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Abstrakt

Slovensky abstrakt v rozsahu 100-500 slov, jeden odstavec. Abstrakt struc¢ne suma-
rizuje vysledky prace. Mal by byt pochopitelny pre bezného informatika. Nemal by
teda vyuzivat skratky, terminy alebo oznacenie zavedené v préaci, okrem tych, ktoré sa

vSeobecne zname.

Klacové slova: jedno, druhé, tretie (pripadne Stvrté, piate)



Abstract

Abstract in the English language (translation of the abstract in the Slovak language).
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Introduction

Cielom tejto préace je poskytnut Studentom posledného ro¢nika bakalarskeho Studia
informatiky kostru prace v systéme LaTeX a ukézku uzitoc¢nych prikazov, ktoré pri
pisani prace mozu potrebovat. Za¢neme stru¢nou charakteristikou ivodu prace podla

smernice o zaveretnych pracach |?], ktora uviddzame ako doslovny citét.

Uvod je prvou komplexnou informéciou o praci, jej cieli, obsahu a $truk-
tare. Uvod sa vzfahuje na spracovani tému konkrétne, obsahuje strucny
a vystizny opis problematiky, charakterizuje stav poznania alebo praxe v
oblasti, ktord je predmetom Skolského diela a oboznamuje s vyznamom,
cielmi a zamermi Skolského diela. Autor v ivode zdoraziuje, preco je praca
doélezita a preco sa rozhodol spracovat dant tému. Uvod ako nazov kapitoly

sa necisluje a jeho rozsah je spravidla 1 az 2 strany.

V nasledujtcej kapitole najdete ukazku ¢lenenia kapitoly na mensie casti a v kapi-
tole 77 najdete prikazy na pracu s tabulkami, obrazkami a matematickymi vyrazmi.
V kapitole 7?7 uvadzame klasicky text Lorem Ipsum a na koniec sa budeme venovat

zalezitostiam zaveru bakalarskej prace.
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Chapter 1
Preliminaries

This chapter will be devoted to explaining terms and notations from graph theory,
introducing concepts, algorithms and previous research in the field of the topic of our

thesis.

1.1 Basic terminology and definitions

In this section, we will introduce basic definitions from graph theory that are relevant
to our work. Each subsection is dedicated to one or two related terms, providing their

definition, further explanation and in some cases illustrated examples.

1.1.1 Simple graph

Graph is a structure, that is present around us in many forms, even though we may
not realize it’s a graph. Transportation network, family trees and electircity network
are just a few examples. We will look at this term from a formal side, defining one

specific type of graphs - simple graphs.

Definition. A simple graph is an ordered pair of sets G = (V, E), where V is a
non-empty set of vertices (or nodes) of GG, and E, the set of edges of G, is a set of
two-element pairs(2-combinations) of vertices. Thus, each edge of G can be expressed
as {u,v}, where v and v are distinct vertices, i.e., u,v € V,u # v. The vertices u and
v determining an edge {u,v} are called edpoints of the edge. The edge {u,v} is said
to join u and v, and the edge is said to be incident to either of its endpoints. Any
two vertices in GG that are joined bz an edge are said to be adjacent, and are called

neighbors. A vertex with no neighbors is called isolated. [3, p. 497]

In other words, simple graph is a graph without loops(edges with equal endpoints)

and multiple edges(edges with the same pair of endpoints).

3
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In our work, we will consider only undirected simple graphs, which means that
edges are unordered pairs of vertices and thus each edge {u,v} can be traversed in

both directions - from u to v and from v to w.

1.1.2 Regular graph

Definition. If v is a vertex of a graph G, then the degree of v, denoted deg(v) (or
dege(V)), if we wish to emphasize the dependence on @), is the number of edges
incident to v, with any self-loops counted twice. A simple graph in which all vertices
have the same degree k is called a regular graph or, more precisely, a k-regular graph.
[3, p. 499]

This means that each vertex in a k-regular graph has exactly k& neighbors. k may
range from 0 to |V(G)| — 1. For k = 0, the edge set is empty, 1-regular graph consists
of disconnected edges and 2-regular grahs contains one cycle or more disjoint cycles.
For k > 2, any k-regular graph contains one or more cycle. Every simple k-regular
graph on n vertices has exactly "7’“ edges. Since the sum of degrees of vertices in a
simple undirected graphs must be an even number(every edge is counted twice - once
in both possible directions), k-regular graphs where & is odd exist only for even number

of vertices.

