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Abstract

This thesis addresses the problem of robot-object interaction and the prediction of
perceptual consequences of robot actions. In the first part, it introduce reader into
basic of neural networks and reinforcement learning, along with brief explanation of
used PPO algorithm. In next chapters, design and implementation of used NICO robot
is explained. Model of nco was created by Mima Mattová and modified for training
purposes by Iveta Bečková. Training was done virtualy in Unity environment with
The Unity Machine Learning Agents Toolkit. For traning we The Proximal Policy
Optimization (PPO) algorithm based upon neural networks and Policy gradient.

Keywords: robot, ppo, reinforcement learning, Unity, neural networks
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Abstrakt

Táto práca sa venuje problematike interakcie robota s objektamy a predikovanie per-
ceptuálnych dôsledkov akcií robota. Súčaťou tejto práce je aj úvod do neurálnych sietí
a učenia posilňovaním, spolu s stručním vysvetlením fungovania použitého algoritmu
PPO. Dalej je tu popísaný návrh a implementácia učenia robota NICA vo virtuálnom
prostredí Unity. Model NICA bol vytvorený Mimou Mattovou a ďalej upravný pre
potreby simulácie Ivetou Bečkovou. Na jeho trénovanie bol použitý Unity Machine
Learning Agents Toolkit. Na trénovanie bol použitý algoritmus PPO (Proximal Policy
Optimization), využívajúci neurálne siete a Policy gradient.

Kľúčové slová: robot, ppo, učenie posilňovaním, Unity, neurálne siete
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Chapter 1

Introduction

1.1 Neural networks

An Artificial Neural Network (ANN) is a processing system made from large number of
interconnected simple processing elements - neurons. Architecture ANNs was inspired
by structure of biological brain - both brain and ANN process information similarly
and learns from examples.

This creates different approach to problem solving compared to conventional com-
puting. Instead of predictable algorithmic approach, ANNs allows solving problems
without understanding of problem, but with lower accuracy. [7]

1.1.1 History

In 1943 neurophysiologist Warren McCulloch and mathematician, Walter Pitts devel-
oped first model of ANN. Neurons in their models had fixed threshold and were able
to simulate simple logic functions. [7]

Figure 1.1: Model of an artificial neuron according to McCulloch and Pitts [4]

After initial period of enthusiasm and few other contributions to the field, period of
frustration followed. During that time there were only few researchers continued work
on solving problems with neural networks. During this time Klopf developed basis for
learning and Werbos developed back-propagation algorithm.

This period lasted up to the 1980s, when multiple new contributions renewed wider
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interest.Hopfield described recurrent neural networks and presented paper Neural Net-
works and Physical Systems with Emergent Collective Computational Abilities.[7]

Neural networks become recently much more publicly know, caused by advances in
computing power allowing much bigger number of neurons. It allowed for much more
complex tasks as image generation from natural language prompts or chatbots capable
of deeper conversations.

1.1.2 Different models of neural networks

There are hundreds of different models and architectures of neural networks with dif-
ferent advantages and disadvantages for different purposes. Some of the most used
architectures are:

• Single perceptrons

• Multi-layer perceptrons

• Convolutional neural network

• Recurrent neural network

• Self-Organizing Maps

• Radial Basis Function Network

• Hopfield autoassociative memory

In practise, multiple architectures are often combined to achieve desired outcome.[4]

Simple perceptron

It was proposed in 1958 by American psychologist, F. Rosenblatt. It is more general
model, with free parameters, stochastic connectivity and threshold elements.[4]

Activation of this perceptron consists of weighted sum of inputs, from which we
subtract threshold θ (1.1). Result is then run through activation function, either
uni/bipolar for discrete perceptron or sigmoid for continuous perceptron. In prac-
tise, threshold is expressed as another weighted input xn+1, with static value of -1,
commonly called bias(1.2).

oj = f(
n∑

i=1

wijxi − θj) (1.1)

oj = f(
n+1∑
i=1

wijxi) (1.2)
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Figure 1.2: Model of simple perceptron and layer of simple perceptrons [4]

Learning rule for adjust weights in discrete perceptron:

wj(t+ 1) = wj(t) + α(d− y)xj (1.3)

And for continuous perceptrons:

wj(t+ 1) = wj(t) + α(d(p) − y(p))f ′xj (1.4)

Where α(Alpha) represents learning rate.
Simple perceptron can solve only lineary separable classes. This caused loss of

interest in neural networks in many researchers 1970s as many real problems are lineary
non-separable, thus simple perceptron cannot be used to solve them.

