UNIVERZITA KOMENSKEHO V BRATISLAVE
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

ACTIVE ROBOTIC PERCEPTION BY MEANS OF
OBJECT MANIPULATION

Diplomova praca

2023 Be. Patrik Modrovsky

UNIVERZITA KOMENSKEHO V BRATISLAVE
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

ACTIVE ROBOTIC PERCEPTION BY MEANS OF
OBJECT MANIPULATION

étudij ny program:
Studij ny odbor:

Skoliace pracovisko:

Veduci prace:

Bratislava, 2023

Diplomova préaca

Aplikované informatika
Aplikované informatika
Katedra aplikovanej informatiky

prof. Ing. Igor Farkas, Dr.

Be. Patrik Modrovsky

43738645

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZAVERECNEJ PRACE

Meno a priezvisko Studenta: Bc. Patrik Modrovsky

Studijny program: aplikovana informatika (Jednoodborové studium,
magistersky II. st., denna forma)

Studijny odbor: informatika

Typ zaverecnej prace: diplomova

Jazyk zaverecnej prace: anglicky

Sekundarny jazyk: slovensky

Nazov: Active robotic perception by means of object manipulation

Anotacia:

Ciel’:

Literatura:

Veduci:
Katedra:

Aktivne videnie robota prostrednictvom manipuldcie s objektom

Proces percepcie v robotickom kontexte je charakteristicky aktivnou
interakciou s objektmi pocas ucenia. Tieto procesy sicasne umoziuju “lacné”
generovanie rozmanitych trénovacich dat, ktoré¢ sa daji vyuzit' napriklad
na budovanie 3D reprezentacie objektu alebo predikovanie perceptualnych
dosledkov akcif robota.

1. Prestudujte literaturu v oblasti aktivnej percepcie pomocou manipulacie
s objektom.

2. Navrhnite model neurénovej siete uciacej sa posiliiovanim, ktord umozni
robotovi skiimat’ objekt drzany v ruke v roznych perspektivach.

3. Natrénujte dopredny model na predikciu perceptudlnych efektov
vykonavanych akcii.

4. Vyhodnot'te presnost’ oboch modelov.

Kostrikov 1., Erhan D., Levine S. (2016). End-to-end active perception. NIPS,
http://www.dumitru.ca/files/DL_symposium_active perception.pdf

Zaky Y., Paruthi G., Tripp B., Bergstra J. (2020). Active Perception and
Representation for Robotic Manipulation, https://arxiv.org/abs/2003.06734

prof. Ing. Igor Farkas, Dr.
FMFI.KALI - Katedra aplikovanej informatiky

Veduci katedry: doc. RNDr. Tatiana Jajcayova, PhD.
Détum zadania: 16.10.2022

Datum schvilenia: 06.11.2022 prof. RNDr. Roman Durikovi¢, PhD.

garant Studijného programu

Student

vedici prace

I hereby declare that I have written this thesis by myself, only
with help of referenced literature, under the careful supervision

of my thesis advisor.

Bratislava, 2023 Be. Patrik Modrovsky

Acknowledgement

do later

vii

Abstract

This thesis addresses the problem of robot-object interaction and the prediction of
perceptual consequences of robot actions. In the first part, it introduce reader into
basic of neural networks and reinforcement learning, along with brief explanation of
used PPO algorithm. In next chapters, design and implementation of used NICO robot
is explained. Model of nco was created by Mima Mattova and modified for training
purposes by Iveta Beckova. Training was done virtualy in Unity environment with
The Unity Machine Learning Agents Toolkit. For traning we The Proximal Policy

Optimization (PPO) algorithm based upon neural networks and Policy gradient.

Keywords: robot, ppo, reinforcement learning, Unity, neural networks

viil

Abstrakt

Tato praca sa venuje problematike interakcie robota s objektamy a predikovanie per-
ceptuélnych dosledkov akcii robota. Sti¢atou tejto prace je aj ivod do neurédlnych sieti
a ucenia posiliiovanim, spolu s struénim vysvetlenim fungovania pouzitého algoritmu
PPO. Dalej je tu popisany néavrh a implementacia ucenia robota NICA vo virtuadlnom
prostredi Unity. Model NICA bol vytvoreny Mimou Mattovou a dalej upravny pre
potreby simulécie Ivetou Beckovou. Na jeho trénovanie bol pouzity Unity Machine
Learning Agents Toolkit. Na trénovanie bol pouzity algoritmus PPO (Proximal Policy

Optimization), vyuzivajuci neuralne siete a Policy gradient.

