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Experimental Analysis of the Real-time Recurrent

Learning Algorithm

RONALD J. WILLIAMS & DAVID ZIPSER

The real-time recurrent learning algorithm is a gradient-following learning algorithm for
completely recurrent networks running in continually sampled time. Here we use a series
of simulation experiments to investigate the power and properties of this algorithm. In the
recurrent networks studied here, any unit can be connected to any other, and any unit
can receive external input. These networks run continually in the sense that they sample
their inputs on every update cycle, and any unit can have a training target on any cycle.
The storage required and computation time on each step are independent of time and are
completely determined by the size of the network, so no prior knowledge of the temporal
structure of the task being learned is required. The algorithm is nonlocal in the sense that
each unit must have knowledge of the complete recurrent weight matrix and error vector.
The algorithm is computationally intensive in sequential computers, requiring a storage
capacity of the order of the third power of the number of units and a computation time on
each cycle of the order of the fourth power of the number of units. The simulations
include examples in which networks are taught tasks not possible with tapped delay
lines—that s, tasks that require the preservation of state over potentially unbounded
periods of time. The most complex example of this kind is learning to emulate a Turing
machine that does a parenthesis balancing problem. Examples are also given of networks
that do feedforeward computations with unknown delays, requiring them to organize into
networks with the correct number of layers. Finally, examples are given in which
networks are trained to oscillate in various ways, including sinusoidal oscillation.

Introduction

Recurrent neural networks can implement dynamical systems of arbitrary complexity.
To make use of this ability in cases where the dynamical system is defined only in
terms of its input and output we need learning procedures capable of programming
recurrent networks. A general framework for the problem was laid out by Rumelhart ez
al. (1986), who unfolded the recurrent network into a multilayer feedforward network
that grows by one layer on each time step. Algorithms based on this concept, which
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might be called backpropagation through time, work well in cases where enough is
known about the time structure of the problem to limit the number of layers to some
reasonable, fixed value. Recently, Pearlmutter (1988) has extended backpropagation
through time to continuous time approximations. Backpropagation through time deals
well with dynamical problems with fixed, or at least previously known, temporal
periods. Generating periodic, dynamic behavior from static inputs is an example of the
kind of problem that can be learned by this technique.

Unfortunately, many interesting problems are not of this type. For example, strings
of arbitrary length generated by a probabilistic finite state grammar do not have a
fixed, previously known length so backpropagation through time must have some a
priori knowledge of their maximum length to set up a system with sufficient size to
learn to recognize them. Also, many problems in signal processing and speech
recognition involve learning about temporal sequences with a priori unknown temporal
properties. To get around these limitations Jordan and others (Jordan, 1986; Stornetta
et al., 1987; Elman, 1988) have used networks with a limited set of carefully chosen
recurrent connections. These networks are able to learn some of the interesting tasks
possible with continuously running networks having recurrent connections. These
networks do not try to do credit assignment back through time but rather use the
previous state of the network as part of the current input. This provides rich, but not
total, information about the past so long as appropriate teaching signals are applied to
the network. However, the ability of these networks to deal with long, confusing
temporal sequences is clearly limited (Servan-Schreiber et al., 1988). Mozer (1988)
has attempted to overcome some of these difficulties by adding a layer of units that
each have a single self-recurrent connection that is trained by a true gradient-following
learning rule. This network has shown considerable promise in a variety of sequence-
processing tasks.

One situation in which the use of backpropagation through time leads to a simple
algorithm is when the network’s actual and desired dynamics consist of settling to a
fixed equilibrium state on each teaching cycle. Almeida (1987), Pineda (1988) and
Rohwer & Forrest (1987) have all derived various versions of this algorithm, and
Almeida has made the useful observation that the corresponding backpropagation
computation, itself involving a settling operation, necessarily converges stably when-
ever the forward computation does. While this algorithm has the attractive computa-
tional features of the more familiar feedforward backpropagation algorithm, the
requirement that both the actual and desired network dynamics have only point
attractors and that any external input to the network be constant during the settling
poses a strong practical limitation on the use of this approach.

To overcome the limitations of the previous approaches, an algorithm is needed
that can train fully recurrent, continually running networks to implement dynamical
systems described only by the temporal stream of their inputs and outputs. In this
paper, we describe studies using a powerful learning procedure for networks of this
kind, called real-time recurrent learning, or RTRL (Robinson & Fallside, 1987,
Bachrach, 1988; Mozer, 1988; Williams & Zipser, 1989). The derivation of this
algorithm has been given elsewhere (Williams & Zipser, 1989) but is repeated here for
convenience. The main body of work described here consists of simulation experiments
with the RTRL algorithm that demonstrate its power in a variety of tasks. RTRL can
be used with networks in which any unit can be connected to any other, and any unit
can receive external input. These networks run continually in the sense that they
sample their inputs on every update cycle, and any unit can receive training signals on
any cycle. The procedure differs from backpropagation through time in that its ability
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do to continuous processing frees it from any requirement for a fixed, or even
bounded, epoch length. RTRL differs from the procedures that use past states for
current input in that it correctly does credit assignment to past events.

While the RTRL algorithm is very powerful, it has two significant drawbacks: It
requires a great deal of computation on each update cycle, and it is nonlocal. The
amount of storage and computation required are independent of time but increase with
the number of units in the network. In sequential computers, the algorithm requires,
for n units, a storage capacity of roughly »*, and a computation time on each cycle of
order #*. The algorithm is nonlocal in the sense that each unit must have knowledge of
the complete recurrent weight matrix and error vector. However, the algorithm is very
parallel and in a parallel computer its computation time can be reduced to order
n?log(n) by using a processor for each weight.

The computational requirements are not so great as to preclude the study of the
algorithm on problems of considerable interest using networks of moderate size, that
is, 20 to 30 units. Later we present a series of examples designed to demonstrate the
power of the RTRL algorithm. The examples include demonstrations that recurrent
networks can be taught tasks not possible with tapped delay lines. These are tasks that
require the network to preserve state, the simplest requiring only a flip-flop. The most
complex example of this kind of task is a network that learns to emulate a Turing
machine that does a parenthesis balancing problem. Examples are also given of
recurrent networks that learn to configure themselves into feedforward networks with
the correct number of layers required by the task. Finally, examples are given of
training networks to oscillate in various ways.

Derivation of the Learning Algorithm
An Exact Gradient-following Algorithm

First we derive the true error gradient-following procedure,' and then introduce the
assumptions needed for practical algorithms. The derivation is for fully connected
networks in which all units can receive input and can be taught to produce targeted
output on any cycle. This form of the algorithm is completely general since it
encompasses all simpler network architectures, including feedforward networks, as
special cases where some of the connection weights are fixed and not trainable.

Let the network have n units, with m external input lines. Let y(¢) denote the »-
tuple of outputs of the units in the network at time ¢, and let x(t) denote the m-tuple
of external input signals to the network at time ¢. It will be convenient in what follows
to also define z(z) to be the (m+n)-tuple obtained by concatenating y(¢) and x(z) in
some convenient fashion. To distinguish the components of z representing unit
outputs from those representing external input values where necessary, let U denote
the set of indices % such that 2;, the kth component of z, is the output of a unit in the
network, and let / denote the set of indices & for which 2, is an external input.
Furthermore, we assume that the indices on y and x are chosen to correspond to those
of z, to that

(x() kel
aO=\ ) ifkeU. 0

For example, in a computer implementation using zero-based array indexing, it is
convenient to index units and input lines by integers in the range [0,m+#), with
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indices in [0,n) corresponding to input lines and indices in [m,m +n) corresponding to
units in the network.

