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Graphs and spanning trees

● undirected simple connected graphs
● spanning tree of connected graph G

○ maximal set of edges of G with no cycles
● focus on k-regular graphs

○ all vertices have k neighbours
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regular graphs and their spanning trees



Motivation

● easy to count spanning trees in a particular graph, but not in a whole class of 
graphs → estimations needed

● k-regular graphs on n vertices
○ Noga Alon: The Number of Spanning Trees in Regular Graphs
○ Brendan McKay: Spanning Trees in Regular Graphs
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Experiments

● identify graphs with minimum and maximum number of spanning trees in a 
specified set of graphs

○ k-regular graphs on n vertices (k= 3; 4)
○ graphs on n + 1 vertices, n vertices are of degree k1, one vertex is of degree k2, k1 ≠ k2

● compare the numbers of labeled and unlabeled spanning trees in a pair of 
graphs
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Implementation

● graph generation - genreg
● graph processing - C++
● running experiments - bash scripts

○ combines graph generation and processing
● spanning tree counting - Kirchhoff’s Theorem
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Methods for graph generating and processing

<typeOfGeneration>serial n k []

● runs generation and processing of 
k-regular graphs on n vertices
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<typeOfGeneration>paralel j n k []

● splits generation and processing into j 
parts

challenges: time and memory



Overview of results

● processed sets of graphs graphs
○ 3-regular graphs - on up to 28 vertices (40 497 138 011 graphs)
○ 4-regular graphs - on up to 19 vertices (11 946 487 647 graphs)

● hypothesis about 3-regular graphs with minimum and maximum number of 
spanning trees

● estimation for maximum number of spanning trees for 3-regular graphs on up to 
42 vertices
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generation+processing times 
of sets of 3-regular graphs on 
n vertices



3-regular graphs with minimum number of spanning trees

● formed from building blocks determining the number of spanning trees
● hypothesis for the number of spanning trees based on iterative construction:

24^2 · (8^(n−2·5) / 4) spanning trees for n = 10 + 4i, i ∈ N

24^3 · (8^(n−3·5 - 1) / 4) spanning trees for n = 16 + 4i , i ∈ N
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3-regular graphs with minimum number of spanning trees

9



4-regular graphs with minimum number of spanning trees

● pair of building blocks + additional vertices
● no bridges present → more complex structure of graphs and spanning tree 

counting 
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3-regular graphs with maximum number of spanning trees

● highest possible girth for the given n (girth - length of the shortest cycle in the graph)

enables for estimations for higher values of n

● for n = 4, 6, 10, 14, 24 and 30, the graphs are cages
○ regular graphs with the least possible number of vertices for a given girth
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Main contributions

● personal - work with large sets of graphs
● if our hypothesis for the minimum number of spanning trees in 3-regular 

graphs is correct, it is more accurate than Alon’s lower bound
● relation between graphs with minimum/maximum number of spanning trees 

and other areas from graph theory (girth, cages…)
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Thank you for your attention
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