Multi-layer perceptron

Multi-layer perceptron(MLP) is probably one of most used architectures today. It
is generalisation of simple perceptrons and it contains additional hidden layers. MLP
originates from Rumelhart & McClelland: Parallel distributed processing but was earlier
described by Werbos in 1974. It is response to critique on perceptrons.[4]

In MLP Activations are similar to activations in simple perceptron. Their distinc-
tion comes from addition of hidden layers and additional weights. Due this change,
output layer is calculated from hidden layer, instead of inputs.

hk = f(
n+1∑
j=1

vkjxj) (1.5)

yi = f(

q+1∑
j=1

wikhk) (1.6)
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Figure 1.3: Model of multi-layer neural network [4]

Activation functions on hidden layers doesn’t have similar constrains as output
function, but linear function should not be used, as it doesn’t add any depth to network.
Common activation functions are sigmoid or hyperbolic tangent function.

Learning of MLP uses back-propagation algorithm with different equations for hid-
den and output layers. Weight adjustments are calculated backwards from output
layers to the first hidden layer.[4]

Equation for calculating Hidden-output weights:

wik(t+ 1) = wik(t) + αδihk where δi = (di − yi)f
′
i (1.7)

And for Input-hidden weights:

vkj(t+ 1) = vkj(t) + αδkxj where δk = (
∑
i

wikδi)f
′
k (1.8)

1.1.3 Creating neural networks

To successfully create a neural network for accurate classification or prediction tasks,
three key components play major role: high-quality dataset, the selection of an appro-
priate neural network model, and the identification of optimal hyperparameters for the
training process itself.

Training process

During training, model iterates through dataset, predict outcome and calculates weight
changes based on error. One such iteration is called epoch.
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Figure 1.4: Underfit, Good fit and Overfit [2]

One training iteration usually consist of these steps:

• for each input x and desired output d (in random order)

1. compute output: y =?(Wx)

2. compute error: e = d− y

3. compute adjustment: ∆W =?(W,x, y, e)

4. adjust weights:∆W (t+ 1) = W (t) + α∆W

This iteration continues until certain stopping criteria is meet, usually number of
passed epochs or accuracy of model. Properly setting stopping criteria is important in
order to prevent overfitting or underfitting of model for certain data. Underfitting is
when model didn’t properly capture desired problem. Overfitting is when model is
trained very well for training data, but reacts too much on random outliers or noise,
making it very inaccurate in generalisation (Fig. 1.5). [2]

In relation of correct fitting and training length, despite training error decreasing,
at certain point validation error stops decreasing and start increasing, as model is
becoming more overfit, reacting to noise in the dataset.

This is also called sequential training. Other used type of training is called batch
training. In batch, instead of iterating through input-output pairs is everything calcu-
lated in parallel. This is done through matrix multiplication and can significantly speed
up calculations, at cost of higher memory requirement and harder implementation.[4]

Datasets

Dataset is a collection of structured data used for various purposes such as analysis,
research, or machine learning.

Selection of proper dataset is crucial for training process - dataset should properly
represent data from problem. In practise, getting ideal datasets is complicated and
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Figure 1.5: Error in relation to training length [2]

often impossible and contain too small sample of data. This can be partially corrected
by using data augmentation.

Data augmentations refers to changing available dataset to better suit task needs or
generating new data based on present one. As example, in article Improving handgun
detection through a combination of visual features and body pose-based data [12], authors
edited original dataset of high quality images by editing lighting and "zooming out" to
make humans on them appear smaller (Fig. 1.6). This changes simulated of CCTVs,
that often cover poorly lit big areas. They also used generation of new data by flattening
3D pose data to 2D from multiple points of view (Fig. 1.7).