Figure 1.1: 3-regular graphs on 8 vertices

1.1.3 Paths and cycles

Definition. Suppose that G = (V| E) is a graph, and v,w € V are a pair of vertices.
A path in G from v to w is an alternating sequence of vertices and edges: P =<
Vg, €1, V1, €2, Vs, ..., Up_1, €k, Vx>, such that the endpoints of edge e; are the vertices
{vi_1,v;}, for 1 <i <k, vg = v, and v, = w. We say that path P passes through the
vertices vy, vy, Vs, ..., Ug_1, Uk, and traverses the edges ey, es,..., e, and that the path

has length k, since it traverses k edges. |3, p. 540]

There may exist several different paths from v to w, as we can see in figure 1.2,
where there are 4 different paths from 2 to 4 and those are: 2,{2,0},0,{0,1},1,{1,4}, 4;
2,{2,0},0,{0,1},1,{1,3},3,{3,4},4; 2,{2,3},3,{3,4},4and 2,{2,3},3,{3,1},1,{1,4}, 4.
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Figure 1.2: Paths in a graph

Definition. A cycle of a graph G, also called a circuit if the first vertex is not specified,
is a subset of the edge set of G that forms a path such that the first node of the path
corresponds to the last. A graph containing no cycles of any length is known as an

acyclic graph. [9]

If we see a cycle of length n as a path that begins and ends in the same vertex and
no other vertices are repeated, it is not important in which vertex it starts, since it
could start in any of its n vertices and it would still represent the same cycle.

A graph where each vertex is of degree at least 2, this graph must contain a cycle.

ucenbica 4

1.1.4 Connected graph

Definition. A graph is connected if it has a u, v-path for each pair u, v € V(G). [1,
p- 5|

This means that each vertex of GG is reachable from any of its vertices. The number
of components(maximal connected subgraphs) in connected graph with |V (G)| > 1 is

exactly 1, and this component contains all the vertices from its vertex set.

1.1.5 Subgraph and spanning subgraph

Definition. A subgraph of a graph G is a graph H such that V(H) C V(G) and
E(H) C E(G); we write H C G and say that "G contains H". [1, p. 3|

Definition. A spanning subgraph of G is a subgraph with vertex set V(G). |1, p. 51|

Basically, we can create a subgraph of G by deleting any of its vertices and their
incident edges and any of remaining edges. However, in case of spanning subgraph, we
may delete only edges, as vertex set must be preserved.

We can see this diffenece in figure 1.3. Both G5 and G5 are subgraphs of GGy, but
only G is its spanning subgraphs, since vertex set of Gy is V(Gy) \ {4}.

% o d % oo b
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Figure 1.3: Examples of subgraphs and spanning subgraph

1.1.6 Tree

There exist several characterizations of trees and each of them is equivalent. This
means that in case we want to prove that a graph is a tree, we can choose any of the
characterizations and verify that the graph satisfies it.

The following are examples of characteristics of a tree G on n vertices.
a) G is connected and has no cycles
b) G is connected and has n — 1 edges
¢) G has n — 1 edges and no cycles
d) for u,v € V(G), G has exactly one u,v-path [1, p. 52|

Since there is only one path between each pair of vertices, if we delete any edge
from E(G), the graph becomes disconnected. This means that every edge of a tree is
a bridge. [3, p. 573]

When speaking of trees, a vertex of degree 1 is called a leaf, the rest of the vertices
are internal vertices. [3, p. 572]

Another important properties of trees are that |E(G)| = |V(G)| — 1 and that by
adding a new edge to G between two of it vertices which weren’t adjacent originally,

we create a new graph with exactly one cycle.

1.1.7 Spanning tree

Now we are getting to the core topic of our thesis, spanning trees, which are special

cases of trees.
Definition. A spanning tree is a spanning subgraph that is a tree. [1, p. 51|

So when we have a graph G, any of its spanning trees 7' is a graph such that
V(T) = V(G) and T is a maximum posiible tree in G, which means that adding an
edge to E(T') renders T cyclic.