Let W denote the weight matrix for the network, with a unique weight between
every pair of units and also from each input line to each unit. By adopting the indexing
convention just described, we can incorporate all the weights into this single
n X (m~+n) matrix. The element w;; represents the weight on the connection of the ith
unit from either the jth unit, if je U, or the jth input line, if jel. Furthermore, note
that to accommodate a bias for each unit, we simply include among the m input lines
one input whose value is always 1; the corresponding column of the weight matric
contains as its ith element the bias for unit ¢

As an example, consider the network depicted in Figure 1. There n=2 and m =5,
and the 14 weights indicated form a 2 X7 matrix, with each row representing the
weights for a single unit.

For this analysis, we assume that the network consists entirely of semilinear units,
although the technique used to derive the learning algorithm is clearly applicable to
any form of differentiable unit computation whatsoever. For semilinear units it is con-
venient to let

(1) = 2 Wyt Zzuk,x,: > w2 1) (2)
ey lel letul

denote the net input to the ktj unit at time ¢, for ke U. (We have written this here in
two equivalent forms; the longer one clarifies how the unit outputs and the external
inputs are both used in the computation, while the more compact expression illustrates
why we introduced z and the corresponding indexing convention above. Hereafter, we
only use the latter form.)

Another assumption we make here is the use of discrete time. It is straightforward
to extend this approach to continuous time models of computation, but we omit the
details. For a semilinear unit, its output at the next discrete time step is expressed in
terms of the net input by

Yt D =Als (D], (3)

where f, is the unit’s squashing function. For the moment, we make no particular
assumption about the nature of this squashing function (other than its
differentiability).

Thus the system of equations (2) and (3), where k ranges over U, constitutes the
entire (discrete-time) dynamics of the network, where the 2, values are defined by
equation (1). Note that the external input at time ¢ does not influence the output of
any unit until time ¢+ 1.

Now that we have specified the dynamics of the network, we need to consider how
we might adapt the weights in order to improve its peformance over time. The
fundamental approach to deriving such an adaptation scheme, just as with the more
familiar backpropagation algorithm, is to specify some measure of network perform-
ance and to compute its gradient in weight space. In the case of a dynamical trajectory,
a general performance measure will be some function of the output y of the network
over time. In particular, for the simulations reported here, we wanted the trajectory of
some subset of the components of y to match specified values at specified times, To
formulate this property, let T(z) denote the set of indices k€ U for which there exists a
specified target value d,(¢) that the output of the kth unit should match. Then define a
time-varying n-tuple e by
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(d() -y ifkeT()
(= [ 0 ‘ otherwise.

4

Note that this formulation allows for the possibility that target values are specified for
different units at different times (as does the usual backpropagation-through-time
formulation). The set of units considered to be ‘visible’ can thus be time-varying. Now
let

F©=} 2 [a(OF )

denote the network error at time 7. Assume that the network is run starting at time ¢,
up to some final time 7;. We would like to minimize the total error

Foltoi)= 2 (D) ©

over this trajectory, so we want to compute the gradient of this total error measure in
weight space.

Note that

ettt + 1) = Forallos1) + 3+ 1) | ©)
so that its gradient satisfies

VoFoutost + 1) =V, Foulto,t) + V. J(t+ 1). (8)

Thus as the trajectory unfolds over time, we can simply accumulate the values of the
vector V, J at each time step until the final time step. Since the weight change rule we
seek adjusts W along a fixed positive multiple of —V_ .. (%, ), the same observation
applies to the weight changes themselves.

In other words, for each weight w; in the network we accumulate the value of

40}

i

Awy()=—a )
at each time step ¢ along the trajectory, where « is some fixed positive learning rate.
After the network has run through this trajectory, we alter each weight w; by

2 Awy(o). (10)

=ty+1
Thus we want an algorithm that computes

~JO_ 5 20 an
(e ow;;

at each time step t. Since the value of ¢,(¢) is known at time ¢ for each k< U, all that
remains is to find a way to compute the remaining factor, dy,(t)/dw;;, at time step ¢.

Before describing how this factor is computed, it may be helpful to gain an
intuitive understanding of its meaning. Essentially, dy,(r)/dw; measures the sensitivity
of the value of the output of the kth unit at time ¢ to a small increase in the value of
wy, taking into account the effect of such a change in the weight over the entire
trajectory from ¢, to ¢ It is assumed, however, that the initial state of the network




92 Ronald §. Williams & David Zipser

¥(o), the input over (), and the remaining weights are not altered when determining
this sensitivity.

Another observation concerning the quantity dy,(z)/dw;; is that it does not depend
at all on the teacher signal or the discrepancy between the desired and actual
performance of the network. This is the main reason why one could expect to compute
it directly from the network’s actual operation, without any knowledge of the errors
that the network may eventually commit sometime in the future.

To compute this factor, we simply differentiate equations (2) and (3), yielding

éwitﬁ‘ﬁ[sk(t)][ Z Wiy 9z()
w, o0,

ij retui wq

+dazi(0) (12)

where J; denotes the Kronecker delta

(1 ifi=k
o= [0 otherwise. (13)

Now, since we assume that the input signals do not depend on the network weights, it
follows that

0 iflerl
B (DD ey, (14)
ow;; dwy;
so equation (12) becomes
ay(t+1 ~ oyde
DLTD s, 01| S 0028+ 600 |. (15)
awij lelU 6w(i

Also, since we assume that the initial state of the network has no functional
dependence on the weights, we have

Wi(to) _ 0.

dw

(16)
i
These equations hold for all kU, ie U, and je UUL

Thus if we create a dynamical system with variables {p{j} for all ke U, ieU and
jeUUI, and dynamics given by

PG D=filsu0] | 2 0D+ Saz ) |, an
with initial conditions
Pit0) =0, (18)
we see that
v, (r)
()= 2 19
PiO=" (19)

)
for every time step ¢ and all appropriate ¢, j and k.

The precise algorithm then consists of computing, at each time step ¢ from £, to ¢,
the quantities p¥(), using equations (17) and (18), and then using the discrepancies
ex(t) between the desired and actual outputs to compute the weight changes

Aw.;(r)=a§uek(z)pz-(r>- (20)
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The overall correction to be applied to each weight w; in the net is then given by

Awy= 2 Awy(). (21)
=g+l

In the case when each unit in the network uses the logistic squashing function, as in
the experiments reported here, the appropriate algorithm uses the fact that

Fs@O1=y(e+ D1 —y, (e +1)] (22)

in equation (17).

Real-time Recurrent Learning

The above algorithm was derived on the assumption that the weights remained fixed
throughout the trajectory from ¢, to ;. In order to allow on-line training, however, it is
useful to deviate from this assumption and actually make the weight changes while the
network is running. The actual algorithm we used in the experiments reported here did
not make the weight change prescribed by equation (21) at the end of the trajectory,
but instead immediately added Aw,(t), as computed by equation (20), to each weight
w; at time step . Thus the resulting algorithm does not truly lead to weight changes
along the negative gradient of §. (%), since the weights themselves are actually
altered over the course of the trajectory. We call this algorithm for training the
dynamical behaviors of arbitrary recurrent networks the real-time recurrent learning
(RTRL) algorithm. Making the weight changes at each time step in RTRL rather than
at the end of the trajectory is similar to the philosophy of training a feedforward net in
an incremental fashion on a fixed sequence of patterns rather than using a batch
approach which updates weights along the true gradient of total error. While the fixed-
pattern-sequence incremental algorithm is not guaranteed to follow this gradient, it is
known to work well in practice, presumably because the use of a small enough learning
rate leads to a net weight update whose direction is a close enough approximation to
the true gradient. A similar observation applies to RTRL.

