
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Spanning trees in graphs

Bachelor Thesis

2022

Terézia Stri²ovská

ii

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Spanning trees in graphs

Bachelor Thesis

Study Programme: Applied Informatics

Field of Study: Applied Informatics

Department: Department of Applied informatics

Supervisor: doc. RNDr. Tatiana Jajcayová, PhD.

Consultant: Mgr. Dominika Mihálová

Bratislava, 2022

Terézia Stri²ovská

iv

vi

iii

Acknowledgments: Tu môºete po¤akova´ ²kolite©ovi, prípadne ¤al²ím osobám,

ktoré vám s prácou nejako pomohli, poradili, poskytli dáta a podobne.

iv

Abstrakt

Slovenský abstrakt v rozsahu 100-500 slov, jeden odstavec. Abstrakt stru£ne suma-

rizuje výsledky práce. Mal by by´ pochopite©ný pre beºného informatika. Nemal by

teda vyuºíva´ skratky, termíny alebo ozna£enie zavedené v práci, okrem tých, ktoré sú

v²eobecne známe.

K©ú£ové slová: jedno, druhé, tretie (prípadne ²tvrté, piate)

v

Abstract

Abstract in the English language (translation of the abstract in the Slovak language).

Keywords:

vi

Contents

Introduction 1

1 Preliminaries 3

1.1 Basic terminology and de�nitions . 3

1.1.1 Simple graph . 3

1.1.2 Regular graph . 4

1.1.3 Paths and cycles . 4

1.1.4 Connected graph . 5

1.1.5 Subgraph and spanning subgraph 5

1.1.6 Tree . 6

1.1.7 Spanning tree . 6

1.1.8 Graph isomorphism . 7

1.2 Graph representation . 8

1.3 Tree isomorphism . 8

1.4 Spanning tree enumeration . 9

1.5 Matrix Tree Theorem . 9

1.6 Graph classes and their bounds for number of spanning trees 10

1.6.1 Trees . 10

1.6.2 Cycles . 11

1.6.3 Complete graphs . 11

1.6.4 Regular graphs . 12

vii

viii CONTENTS

List of Figures

1.1 3-regular graphs on 8 vertices . 4

1.2 Paths in a graph . 5

1.3 Examples of subgraphs and spanning subgraph 5

1.4 All spanning trees of graph G . 7

1.5 Isomorphic graphs . 8

1.6 Representants of each isomorphism class of K5's spanning trees 12

1.7 All connected unlabeled 0, 1 and 2-regular graphs on up to 5 vertrices . 12

ix

x LIST OF FIGURES

Introduction

Cie©om tejto práce je poskytnú´ ²tudentom posledného ro£níka bakalárskeho ²túdia

informatiky kostru práce v systéme LaTeX a ukáºku uºito£ných príkazov, ktoré pri

písaní práce môºu potrebova´. Za£neme stru£nou charakteristikou úvodu práce pod©a

smernice o závere£ných prácach [?], ktorú uvádzame ako doslovný citát.

Úvod je prvou komplexnou informáciou o práci, jej cieli, obsahu a ²truk-

túre. Úvod sa vz´ahuje na spracovanú tému konkrétne, obsahuje stru£ný

a výstiºný opis problematiky, charakterizuje stav poznania alebo praxe v

oblasti, ktorá je predmetom ²kolského diela a oboznamuje s významom,

cie©mi a zámermi ²kolského diela. Autor v úvode zdôraz¬uje, pre£o je práca

dôleºitá a pre£o sa rozhodol spracova´ danú tému. Úvod ako názov kapitoly

sa ne£ísluje a jeho rozsah je spravidla 1 aº 2 strany.

V nasledujúcej kapitole nájdete ukáºku £lenenia kapitoly na men²ie £asti a v kapi-

tole ?? nájdete príkazy na prácu s tabu©kami, obrázkami a matematickými výrazmi.