From the earlier definitions, we can see that a diconnected graph can’t have any
spanning tree and therefore we will focus on connected graphs in our work.

In figure 1.4, we can see a graph G and all of its spanning trees.
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X

G

Figure 1.4: All spanning trees of graph G
Also spanning trees have many applications, for example in network, where we
want to cover and connect all nodes, but also to minimize the cost of connections
between those nodes. A special case of spanning tree is minimum spanning tree, in
weighted graphs it’s a spanning trees with minimum possible weight of the contained
edges. Minimum spanning trees can be used in approximating solution of complex

mathematical problems, for example the Traveling Salesman Problem.

1.1.8 Graph isomorphism

Definition. An isomorphism from G to H is a bijection f : V(G) — V(H) such that
wv € E(G) if and only if f(u)f(v) € E(H). As a result, if two graphs are isomorphic,
they must have the same degree sequence. However, the same degree sequence doesn’t
implies that two graphs have to be isomorphic. We say "G is isomorphic to H", written
G = H, if there is an isomorphism from G to H. [1, p. 7]

Basically, two graphs, G and H, are isomorphic if they have the same structure,
they vertex and edge sets might be different. Isomorphism is then a mapping from
vertex set of V' to vertex set of H, which renames the vertices of V, creating G’ such

that it has the same vertex and edge set as H.

Definition. An isomorphism from a graph G to itself is called an automorphism of G.
|10, p. 4]

Figure 1.5 shows two isomorphic graphs GG; and G4, where one of the possible
isomorphisms betwen them is {(0,6), (1,8),(2,7),(3,5),(4,9)}.
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Figure 1.5: Isomorphic graphs

1.2 Graph representation

There exist several ways to represent a graph, and each way may be more suitable
for a different situation, depending on the operations to be performed on graphs, the
information about the graphs we want to preserve or memory criteria. We will list a
few methods, some of which are also used in our work. Suppose we have a graph G
with vertex set V = {1,2,3..n} and edge set E.

First is adjacency matrix, which is a |V| x |V| matrix where element in i-th row
and j-th column holds information about whether vertex i is adjacent to vertex j.
This means that in case of undirected graphs, where ij € E — ji € E, the matix is
diagonally symmetric. When working with unweighted graph, the value of the element
would be set to 1 if ij € E, otherwise to 0. For weighted graphs, it represents the
weight of edge from 7 to j.

Edge list is an array with |F| pairs, each for one edge from E. This method is
memory efficient in case of sparse graphs - graphs with only a few edges, however, we
may need to store an extra record for the number of vertices in the graph, since there
might be isolated vertices and edge sets holds no information about those.

Another representation is adjacency list, which is a collection of lists, one for each

vertex of V. List for a given vertex v contains all vertices adjacent to v.

1.3 Tree isomorphism

Generally speaking, the task of determining whether two graphs are isomorphic is non-
trivial. There are some cases, when we can exclude the existence of isomorphism easily,
for example when the two graphs are not on the same number of vertices or when they
have different degree sequence. The problem doesn’t have a broadly appliable known
solution with polynomial time, neither is it known to be a NP-complete problem,
therefore it may be of intermediate complexity. [11, p. 3304] For some classes of graphs,

however, there exist solutions with polynomial complexity.
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Algorithms for tree isomorphism work with rooted trees. Although the graphs in
our thesis are undirected, simple trees can by rooted by finding central vertex such
that the longest path to leaf is minimum over all vertices in the graph.

We will be using AHU algorithm, described more in detail in chapter 7?7, which
solves the problem in linear time proportional to the number of vertices in the trees.

The difinition of tree isomorphism it uses if the following:

Definition. Two trees are said to be isomorphic if we can map one tree into the other

by permuting the order of the sons of vertices |5, p. 84|

Each vertex is then assigned a tuple representing the structure of its subtree.

1.4 Spanning tree enumeration

Finding an arbitrary spanning tree of a graph, or even minimum spanning tree in edge-
weighted graphs, is a well known problem with several possible solutions that work in
polynomial time. The main factor affecting computation time is the number of edges
and vertices in a graph. There are, however, cases when we would like to generate all
spanning trees for a given graph. The number of spanning trees in a graph might be
exponential to its size, so the time taken for generating all spanning trees is no longer
polynoial.

