
Grammar-based Compression 

1. Introduction 

Large-scale, highly repetitive data collections are becoming more and more ubiquitous. Examples are 

sequences of individual human genomes, source code in repositories and version-controlled documents. 

In the ever-expanding landscape of data generation and transmission, the pursuit of efficient storage 

and communication methods has become paramount. One intriguing avenue within the realm of data 

compression is that of grammar compression.  

Grammar compression is a technique to represent a string or a data structure by a context-free 

grammar that generates only that object. Grammar compression can achieve exponential compression 

and with additional existing algorithms on compressed data has many applications in bioinformatics, 

data networks, data mining, pattern recognition, and more. The main goal of grammar compression is to 

find the smallest grammar that represents a given string, which is known as the smallest grammar 

problem. This problem is NP-hard, and therefore, various approximation algorithms have been proposed 

to solve it efficiently. 

Grammar compression consists of two phases: grammar construction and grammar encoding. In the 

grammar construction phase, the input string is transformed into a context-free grammar. In the 

grammar encoding phase, the grammar is encoded into a succinct data structure, which uses space close 

to the information-theoretic lower bound and supports efficient operations. The combination of these 

two phases results in a compressed representation of the input string that can be manipulated and 

decompressed easily. 

In this paper, we focus on two variants of fully online grammar compression algorithms, FOLCA and 

SOLCA, which build an SLP and directly encode it into a succinct representation in an online manner. 

FOLCA and SOLCA work in constant space and linear time, which makes them suitable for large-scale, 

noisy repetitive texts. We explain how they work, compare them with other grammar-based 

compression algorithms, and show some experimental results and evaluations on different datasets. 

2. Basic concepts 

Firstly, we introduce some of the basic concepts and building blocks that are used in grammar-based 

compression. We assume that the reader is familiar with the notions of strings, alphabets, languages, 

and grammars. 

Definition 1. Context-free grammar (CFG). A context-free grammar (CFG) is a 4-tuple G = (V, Σ, S, R), 

where V is a finite set of variables (or nonterminals), Σ is a finite set of terminals, S ∈ V is the start 

variable, and R is a finite set of production rules. Each production rule has the form A → α, where A ∈ V 

and α ∈ (V ∪ Σ)*. A CFG can generate a language L(G) ⊆ Σ by applying the production rules starting from 

the start variable, until no more variables are left. 

Definition 2. Chomsky normal form. A context-free grammar G = (V, Σ, P, S) is in Chomsky normal form if 

every production in P is of one of the following forms: 

A → BC, where A, B, C ∈ V and B, C ≠ S 

A → a, where A ∈ V and a ∈ Σ 



S → ε, where ε is the empty string 

Definition 3. Straight line program (SLP). A straight-line program (SLP) is a special kind of CFG in Chomsky 

normal form that generates exactly one string. An SLP can be seen as a sequence of expressions, where 

each expression is either a terminal, or the concatenation of two previous expressions. The last 

expression in the sequence is the output of the SLP. An SLP can be used to represent the structure and 

patterns of a string in a compact way. SLP has a unique derivation tree, which is a balanced binary tree. 

Definition 4. Ordered directed acyclic graph (ODAG). An ordered directed acyclic graph (ODAG) is a 

directed acyclic graph (DAG) that has a total order on its vertices. The order is defined such that for any 

two vertices u and v, u < v if and only if u is reachable from v by following the edges in the DAG. An 

ODAG can be used to encode an SLP, by assigning each vertex a label that is either a terminal, or the 

index of two previous vertices in the order. The last vertex in the order is the root of the ODAG, and its 

label is the output of the corresponding SLP. An ODAG can be encoded into a succinct data structure, 

which uses space close to the information-theoretic lower bound and supports efficient operations. For 

example, the string ababab can be represented by the following SLP and ODAG: 

SLP: A -> a, B -> b, C -> AB, D -> CC, E -> CD 

ODAG: 

The ODAG has five vertices, labeled from 1 to 5. The order is defined by the topological sort of 

the DAG, which is 1, 2, 3, 4, 5. The labels of the vertices are either terminals (a or b) or the 

indices of two previous vertices (3, 4, or 5). The last vertex (5) is the root of the ODAG, and its 

label (CD) is the output of the corresponding SLP. The ODAG can be encoded into a succinct data 

structure, such as a balanced parenthesis sequence, which uses space close to the information-

theoretic lower bound and supports efficient operations. 