Kracové slova: robot, ppo, ucenie posiliiovanim, Unity, neuralne siete

X

Contents

1 Introduction 2
1.1 Neural networks L 2
1.1.1 History 2

1.1.2 Different models of neural networks 3

1.1.3 Creating neural networks 5

1.2 Reinforcement learning L. 10
1.2.1 Imtroductionto RL 11

1.2.2 Elements of Reinforcement Learning 11

1.2.3 Tabular Solution Methods 12

1.2.4 Finite Markov Decision Processes 14

1.2.5 Policy gradiento o 14

1.2.6 Proximal Policy Optimization Algorithms 15

2 Proposed methods 17
3 Software design 18
4 Implementations 19
5 Research 20
6 Results 21
7 Conclsuion 22

Motivation

Chapter 1

Introduction

1.1 Neural networks

An Artificial Neural Network (ANN) is a processing system made from large number of
interconnected simple processing elements - neurons. Architecture ANNs was inspired
by structure of biological brain - both brain and ANN process information similarly
and learns from examples.

This creates different approach to problem solving compared to conventional com-
puting. Instead of predictable algorithmic approach, ANNs allows solving problems

without understanding of problem, but with lower accuracy. [7]

1.1.1 History

In 1943 neurophysiologist Warren McCulloch and mathematician, Walter Pitts devel-
oped first model of ANN. Neurons in their models had fixed threshold and were able

to simulate simple logic functions. [7]

+1

y = 1 if sum(x) — sum(not x) > thr

x|

-1
Figure 1.1: Model of an artificial neuron according to McCulloch and Pitts [4]

After initial period of enthusiasm and few other contributions to the field, period of
frustration followed. During that time there were only few researchers continued work
on solving problems with neural networks. During this time Klopf developed basis for
learning and Werbos developed back-propagation algorithm.

This period lasted up to the 1980s, when multiple new contributions renewed wider

2

interest.Hopfield described recurrent neural networks and presented paper Neural Net-
works and Physical Systems with Emergent Collective Computational Abilities.|7]
Neural networks become recently much more publicly know, caused by advances in
computing power allowing much bigger number of neurons. It allowed for much more
complex tasks as image generation from natural language prompts or chatbots capable

of deeper conversations.

1.1.2 Different models of neural networks

There are hundreds of different models and architectures of neural networks with dif-
ferent advantages and disadvantages for different purposes. Some of the most used

architectures are:

e Single perceptrons

Multi-layer perceptrons

Convolutional neural network

Recurrent neural network

Self-Organizing Maps

Radial Basis Function Network

Hopfield autoassociative memory

In practise, multiple architectures are often combined to achieve desired outcome.[4]

Simple perceptron

It was proposed in 1958 by American psychologist, F. Rosenblatt. It is more general
model, with free parameters, stochastic connectivity and threshold elements.|[4]
Activation of this perceptron consists of weighted sum of inputs, from which we
subtract threshold 6 (1.1). Result is then run through activation function, either
uni/bipolar for discrete perceptron or sigmoid for continuous perceptron. In prac-
tise, threshold is expressed as another weighted input x,,1, with static value of -1,

commonly called bias(1.2).

n+1

0 = f(z Wij;) (1.2)

3

) weights
inputs

X

activation
functon

(p E——

activation

net input
net;

transfer
function

0,
threshold

Figure 1.2: Model of simple perceptron and layer of simple perceptrons [4]

Learning rule for adjust weights in discrete perceptron:
wi(t+1) = w;(t) + a(d —y)z; (1.3)
And for continuous perceptrons:
wj(t+1) = w;(t) + a(d? —y®) fx; (1.4)

Where «o(Alpha) represents learning rate.
Simple perceptron can solve only lineary separable classes. This caused loss of
interest in neural networks in many researchers 1970s as many real problems are lineary

non-separable, thus simple perceptron cannot be used to solve them.