V kapitole ?? uvádzame klasický text Lorem Ipsum a na koniec sa budeme venova´

záleºitostiam záveru bakalárskej práce.

1

2 Introduction

Chapter 1

Preliminaries

This chapter will be devoted to explaining terms and notations from graph theory,

introducing concepts, algorithms and previous research in the �eld of the topic of our

thesis.

1.1 Basic terminology and de�nitions

In this section, we will introduce basic de�nitions from graph theory that are relevant

to our work. Each subsection is dedicated to one or two related terms, providing their

de�nition, further explanation and in some cases illustrated examples.

1.1.1 Simple graph

Graph is a structure, that is present around us in many forms, even though we may

not realize it's a graph. Transportation network, family trees and electircity network

are just a few examples. We will look at this term from a formal side, de�ning one

speci�c type of graphs - simple graphs.

De�nition. A simple graph is an ordered pair of sets G = (V,E), where V is a

non-empty set of vertices (or nodes) of G, and E, the set of edges of G, is a set of

two-element pairs(2-combinations) of vertices. Thus, each edge of G can be expressed

as {u, v}, where u and v are distinct vertices, i.e., u, v ∈ V, u ̸= v. The vertices u and

v determining an edge {u, v} are called edpoints of the edge. The edge {u, v} is said

to join u and v, and the edge is said to be incident to either of its endpoints. Any

two vertices in G that are joined bz an edge are said to be adjacent, and are called

neighbors. A vertex with no neighbors is called isolated. [3, p. 497]

In other words, simple graph is a graph without loops(edges with equal endpoints)

and multiple edges(edges with the same pair of endpoints).

3

4 CHAPTER 1. PRELIMINARIES

In our work, we will consider only undirected simple graphs, which means that

edges are unordered pairs of vertices and thus each edge {u, v} can be traversed in

both directions - from u to v and from v to u.

1.1.2 Regular graph

De�nition. If v is a vertex of a graph G, then the degree of v, denoted deg(v) (or

degG(V)), if we wish to emphasize the dependence on G), is the number of edges

incident to v, with any self-loops counted twice. A simple graph in which all vertices

have the same degree k is called a regular graph or, more precisely, a k-regular graph.

[3, p. 499]

This means that each vertex in a k-regular graph has exactly k neighbors. k may

range from 0 to |V (G)| − 1. For k = 0, the edge set is empty, 1-regular graph consists

of disconnected edges and 2-regular grahs contains one cycle or more disjoint cycles.

For k ≥ 2, any k-regular graph contains one or more cycle. Every simple k-regular

graph on n vertices has exactly n·k
2

edges. Since the sum of degrees of vertices in a

simple undirected graphs must be an even number(every edge is counted twice - once

in both possible directions), k-regular graphs where k is odd exist only for even number

of vertices.

Figure 1.1: 3-regular graphs on 8 vertices

1.1.3 Paths and cycles

De�nition. Suppose that G = (V,E) is a graph, and v, w ∈ V are a pair of vertices.

A path in G from v to w is an alternating sequence of vertices and edges: P =<

v0, e1, v1, e2, v2, ..., vk−1, ek, vk >, such that the endpoints of edge ei are the vertices

{vi−1, vi}, for 1 ≤ i ≤ k, v0 = v, and vk = w. We say that path P passes through the

vertices v0, v1, v2, ..., vk−1, vk, and traverses the edges e1, e2, ..., ek, and that the path

has length k, since it traverses k edges. [3, p. 540]

There may exist several di�erent paths from v to w, as we can see in �gure 1.2,

where there are 4 di�erent paths from 2 to 4 and those are: 2, {2, 0}, 0, {0, 1}, 1, {1, 4}, 4;
2, {2, 0}, 0, {0, 1}, 1, {1, 3}, 3, {3, 4}, 4; 2, {2, 3}, 3, {3, 4}, 4 and 2, {2, 3}, 3, {3, 1}, 1, {1, 4}, 4.