Definition 5. Longest Common Ancestor (LCA). The longest common ancestor (LCA) of two nodes in a 

tree or a DAG is the lowest node that has both nodes as descendants. In a DAG, the LCA is well-defined if 

there is a unique path from the root to each node. The LCA can be used to measure the similarity or 

distance between two nodes, or between two strings represented by SLPs or ODAGs. For example, the 

LCA of two nodes in an ODAG can be used to find the longest common substring of the corresponding 

strings, or the edit distance between them. The LCA problem is to find the LCA of two given nodes in a 

tree or a DAG. There are efficient algorithms and data structures for solving the LCA problem in various 

settings. 

3. Basic theory 

Let’s review some of the basic theory behind grammar-based compression, and how it relates to 

information theory, complexity theory, and succinct data structures. We also introduce the smallest 

grammar problem, which is the core of grammar-based compression, and some of the approximation 

algorithms for it. 

3.1 Information theory and grammar compression 

Information theory is the study of the quantification, storage, and communication of information. One 

of the central concepts in information theory is entropy, which measures the amount of uncertainty or 

randomness in a source of information. Entropy can be used to define the optimal compression rate for 



a source, which is the minimum number of bits per symbol needed to encode the source without loss of 

information. The optimal compression rate is also known as the information-theoretic lower bound, and 

it can be achieved by using a prefix code that assigns codewords to symbols according to their 

probabilities. 

Grammar-based compression can be seen as a way of exploiting the structure and regularity of a source 

to achieve compression rates close to the information-theoretic lower bound. By representing a source 

as a context-free grammar, grammar-based compression can capture the patterns and substructures of 

the source and reduce the redundancy and repetition in the source. The size of the grammar can be 

used as a measure of the complexity or information content of the source, and the goal of grammar-

based compression is to minimize the size of the grammar while preserving the information of the 

source. 

3.2 Smallest grammar problem and NP-hardness 

The smallest grammar problem is to find the smallest context-free grammar that generates exactly one 

given string. The size of the grammar can be defined as the total number of symbols (terminals and 

nonterminals) in the production rules of the grammar. The smallest grammar problem is the core of 

grammar-based compression, as it aims to optimize the compression ratio of the grammar. 

The smallest grammar problem is known to be NP-hard, which means that there is no efficient algorithm 

that can solve it exactly in polynomial time, unless P = NP. The NP-hardness of the smallest grammar 

problem can be shown by reducing it from other NP-hard problems, such as the shortest common super 

sequence problem or the minimum set cover problem. 

3.3 Approximation algorithms for the smallest grammar problem 

Since the smallest grammar problem is NP-hard, various approximation algorithms have been proposed 

to solve it efficiently. An approximation algorithm is an algorithm that produces a solution that is close 

to the optimal solution, within some guaranteed factor or bound. The approximation ratio of an 

algorithm is the worst-case ratio between the size of the grammar produced by the algorithm and the 

size of the optimal grammar for any input string. 

Some of the most popular and widely used approximation algorithms for the smallest grammar problem 

are based on the idea of finding and replacing repeated substrings in the input string. These algorithms 

include Ziv-Lempel, Re-Pair, Sequitur, LZW, FOLCA, and SOLCA. These algorithms have different trade-

offs between speed, space, and quality, and different approximation ratios. For example, Ziv-Lempel has 

an approximation ratio of O (log n), where n is the length of the input string, and runs in linear time and 

space. Re-Pair has an approximation ratio of O (log^2 n) and runs in quadratic time and linear space. 