Although, we could use dataset for training of model as is, and training error could
be sufficiently minimize . However, model may not be good enough at generalisation
as we would be unable to detect overfitting. This is why datasets are commonly split
into two or three parts:

• Training set

• Validation set

• Testing set

Training set is used for training itself - it is used every epoch and it directly
affects model weights. Training sets are usually biggest from all three. Validation
set is used for evaluation of model and fine tune its hyperparameters. It can be used
after every epoch, or every few epochs, based on performance. Testing set is used for
measurement of model performance after training was finished. It is usually used only
once (Fig. 1.8).
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Figure 1.6: Unedited and edited images [12]

Figure 1.7: Different points of view [12]

Figure 1.8: Difference between training, validation and testing sets [1]
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There is no hard rule on how dataset should be split as it depends on model and
task, but in general, 80%− 10%− 10% for training, validation and testing is good split
to start from. Lowering amount of data for training increase training variance and with
less data for validation/testing, model evaluation and performance will have greater
variance.[1]

Simplest way to distribute data between splits is Random sampling. In random
sampling data are picked at random from full dataset. This work best for balanced
datasets, but in unbalanced ones it can cause bias towards one category. For example
in dataset with 800 images of dogs and 200 of cats, training set could get most of dog
images, making cat detection unreliable. For these tasks Stratified sampling is used.
In stratified sampling, data is picked from each category separately in same ratio as
split between training, validation and testing sets.[1]

Different commonly used way to split dataset is k-Fold Cross-Validation. It is
especially useful for smaller datasets where result of training can be strongly affected by
randomness. In k-Fold Cross-Validation, dataset is split into k non-overlapping subsets
of same size. During training, one subset is used for validation and the remaining k−1

are used for training. This process is repeated k times for every subset. Results
from k trainings are then averaged into one performance estimation - cross-validation
coefficient, that is used to pick best model (Fig. 1.9). [8]

Figure 1.9: Example of 5-fold cross validation. [10]

Basic k-Fold Cross-Validation can suffer from same class imbalance as random split-
ting. It is solved by using stratified k-Fold Cross-Validation, which preserves class
ratios.
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1.2 Reinforcement learning

In the realm of artificial intelligence, learning methods can be categorized into three
types: supervised learning, unsupervised learning, and reinforcement learning, each
having its own uses and advantages.

Supervised learning learns from a labelled dataset, where each input has a cor-
responding desired output. The goal is to minimize the difference between values
predicted by the model and true labels from dataset and generalize for new, unseen
data . This method is commonly used for regression and classification tasks (function
approximation, pose detection). Prediction accuracy is heavily upon quality and size
of the dataset.

Unsupervised learning learns on unlabelled datasets. It discovers inherent pat-
terns or structures within the data without any explicit guidance or instruction. .
Common tasks include clustering similar data points or reducing dataset dimension-
ality. Unsupervised learning is used for exploring large datasets, uncovering hidden
relationships, and helping in data visualization.

Reinforcement learning learns from interaction with environment through ac-
tions and rewards. Its goal is mapping environment states to actions order to maximize
long term reward. It is used in robotics, self-driving cars or playing games. Two main
characteristics of RL are trial and error and delayed reward.

Figure 1.10: Different categories of AI learning methods [4]
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1.2.1 Introduction to RL

It is mapping actions for every state in order to maximize rewards. Rewards are not
know to the learner and have to be discovered by trying them. In more complex cases,
actions affects all subsequent states and rewards.

Reinforcement learning simultaneously refers to problem, class of solution methods
and field that studies this problem.

In RL problem, a learning agent must be able to sense state of the environment,
take actions that can affect said state and have goal or goals relating to the state of
environment.

Reinforcement learning is different from supervised learning. Supervised learning
learns from already mapped set of data, where every label has a correct action and
model tries to generalise for previously unseen data, for example correctly categorize
animal in picture or calculate y from input x. Despite its usefulness, it is inadequate for
learning from interactions, as it is often impractical to obtain representative examples
of desired action for all situations in which the agent has to act. Agent must be able
to learn from its own experience in order to find best action for every state.[14]

A good way to understand RL is through examples from real life:

• Newborn gazelle calf learning how to run in under half hour

• Baby learning how to stack cubes into high tower

• Kid learning how to ride a bicycle

• Chess player learning how to play chess

In all this actions, decision-making agent learns through interaction with environ-
ment, despite uncertainty about it. Falling on the ground or cube tower collapsing
provides negative reward and reaching partial goals give positive reward. Actions may
affect the future state of the environment (e.g., the next chess position, future position
of cube), thereby affecting actions and opportunities available to the agent. Correct
choice of action requires taking into account both immediate future and indirect, de-
layed consequence thus requiring foresight or planning.[14]