There are a few different approaches to spanning tree enumeration, varying also
in efficiency. [13] One of them would be generating combinations of graph’s edges of
size n — 1, candidates for spanning trees, and testing them for acyclicity. Another
method starts with initial spanning tree, constructed for example by breadth or depth
first search. We can then replace one edge of the current spanning tree by an edge
outside of it, making sure no cycle is formed. The resulting graph is a spanning tree
as well. We need to employ some policy to ensure no duplicates are generated, but on
the contrary with the previous one, this method produces only spanning trees.

For the purposes of our work, we will be implementing algorithm from the second

described gropup, one that was proposed by S. Kapoor and H. Ramesh. [14]

1.5 Matrix Tree Theorem

Although spanning tree enumeration can serve as a method of counting spanning trees,
when we are interested only in the number of spanning trees their listing and time taken
for their enumeration becomes redundant. In these cases, we can use Matrix Tree
Theorem, also know as Kirchhoff’s theorem, named after Gustav Kirchohoff, which

computes this number using determinant of a matrix ) of size n x n for a graph G



10 CHAPTER 1. PRELIMINARIES

with vertex set {vy, vg, ..., v, }.It works for loopless graphs, so graphs in our work satisfy
this condition. Multiple edges are allowed, but since we are working with simple graphs,
we can suppose that the number of edges {u, v} for any vetrex v and v in the graph is
always 0 or 1.
Then the elements of the matrix () are defined as
deg(v;) ifi=j
Q=1 —1  ifi#]
0 otherwise
Basically, we take a m xn matrix with vertex degrees on the diagonal, other elements

are set to 0, and subtract the adjacency matrix of G.
After this step, we delete any row s and column ¢ of (), obtaining QQ*. Once we

have computed determinant of QQ*, det@*, the number of spanning trees in G equals
(—=1)*Tdet@*. 1, p. 67]

1.6 Graph classes and their bounds for number of

spanning trees

While the question of number of spanning trees in a particular graph is straightforward
- it can be easily answered with use of above described Matrix Tree Theorem, there is
another question and that is generalisation of number of spanning trees for a specific
class of graphs. In this case, we may not always be searching for one concrete number,
but rather for example for a relationship between the number of vertices in a graph and
its number of spanning trees, which we could use to determine the number after being
given only the number of vertices. Even more general approach would be to estimate
upper or lower bounds for the number of spanning trees in a particular class in terms
of number of vertices.

We will go through some common classes of graphs and discuss the available infor-

mation about their number of spanning trees.

1.6.1 Trees

Since any tree T is an acyclic connected graph, by removing any of its edges, it will
become disconnected. This means that is has only one spanning subgraph, which is
T itself. We already stated, that T is a tree, combined with te fact that 7T is its own
spanning subgraph(this applies to all the graphs, not only trees) it meets the definition
of a spanning tree.

Therefore, T" has exactly one spanning tree, T', and one isomorphism class containing

solely T'.
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1.6.2 Cycles

C,, are connceted graphs with all of its vertices in a single cycle of a length n. If we
remove any of its edges, we will get acyclic subgraph G with |V(G)| =n—1and n—1
edges, which is by definintion a tree. The resulting graph will remain connected, with
the same vertex set as C),, meaning that it is spanning subgraph as well. This makes
G a spanning tree of C),.

C,, has n edges, so the number of its different spanning trees is n, each one of them
is obrained by removing a different edge from the edge set of C,.

However, the number of isomorphism classes of spanning trees in C), is 1 - all of

them are path graphs on n vertices.

1.6.3 Complete graphs

Complete graphs, K, have maximum possible number of edges in a graph on n vertices,
exactly @ Each vertex v € V' is adjacent to all the vertices u € V(K,) \ {v}, so
while looking for a spanning trees of K,,, we can instead see this problem as constructing
all possible labeled trees on n vertices. These trees cover all the vertices in vertex set
of K,, whihch makes them spanning trees of K.

The number of labeled trees on n vertices is defined by Cayley’s formula, n"~2.