Sequitur has an approximation ratio of O (log n) and runs in linear time and space, but with a large 

constant factor. LZW has an approximation ratio of O (log n), and runs in linear time and space, but 

requires an additional encoding step. FOLCA and SOLCA have an approximation ratio of O (log n), and 

run in linear time and constant space, but use a balanced binary tree and a succinct data structure to 

store the grammar. 

3.4 Succinct data structures and grammar compression 



A succinct data structure is a data structure that uses space close to the information-theoretic lower 

bound and supports efficient operations. A succinct data structure can be used to encode a grammar or 

a string in a compact and query-able way. For example, a balanced parenthesis sequence can be used to 

encode a balanced binary tree, which can represent an SLP or an ODAG. A balanced parenthesis 

sequence can be encoded into a bit vector, which uses 2n + o (n) bits for n nodes, and supports 

operations such as finding the parent, child, sibling, or ancestor of a node in constant time. 

Succinct data structures can also be used to support direct operations over the compressed data, such 

as pattern matching, similarity search, random access, and decompression, without requiring full 

decompression. For example, a wavelet tree can be used to encode a string over an alphabet of size k, 

which uses n log k + o (n log k) bits for n symbols, and supports operations such as rank, select, access, 

and range queries in O (log k) time. 

4. Existing algorithms 

Now analyze some of the existing algorithms for grammar-based compression, and compare their 

performance, complexity, and advantages. Algorithms are divided into two categories: offline and 

online. Offline algorithms require the whole input to be available in memory before processing, while 

online algorithms can process the input as a stream without storing it. Mail focus is on FOLCA, which is a 

variant of online grammar compression that works in constant space and linear time. 

4.1 Offline algorithms 

Offline algorithms for grammar-based compression are algorithms that need to read and store the 

entire input string before constructing and encoding the grammar. Some of the most popular and widely 

used offline algorithms are Ziv-Lempel, Re-Pair, Sequitur, and LZW. These algorithms are based on the 

idea of finding and replacing repeated substrings in the input string and building a context-free grammar 

or a straight-line program (SLP) that generates the input string. These algorithms have different trade-

offs between speed, space, and quality, and different approximation ratios for the smallest grammar 

problem. For example, Ziv-Lempel has an approximation ratio of O (log n), where n is the length of the 

input string, and runs in linear time and space. 

4.2 Online algorithms 

Online algorithms for grammar-based compression are algorithms that can process the input string as a 

stream, without storing the whole input in memory. Online algorithms are suitable for large-scale, noisy, 

or dynamic data, where the input size is unknown or changing. Online algorithms can also support direct 

operations over the compressed data, such as pattern matching, similarity search, random access, and 

decompression, without requiring full decompression. Some of the online algorithms for grammar-

based compression are based on the Edit-Sensitive Parsing (ESP) technique, which partitions the input 

into substrings of different types and parses them using binary trees. These algorithms include FOLCA 

and SOLCA, which are variants of fully online grammar compression that work in constant space and 

linear time. 

4.3. Lempel–Ziv–Welch (LZW) 



LZW is a universal lossless data compression algorithm that is simple to implement and has the potential 

for very high throughput in hardware implementations. It is the algorithm of the Unix file compression 

utility compress and is used in the GIF image format. 

The algorithm works by constructing a dictionary of substrings, which we will call “phrases,” that have 

appeared in the text. The idea is to parse the sequence into distinct phrases. The version we analyze 

does this greedily. Suppose, for example, we have the string 

AABABBBABAABABBBABBABB 

We start with the shortest phrase on the left that we haven’t seen before. This will always be a single 

letter, in this case A: 

A|ABABBBABAABABBBABBABB 

We now take the next phrase we haven’t seen. We’ve already seen A, so we take AB: 

A|AB|ABBBABAABABBBABBABB 

The next phrase we haven’t seen is ABB, as we’ve already seen AB. Continuing, we get B after that: 

A|AB|ABB|B|ABAABABBBABBABB 

and you can check that the rest of the string parses into 

A|AB|ABB|B|ABA|ABAB|BB|ABBA|BB 

Because we’ve run out of letters, the last phrase on the end is a repeated one. That’s O.K. Now, how do 

we encode this? For each phrase we see, we stick it in a dictionary. The next time we want to send it, we 

don’t send the entire phrase, but just the number of this phrase. Consider the following table 