1.1. BASIC TERMINOLOGY AND DEFINITIONS 5

Figure 1.2: Paths in a graph

De�nition. A cycle of a graph G, also called a circuit if the �rst vertex is not speci�ed,

is a subset of the edge set of G that forms a path such that the �rst node of the path

corresponds to the last. A graph containing no cycles of any length is known as an

acyclic graph. [9]

If we see a cycle of length n as a path that begins and ends in the same vertex and

no other vertices are repeated, it is not important in which vertex it starts, since it

could start in any of its n vertices and it would still represent the same cycle.

A graph where each vertex is of degree at least 2, this graph must contain a cycle.

ucenbica 4

1.1.4 Connected graph

De�nition. A graph is connected if it has a u, v-path for each pair u, v ∈ V (G). [1,

p. 5]

This means that each vertex of G is reachable from any of its vertices. The number

of components(maximal connected subgraphs) in connected graph with |V (G)| ≥ 1 is

exactly 1, and this component contains all the vertices from its vertex set.

1.1.5 Subgraph and spanning subgraph

De�nition. A subgraph of a graph G is a graph H such that V (H) ⊆ V (G) and

E(H) ⊆ E(G); we write H ⊆ G and say that "G contains H". [1, p. 3]

De�nition. A spanning subgraph of G is a subgraph with vertex set V (G). [1, p. 51]

Basically, we can create a subgraph of G by deleting any of its vertices and their

incident edges and any of remaining edges. However, in case of spanning subgraph, we

may delete only edges, as vertex set must be preserved.

We can see this di�enece in �gure 1.3. Both G2 and G3 are subgraphs of G1, but

only G3 is its spanning subgraphs, since vertex set of G2 is V (G1) \ {4}.

6 CHAPTER 1. PRELIMINARIES

Figure 1.3: Examples of subgraphs and spanning subgraph

1.1.6 Tree

There exist several characterizations of trees and each of them is equivalent. This

means that in case we want to prove that a graph is a tree, we can choose any of the

characterizations and verify that the graph satis�es it.

The following are examples of characteristics of a tree G on n vertices.

a) G is connected and has no cycles

b) G is connected and has n− 1 edges

c) G has n− 1 edges and no cycles

d) for u, v ∈ V (G), G has exactly one u, v-path [1, p. 52]

Since there is only one path between each pair of vertices, if we delete any edge

from E(G), the graph becomes disconnected. This means that every edge of a tree is

a bridge. [3, p. 573]

When speaking of trees, a vertex of degree 1 is called a leaf, the rest of the vertices

are internal vertices. [3, p. 572]

Another important properties of trees are that |E(G)| = |V (G)| − 1 and that by

adding a new edge to G between two of it vertices which weren't adjacent originally,

we create a new graph with exactly one cycle.

1.1.7 Spanning tree

Now we are getting to the core topic of our thesis, spanning trees, which are special

cases of trees.

De�nition. A spanning tree is a spanning subgraph that is a tree. [1, p. 51]

So when we have a graph G, any of its spanning trees T is a graph such that

V (T) = V (G) and T is a maximum posiible tree in G, which means that adding an

edge to E(T) renders T cyclic.

From the earlier de�nitions, we can see that a diconnected graph can't have any

spanning tree and therefore we will focus on connected graphs in our work.

In �gure 1.4, we can see a graph G and all of its spanning trees.

1.1. BASIC TERMINOLOGY AND DEFINITIONS 7

Figure 1.4: All spanning trees of graph G

Also spanning trees have many applications, for example in network, where we

want to cover and connect all nodes, but also to minimize the cost of connections

between those nodes. A special case of spanning tree is minimum spanning tree, in

weighted graphs it's a spanning trees with minimum possible weight of the contained

edges. Minimum spanning trees can be used in approximating solution of complex

mathematical problems, for example the Traveling Salesman Problem.