One potential problem with this algorithm is that the observed trajectory may itself
depend on the variation in the weights caused by the learning algorithm, which can be
viewed as providing another source of feedback in the system. To avoid this, one wants
the time scale of the weight changes to be much slower than the time scale of the
network operation, meaning that the learning rate must be sufficiently small. On the
other hand, this on-line version has the advantage that it is not necessary to define
epoch boundaries during the training of the network. As the weights gradually change,
the continuing trajectory is automatically a function of the new, approximately
constant weights. The length of what one might consider an epoch in this version of
the algorithm is determined by the time scale of the weight changes, and these epochs
all overlap and blend together. A further property of this modified algorithm is that
one need not explicitly consider the ending time ¢, for the trajectory being trained.
This algorithm can be run continually over an indefinite time period.

It is useful to view the triply indexed set of quantities p} as a matrix, each of whose
rows corresponds to a weight in the network and each of whose columns corresponds
to a unit in the network. Looking at the update equations it is not hard to see that, in
general, we must keep track of the values pk even for those k corresponding to units
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that never receive a teacher signal. Thus we must always have » columns in this
matrix. However, if the weight w;; is not to be trained (as would happen, for example,
if we constrain the network topology so that there is no connection from unit j to unit
i), then it is not necessary to compute the value pf for any ke U. This means that this
matrix need only have a row for each adaptable weight in the network, while having a
column for each unit. Thus the minimal number of p values needed to store and
update for a general network having » units and r adjustable weights is nr. In the case
where every weight is adaptable, there are n+mn? such pf values.

Teacher-forced Real-time Recurrent Learning

There is an interesting variant of the algorithm given above that seems to be helpful in
some training tasks such as stable oscillation. The idea is to replace the actual output
,(t) of a unit by the teacher signal d,(¢) in subsequent computation of the behavior of
the network, whenever such a value exists. We call this technique forcing the network
with the teacher signal, or teacher-forcing for short. To describe this algorithm more
precisely, let the free-running state of the network at time ¢ be y(¢), and define the
teacher-forced state of the network at time ¢ to be y(r)+e(z). The idea is to base the
future activity of the network on the teacher-forced state of the network rather than
the free-running state. The dynamics of the network are thus altered during the
training phase, and the corresponding learning algorithm will necessarily be somewhat
different.

The modified dynamics of the network during training can be described formally as
follows: Recall that T(¢) is the set of indices k€U for which di(r) exists. Then, in
equation (2), let

x(1) if kel
2O ={d(t) ifkeT() (23)
y(0) if ke U—T().

The dynamics of the network during training are then given by equations (2) and (3),
this time using this new definition of z(¢) rather than the one in equation (1). To
derive a learning algorithm for this situation, we once again differentiate both sides of
equation (3) with respect to wy, yielding equation (12), as before. This time, however,
note that

0 if kel
0 if ke T(2)
dlt) _ | DL ey T(®). @
aw,-j awij
Thus we find that
(e +1 ) Y’ Wit
Ma‘k[sk(rﬂ[ S w2 ‘5"""”'(1)] .
awij feU—T(1) d i

for this situation. This means that for the values p&(1) to be equal to dy,(t)/dw; we
must alter their dynamics to use

pf;—(z+1>*f;[sk(r)1[1} N OR O 26)

—T@)

rather than equation (17), with the same initial conditions (equation 18), as before.
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Note that equation (26) is the same as equation (17) if we treat the values of pj(z) as
zero for all /€ T(z) when computing pf(z+1). Thus in this variant of the algorithm, we
perform essentially the same computations as before, except that we set the appropri-
ate p% values to zero after they have been used to compute the Aw; values but before
computing any of the p&(z+1) values.

The steps of this algorithm are then: (a) compute the free-running state of the
network at time ¢ based on the teacher-forced state of and input to the network at time
t—1; (b) compute the p%(z) values just as with the earlier version of the algorithm; (c)
compute the weight updates for time ¢ just as with the earlier version of the algorithm,;
(d) set to zero all values p¥(z) for which the teacher value di(z) exists; (e) set the
teacher-forced state of the network at time ¢, in preparation for the next time step.

This teacher-forced version of the algorithm is thus essentially the same as the
earlier one, with two simple alterations: using the teacher-forced state to compute
future activity in the network and setting the appropriate p% values to zero after they
have been used to compute the Awj; values.

The teacher-forced version of the algorithm appears to be required for adjusting
the weights in a network in such a way that the dynamical behavior of the network is
altered in a qualitative manner, such as creating new attractors or changing the form of
existing ones in discontinuous ways. As will be described below, it has been found to
be crucial for training networks to oscillate. However, there are also situations for
which it is clearly of no use or otherwise inappropriate. One obvious case where it is of
no use is when the units to be trained do not feed their output back to the network, as
in the networks used by Elman (1988). Furthermore, note that the error measures
being minimized by RLTR and teacher-forced RTRL are different in general,
although any setting of the weights which gives zero for one measure also gives zero
error for the other. This means that unless one obtains zero error when using the
teacher-forced version, the solution found need not give minimum squared error
between the desired and actual trajectories of the free-running network. In fact, it is
easy to devise examples where the network is incapable of matching the desired
trajectory and the result obtained using teacher forcing is far different from a solution
giving minimum squared error for the free-running network.

It should be pointed out that this technique of forcing the network with the teacher
signal, although not described using this terminology, appears implicitly or explicitly in
the work of others. For example, Jordan’s (1986) algorithm for training networks to
producing sequential patters uses it, and Pineda’s (1988) method for creating content-
addressable memories is a special case in which the teacher signal is a constant. This
idea also appears in the adaptive signal processing literature as an ‘equation error’
technique for synthesizing linear filters having an infinite impulse response (Widrow &
Stearns, 1985, pp. 250-253).

Simulation Experiments

One of our main goals in the simulation experiments described here was to determine
the ability of the algorithm to solve problems with a minimum of a priori information.
In this spirit we used the same uniform network architecture for each case. The
starting network consisted of a set of z units fully interconnected with initially random
weights. All units in the network received all the inputs. The only way units were
distinguished was that during training only the subset of units whose outputs were to
be trained contributed to the values of the error vector e. The unforced version of the
algorithm was used for all cases except those that involved the learning of oscillations.
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Exclusive OR With Delay

Exclusive OR (XOR) is a nonlinearly separable Boolean function requiring at least
two processing cycles to compute. It has been extensively studied with feedforward
backpropagation networks. Here we wanted to demonstrate that a recurrent network
could learn to do XOR continuously with two simultaniously changing inputs by
organizing itself into a feedforward network with the appropriate number of layers. In
a network receiving input on each update cycle, the teacher must be delayed by at least
two cycles relative to the input that is bing XORed. If the teacher is delayed more than
two cycles, the network must develop some internal mechanism, such as additional
layers, to take care of this added delay. This formulation of XOR learning differs in a
significant way from that used in the case of feedforward networks. Here the network
is being trained to carry out the XOR operation continuously. This means that several
different partially complete computations are present in the network at the same time
in a pipelined fashion.