1.2.2 Elements of Reinforcement Learning

There are four basic subelements of reinforcement learning beyond agent and environ-
ment:

• Policy - defines behaviour

• Reward signal - defines goal and rewards
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• Value function - defines what is good in long term

• Model of environment - optional element that mimics environment

Policy defines agent behaviour at given time - it is mapping of actions from per-
ceived states of environment. It can be as simple as lookup table or it may involve com-
plex calculations. Instead of one action, policies often return probability for each action.
Policy corresponds to stimulus–response rules or association from psychology.[14]

Reward signal defines goal of a reinforcement learning problem. After each action,
the environment sends to agent evaluation of current state - reward. Reward defines
good and bad events for the agent, as agent tries to maximize total reward over long
run.The reward signal is primary basis for alteration of the policy. If action had low
reward, probability of it being taken is lowered and similarly, if action brought high
reward, its probability in policy is heightened. We can think of rewards as pleasure or
pain.[14]

Value function indicates what is good in long - it is total amount of expected
reward agent can accumulate from this state. Values indicates long term desirability of
states, based on possible future states and their rewards. States can have high reward,
but are followed by more states with lower ones. On the other hand different state
have lower one, but allows for better future states.

Example is building tower from blocks. Always placing block on top will lead to
high tower and big immediate reward, but will quickly lead to collapse. On the other
hand, creating stronger foundations brings little reward, but allows for much higher
tower and reward in the end.

Without rewards, we could not get values, and values only purpose is to maximize
reward. But it is values we use during evaluation of decisions - we seek actions that will
bring states with highest vale and not reward. Unfortunately, it is harder to determine
values, as they must be estimated from observations over entire agent lifetime.[14]

Model of environment mimics the behaviour of the environment. It allows infer-
ences to be made about how the environment will be affected by agent actions. For
example, given a state and action, the model might predict the next state and reward.
They are used for planning - consideration of future situations before they are experi-
enced. Methods using model are called method-based. Opposite of that are model-free
methods, based on trial and error and almost viewed as opposite of planning.[14]

1.2.3 Tabular Solution Methods

Tabular methods are used for tasks, where sate and action spaces can be represented
as arrays or tables, thus methods can often find optimal value function and optimal
policy. For this method, k -armed Bandit Problem is often used as example, it is
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analogy to slot machine, often called "One armed bandit". In this problem, agent is
choices of actions - "levers", each with its own reward distribution (Fig. ??). Goal of
agent is to maximize total reward over multiple steps by focusing on best lever. [14]

Figure 1.11: Distribution of rewards of ten levers [14]

In k -armed bandit problem, each action has expected - mean reward given, after
said action is selected. It is called the value of action. Action selected at time t is
denoted as At and reward is called Rt. Value of arbitrary action a (denoted as q∗(a))
is expected reward:

q∗(a)
.
= E[Rt|At = a] (1.9)

As we in practise lack true values of each action, we use estimates. Estimated value
of action a at time t is denoted as Qt(a). Our goal is improve this estimate through
multiple actions, to be s close s possible to real values q∗(a).[14]

If we have at least two possible actions, then there always bust be at least one
action with highest estimated value. These are greedy actions and selecting one of
them is called exploitation of current knowledge. Picking any other action is called
exploration instead.[14]

Exploitation is best choice for short term reward, as it always picks "best" action
by current knowledge. Although it helps improve estimation of said best actions, it
ignores others that can have higher true value, but lower estimation value. For that
there is exploration, that improves estimation of all actions, but it brings smaller total
reward. Because it is not possible to take both action during one step, we must find
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way to balance them, which is often dependant on multiple factors as precise values of
the estimates, uncertainties, and the number of remaining steps. [14]

1.2.4 Finite Markov Decision Processes

Finite Markov Decision Processes, or finite MDPs, are a classical formalization of
sequential decision making, where action influence not just immediate rewards, but
also future possible states and their rewards. This means, in MDPs we need to deal
with trade off between immediate reward and delayed reward. In tabular methods, we
estimate value q∗(a) for each action. In MDPs we estimate value q∗(s, a) of each action
a in state s.[14]

Agent and environment interacts at sequence of discrete time steps t − 0, 1, 2, ....
At each step, agent receives representation of environment’s state St ∈ S and selection
of actions At ∈ A. At next time step, it receives reward Rt+1 ∈ R ⊂ R and new state
St+1. This gives a rise to sequence:

S0, A0, R1, S1, A1, R2, S2, A2, R3, S3, A3, ... (1.10)

In MDP all sets of states, actions, and rewards have a finite number of elements.
Random variable Rt and St have defined discrete probability distribution and are de-
pendent only on preceding state and action St−1 and At−1. So, for particular values of
s′ ∈ S and r′ ∈ R at time t, their probability given values of action and state at t− 1

is:

p(s′, r|s, a) .
= PrSt = s′, Rt = r|St−1, At−1 (1.11)

for all s′, s ∈ S, r ∈ R, anda ∈ A(s).
This is best viewed as restriction on the state, as state must include information

about all past agent-environment interaction that is relevant for future. If state fulfill
this requirement, we say it has Markov property.[14]

1.2.5 Policy gradient

Most of methods in reinforcement learning are not applicable to problems such as
robotics or motor control, as they have problems with uncertain state information.
Continuous states and actions in high dimensional spaces is also common source of
problems. Most traditional reinforcement learning methods have no convergence guar-
antees.

Policy gradient methods differ significantly. Although, uncertainty in the state
still might degrade the performance of the policy, continuous states and actions can
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be easily dealt with in same way s discrete ones. Policy gradient methods also have
guaranteed convergence, at least to local optimum. [11]

They are based upon gradient descent, similar to supervised learning. In an example
pong task, agent has two possible action: UP and DOWN. After feeding state into
neural network, we gain log probabilities (-1.2, -0.36) for both actions. In supervised
learning we have label of correct action, in this example it is UP, so we enter gradient of
1.0 on log probability of UP and run backprob to calculate gradient vector (Fig ??).[6]

Figure 1.12: Training with Supervised Learning [6]

In reinforcement learning we lack correct labels, so we cant immediately calculate
correct gradient. After our network calculated probabilities, we sample action, for
our example action DOWN and execute it simulation. We could immediately fill in
gradient of 1.0 for DOWN and run backprob, but we don’t know yet, if this action is
good or not. For this reason we wait, usually until end of episode. Now we can take
reward (+1 for winning, -1 for losing) and enter it as gradient for all action tken during
that episode.

Figure 1.13: Training with Policy gradient [6]

1.2.6 Proximal Policy Optimization Algorithms

Proximal Policy Optimization or PPO in short is one of many approaches to the Policy
gradient as TRPO or ACER. PPO was successful improvement over TRPO developed
by openAI. It improves training stability by avoiding too large policy updates, as too-
big step can result in "falling of cliff" - new policy is significantly worse then old one.
This can significantly slow down training.[13]
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In simple policy gradient, we use this policy objective function:

LPG(θ) = Et[logπθ(at|st) ∗ At] (1.12)

However, with small step size, training was slow and with large, variability in
training was too big.

PPO uses modified function:

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)] (1.13)

Where rt(θ) denotes probability ratio between old and new policy:

rt(θ) =
πθ(at|st)
πθold(at|st)

sort(θold) = 1 (1.14)

Unclipped part of function then can be expressed as (CPI refers to conservative
policy iterations):

LCPI(θ) = Êt[
πθ(at|st)
πθold(at|st)

] = Êt[rt(θ)Ât] (1.15)

Although, this could lead to successful learning it will have excessively large policy
update. This is solved by second part of function, clip(rt(θ), 1 − ϵ, 1 + ϵ)Ât. This
term clips probability ratio and removes incentive for moving rt outside of interval
[1− ϵ, 1 + ϵ]. From this two, we pick minimum - lower or pessimistic bound.

Figure 1.14: Plots showing surrogate function Lclip [13]

If we are using neural network architecture, that shares parameters between policy
and value function, we must also add loss function combining policy surrogate and a
value function error term. This is further augmented by entropy, resulting n following
function [13]:

LCLIP+V F+S
t (θ) = Êt[L

CPI(θ)t − c1L
V F
t (θ) + c2S[πθ](st)] (1.16)
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Chapter 5

Research

Goal of this thesis is to create model of feed-forward neural network for robot NICO.
This model will allow prediction of perceptual effects of his actions. Effectivity of this
model will be then evaluated. Training of model itself will be done through RL model,
encouraging exploration of target object from multiple sides.
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