1.1.8 Graph isomorphism

De�nition. An isomorphism from G to H is a bijection f : V (G) → V (H) such that

uv ∈ E(G) if and only if f(u)f(v) ∈ E(H). As a result, if two graphs are isomorphic,

they must have the same degree sequence. However, the same degree sequence doesn't

implies that two graphs have to be isomorphic. We say "G is isomorphic to H", written

G ∼= H, if there is an isomorphism from G to H. [1, p. 7]

Basically, two graphs, G and H, are isomorphic if they have the same structure,

they vertex and edge sets might be di�erent. Isomorphism is then a mapping from

vertex set of V to vertex set of H, which renames the vertices of V , creating G′ such

that it has the same vertex and edge set as H.

De�nition. An isomorphism from a graph G to itself is called an automorphism of G.

[10, p. 4]

Figure 1.5 shows two isomorphic graphs G1 and G2, where one of the possible

isomorphisms betwen them is {(0, 6), (1, 8), (2, 7), (3, 5), (4, 9)}.

8 CHAPTER 1. PRELIMINARIES

Figure 1.5: Isomorphic graphs

1.2 Graph representation

There exist several ways to represent a graph, and each way may be more suitable

for a di�erent situation, depending on the operations to be performed on graphs, the

information about the graphs we want to preserve or memory criteria. We will list a

few methods, some of which are also used in our work. Suppose we have a graph G

with vertex set V = {1, 2, 3...n} and edge set E.

First is adjacency matrix, which is a |V | × |V | matrix where element in i-th row

and j-th column holds information about whether vertex i is adjacent to vertex j.

This means that in case of undirected graphs, where ij ∈ E → ji ∈ E, the matix is

diagonally symmetric. When working with unweighted graph, the value of the element

would be set to 1 if ij ∈ E, otherwise to 0. For weighted graphs, it represents the

weight of edge from i to j.

Edge list is an array with |E| pairs, each for one edge from E. This method is

memory e�cient in case of sparse graphs - graphs with only a few edges, however, we

may need to store an extra record for the number of vertices in the graph, since there

might be isolated vertices and edge sets holds no information about those.

Another representation is adjacency list, which is a collection of lists, one for each

vertex of V . List for a given vertex v contains all vertices adjacent to v.

1.3 Tree isomorphism

Generally speaking, the task of determining whether two graphs are isomorphic is non-

trivial. There are some cases, when we can exclude the existence of isomorphism easily,

for example when the two graphs are not on the same number of vertices or when they

have di�erent degree sequence. The problem doesn't have a broadly appliable known

solution with polynomial time, neither is it known to be a NP-complete problem,

therefore it may be of intermediate complexity. [11, p. 3304] For some classes of graphs,

however, there exist solutions with polynomial complexity.

1.4. SPANNING TREE ENUMERATION 9

Algorithms for tree isomorphism work with rooted trees. Although the graphs in

our thesis are undirected, simple trees can by rooted by �nding central vertex such

that the longest path to leaf is minimum over all vertices in the graph.

We will be using AHU algorithm, described more in detail in chapter ??, which

solves the problem in linear time proportional to the number of vertices in the trees.

The di�nition of tree isomorphism it uses if the following:

De�nition. Two trees are said to be isomorphic if we can map one tree into the other

by permuting the order of the sons of vertices [5, p. 84]

Each vertex is then assigned a tuple representing the structure of its subtree.

1.4 Spanning tree enumeration

Finding an arbitrary spanning tree of a graph, or even minimum spanning tree in edge-

weighted graphs, is a well known problem with several possible solutions that work in

polynomial time. The main factor a�ecting computation time is the number of edges

and vertices in a graph. There are, however, cases when we would like to generate all

spanning trees for a given graph. The number of spanning trees in a graph might be

exponential to its size, so the time taken for generating all spanning trees is no longer

polynoial.

