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Fig. 9.4.7 An RNN with a hidden state.
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Backpropagation through time ©000000000000000
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Problems with recurrent neural networks ©000000000000000

1. Vanishing and exploding gradient
2. Parallel training
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LSTM (ii) ©000000000000000

LSTM

h: = o; © tanh(e;)

o; = o(Lineary, ([, hi—1]))
c=fiOc1+40¢

fi = o(Lineary, ([x¢, hy_1]))

iy = o(Lineary, ([, hi—1]))

¢; = tanh(Lineary, ([x¢, hi—1]))
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GRU (ii) ©000000000000000
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min-GRU 0000000000000000
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min-LSTM 0000000000000000

LSTM

ht =0;® tanh(ct)

minLSTM

o; = o(Linearg, ([zt, hi—1])) he=fi Ohi1+4 © by
c=JfiOc1+10OcC fi = o(Lineary, (x))
fi = o(Lineary, ([x¢, hi—1])) = iy = o(Lineary, (x:))

1y = o(Linearg, ([z¢, hy—1])) Fbt = Linearg, (xy)
¢; = tanh(Linearg, ([, hi—1]))
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TheSiS goals 0000000000000000

1. Implement newest models for example minLSTM, minGRU
2. Compare the models
3. Use methods Explainable Al
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Work done on thesis 0000000000000000

1. Script for generating Selective copying dataset
2. Basic comparisons of min models with originals

Comparison of Model Accuracy over Epochs
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Selective Copying 0000000000000000

Copying Selective Copying
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Planned work for now 0000000000000000

1. Redo the comparisons multiple times to get more accurate readings
2. Implement scripts for better analyzing the neural networks
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Zdroje ~  OGlcssccsssscssss
https://arxiv.org/pdf/2410.01201

https://www.d2l.ai/index.html

https://mmuratarat.github.io/2019-02-07/bptt-of-rnn

https://arxiv.org/pdf/2312.00752

https://www.researchgate.net/figure/Multi-Layer-Perceptron-MLP-diagram-with-four-hidden-layers-and-a-
collection-of-single_figl 334609713
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