Multi-layer perceptron

Multi-layer perceptron(MLP) is probably one of most used architectures today. It
is generalisation of simple perceptrons and it contains additional hidden layers. MLP
originates from Rumelhart € McClelland: Parallel distributed processing but was earlier
described by Werbos in 1974. It is response to critique on perceptrons.|4]

In MLP Activations are similar to activations in simple perceptron. Their distinc-
tion comes from addition of hidden layers and additional weights. Due this change,

output layer is calculated from hidden layer, instead of inputs.

n+1

hy, = f(z Vk;T;) (1.5)

=1

n

Figure 1.3: Model of multi-layer neural network [4]

Activation functions on hidden layers doesn’t have similar constrains as output
function, but linear function should not be used, as it doesn’t add any depth to network.
Common activation functions are sigmoid or hyperbolic tangent function.

Learning of MLP uses back-propagation algorithm with different equations for hid-
den and output layers. Weight adjustments are calculated backwards from output
layers to the first hidden layer.[4]

Equation for calculating Hidden-output weights:

wir(t + 1) = wir(t) + ad;hy, where 6; = (d; — y;) f! (1.7)

And for Input-hidden weights:

vy (t+ 1) = vy (t) + adpx; where §y = (Z wird) fr (1.8)

1.1.3 Creating neural networks

To successfully create a neural network for accurate classification or prediction tasks,
three key components play major role: high-quality dataset, the selection of an appro-
priate neural network model, and the identification of optimal hyperparameters for the

training process itself.

Training process

During training, model iterates through dataset, predict outcome and calculates weight

changes based on error. One such iteration is called epoch.

aValues . aValues .

. ® . T IS o . . a
LA . L) .-":. .

) '- . " . ..\.-'.n . . ’:-.

},--' - "-u_l_
S e -
Time Time T
Underfitted Good Fit/Robust Overfitted

Figure 1.4: Underfit, Good fit and Overfit [2]

One training iteration usually consist of these steps:
e for each input z and desired output d (in random order)

1. compute output: y =?(Wz)

2. compute error: e =d — y

3. compute adjustment: AW =?(W, z,y,e)
4. adjust weights: AW (t + 1) = W(t) + aAW

This iteration continues until certain stopping criteria is meet, usually number of
passed epochs or accuracy of model. Properly setting stopping criteria is important in
order to prevent overfitting or underfitting of model for certain data. Underfitting is
when model didn’t properly capture desired problem. Overfitting is when model is
trained very well for training data, but reacts too much on random outliers or noise,
making it very inaccurate in generalisation (Fig. 1.5). [2]

In relation of correct fitting and training length, despite training error decreasing,
at certain point validation error stops decreasing and start increasing, as model is
becoming more overfit, reacting to noise in the dataset.

This is also called sequential training. Other used type of training is called batch
training. In batch, instead of iterating through input-output pairs is everything calcu-
lated in parallel. This is done through matrix multiplication and can significantly speed

up calculations, at cost of higher memory requirement and harder implementation.[4]

Datasets

Dataset is a collection of structured data used for various purposes such as analysis,
research, or machine learning.
Selection of proper dataset is crucial for training process - dataset should properly

represent data from problem. In practise, getting ideal datasets is complicated and

6

Underfitting

(higAh biais)
. Jr;rmar‘.-v-‘ai-d;llmn(e)
o) Overfitting
. (high variance)
8
i
.

d (polynome degree)
Optimal value for d

Figure 1.5: Error in relation to training length [2]

often impossible and contain too small sample of data. This can be partially corrected
by using data augmentation.

Data augmentations refers to changing available dataset to better suit task needs or
generating new data based on present one. As example, in article Improving handgun
detection through a combination of visual features and body pose-based data [12], authors
edited original dataset of high quality images by editing lighting and "zooming out" to
make humans on them appear smaller (Fig. 1.6). This changes simulated of CCTVs,
that often cover poorly lit big areas. They also used generation of new data by flattening
3D pose data to 2D from multiple points of view (Fig. 1.7).

Although, we could use dataset for training of model as is, and training error could
be sufficiently minimize . However, model may not be good enough at generalisation
as we would be unable to detect overfitting. This is why datasets are commonly split

into two or three parts:
e Training set
e Validation set

e Testing set

Training set is used for training itself - it is used every epoch and it directly
affects model weights. Training sets are usually biggest from all three. Validation
set is used for evaluation of model and fine tune its hyperparameters. It can be used
after every epoch, or every few epochs, based on performance. Testing set is used for
measurement of model performance after training was finished. It is usually used only
once (Fig. 1.8).