To see if our algorithm could deal with this problem we started with fully
connected networks, as described earlier, using two inputs and a bias. Each input line
received a continuous stream of randomly chosen Os and 1s. In this, and all other
Boolean examples, the outputs were trained to be 0 or 1. A network was considered to
have successfully learned a taks if its outputs were correct for a sufficiently long
testing period (typically 1000 cycles for XOR problems). The criterion of correctness
was that outputs that should be 1 were greater than or equal 0.5 and outputs that
should be 0 were less than 0.5.

A single unit of the network was taught on each cycle to output the XOR of the
input occurring two or more cycles previously. A learning rate of 4.0, which seemed
near optimal, was used. When the delay between input and teacher was two cycles, a
network with three or more units learned the task. For a delay of three cycles, four or
more units were required, and for a delay of four cycles, five or more units were
needed. The learning behavior of a three-unit network with two cycles of delay
between input and teacher is quite analogous to the standard feedforward case. The
weights that would provide a feedforward solution become large in magnitude while
the recurrent weights become small. In the example shown in Table I, the familiar
solution using two single line recognizers in the first layer and an OR in the second
layer was found. An interesting distribution of training trial lengths was observed.
They could be easily divided into three length classes: 68% of less than 1000 cycles,
average 688 cycles; 28% between 9000 and 76,000 cycles, average 30,792; and 6%
greater than 200,000 cycles, The middle class is of interest because it seems to
represent training trials that found what would be a local minimum for a feedforward
network, but had an escape path because of the existence of the otherwise redundant
recurrent connections. The choice of 200,000 cycles is arbitrary and some of these
networks may eventually learn.

When an additional unit is added to the network and the delay between input and
teacher is increased to three cycles, the algorithm finds a solution that incorporates an
additional layer to provide the required delay. A typical example, which took 1510
cycles to learn, is shown in Table II. In this case the first layer, units 0 and 1, is a
NOR and an AND. The second layer, unit 2, is also a NOR, completing the XOR. The
last layer, unit 3, is just a follower of unit 2, which provides the required delay. The
five-unit network with a delay of four requires still more cycles to learn. The example
shown in Table III required 5618 learning trials. The weights in Table III are actually
those found when an additional 100,000 training trials were run after reaching the



Real-time Recurrent Learning Algorithm 97

Table I. Weight matrix for XOR with two-cycle delay

U B I R T
0 —2.7 5.1 —54 0.1 0.2 —03 -
1 —-2.8 —6.1 5.8 0.3 0.0 —06 —
2 —3.6 —0.1 —=0.1 7.8 7.8 —-03 +

NOTE: The columns labeled U, B, I, R and T give, respectively: unit
number, bias weight, input weights, recurrent weights and teaching
status where ‘+’ indicates the existence of target values and ‘—’
indicates that the unit never had targets. The same format is used for
Tables II, III, IV, V and VIIL

correctness criteria using a threshold of 0.5. The extra training was carried out so that
asymptotic values of the weights were achieved. Note that while the feedforward
weights are large, some recurrent weights still have nontrivial magnitudes. This is
generally the case, but its significance is not yet clear.

Table II. Weight matrix for XOR with three-cycle delay

u B 1 R T
0 2.5 —6.3 —6.3 —0.7 —0.9 —0.5 =01 -
1 —7.0 5.0 4.9 —1.6 —1.8 0.3 0.1 -
2 33 —0.5 —0.3 —7.6 —7.3 2.2 -09 -
3 —4.0 —0.3 —0.3 1.0 1.4 9.3 —14 +

These results show that strictly layered feedforward problems form a subset of
those that can be learned by the RTRL algorithm. They also demonstrate that the
netwok can learn the inherent temporal relations of the problem without any explicit
temporal information.

Table III. Weight matrix for XOR with four-cycle delay

U B I R T
0 1.8 0.2 0.1 19 —6.3 —0.2 —6.3 03 -
1 =23 5.4 —53 0.2 —1.9 0.0 —1.6 —0.1 —
2 4.6 0.2 0.2 —9.2 —-1.0 —0.2 —1.1 —04 —
3 —-2.2 —5.4 5.4 0.2 —1.8 0.2 —2.0 -05 —
4 —4.6 —0.3 —0.3 —1.1 —0.5 143 —0.4 —08 +

Learning Internal State

Here we consider a very simple sequential recognition task which is essentially
identical to Bachrach’s (1988) ‘bus driver’ problem. The idea is for the network to
recognize that two particular input events have happened in prescribed order, regard-
less of the number of intervening events. This example is intended to demonstrate the
power of the learning algorithm and to clearly illustrate a type of task for which a
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simple recurrent net is clearly much better suited than any alternative approach based
on the use of a feedforward net with past inputs stored in tapped delay lines.

The network for this task consists of two units, one of which is arbitrarily selected
to serve as the output unit for the net. There are several input lines to the network,
which we consider to be labeled with letters of the alphabet. The @ and & input lines
sever a special purpose, with all others serving as distractors. For purposes of
illustration we describe explicitly a version with two distractors; we have successfully
simulated versions with up to eight distractors. For the two-distractor case, there are a
total of four input lines, labeled a, b, ¢ and d. On any given time step, a randomly
chosen input line is given a value of 1 and all others are given the value 0. Thus the
input patterns can be considered to correspond to a single letter of the alphabet,
encoded in a local manner. The desired output for the network can be summarized by
the rule: On the time step immediately following the first & after an a, emit a 1;
otherwise, emit a 0.

It should be clear that one could hand-design a solution to this problem in the
following manner. One of the units would serve as a flop-flop that is set by the
occurrence of a in the input stream and is reset by the occurrence of b. To be such a
flip-flop, this unit should have a highly positive feedback weight to itself and a
negative bias of half the magnitude, together with a strongly positive weight on the a
input line, a strongly negative weight on the & line, and zero weight on all other input
lines. The other unit would be the output unit, serving as a simple AND gate between
the output of the flip-flop and the b input line.

One actual solution obtained by the real-time recurrent learning algorithm is
displayed in Figure 1. The weights shown were obtained after 3000 time steps, using a
learning rate of 5.0. Their initial values were chosen by uniform random generation
from the interval [—1,1].

This solution can be described in the following manner. First, the nonoutput unit
does indeed serve as a flip-flop, but with its set and reset inverted from the more
intuitive approach described earlier. The large negative weight to this unit from the a
line causes it to take on its low value (i.e. be reset) whenever a occurs. The somewhat
large positive weight to this unit from the b line causes a b event to contribute to its
being set to its high value. In addition, there is a moderately large positive weight from
the output unit to this unit. This causes the flip-flop also to tend to be set to its high
value whenever the output of the network was large on the previous time step. It is not
immediately clear why this should be the case; it appears to be a result of the fact that
the most frequent correct value for the flip-flop is to be in its high state right after the
output of the network is 1. The only time this is incorrect is when the very next input
is a. Interestingly, we see that the strongly negative weight of the flip-flop from the a
line will override this tendency in this case, allowing the flip-flop to behave correctly
in all cases.

It is clear that the output unit cannot come on unless the b line is on and the flip-
flop is at its low state. It is also clear that the conjunction of these conditions is
sufficient to make it come on except for the presence of the strongly negative self-
weight on this unit. This self-weight seems to help it avoid coming on two time steps
in a row, which is, indeed, an implicit constraint on the correct operation of the
network. Also, note that the moderately strong negative weights to this unit from the a,
¢ and d lines help to insure that only the presence of a b will trigger the output unit.