1 2 3 4 5 6 7 8 9 

A AB ABB B ABA ABAB BB ABBA BB 

∅A 1B 2B ∅B 2A 5B 4B 3A 7 

 

The first row gives the numbers of the phrase, the second row gives the phrases, and the third row their 

encodings. The last piece is encoding this string into binary. This gives 

001110100101001011100101100111 

To see how this works, I’ve now inserted dividers and commas, to make it more comprehensible) 

0, 0|1, 1|10, 1|00, 1|010, 0|101, 1|100, 1|011, 0|0111 

We have taken the third row of the previous array, expressed all the numbers in binary (before the 

comma) and the letters in binary (after the comma). Note that I’ve mapped A to 0 and B to 1. If you had 

a larger alphabet, you would encode the letters by more than one bit. 

To decode, the decoder needs to construct the same dictionary. To do this, he first takes the binary 

string he receives, and inserts dividers and commas. This is straightforward. The first two dividers each 

come after 2 bits. The next two each come after 3 bits. We then get 22 of length 4 bits, 23 of length 5 



bits, 24 of length 6 bits, and in general 2k of length k + 2 bits. This is because when we encode our 

phrases, if we have r phrases in our dictionary, we use log2 r bits to encode the number of the phrase to 

ensure that the encodings of all phrases use the same number of bits. The decoder then uses the same 

algorithm to construct the dictionary as the encoder did. He knows phrases 1 through r − 1 when he is 

trying to figure out what the r-th phrase is, and this is exactly the information he might need to 

reconstruct the dictionary. 

So how well does the Lempel-Ziv algorithm work? We will calculate how well it works in the worst case. 

The compression is asymptotically optimal. That is, in the worst case, the length of the encoded string of 

bits is n + o(n). Since there is no way to compress all length-n strings to fewer than n bits, this can be 

counted as asymptotically optimal. In the second case, the source is compressed to length 

H(p1, p2, . . . , pα)n + o(n) = n ∑(α, i=1) (−pi log2 pi) + o(n), 

which is to first order the Shannon bound. Let’s do the worst case analysis first. Suppose we are 

compressing a binary alphabet. We ask the question: what is the maximum number of distinct phrases 

that a string of length n can be parsed into. There are some strings which are clearly worst case strings. 

These are the ones in which the phrases are all possible strings of length at most k. For example, for k = 

1, one of these strings is 

0|1 

with length 2. For k = 2, one of them is 

0|1|00|01|10|11 

with length 10; and for k = 3, one of them is 

0|1|00|01|10|11|000|001|010|011|100|101|110|111 

with length 34. In general, the length of such a string is 

nk = ∑(k, j=1) j2j 

since it contains 2j phrases of length j. It is easy to check that 

nk = (k − 1)2k+1 + 2 

by induction. If we let c(nk) be the number of distinct phrases in this string of length nk, we get that 

c(nk) = ∑(k, i=1) 2i = 2 k+1 − 2 

For nk, we thus have 

c(nk) = 2k+1 − 2 ≤ ((k − 1) 2k+1) / (k – 1) ≤ nk / k − 1 

Now, for an arbitrary length n, we can write n = nk + ∆. To get the case where c(n) is largest, the first nk 

bits can be parsed into c(nk) distinct phrases, containing all phrases of length at most k, and the 

remaining ∆ bits can be parsed into into phrases of length k +1. This is clearly the most distinct phrases a 

string of length n can be parsed into, so we have that for a general string of length n, the number of 

phrases is at most total is 



 

 

Now, we have that a general bit string is compressed to around c(n) log2 c(n)+ c(n) bits, and if we 

substitute 

 

we get  

 

So asymptotically, we don’t use much more than n bits for compressing any string of length n. This is 

good: it means that the Lempel-Ziv algorithm doesn’t expand any string by very much. We can’t hope for 

anything more from a general compression algorithm, as it is impossible to compress all strings of length 

n into fewer than n bits. So if a lossless compression algorithm compresses some strings to fewer than n 

bits, it will have to expand other strings to more than n bits. 

