Spanning trees in graphs

Terézia Strišovská doc. RNDr. Tatiana Jajcayová, PhD.

Graphs and spanning trees

- undirected simple connected graphs
- spanning tree of connected graph G
- maximal set of edges of G with no cycles
- focus on k-regular graphs
- all vertices have k neighbours

regular graphs and their spanning trees

Motivation

- easy to count spanning trees in a particular graph, but not in a whole class of graphs \rightarrow estimations needed
- k-regular graphs on n vertices
- Noga Alon: The Number of Spanning Trees in Regular Graphs
- Brendan McKay: Spanning Trees in Regular Graphs

Experiments

- identify graphs with minimum and maximum number of spanning trees in a specified set of graphs
- $\quad k$-regular graphs on n vertices $(k=3 ; 4)$
- graphs on $n+1$ vertices, n vertices are of degree k_{1}, one vertex is of degree $k_{2}, k_{1} \neq k_{2}$
- compare the numbers of labeled and unlabeled spanning trees in a pair of graphs

Implementation

- graph generation - genreg
- graph processing - C++
- running experiments - bash scripts
- combines graph generation and processing
- spanning tree counting - Kirchhoff's Theorem

Methods for graph generating and processing

challenges: time and memory
<typeOfGeneration>serial n k []

- runs generation and processing of k -regular graphs on n vertices
min 175
$[(0,1),(0,2),(0,3),(1,2),(1,4),(2,5),(3,4),(3,5),(4,5)]$ $\max 181$

```
[(0, 1), (0, 2), (0, 3), (1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)]
```

GENREG - Generator fuer regulaere Graphen
6 Knoten, Grad 3, Taillenweite mind. 3
Erzeugung gestartet..
2 Graphen erzeugt.
Laufzeit:0.0s
Generating and processing finished after 0 seconds

[^0]<typeOfGeneration>paralel j n k []

- splits generation and processing into j parts

Overview of results

- processed sets of graphs graphs
- 3-regular graphs - on up to 28 vertices (40 497138011 graphs)
- 4-regular graphs - on up to 19 vertices (11 946487647 graphs)
- hypothesis about 3-regular graphs with minimum and maximum number of spanning trees
- estimation for maximum number of spanning trees for 3-regular graphs on up to 42 vertices

n	time
16	$0,075 \mathrm{~s}$
18	$0,398 \mathrm{~s}$
20	$4,711 \mathrm{~s}$
22	1 min $11,581 \mathrm{~s}$
24	$21 \min 24,074 \mathrm{~s}$
26	2.861 hr
28	~ 4 days

3-regular graphs with minimum number of spanning trees

- formed from building blocks determining the number of spanning trees
- hypothesis for the number of spanning trees based on iterative construction:
$24^{\wedge} 2 \cdot\left(8^{\wedge}(n-2 \cdot 5) / 4\right)$ spanning trees for $n=10+4 i, i \in N$ $24^{\wedge} 3 \cdot\left(8^{\wedge}(n-3 \cdot 5-1) / 4\right)$ spanning trees for $n=16+4 i, i \in N$

3-regular graphs with minimum number of spanning trees

4-regular graphs with minimum number of spanning trees

- pair of building blocks + additional vertices
- no bridges present \rightarrow more complex structure of graphs and spanning tree counting

3-regular graphs with maximum number of spanning trees

- highest possible girth for the given n (girth - length of the shortest cycle in the graph)

$\longrightarrow$$\rightarrow$ enables for estimations for higher values of n

- for $n=4,6,10,14,24$ and 30 , the graphs are cages
- regular graphs with the least possible number of vertices for a given girth

Main contributions

- personal - work with large sets of graphs
- if our hypothesis for the minimum number of spanning trees in 3-regular graphs is correct, it is more accurate than Alon's lower bound
- relation between graphs with minimum/maximum number of spanning trees and other areas from graph theory (girth, cages...)

Thank you for your attention

Bibliography

MCKAY B., Spanning Trees in Regular Graphs. Europ. J. Combinatorics (1983) 4. 1983. 149-160.

ALON N., The Number of Spanning Trees in Regular Graphs. Random Struct.
Algorithms 1(2). 1990. 175-182.

[^0]: terezia@terezia-ntb:~/genreg/grafy/ukazka\$ regularSerial 203
 3 -regular graphs on 20 vertices to file maxMinReg3-20.txt
 processing finished after 18 seconds
 Generating and processing finished after 18 seconds