Thus the solution found by the algorithm has certain essential elements of the
solution that one might handcraft for this problem. At the same time, there are curious
additional features that the algorithm seems to have devised, most notably the
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5.98

a——» -6.47

b—» 293

-3.12
c——» 007
d—» 0.23
—» 3.48
Lo -7.11
a— | -2.54
b—» 528

-1.69 L

c— | -2.43 Output
d—» -2.52
-4.55

Figure 1. Network for recognizing a followed by b. Inputs ¢ and d are distractors. The
output unit was the only one with a target. The bias is shown inside the units.

moderate-to-strong weights from the output unit to itself and to the flip-flop unit. It
would be interesting to investigate why this more complex solution was developed.
One possibility is that during the early stages of learning, these additional strong
weights are important because they help compensate for weaknesses in the immature
network’s operation. For example, the negative self-weight on the output unit may
play a crucial role before the flip-flop comes to act in crisp bistable fashion.

It is instructive to compare the recurrent net approach taken here with a possible
alternative that is sometimes proposed for dealing with time-varying input. In particu-
lar, suppose that one were to approach this task through the use of a feedforward
architecture with tapped delay lines on the input. First of all, it is clear that because of
the finite length of the delay lines there will always be patterns that such a network
will fail to recognize properly, namely, those in which the important information spans
a length of time greater than the delay lines can retain. This happens as the delay
between an a and the first & following it increases. Thus an approach using a
feedforward net along with tapped delay lines on the input may be computationally
inadequate for certain types of tasks.

Even more interesting is to ignore for the moment the computational inadequacy of
such an approach to this task? and consider the learning effort involved. When there
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are m input lines, each of which is run through a length % delay line, the effective input
patterns to the network are of dimension mk. Because there must be at least this many
adjustable weights in the network, it should be clear that increasing % means that more
training data must be supplied to avoid spurious generalization from a limited training
set. Thus while increasing % lessens the computational inadequacy, it also lessens the
generalization ability. This should also be clear from the particular nature of the delay
line representation; even if the net learns that it should produce a 1 when b follows a
with delays of 1, 2 and 4, this experience does not carry over in any useful way to the
case when the delay is 3.

In the particular recurrent network described here, there are a total of 14
adjustable weights. The simplest feedforward network using tapped delay lines of
length % on the input that could perform a limited version of this task would consist of
a single unit receiving input from these tapped delay lines; no hidden units are
required. There would thus be 4k+1 adjustable weights in this network. Clearly, when
k>4, the number of weights in the recurrent version is less, and if we were to set &
sufficiently high (say k>>10) so that the performance of the feedforward version may
be any reasonable approximation to that attainable by the recurrent network, the
number of weights would be so much larger that many more training examples would
be required for the feedforward version than for the recurrent version.

Delayed Nonmatch to Sample

In this task, the network must remember a cued input pattern and then compare it to
subsequent input patterns, outputting a 0 if they match and a 1 if they do not. This
taks is similar to the previous one in that an event must be remembered for an
arbitrary time. However, here the memory must be able to store a pattern associated
with the event, not just the fact that it occurred. We investigated a simple version of
this task using a network with two input lines. One line represents the pattern and is
set to 0 or 1 at random on each cycle. The other line is the cue that being set to 1
indicates that the corresponding bit on the pattern line must be remembered and used
for matching until the next occurrence of the cue. The cue frequency was determined
randomly, typically with a cue probability on each cycle of 0.8, so that intervals
between cues could be arbitrarily long while the average intercue interval was short
enough to facilitate training. A delay of one cycle was inserted after each cue to allow
time for strobing in the pattern bit. A minimum teaching delay of two cycles between
input and output is required for the matching computation, which is essentially an
XOR, so the first teaching cycle occurred three cycles after the cue. Teaching was then
continuous until the next cue; examine the traces in Table VI to clarify this task.
Analysis showed that the nonmatch-to-sample task can be carried out by four units,
which is probably the minimum. Networks of four units learn the task using the
-unforced algorithm, but it is a difficult problem. Success in less than 200,000 cycles
occurs only about 20% of the time, and the average number of cycles needed is about
90,000. With five or more units, the problem is much easier, never requiring more than
200,000 cycles and averaging about 20,000 cycles. No attempt was made to optimize
the learning rate or other parameters so this performance might be improved.
Perhaps the most interesting aspect of this task is the way the remembered pattern
was represented. Sometimes a local representation was used with a single bistable unit
recording the pattern or its complement, while the other units did the required logic.
On other runs, a distributed representation appeared in which no single unit was
devoted exclusively to either storage or logic. Examples of a solution from each of
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Table IV. Weight matrix for nonmatch network with local represen-
tations of stored bit

U B I R T
0 —3.6 1.7 5.9 9.6 —0.2 —9.5 —06 —
1 1.3 —5.8 4.0 —=7.5 0.8 7.6 02 -
2 —9.6 7.7 6.8 2.3 —0.3 —1.9 0.0 -
3 —6.9 —0.1 =27 34 12.9 18.1 —-04 +

these classes for networks with four units is shown in Tables IV and V. In the case of
the local solution in Table IV, unit O stores the complement of the cued input. The
network is still quite complex because of the requirements for strobing. Note in this
regard that unit 0 is set to a high level on the cycle in which the cue appears no matter
what the pattern bit, learning to use the cue as a strobe is probably what makes this a
difficult problem. In the distributed case, none of the units stably record the pattern
bit. This can be seen by examining the trace of unit activities in Table VI. When the
stored bit is a 0, unit 0 is 0 and unit 1 is the complement of both the current input and
the next output. Unit 2 is nearly complementary to unit 1, but intermediate values
must be taken into account. When the stored bit is a 1, units 1 and 2 are 0 and unit 0 is
the complement of the input and next output. This form of distributed memory is
interesting because the pattern to be remembered is not simply distributed over
multiple units but is used to configure the way the network responds.

Table V. Weight matrix for nonmatch network with distributed
representation of stored bit

u B 1 R T
0 2.7 —6.9 1.7 2.3 —5.3 —4.7 -1 -
1 —2.9 —15.6 5.7 —-1.0 6.0 3.8 03 -
2 —9.1 46 —13.8 0.9 7.3 9.3 —1.6 —
3 —2.8 —0.1 —4.8 7.6 =71 6.9 -1.0 +

Learning to be a Turing Machine

The previous two problems demonstrated that the RTRL algorithm could train
networks to be simple state-preserving machines. To see if networks could be trained
to be finite-state machines with significant power we tried to teach a network to
emulate a special-purpose Turing machine (TM). There are various approaches to
teaching a network to emulate a TM. We used a procedure in which the network ‘looks
over the shoulder’ of the finite-state machine (FSM) part of the TM. The network
sees the same input from the tape as the FSM and is trained to produce the FSM
output. The network does not get to see the internal states of the FSM so it must
invent its own. If the network learns to emulate correctly the FSM, it will be able to
perform correctly on tapes of any length. Because the logic required to compute next
states and outputs is, in general, nonlinearly separable, the network will require two
cycles for each external cycle of the TM. That is, the TM will have to dwell on each
tape location for two cycles of the network.
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Table VI. Time trace activity of nonmatch networks