Figure 1.6: Unedited and edited images [12]

(a) (b) (d)

Figure 1.7: Different points of view [12]

Training data/validation/test

Train model Evaluate model
on Training Set on Validation Set

Tweak model according
to results on |Validation Set

l

Pick model that does Confirm results
best on |Validation Set on| Test Set

Figure 1.8: Difference between training, validation and testing sets [1]

There is no hard rule on how dataset should be split as it depends on model and
task, but in general, 80% — 10% — 10% for training, validation and testing is good split
to start from. Lowering amount of data for training increase training variance and with
less data for validation/testing, model evaluation and performance will have greater

variance.[1]

Simplest way to distribute data between splits is Random sampling. In random
sampling data are picked at random from full dataset. This work best for balanced
datasets, but in unbalanced ones it can cause bias towards one category. For example
in dataset with 800 images of dogs and 200 of cats, training set could get most of dog
images, making cat detection unreliable. For these tasks Stratified sampling is used.
In stratified sampling, data is picked from each category separately in same ratio as

split between training, validation and testing sets.|1]

Different commonly used way to split dataset is k-Fold Cross-Validation. It is
especially useful for smaller datasets where result of training can be strongly affected by
randomness. In k-Fold Cross-Validation, dataset is split into k£ non-overlapping subsets
of same size. During training, one subset is used for validation and the remaining k& — 1
are used for training. This process is repeated k times for every subset. Results
from k trainings are then averaged into one performance estimation - cross-validation
coefficient, that is used to pick best model (Fig. 1.9). [§]

‘ All Data ‘

‘ Training data ‘ ‘ Test data ‘

‘ Fold 1 H Fold 2 H Fold 3 \ Fold4‘ Fold 5 ‘\

spiit1 | Fold1 || Fold2 | Fold3 Fold4 | Fold5 |
spiit2 | Fold1 | Fold2 | Fold3 | Fold4 | Folds |
Finding Parameters
spit3 | Foid1 || Fod2 || Fod3 || Fola4 || Foids |
Split 4 ‘ Fold 1 H Fold 2 H Fold 3 H Fold 4 ‘ Fold 5 ‘
Spit5 | Fold1 || Fold2 || Fold3 | Fold4 | Folds |/

Final evaluation ﬂ Test data ‘

Figure 1.9: Example of 5-fold cross validation. [10]

Basic k-Fold Cross-Validation can suffer from same class imbalance as random split-
ting. It is solved by using stratified k-Fold Cross-Validation, which preserves class

ratios.

1.2 Reinforcement learning

In the realm of artificial intelligence, learning methods can be categorized into three
types: supervised learning, unsupervised learning, and reinforcement learning, each

having its own uses and advantages.

Supervised learning learns from a labelled dataset, where each input has a cor-
responding desired output. The goal is to minimize the difference between values
predicted by the model and true labels from dataset and generalize for new, unseen
data . This method is commonly used for regression and classification tasks (function
approximation, pose detection). Prediction accuracy is heavily upon quality and size
of the dataset.

Unsupervised learning learns on unlabelled datasets. It discovers inherent pat-
terns or structures within the data without any explicit guidance or instruction.
Common tasks include clustering similar data points or reducing dataset dimension-
ality. Unsupervised learning is used for exploring large datasets, uncovering hidden

relationships, and helping in data visualization.

Reinforcement learning learns from interaction with environment through ac-
tions and rewards. Its goal is mapping environment states to actions order to maximize
long term reward. It is used in robotics, self-driving cars or playing games. Two main

characteristics of RL are trial and error and delayed reward.

supervised (with teacher) unsupervised (self-organized)

learning L

learning system

system

input

action

| " reward
€arning |
system <

observation

Figure 1.10: Different categories of Al learning methods [4]

10

1.2.1 Introduction to RL

It is mapping actions for every state in order to maximize rewards. Rewards are not
know to the learner and have to be discovered by trying them. In more complex cases,
actions affects all subsequent states and rewards.

Reinforcement learning simultaneously refers to problem, class of solution methods
and field that studies this problem.

In RL problem, a learning agent must be able to sense state of the environment,
take actions that can affect said state and have goal or goals relating to the state of
environment.