There are a few di�erent approaches to spanning tree enumeration, varying also

in e�ciency. [13] One of them would be generating combinations of graph's edges of

size n − 1, candidates for spanning trees, and testing them for acyclicity. Another

method starts with initial spanning tree, constructed for example by breadth or depth

�rst search. We can then replace one edge of the current spanning tree by an edge

outside of it, making sure no cycle is formed. The resulting graph is a spanning tree

as well. We need to employ some policy to ensure no duplicates are generated, but on

the contrary with the previous one, this method produces only spanning trees.

For the purposes of our work, we will be implementing algorithm from the second

described gropup, one that was proposed by S. Kapoor and H. Ramesh. [14]

1.5 Matrix Tree Theorem

Although spanning tree enumeration can serve as a method of counting spanning trees,

when we are interested only in the number of spanning trees their listing and time taken

for their enumeration becomes redundant. In these cases, we can use Matrix Tree

Theorem, also know as Kirchho�'s theorem, named after Gustav Kirchoho�, which

computes this number using determinant of a matrix Q of size n × n for a graph G

10 CHAPTER 1. PRELIMINARIES

with vertex set {v1, v2, ..., vn}.It works for loopless graphs, so graphs in our work satisfy

this condition. Multiple edges are allowed, but since we are working with simple graphs,

we can suppose that the number of edges {u, v} for any vetrex u and v in the graph is

always 0 or 1.

Then the elements of the matrix Q are de�ned as

Qi,j :=

deg(vi) if i = j

−1 if i ̸= j

0 otherwise

Basically, we take a n×nmatrix with vertex degrees on the diagonal, other elements

are set to 0, and subtract the adjacency matrix of G.

After this step, we delete any row s and column t of Q, obtaining Q∗. Once we

have computed determinant of Q∗, detQ∗, the number of spanning trees in G equals

(−1)s+tdetQ∗. [1, p. 67]

1.6 Graph classes and their bounds for number of

spanning trees

While the question of number of spanning trees in a particular graph is straightforward

- it can be easily answered with use of above described Matrix Tree Theorem, there is

another question and that is generalisation of number of spanning trees for a speci�c

class of graphs. In this case, we may not always be searching for one concrete number,

but rather for example for a relationship between the number of vertices in a graph and

its number of spanning trees, which we could use to determine the number after being

given only the number of vertices. Even more general approach would be to estimate

upper or lower bounds for the number of spanning trees in a particular class in terms

of number of vertices.

We will go through some common classes of graphs and discuss the available infor-

mation about their number of spanning trees.

1.6.1 Trees

Since any tree T is an acyclic connected graph, by removing any of its edges, it will

become disconnected. This means that is has only one spanning subgraph, which is

T itself. We already stated, that T is a tree, combined with te fact that T is its own

spanning subgraph(this applies to all the graphs, not only trees) it meets the de�nition

of a spanning tree.

Therefore, T has exactly one spanning tree, T , and one isomorphism class containing

solely T .

1.6. GRAPH CLASSES AND THEIR BOUNDS FOR NUMBEROF SPANNING TREES11

1.6.2 Cycles

Cn are connceted graphs with all of its vertices in a single cycle of a length n. If we

remove any of its edges, we will get acyclic subgraph G with |V (G)| = n− 1 and n− 1

edges, which is by de�nintion a tree. The resulting graph will remain connected, with

the same vertex set as Cn, meaning that it is spanning subgraph as well. This makes

G a spanning tree of Cn.

Cn has n edges, so the number of its di�erent spanning trees is n, each one of them

is obrained by removing a di�erent edge from the edge set of Cn.

However, the number of isomorphism classes of spanning trees in Cn is 1 - all of

them are path graphs on n vertices.

1.6.3 Complete graphs

Complete graphs, Kn, have maximum possible number of edges in a graph on n vertices,

exactly n·(n−1)
2

. Each vertex v ∈ V is adjacent to all the vertices u ∈ V (Kn) \ {v}, so
while looking for a spanning trees ofKn, we can instead see this problem as constructing

all possible labeled trees on n vertices. These trees cover all the vertices in vertex set

of Kn whihch makes them spanning trees of Kn.