Local Distributed

P C A T P C A T

1 1 0.9 0.0 0.9 0.0 0 1 0.0 0.9 0.0 0.0

1 0 0.1 0.0 0.1 0.9 0 0 0.0 0.9 0.1 0.0

0 0 0.0 0.9 0.0 0.0 0 1 0 0.0 0.0 0.9 0.0 0

1 0 0.1 0.0 0.1 0.9 1 0 0 0.1 0.6 0.5 0.9 1

0 0 0.0 0.8 0.0 0.0 0 1 0 0.0 0.0 0.9 0.0 0

0 1 0.9 0.9 0.0 0.7 1 0 0.0 0.0 0.9 0.9 1

0 0 0.9 0.0 0.0 0.9 0 1] 0.0 0.7 0.2 0.9 1

1 0 0.9 0.0 0.5 0.0 0 1 0 0.0 0.0 0.8 0.0 0

1 1 0.9 0.0 0.9 0.9 1 0 0.0 0.0 0.9 0.9 1

0 0 0.0 0.8 0.0 0.9 0 0 0.0 0.7 0.1 0.9 1

0 0 0.0 0.8 0.0 0.9 1 0 1] 0.0 0.9 0.0 0.0 1]

0 0 0.0 0.8 0.0 0.9 1 1 1 0.2 0.0 0.0 0.1

0 1 0.8 0.9 0.0 0.8 0 0 0.9 0.0 0.0 0.3

0 0 0.9 0.0 0.0 0.9 1 0 0.0 0.0 0.0 0.9 1

1 0 0.9 0.0 0.5 0.0 0 0 0 0.8 0.0 0.0 0.0 0

0 0 0.6 0.1 0.0 0.9 1 0 0 0.9 0.0 0.0 0.9 1

0 0 0.8 0.0 0.0 0.0 0 1 0 0.0 0.0 0.0 0.9 1
1 0 0.0 0.0 0.0 0.0 0
1 0 0.0 0.0 0.0 0.0 0
0 0 0.9 0.0 0.0 0.0 0

NOTE: Time increases downward. The columns labeled P, C, A and T represent the pattern, the cue, the
truncated activity value and the value of the target when present. The activities shown are from trained
networks that are no longer being taught.

We trained a network to emulate a TM that parses parentheses. Given a tape
marked with an arbitrary length string of left and right parentheses, with a blank cell at
each end of the string, the TM must decide whether or not the string consists entirely
of sets of balanced parentheses. In the particular version of the problem used here
(Brady, 1977), the alphabet of tape marks consisted of (, ), *, and blank. The outputs
of the FSM were of two kinds, a move that could be left, right or none, and an action
that could be to write a *, indicate balanced, indicate unbalanced or do nothing. The
FSM used has four internal states and operates according to the rules given in Table
VII. The reading head of the TM was started over the parenthesis at the left end of the
string in internal state 1. The TM then proceeded to move back and forth along the
tape while the network was taught to produce the same outputs as the TM. For
teaching purposes, the TM must function continuously, so rather than permanently
halting when a balanced-unbalanced decision is made, the TM goes into a halt state
for one step during which a fresh tape is prepared with the reading head again at the
left end of the parenthesis string.

Generating the tapes to be used for training presented a series of problems. We did
not create a fixed training set but rather generated a new tape each time one was called
for. These tapes were constructed at random using the rules described below. The
training set had to include tapes of arbitrary length to prevent the network from
finding an idiosyncratic solution that only worked for tapes less than some maximum
length. An exponential tape length distribution was used so that most of the tapes were
short to allow frequent final-decision events, while still providing some long tapes to
prevent solutions that only worked below a maximum length. For practical reasons
there had to be a maximum tape length during training, but this was made sufficiently
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Table VII. The state transition table for the FSM part of the
TM used to train the network

State Input Next state Function  Direction
0 00 1 00 00
0 01 1 00 00
0 10 (impossible)

0 11 (impossible)

1 00 3 00 10
1 01 1 00 01
1 10 2 11 10
1 11 1 00 01
2 00 0 10 00
2 01 1 11 01
2 10 2 00 10
2 11 2 00 10
3 00 0 01 00
3 01 0 10 00
3 10 3 00 10
3 11 3 00 10

Input: 00=blank; 01="C"; 10=")"; 11=""",
Function: 00=nothing; 01 =balanced; 10=unbalanced; 11 =write *.
Direction: 00=no movement; 01 =right; 10=left.

long to prevent unwanted solutions. A maximum length of 30 worked fine. Note that
the number of cycles needed to parse a tape is generally many times the length of the
tape. Once an even numbered length had been chosen randomly, a balanced string of
this length was generated by picking left and right parentheses at random, subject to
the condition that the number of left parentheses was always greater than or equal to
the number of right parentheses. One third of the time this string was used; the rest of
the time it was randomly altered to produce an unbalanced tape. This was done by
reversing one or more randomly selected parentheses. The probability of reversing #
(n>0) parentheses was 0.5 to the nth power.

Once the network being trained made no errors, using a threshold of 0.5, for some
long continuous period, typically 10,000 TM cycles, training was stopped and the
network tested on a randomly generated set of tapes, up to 10 times longer than the
maximum length used in training. A uniform rather than an exponential distribution of
tape lengths was used for testing to expose the network to many longer strings than it
had ever seen in training. The networks were considered to have learned if no errors
occurred, using a 0.5 threshold, during at least 50,000 TM cycles.

Our preliminary analysis indicated that 15 units would suffice and that nonlinearly
separable logic was required. Determining the true minimum number of units for a
complex task like this, particularly when the units can take advantage of intermediate
values, is daunting. In training trials, networks of 15 units always learned the task in
less than 100,000 TM cycles; the average (of three cases) was about 16,500 TM cycles
till no more errors occurred. The minimum size network that was observed to learn
the task was 12 units. The number of TM cycles needed by 12-unit networks averaged
about the same as for the 15-unit network, but there were occasional failures to find a
solution. Networks with 15 units, given only one cycle of network update for each TM
cycle, never learned the problem, indicating that the logic involved is indeed likely to
be nonlinearly separable because this would require two layers of units and thus two
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cycles of processing. No attempt was made to optimize the learning rate or the
other parameters involved in learning so the figures given here could probably be
improved.

The connection weights for a 12-unit network that learned the parenthesis parsing
problem in 12,973 TM cycles is shown in Table VIIL. The pattern of weights is
extremely complex, with relatively few large weights and much recurrent interconnec-
tion. It is clear that the output values are used in the representation or computation of
state, because significant connections exist between the units representing output and
the other units of the network. In fact most of the large connection weights involve
either inputs to or outputs from the output units. The small magnitude weights cannot
be ignored, as can be seen in the case of unit 7, which has no large weights but is
involved in an important recognition task.

Because the network must go through two update cycles for each TM cycle, it
would be expected to have a complex state behavior. This appears to be the case, as
can be seen by examining the traces of activity shown in Table IX. Intermediate values
are used extensively, even by the output units, during the first of the two network
update cycles, on which no teaching occurs. Another interesting feature is that the
activity patterns just after a state has been entered are different from the patterns that
become established when a particular state exists for many cycles. This can be seen in
Table IXC. Note that to run this network as a TM, it must be started in an
appropriate state; that is, unlike a feedforward network, the connection matrix alone is
not enough to specify function. We tried starting the network using random initial
activations on all units. We were quite surprised to find the network quickly found
good values and started to work correctly. It rarely took more than two network cycles
for this to occur and the worst case observed was eight network cycles. This
observation suggests that valid activity configurations are strong attractors. A study
of the state structure of the network using cluster analysis techniques has been
begun. The initial results of this study indicate that single states in the original TM
are often represented by split states in the network, the largest splitting corresponding
to a distinction on the basis of the previous state. Still finer splitting of states is
detectable and can be associated with still earlier states. Thus the network has
gratuitously developed a memory of more of its past function than is strictly required
for the task.