 

4.4. FOLCA 

FOLCA stands for Fully Online LCA, which is a variant of online grammar compression that builds an SLP 

and directly encodes it into a succinct representation in an online manner. FOLCA works in constant 

space and linear time, which makes it suitable for large-scale, noisy repetitive texts. FOLCA uses a 

balanced binary tree to store the SLP and a hash table to store the pairs of non-terminals that appear 

consecutively in the input stream. FOLCA also uses LCA queries to find the longest repeated substring in 

the current input and replace it with a new non-terminal. FOLCA achieves a good approximation ratio of 

O(log2 N) to the smallest grammar compression for an input of length N, while using only O(N log N) bits 

of space. FOLCA can also support various applications that require efficient processing of highly 

repetitive texts, such as pattern matching, edit distance computation, q-gram mining, and characteristic 

substring mining. 

FOLCA uses a bottom-up approach to construct a parse tree corresponding to an SLP, and encodes it 

into two bit arrays: B and L. B is a balanced parenthesis sequence that represents the structure of the 

parse tree, and L is a label sequence that stores the symbols at the leaves of the parse tree. 

The compression process of FOLCA consists of the following steps: 

 Initialize an empty hash table H and two empty queues Q1 and Q2. 

 Read a character c from the input text and enqueue it to Q1. 



 If Q1 contains two symbols x and y, check if H contains an entry for xy. If yes, let z be the non-

terminal symbol associated with xy in H. If no, create a new non-terminal symbol z and add an 

entry for xy -> z in H. 

 Dequeue x and y from Q1 and enqueue z to Q2. 

 Repeat steps 2 to 4 until Q1 is empty or contains only one symbol. 

 If Q2 contains more than one symbol, copy its contents to Q1 and clear Q2. Then go back to step 

2. 

 If Q2 contains only one symbol, it is the root of the parse tree. Output the bit arrays B and L as 

follows: 

o For each symbol in Q1 and Q2, append a 0 to B and the symbol to L. 

o For each non-terminal symbol in H, append a 10 to B and the symbol to L. 

For example, suppose the input text is “abababa”. The compression process of FOLCA is shown below: 

Step Q1 Q2 H B L 

1 a     

2 a, b     

3  X1 ab -> X1   

4 a X1 ab -> X1   

5 a, b X1 ab -> X1   

6  X1, X2 ab -> X1, X1a -> X2   

7 X1 X2 ab -> X1, X1a -> X2   

8 X1, b X2 ab -> X1, X1a -> X2   

9  X2, X3 ab -> X1, X1a -> X2, X1b -> X3   

10 X2 X3 ab -> X1, X1a -> X2, X1b -> X3   

11 X2, a X3 ab -> X1, X1a -> X2, X1b -> X3   

12  X3, X4 ab -> X1, X1a -> X2, X1b -> X3, X2a -> X4   

13 X3 X4 ab -> X1, X1a -> X2, X1b -> X3, X2a -> X4   

14 X3, X4  ab -> X1, X1a -> X2, X1b -> X3, X2a -> X4   

15  X5 ab -> X1, X1a -> X2, X1b -> X3, X2a -> X4, X3X4 -> X5   

16   ab -> X1, X1a -> X2, X1b -> X3, X2a -> X4, X3X4 -> X5 0010101011

 abaX1X2 

The final output is B = 0010101011 and L = abaX1X2. This is a succinct representation of the SLP: 

X1 -> ab X2 -> X1a X3 -> X1b X4 -> X2a X5 -> X3X4 



which derives the original text “abababa”. 

 

 

Currently in process about FOLCA DCC2014 - Fully Online Grammar Compression in Constant Space | 

PPT (slideshare.net). Much more in coming soon about FOLCA and its space optimal variant SOLCA. 

https://www.slideshare.net/tbyasu/dcc2014-folca-tabeipublic
https://www.slideshare.net/tbyasu/dcc2014-folca-tabeipublic