The number of labeled trees on n vertices is de�ned by Cayley's formula, nn−2.

In 1918, Prüfer found proof for this theorem, using function that would assign each

tree a unique code, a sequence of length n − 2 with entries from [n], which is a set of

natural numbers {1, ..., n}, where n ∈ N . There is a bijection between the set of trees

on n vertices and the set of above mentioned sequences, hence both sets have the same

cardinality, nn−2.

f(T), which computes Prüfer sequence for a labeled tree T , is de�ned iteratively. In

each step, we delete leaf with the smallest label and add label of its only neighbour to

the end of the sequence. This way, we perform n− 2 iterations, producing a sequence

of length n− 2 and leaving one edge.

Inverse function to f is a function that produces a tree T from each sequence,

where f(T) = s. Beginning with a forest with all the vertices from [n] and empty set of

�nished vertices, in i−th iteration, edge xy is added and vertex y is marked �nished. x

is the label of a vertex in i-th position of s and y is the smallest label not yet included

in �nished vertices and not appearing in later positions of s. After n − 2 steps, we

remain with two un�nished vertices, which are then joined by an edge. [1, p. 63]

Similarily, the number of non-isomorphic spanning trees ofKn is the number of non-

isomorphic trees on n vertices. Every complete graph has a spanning tree that is a path,

a star(even though in Kn, n ≤ 3, there is only one spanning tree that is a path and at

the same time a star) and the number of isomorphism clases grows for higher values of n.

The sequence of these values for n ≥ 1 is 1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, 551, 1301, 3159, ...,

12 CHAPTER 1. PRELIMINARIES

it can be found to a greater extent in The On-line Encyclopedia of Integer Sequences.

[12]

Here is an example for K5, which has three isomorphism classes. We are showing

one spanning tree from each class. After we count cardinality of each isomorphism class,

we reach number 125 = 55−2, which respresents the number of all di�erent spanning

trees of K5.

Figure 1.6: Representants of each isomorphism class of K5's spanning trees

1.6.4 Regular graphs

Regular graphs don't necessary have to be connected, but for the purposes of deter-

mining the bounds for number of spanning trees, we will take into account only those

with one component. Any disconnected regular graph has no spanning trees, which

is information that wouldn't help us specify the relationship between the number of

vertices and spanning trees.

Since the papers our theseis is based on suggest bounds only for k-regular graphs

where k ≥ 3, we will �rst separatedly discuss 0, 1 and 2-regular graphs. For illustration,

�gure 1.7 shows all possible unlabeled k-regular graphs for k = 0, 1, 2 with |V (G)| ≥ 5

which are connected.

Figure 1.7: All connected unlabeled 0, 1 and 2-regular graphs on up to 5 vertrices

1.6. GRAPH CLASSES AND THEIR BOUNDS FOR NUMBEROF SPANNING TREES13

k = 0 0-regular graphs contain only isolated vertices and therefore their number of

spanning trees is always 0 once their vertex set consists of more than one vertex. And

although 0-regular graph on 1 vertex has empy edge set, it is a tree by de�nition, which

means that it is its own spanning tree.

k = 1 There is exactly one unlabelled connected 1-regular graph - two vertices con-

nected by a single edge. We can see, that it satis�es one of the earlier mentioned

characteristics of a tree. Therefore, it has exactly one spanning tree.

k = 2 As we stated in the information about 2-regular graphs, they consist of one or

more disjoint cycles. In the cases when the number of disjoint cycles is greater than one,

the graph is disconnected, so we will focus on those where only one cycle on n vertices is

present. Again, this case case be answered with one of our previously discussed classes,

cycle graphs. Then number of di�erent spanning trees of any 2-regular connected graph

is hence n.

k ≥ 3 In 1983, Brendan McKay's article Spanning Trees in Regular Graphs was

published. In the introduction, he stated a theorem setting upper bound for k-regular

trees on n vertices where k ≥ 3. According to the theorem, the number of spanning

trees of such graph is at most
(n·k
n−1

)n−1

n
[8, p. 149]. For 3-regular graphs, this means

that their number of spanning trees can't be higher than 16, 100, 696, 5080, 38443...

for n = 4, 6, 8, 10, 12...