Learning to Oscillate

An interesting class of behaviors to study with any algorithm designed to train
arbitrary network dynamics is that of oscillation. Here we describe three simple
network oscillation tasks that we have studied. We have used RTRL with and without
teacher forcing on these tasks and we have found that only the version with teacher
forcing is capable of solving these problems in general. In the following, we describe
both the tasks performed and our understanding of why teacher forcing seems to be
necessary for them.

The first oscillation task involves a single logistic unit whose desired behavior is to
produce alternating Os and 1s. Giving the unit a strongly negative self-weight and a
bias of half the magnitude clearly leads to such oscillatory behavior. Given a
sufficiently large learning rate, the teacher-forced version of real-time backpropagation
can solve this problem very quickly (in less than 10 iterations). This should not be
surprising since the use of teacher forcing essentially decomposes the problem into the
one-layer feedforward problem of complementing a single Boolean variable. What is
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Table IX. Time trace of the activity of a 12-unit network trained to emulate TM
doing the parentheses balancing problem

S I A T

(A) TAPE;00{01]01[10[10[00| =] | ([ ([)|)]]

1 01 00 07 07 00 01 02 08 00 00 00 00 09

oL 01 09 02 00 00 00 09 01 00 00 00 09 0 O O 1
1 01 00 09 02 00 00 00 09 00 00 00 00 09

0or 00 09 02 00 00 00 09 00 00 00 00 09 0O O O 1
1 10 00 01 00 00 00 00 02 01 00 09 09 00

10 00 00 02 0% 00 00 00 00 09 09 09 00 1 1 1 0
2 01 00 00 00O 00 00 09 00 00 00 00 09 00

01 00 00 09 05 09 09 00 00 09 09 00 09 1 I 0 1
1 11 09 09 03 00 00 00 00 00 09 02 02 00

11 00 01 08 06 00 00 00 00 00 00 00 09 0 0 0 1
1 10 01 01 00 00 00 00 00 05 00 09 09 00

10 00 00 02 09 00 00 00 00 09 09 09 00 1 1 1 0
2 1 00 00 01 07 00 00 00 00 03 00 09 00

11 00 00 04 09 00 00 00 00 00O 00 09 00 O O 1 O
2 11 00 00 03 09 00 00 00 00 00 00 09 00

11 00 00 03 09 00 00 00 00 00 00 09 00 O O 1 O
2 01 00 00 01 02 01 09 00 01 00 00 01 02

01 02 08 08 00 04 Ol 01 01 09 09 00 09 1 1 O 1
1 11 05 07 03 00 00 00 00 00 00 00 03 00

11 00 02 09 09 00 00 00 00 00 00 00 09 O O O 1
1 11 02 09 00 00 00 00 00 02 00 00 09 00

11 00 00 09 09 00 00 00 00 00 00 00 09 0 0 0 1
1 11 02 09 00 00 00 00 00 03 00 00 09 00

11 00 00 09 09 01 00 00 00 00 00 00 09 0 0 O 1
1 00 01 01 00 00 00 00 08 07 00 00 09 00

00 00 00 00 00 09 05 01 01 00 0O 09 00 O O 1 O
3 11 00 01 09 09 02 00 00 00 09 05 00 00

1 05 06 01 00 00 00 00 01 00 00 09 00 O O 1 0
3 11 00 00 09 09 00 00 00 00 00 00 00 09

11 062 09 00 00 00 00 OO0 03 00 00O 09 00O O O 1 O
3 11 00 00 09 09 01 00 00 00 00 00 00 09

1 02 09 00 00 00 00 00 03 00 00 09 00 O O 1 0
3 11 00 00 09 09 01 00 00 00 00 00 00 09

11 02 09 00 00 00 00 00 03 00 00 09 00 O O 1 O
3 00 00 00 01 01 09 04 03 01 00 00 00 09

00 04 02 00 00 09 00 05 01 00 09 00 00 O 1 O O
0 00 01 00 02 00 08 00 04 00 00 00 01 00

00 01 00 01 00 09 00 03 02 00 00 00 00 O O 0 O

(B) TAPE 00 01/01] 10[01][ =[ | (| (] )] (]|

1 01 03 08 08 00 02 04 02 00 00 00 00 06

01 01 09 05 00 03 00 08 01 00 00 00 09 0 0 0 1
1 01 01 09 02 00 00 00 09 00 00 00 00 09

0oL 00 09 02 00 00 00 09 00 00 00 00 09 O O O 1
1 10 00 01 00 00 00 00 02 01 00 09 09 00

10 00 00 02 09 00 00 00 00 09 09 09 00 1 2 1 0
2 01 00 00 00 00 00 09 00 00 00 00 09 00

0l 00 00 09 05 09 09 00 00 09 09 00 09 1 1 0 1
1 1 09 09 03 00 00 00 00 00 09 02 02 00

11 00 01 08 06 00 00 00 00 00 00 00 09 0 0 0 1
1 01 01 09 00 00 00 00 07 04 00 00 00 00

0L 00 06 08 00 00 03 08 00 00 00 00 09 O 0 0 1
1 00 00 02 00 00 05 00 09 03 00 07 05 00

00 00 00 00 00 07 03 02 00 00 00 09 00 O O 1 O
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Table IX—contd.
s 1 A
(B) TAPE:00[01/ 01/ 10]10100{ =| | (| (| 3| ) | | —cond.
3 00 00 01 08 01 08 09 00 00 06 00 00 07

01 08 09 04 00 08 00 00 00 09 00 00 00 1 0 0 0O
0 0l 01 05 07 00 09 00 04 00 00 00 00 09

01 03 09 03 00 01 00 07 00 00 00 00 00 0 0 0 0
(C) TAPE: || L ta| 1) 14| 12 1) 22)] =| [ *]* 1 *1**] |
I 11 03 08 09 04 00 00 00 00 00 00 00 00

11 00 07 07 02 00 00 00 01 00 00 00 09 0 0 0 1
1 11 01 09 03 00 00 00 00 01 00 00 02 00

11 00 05 09 08 00 00 00 00 00 00 00 09 0 0 0 1
1 11 01 09 00 00 00 00 00 02 00 00 09 00

11 00 00 09 09 00 00 00 00 00 00 00 09 0 0 0 1
1 11 02 09 00 00 00 00 00 03 00 00 09 00

11 00 00 09 09 01 00 00 00 00 00 00 09 0 0 0 1
1 11 02 09 00 00 00 00 00 03 00 00 09 00

11 00 00 09 09 01 00 00 00 00 00 00 09 0 0 0 1
1 11 02 09 00 00 00 00 00 03 00 00 09 00

11 00 00 09 09 01 00 00 00 00 00 00 09 0 0 0 1
1 11 02 09 00 00 00 00 00 03 00 00 09 00

11 00 00 09 09 01 00 00 00 00 00 00 09 0 0 0 1
1 00 01 01 00 00 00 00 08 07 00 00 09 00

00 00 00 00 00 09 05 01 0l 00 00 09 00 0 0 1 0
3 11 00 01 09 09 02 00 00 00 09 05 00 00

11 05 06 01 00 00 00 00 01 00 00 09 00 0 0 1 0
3 11 00 00 09 09 00 00 00 00 00 00 00 09

11 02 09 00 00 00 00 00 03 00 00 09 00 0 0 1 0
3 11 00 00 09 09 01 00 00 00 00 00 00 09