In 1918, Priifer found proof for this theorem, using function that would assign each
tree a unique code, a sequence of length n — 2 with entries from [n], which is a set of
natural numbers {1,...,n}, where n € N. There is a bijection between the set of trees
on n vertices and the set of above mentioned sequences, hence both sets have the same
cardinality, n" 2.

f(T), which computes Priifer sequence for a labeled tree T', is defined iteratively. In
each step, we delete leaf with the smallest label and add label of its only neighbour to
the end of the sequence. This way, we perform n — 2 iterations, producing a sequence
of length n — 2 and leaving one edge.

Inverse function to f is a function that produces a tree T from each sequence,
where f(7') = s. Beginning with a forest with all the vertices from [n] and empty set of
finished vertices, in i—th iteration, edge xy is added and vertex y is marked finished. x
is the label of a vertex in i-th position of s and y is the smallest label not yet included
in finished vertices and not appearing in later positions of s. After n — 2 steps, we
remain with two unfinished vertices, which are then joined by an edge. [1, p. 63]

Similarily, the number of non-isomorphic spanning trees of K, is the number of non-
isomorphic trees on n vertices. Every complete graph has a spanning tree that is a path,

a star(even though in K,,n < 3, there is only one spanning tree that is a path and at
the same time a star) and the number of isomorphism clases grows for higher values of n.
The sequence of these values forn > 1is1,1,1,2,3,6,11,23,47,106, 235, 551, 1301, 3159, ...,
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it can be found to a greater extent in The On-line Encyclopedia of Integer Sequences.
[12]

Here is an example for K5, which has three isomorphism classes. We are showing
one spanning tree from each class. After we count cardinality of each isomorphism class,
we reach number 125 = 5°72, which respresents the number of all different spanning

trees of K.

T2

Figure 1.6: Representants of each isomorphism class of K5’s spanning trees

1.6.4 Regular graphs

Regular graphs don’t necessary have to be connected, but for the purposes of deter-
mining the bounds for number of spanning trees, we will take into account only those
with one component. Any disconnected regular graph has no spanning trees, which
is information that wouldn’t help us specify the relationship between the number of

vertices and spanning trees.

Since the papers our theseis is based on suggest bounds only for k-regular graphs
where k > 3, we will first separatedly discuss 0, 1 and 2-regular graphs. For illustration,
figure 1.7 shows all possible unlabeled k-regular graphs for £ =0, 1,2 with |V (G)| > 5

which are connected.

Figure 1.7: All connected unlabeled 0, 1 and 2-regular graphs on up to 5 vertrices
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k =0 O-regular graphs contain only isolated vertices and therefore their number of
spanning trees is always 0 once their vertex set consists of more than one vertex. And
although O-regular graph on 1 vertex has empy edge set, it is a tree by definition, which

means that it is its own spanning tree.

k =1 There is exactly one unlabelled connected 1-regular graph - two vertices con-
nected by a single edge. We can see, that it satisfies one of the earlier mentioned

characteristics of a tree. Therefore, it has exactly one spanning tree.

k=2 As we stated in the information about 2-regular graphs, they consist of one or
more disjoint cycles. In the cases when the number of disjoint cycles is greater than one,
the graph is disconnected, so we will focus on those where only one cycle on n vertices is
present. Again, this case case be answered with one of our previously discussed classes,
cycle graphs. Then number of different spanning trees of any 2-regular connected graph

is hence n.

k > 3 In 1983, Brendan McKay’s article Spanning Trees in Regular Graphs was
published. In the introduction, he stated a theorem setting upper bound for k-regular
trees on n vertices where k > 3. According to the theorem, the number of spanning

nk \n—1

("% [8, p. 149]. For 3-regular graphs, this means
that their number of spanning trees can’t be higher than 16, 100, 696, 5080, 38443...
forn =4,6,8,10,12...

Later, in 1990, Noga Alon went further into this problematics in his The Number of

trees of such graph is at most

Spanning Trees in Regular Graphs [6] and proposed different set of bounds. One of the
results presented there is that the number of spannng trees of the currently discussed
k-regular graphs is always greater than 22. Another observation introduced is that
this number isn’t greater than (-17) - k". McKay’s theorem, however, presents slightly

narrower and thus better bounds.
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