Reinforcement learning is different from supervised learning. Supervised learning
learns from already mapped set of data, where every label has a correct action and
model tries to generalise for previously unseen data, for example correctly categorize
animal in picture or calculate y from input x. Despite its usefulness, it is inadequate for
learning from interactions, as it is often impractical to obtain representative examples
of desired action for all situations in which the agent has to act. Agent must be able
to learn from its own experience in order to find best action for every state.|14|

A good way to understand RL is through examples from real life:
e Newborn gazelle calf learning how to run in under half hour

e Baby learning how to stack cubes into high tower

e Kid learning how to ride a bicycle

e Chess player learning how to play chess

In all this actions, decision-making agent learns through interaction with environ-
ment, despite uncertainty about it. Falling on the ground or cube tower collapsing
provides negative reward and reaching partial goals give positive reward. Actions may
affect the future state of the environment (e.g., the next chess position, future position
of cube), thereby affecting actions and opportunities available to the agent. Correct
choice of action requires taking into account both immediate future and indirect, de-

layed consequence thus requiring foresight or planning.|14|

1.2.2 Elements of Reinforcement Learning

There are four basic subelements of reinforcement learning beyond agent and environ-

ment:
e Policy - defines behaviour
e Reward signal - defines goal and rewards

11

e Value function - defines what is good in long term
e Model of environment - optional element that mimics environment

Policy defines agent behaviour at given time - it is mapping of actions from per-
ceived states of environment. It can be as simple as lookup table or it may involve com-
plex calculations. Instead of one action, policies often return probability for each action.
Policy corresponds to stimulus—response rules or association from psychology.[14]

Reward signal defines goal of a reinforcement learning problem. After each action,
the environment sends to agent evaluation of current state - reward. Reward defines
good and bad events for the agent, as agent tries to maximize total reward over long
run.The reward signal is primary basis for alteration of the policy. If action had low
reward, probability of it being taken is lowered and similarly, if action brought high
reward, its probability in policy is heightened. We can think of rewards as pleasure or
pain.|14]

Value function indicates what is good in long - it is total amount of expected
reward agent can accumulate from this state. Values indicates long term desirability of
states, based on possible future states and their rewards. States can have high reward,
but are followed by more states with lower ones. On the other hand different state
have lower one, but allows for better future states.

Example is building tower from blocks. Always placing block on top will lead to
high tower and big immediate reward, but will quickly lead to collapse. On the other
hand, creating stronger foundations brings little reward, but allows for much higher
tower and reward in the end.

Without rewards, we could not get values, and values only purpose is to maximize
reward. But it is values we use during evaluation of decisions - we seek actions that will
bring states with highest vale and not reward. Unfortunately, it is harder to determine
values, as they must be estimated from observations over entire agent lifetime.|14]

Model of environment mimics the behaviour of the environment. It allows infer-
ences to be made about how the environment will be affected by agent actions. For
example, given a state and action, the model might predict the next state and reward.
They are used for planning - consideration of future situations before they are experi-
enced. Methods using model are called method-based. Opposite of that are model-free

methods, based on trial and error and almost viewed as opposite of planning.|14]

1.2.3 Tabular Solution Methods

Tabular methods are used for tasks, where sate and action spaces can be represented
as arrays or tables, thus methods can often find optimal value function and optimal

policy. For this method, k -armed Bandit Problem is often used as example, it is

12

analogy to slot machine, often called "One armed bandit". In this problem, agent is
choices of actions - "levers", each with its own reward distribution (Fig. ??). Goal of

agent is to maximize total reward over multiple steps by focusing on best lever. [14]

3
2
4+(3)
; 4+(5)
. 7-(9)
Reward g.(1) @l
. - . - - = — — — - - - - - 7‘(77) I -
distribution o T 4. (10)
-1 q+(8)
q.(6)
2
3
T | T T

| | | | |
1 2 3 4 5 6 7 8 9 10

Action

Figure 1.11: Distribution of rewards of ten levers [14]

In k -armed bandit problem, each action has expected - mean reward given, after
said action is selected. It is called the value of action. Action selected at time ¢ is
denoted as A; and reward is called R;. Value of arbitrary action a (denoted as g.(a))

is expected reward:

g«(a) = E[R;]|A; = d] (1.9)

As we in practise lack true values of each action, we use estimates. Estimated value
of action a at time ¢ is denoted as Q;(a). Our goal is improve this estimate through
multiple actions, to be s close s possible to real values g.(a).[14]