11 02 09 00 00 00 00 00 03 00 00 09 00 0 0 1 0
3 11 00 00 09 09 01 00 00 00 00 00 00 09

11 02 09 00 00 00 00 00 03 00 00 09 00 0 0 1 0
3 11 00 00 09 09 01 00 00 00 00 00 00 09

11 02 09 00 00 00 00 00 03 00 00 09 00 0 O 1 0
3 11 00 00 09 09 01 00 00 00 00 00 00 09

11 02 09 00 00 00 00 00 03 00 00 09 00 0 0 1 0
3 11 00 00 09 09 01 00 00 00 00 00 00 09

11 02 09 00 00 00 00 00 03 00 00 09 00 0 0 1 0
3 00 00 00 01 01 09 04 03 01 00 00 00 09

00 04 02 00 00 09 00 05 01 00 09 00 00 0 1 0 0
0 00 01 00 02 00 08 00 04 00 00 00 01 00

00 01 00 01 00 09 00 03 02 00 00 00 00 0 0 0 0

NOTE: The tape being processed is shown in coded and uncoded form at the top of the table. The columns
labeled S, I, A and T represent the state of the FSM, the current tape symbol, the truncated value of the
activities one cycle after seeing the inputs, and the value of the targets. The activities shown are from
trained networks that are no longer being taught. The values of state and target are presented for reference.
In each trace, the reading head of the TM is placed on the left-most nonblank cell of the tape before the first
cycle of network update. Time increases downward.

interesting is how this compares with the behavior of the unforced version of the
algorithm. Starting with small random weights, the unforced version will never solve
this problem. This simulation experience is confirmed by the complete mathematical
analysis one can perform for this particular case. While we omit discussion of the
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details of this analysis, we can describe the overall conclusion. The problem is a
fundamental one in which the weights need to be adjusted across a bifurcation
boundary, but the gradient itself cannot yield the necessary information (because it is
zero or very close to zero).> However, if one is free to adjust both weights and initial
conditions this problem disappears, at least in some cases. Something like this appears
to be at the heart of the success of the use of teacher forcing: By using desired values
to partially ‘reset’ the state of the net, one is helping to control the initial conditions
for the subsequent dynamics.

For the particular case of trying to make a single unit oscillate, giving the weights
small, random values guarantees that the network dynamics is that of settling to a
stable state. When this is the case, the only way to move the weights into a region
where oscillation occurs is by moving the weights across a bifurcation boundary, and
thus the problem just described arises.

Also instructive in this regard is the following. Suppose we set the weights
appropriately so that the unit will oscillate as desired, but once the network begins
running we give it a teacher signal that is exactly out of phase with its actual operation.
In this case, the unforced version of the algorithm will actually move the weights away
from their correct values, towards values that try to make the unit settle to a
compromise value of 0.5. In contrast, the forced version causes the weights to move in
the wrong direction on only a single time step; after that, the unit locks into phase with
the teacher signal and there is essentially no further need for weight adjustment.

The second Boolean oscillation task we have studied involves a pair of logistic
units, where the desired behavior is for one of the units (chosen arbitrarily) to produce
the sequence 0,0, 1, 1, 0, 0, 1, 1, and so on. The behaviors of the forced and unforced
versions of the algorithm on this task show a close correspondence with their behaviors
on the single unit oscillator task. Using teacher forcing, the network learns to perform
this task (within 0.1 of each desired value) after about 100 iterations with a learning
rate of 5.0 and initial weights chosen uniformly from [ —1,1]. Without teacher forcing,
the network essentially never learns the correct behavior, once again because it starts
out as a settling net. Likewise, occasional shifts in the phase of the teacher signal cause
essentially no problems for the teacher-forced version of the algorithm but wreak
havoc on the unforced version, even when the weights are initially correct.

Sine Wave Oscillation

It is straightforward to show that a pair of appropriately connected linear units can
produce sine wave oscillation. It is not so clear whether, or how well, a pair of logistic
units can produce sine wave oscillation. Using the forced version of the algorithm we
tried to teach logistic units to oscillate sinusoidally. Stable, sine-like oscillation could
be obtained for sine frequencies above about 25 network cycles (i.e. ticks) per cycle
with training of 30,000 ticks or less. Much lower sine wave frequencies could not be
learned in reasonable teaching times. Typically 3000 to 4000 ticks were required
before stable oscillation was observed. The start of stable oscillation, unsupported by
continued teaching, was an abrupt event. Before stable oscillation is established the
network damps quickly to constant values.

An example of the kind of oscillation obtained with a pair of logistic units taught
using a sine wave with a frequency of 25 ticks per cycle and minimum and maximum
values of 0.0 and 1.0 is shown in Figure 2. Unit B, which received forced teaching, has
nearly the correct amplitude but a distorted wave form. The other unit produces an
almost perfect sine wave but with half the trained amplitude. The frequency of the
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free-running logistic network is about 10% lower than the trained frequency. These
results are typical but we have not studied a wide range of learning rates, amplitudes,

or frequencies.

SIN

Figure 2. Sine wave network. Unit B was trained to a 25 tick per cycle sine wave. The
graphs show the training sine wave and the outputs of units A and B in the absence of
a teacher after stable oscillation had been established.

Discussion

Our primary goal here has been to derive a learning algorithm to train completely
recurrent, continually updated networks to learn temporal tasks. Our emphasis has
been on using inform starting configurations that contain no a priori information about
the temporal nature of the task. In most cases we have used statistically derived
training sets that have not been extensively optimized to promote learning. The results
of the simulation experiments presented here demonstrate that the algorithm has
sufficient generality and power to work under these conditions. It is likely that when
knowledge of the temporal nature of the task is incorporated into the starting
networks, still better results will be possible.

The algorithm we have described here is nonlocal in the sense that, for learning,
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each weight must have access to both the complete recurrent weight matrix W and the
whole error vector e. This makes it unlikely that this algorithm, in its current form,
can serve as the basis for learning in actual neurophysiological networks. The
algorithm is, however, inherently quite parallel so that computation speed would
benefit greatly from parallel hardware. As it stands, the dependence of computation
time on the product of the number of units squared and the number of weights
significantly limits the size of the networks that can be efficiently studied in serial
computers.

The solutions found by the algorithm are often dauntingly obscure, particularly for
complex tasks involving internal state. This observation is already familiar in work
with feedforward networks. This obscurity has often limited our ability to analyze the
solutions in sufficient detail. In the simpler cases, where we can discern what is going
on, an interesting kind of distributed representation can be observed. Rather than only
remembering a pattern in a fixed local or distributed group of units, the networks
sometimes incorporate the data that must be remembered into their functioning in such
a way that there is no stable pattern that represents it. This gives rise to dynamic
internal representations that are, in a sense, distributed in both space and time. The
existence of such patterns in the brain could greatly complicate the analysis of the
representational mechanisms used there.

Notes

1. This derivation has been presented in shorter form in Williams & Zipser (1989).

2. After all, one could argue that situations in which the first b does not occur until, say, 20 or more time
steps after an a are so rare that such a network, which bases its computation on the last 20 inputs, could
have a very low error responsibility.

3. We emphasize that this is a problem for any gradient algorithm for adjusting the weights, not just RTRL.
In particular, it occurs with the backpropagation-through-time algorithm as well if the state of the
network at the start of an epoch is allowed to be equal to what it was at the end of the previous epoch, or
if the teacher signal is provided only after the network has reached its steady state behavior.
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