálnym prípa-

dom, v ktorej sú stupne vrcholov obmedzené, tak aj ur£enie HIST kostry je výpo£tovo

náro£ný problém.

3.3 Kostri s malým po£tom listov

S existenciou HIST kostier úzko súvisí aj v²eobecnej²í problém : h©adanie kostier s

ve©kým po£tom listov. Tento problém bol intenzívne preskúmaný v rôznych triedach

grafov, pretoºe po£et listov do zna£nej miery ur£uje ²truktúru stromu.

Kleitman a West [11] dokázali v²eobecné dolné odhady na po£et listov v kostrách

súvislých grafov v závislosti od minimálneho stup¬a. Ich výsledky ukazujú, ºe grafy s

vä£²ím minimálnym stup¬om obsahujú kostry s relatívne ve©kým po£tom listov. Pod-

poruje to intuíciu, ºe v hustej²ích grafoch je jednoduch²ie nájs´ aj kostry bez vrcholov

stup¬a dva.

Pre kubické grafy boli podobné otázky ²tudované napríklad Griggsom a Wu [7],

ktorí analyzovali maximálny po£et listov v kostrách kubických grafov a ukázali, ºe

aj pri silnom obmedzení stup¬ov vrcholov moºno zaru£i´ existenciu kostier s ve©kým

po£tom listov. Tieto výsledky sú relevantné aj pri ²túdiu HIST kostier, ke¤ºe takáto

kostra v kubickom grafe má presne ur£ený po£et listov daný vz´ahom uvedeným vy²²ie.
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Obr. 3.1: 3-dekompozícia v Petersenovom grafe indukovaná HIST kostrou

3.4 Vz´ah k Ho�mann�Ostenhofovej hypotéze

HIST kostry sú dôleºité aj z h©adiska Ho�mann-Ostenhofovej hypotézy. Ukazuje sa

totiº, ºe existencia takejto kostry v kubickom grafe poskytuje prirodzený spôsob, ako

zostroji´ poºadovaný rozklad hrán. Intuitívne, ak T je HIST kostra grafu G, potom

komplement ku kostre T ur£uje mnoºinu kruºníc. Teda HIST kostra jednozna£ne ur£uje

3-dekompozíciu.

Tento vz´ah bol poukázaný v práci Ho�mann-Ostenhof, Noguchi a Ozeki [10], kde

autori skúmajú podmienky existencie HIST kostier v kubických grafoch a ich vz´ah k

rozkladom grafov. Výsledky ukazujú, ºe ²túdium HIST kostier predstavuje prirodzený

a ú£inný prístup k skúmaniu Ho�mann-Ostenhofovej hypotézy.

Takºe HIST kostry predstavujú prirodzený záujem z h©adiska ²túdia ²truktúry gra-

fov aj z poh©adu algoritmických problémov. Preto je zaujímavé skúma´ ich existenciu

a po£et najmä v kubických grafoch, ktoré majú dostato£ne jednoduchú ²truktúru, ale

zárove¬ vykazujú zaujímavé vlastnosti.
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Kapitola 4

Po£íta£ový prístup pre rie²enie

hypotéz

Pri skúmaní ²truktúr grafov sa v posledných rokoch £astej²ie vyuºívajú výpo£tové me-

tódy. Typickým prístupom je formulova´ problém ako rozhodovací alebo optimaliza£ný

problém a následne pouºi´ v²eobecné algoritmické nástroje, napríklad SAT solvers alebo

systematické preh©adávanie.

Zhang a Szeider [17] napríklad formulujú problém 3-dekompozície kubického grafu

ako problém splnite©nosti (SAT). V ich práci je kaºdá potenciálna hrana priradená k

jednej zo zloºiek rozkladu a podmienky na kostru, kruºnice a párenie sú zapísané vo

forme logických klauzúl. Preukázali týmto smerom hypotézu za pravdivú pre v²etky

kubické grafy do 28 vrcholov. Takýto prístup umoº¬uje experimentálne testova´ exis-

tenciu rozkladu pre ve©ké mnoºiny grafov a analyzova´ ²truktúru prípadov, v ktorých

je h©adanie rozkladu náro£né.

Výpo£tové prístupy sa pouºívajú aj pri problémoch týkajúcich sa kostier s obme-

dzeniami. V oblasti tzv. degree-constrained spanning trees boli navrhnuté heuristické

algoritmy zaloºené na preh©adávaní validnych moºností hoci problém je vo v²eobecnosti

výpo£tovo náro£ný [6].

Tieto práce teda ukazujú na kombináciu systematického generovania grafov a algo-

ritmického testovania vlastností ako ú£inný prístup pri ²túdiu problémov.
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