If we have at least two possible actions, then there always bust be at least one
action with highest estimated value. These are greedy actions and selecting one of
them is called exploitation of current knowledge. Picking any other action is called
exploration instead.|[14]

Exploitation is best choice for short term reward, as it always picks "best" action
by current knowledge. Although it helps improve estimation of said best actions, it
ignores others that can have higher true value, but lower estimation value. For that
there is exploration, that improves estimation of all actions, but it brings smaller total

reward. Because it is not possible to take both action during one step, we must find

13

way to balance them, which is often dependant on multiple factors as precise values of

the estimates, uncertainties, and the number of remaining steps. [14]

1.2.4 Finite Markov Decision Processes

Finite Markov Decision Processes, or finite MDPs, are a classical formalization of
sequential decision making, where action influence not just immediate rewards, but
also future possible states and their rewards. This means, in MDPs we need to deal
with trade off between immediate reward and delayed reward. In tabular methods, we
estimate value ¢, (a) for each action. In MDPs we estimate value ¢, (s, a) of each action
a in state s.[14]

Agent and environment interacts at sequence of discrete time steps ¢t — 0, 1,2,
At each step, agent receives representation of environment’s state S; € S and selection
of actions A; € A. At next time step, it receives reward R;;; € R C R and new state

Siy1- This gives a rise to sequence:

SOaAOaRlaSl7A17R27S27A27R3753aA37"' (110)

In MDP all sets of states, actions, and rewards have a finite number of elements.
Random variable R; and S; have defined discrete probability distribution and are de-
pendent only on preceding state and action S;_; and A;_;. So, for particular values of
s’ € S and ' € R at time ¢, their probability given values of action and state at t — 1

18:

p(s',r|s,a) = PrS; =58, Ry = r|Si_1, Ay 1 (1.11)

for all ', s € S, € R,anda € A(s).
This is best viewed as restriction on the state, as state must include information
about all past agent-environment interaction that is relevant for future. If state fulfill

this requirement, we say it has Markov property.[14]

1.2.5 Policy gradient

Most of methods in reinforcement learning are not applicable to problems such as
robotics or motor control, as they have problems with uncertain state information.
Continuous states and actions in high dimensional spaces is also common source of
problems. Most traditional reinforcement learning methods have no convergence guar-
antees.

Policy gradient methods differ significantly. Although, uncertainty in the state

still might degrade the performance of the policy, continuous states and actions can

14

be easily dealt with in same way s discrete ones. Policy gradient methods also have
guaranteed convergence, at least to local optimum. [11]

They are based upon gradient descent, similar to supervised learning. In an example
pong task, agent has two possible action: UP and DOWN. After feeding state into
neural network, we gain log probabilities (-1.2, -0.36) for both actions. In supervised
learning we have label of correct action, in this example it is UP, so we enter gradient of

1.0 on log probability of UP and run backprob to calculate gradient vector (Fig 77).[6]

forward pass | b abilt Supervised Learning
> 10g probabilities (correct label is provided)
-1.2 | -0.36
. block of differentiable compute .
image gradients
(e.g. neural net)
1.0 0

backward pass

Figure 1.12: Training with Supervised Learning [6]

In reinforcement learning we lack correct labels, so we cant immediately calculate
correct gradient. After our network calculated probabilities, we sample action, for
our example action DOWN and execute it simulation. We could immediately fill in
gradient of 1.0 for DOWN and run backprob, but we don’t know yet, if this action is
good or not. For this reason we wait, usually until end of episode. Now we can take
reward (+1 for winning, -1 for losing) and enter it as gradient for all action tken during

that episode.

forward pass Reinforcement Learning
» log probabilities

1.2 |-0.368 | —— sample an action:

block of differentiable compute

dient
(e.g. neural net) gradien's

image

0 -1.0

- eventual reward -1.0
backward pass

Figure 1.13: Training with Policy gradient [6]

1.2.6 Proximal Policy Optimization Algorithms

Proximal Policy Optimization or PPO in short is one of many approaches to the Policy
gradient as TRPO or ACER. PPO was successful improvement over TRPO developed
by openAl. It improves training stability by avoiding too large policy updates, as too-
big step can result in "falling of cliff" - new policy is significantly worse then old one.