Later, in 1990, Noga Alon went further into this problematics in his The Number of

Spanning Trees in Regular Graphs [6] and proposed di�erent set of bounds. One of the

results presented there is that the number of spannng trees of the currently discussed

k-regular graphs is always greater than 2
n
2 . Another observation introduced is that

this number isn't greater than (1
n−1

) · kn. McKay's theorem, however, presents slightly

narrower and thus better bounds.

14 CHAPTER 1. PRELIMINARIES

Bibliography

[1] WEST D. B. Introduction to Graph Theory. Prentice-Hall, Inc. 1996. 0-13-227828-

6.

[2] CORMEN T. H., LEISERSON C. E., RIVEST R. L., STEIN C., Introduction to

Algorithms, Third Edition. The MIT Press. 2009. 978-0-262-03384-8.

[3] STANOYEVITCH A., Discrete Structures with Contemporary Applications. Chap-

man and Hall/CRC Press. 2011. 978-1-4398-1768-1.

[4] MERINGER M., Fast Generation of Regular Graphs and Construction of Cages.

Journal of Graph Theory 30, 137-146, 1999.

[5] AHO A., HOPCROFT J. and ULLMAN J., The Design and Analysis of Computer

Algorithms. Addison-Wesley Publishing Co., Reading, MA, 1974, pp. 84-85.

[6] ALON N., The Number of Spanning Trees in Regular Graphs. Random Struct.

Algorithms 1(2). 1990. 175-182.

[7] The On-line Encyclopedia of Integer Sequences, 2021, Con-

nected regular graphs (with girth at least 3), From

https://oeis.org/wiki/User:Jason_Kimberley/A068934/ 29.3.2023

[8] McKay B., Spanning Trees in Regular Graphs. Europ. J. Combinatorics (1983) 4.

1983. 149-160.

[9] Weisstein E. W., Graph Cycle. From MathWorld�A Wolfram Web Resource.

http://mathworld.wolfram.com/GraphCycle.html 24.3.2023

[10] GODSIL C., ROYLE G., Algebraic Graph Theory. Springer Science+Business

Media, LLC, 2001.

[11] BABAI L., Group, graphs, algorithms: the Graph Isomorphism Problem. Proceed-

ings of the International Congress of Mathematicians (ICM 2018), Rio de Janeiro,

Vol. 3 (3303-3320). 2018. 3303-3320.

15

16 BIBLIOGRAPHY

[12] The On-line Encyclopedia of Integer Sequences, A000055 Number of trees with n

unlabeled nodes., From https://oeis.org/A000055 25.3.2023

[13] CHAKRABORTYM., CHOWDHURY S., CHAKRABORTY J. et al., Algorithms

for generating all possible spanning trees of a simple undirected connected graph:

an extensive review. Complex Intell. Syst. 5, 265�281 (2019). 2019

[14] KAPOOR S., RAMESH H., Algorithms for enumerating all spanning trees of

undirected and weighted graphs. SIAM J Comput 24(2):247�265. 1995

	Introduction
	Preliminaries
	Basic terminology and definitions
	Simple graph
	Regular graph
	Paths and cycles
	Connected graph
	Subgraph and spanning subgraph
	Tree
	Spanning tree
	Graph isomorphism

	Graph representation
	Tree isomorphism
	Spanning tree enumeration
	Matrix Tree Theorem
	Graph classes and their bounds for number of spanning trees
	Trees
	Cycles
	Complete graphs
	Regular graphs