This can significantly slow down training.|[13]

15

In simple policy gradient, we use this policy objective function:
LPC(0) = E[logms(ay|s;) * Ay (1.12)

However, with small step size, training was slow and with large, variability in
training was too big.
PPO uses modified function:

LEMP(0) = By[min(ry(0) Ay, clip(r(0),1 — €, 1+ €) 4,)] (1.13)

Where 7,(6) denotes probability ratio between old and new policy:

4(0) = sor(Opq) =1 (1.14)

Unclipped part of function then can be expressed as (CPI refers to conservative
policy iterations):

LePi(g) = o, Tel%%) g 0)Al (1.15)
7T9old(at|st)

Although, this could lead to successful learning it will have excessively large policy
update. This is solved by second part of function, clip(r,(6),1 — ¢,1 + €)A,. This
term clips probability ratio and removes incentive for moving r; outside of interval
[1 —€,1 4 ¢]. From this two, we pick minimum - lower or pessimistic bound.

A<O
[CLIP A>0

|
|
|
|
\
|
0 1 1+4+¢ Lewr

Figure 1.14: Plots showing surrogate function L<% [13]

If we are using neural network architecture, that shares parameters between policy
and value function, we must also add loss function combining policy surrogate and a
value function error term. This is further augmented by entropy, resulting n following
function [13]:

LEHPRVISS () = B[LOP(6), — i L7 (6) + e2S[ma] ()] (1.16)

16

Chapter 2

Proposed methods

17

Chapter 3

Software design

18

Chapter 4

Implementations

19

Chapter 5
Research

Goal of this thesis is to create model of feed-forward neural network for robot NICO.
This model will allow prediction of perceptual effects of his actions. Effectivity of this
model will be then evaluated. Training of model itself will be done through RL model,

encouraging exploration of target object from multiple sides.

20

Chapter 6

Results

21

Chapter 7

Conclsuion

22

Bibliography

1]
2|

3]

4]

5]

(6]

17l

8]

9]

[10]

[11]

Pragati Baheti. Train test validation split: How to & best practices [2023]. 2023.

Anup Bhande. What is underfitting and overfitting in machine learning and how
to deal with it. 2018.

Arden Dertat. Applied deep learning - part 4: Convolutional neural networks.
2017.

Igor Farkas. Neural networks. page 192. Knizni¢né a edi¢né centrum FMFI UK,
2011.

Dominique A. Heger. An introduction to artificial neural networks (ann)-methods

, abstraction , and usage. 2015.
Andrej Karpathy. Deep reinforcement learning: Pong from pixels. 2016.

Bohdan Macukow. Neural networks — state of art, brief history, basic models and
architecture. In Khalid Saeed and Wtadystaw Homenda, editors, Computer Infor-
mation Systems and Industrial Management, pages 3—14, Cham, 2016. Springer

International Publishing.

Jose Garcia Moreno-Torres, José A. Saez, and Francisco Herrera. Study on the
impact of partition-induced dataset shift on k-fold cross-validation. IEEE Trans-
actions on Neural Networks and Learning Systems, 23(8):1304-1312, 2012.

Hai Nguyen and Hung La. Review of deep reinforcement learning for robot ma-
nipulation. In 2019 Third IEEE International Conference on Robotic Computing
(IRC), pages 590-595, 2019.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825-2830, 2011.

J. Peters. Policy gradient methods. Scholarpedia, 5(11):3698, 2010. revision
#137199.

23

[12] Jesus Ruiz-Santaquiteria, Alberto Velasco-Mata, Noelia Vallez, Oscar Deniz, and
Gloria Bueno. Improving handgun detection through a combination of visual
features and body pose-based data. Pattern Recognition, 136:109252, 2023.

[13] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

Proximal policy optimization algorithms, 2017.

[14] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduc-
tion. The MIT Press, second edition, 2018.

[15] Youssef Zaky, Gaurav Paruthi, Bryan Tripp, and James Bergstra. Active percep-
tion and representation for robotic manipulation. CoRR, abs/2003.06734, 2020.

24

	Introduction
	Neural networks
	History
	Different models of neural networks
	Creating neural networks

	Reinforcement learning
	Introduction to RL
	Elements of Reinforcement Learning
	Tabular Solution Methods
	Finite Markov Decision Processes
	Policy gradient
	Proximal Policy Optimization Algorithms

	Proposed methods
	Software design
	Implementations
	Research
	Results
	Conclsuion

