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2 Introduction



Chapter 1

Preliminaries

1.1 De�nitions and Terminology

Di�erence sets are interesting topic combining discrete mathematics, combina-

torics and group theory. It has applications in the communication and cryptog-

raphy. The original study in di�erence sets focused on symmetrical design of

classical di�erence sets, where each di�erence is represented exactly the same

number of times [7].

De�nition 1. A non-empty subgroup D is a (v, k, λ)-di�erence set of an

abelian group G, if the order of G is v, the size of D is k and each non-identity

element of G can be expressed in exactly λ ways as a di�erence d1− d2, where

d1, d2 ∈ D.

Another way how to describe the di�erence sets is to consider a multiset

of di�erences Λ = {d1− d2|d1, d2 ∈ D, d1 < d2}. Then D is a di�erence set if

every nonzero element of G appears the same number of times in Λ.

While properties of classical di�erence sets are interesting for lot of pur-

poses, there is also an interesting generalization of this concept, where we no

longer require each element of D to be present exactly λ-times.

De�nition 2. A group S as a subset of N is a generalized di�erence set

(g.d.s.) of type Λ(S) = (λi)
max(D)
i=1 , if for every i ∈ N the number i can be

expressed as a di�erence s1 − s2 in exactly λi ways, where s1, s2 ∈ S

To be able to better describe properties of generalized di�erence sets, we

can further de�ne mulitset of di�erences and frequency sequence:

De�nition 3. A D(S) is a multiset of di�erences of generalized di�erence

set S, where S is a subset of N and D(S) contains di�erences s1 − s2 of all

pairs s1, s2 ∈ S, where s1 > s2.

3



4 CHAPTER 1. PRELIMINARIES

De�nition 4. A Λ(S) = (λi)
max(D)
i=1 is a frequency sequence of generalized

di�erence set S, where S is a subset of N and each positive integer i appears

as a di�erence s1− s2 of elements from S exactly λi times.

The properties of generalized di�erence set, multiset of di�erences and fre-

quency sequence can be best described on an example.

Example Let us take a set S = {1, 2, 4, 7}. The multiset of di�erences will

contain di�erences of all the pairs of elements of S, like 2 − 1, 4 − 1, 7 − 1

etc. The whole multiset of di�erences will be D(S) = {1, 2, 3, 3, 5, 6}, which
can be also described by the frequency sequence Λ(S) = {1, 1, 2, 0, 1, 1}, where
the �rst element represents the frequency of number 1 in D(S), the second

element of number 2 etc. The example is represented in the Figure 1.2.

Figure 1.1: Example of generalized di�erence set with construction of multiset

of di�erencies.

1.2 Construction of generalized di�erence sets

It is a trivial task to construct a frequency sequence form a generalized di�er-

ence sets, since it just requires to take each pair of elements form g.d.s. and

calculate the di�erence. But the problem arise when we want to construct a

generalized di�erence set from a frequency sequence.

First of all, not all frequencies represent a frequency sequence of a di�erence

set. For example, for the frequency sequence {1, 10}, no generalized di�erence

set can be constructed.

Furthermore, two generalized di�erence sets can have the same frequency

sequence. For example, g.d.s. S = {1, 2, 3} and S ′ = {2, 3, 4} have the same

frequency sequence {2, 1}. By generalization of this example, if P is a g.d.s. of

a group G and g ∈ G then P + g = p+ g : p ∈ P is also a g.d.s. Therefore, if
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there is one g.d.s for a frequency sequence, there are in�nite number of them.

This kind of transformation is called a translate of P [10].

There can be more than one g.d.s. for a frequency sequence which does not

represent translate. The g.d.s. S = {1, 2, 4} and S ′ = {1, 3, 4} also have the

same frequency sequence {1, 1, 1}, but sequence S does not translate to S, but

they were constructed by reversing of the order of �rst level di�erences in

the S.

The aim of this thesis is to recognize those frequencies where a generalized

di�erence set can be constructed by eliminating frequencies, which does not

ful�ll necessary condition for a frequency sequence.

There are two kinds of generalized di�erence sets: �nite and in�nite. Each

is de�ned by corresponding �nite or in�nite frequency sequence. The properties

of �nite and in�nite g.d.s. di�ers signi�cantly, especially, when it comes to

construction of di�erence set.

1.2.1 In�nite frequency sequences

Although it seems counter-intuitive, most of in�nite frequency sequences allow

existence of generalized di�erence set. Grosek and Jajcay [2] showed, that any

in�nite frequency sequence where λi ≥ 2 allows for g.d.s.

Theorem 1. (Theorem 3 [2]). Let Λ = {λi}∞i=1 be a sequence of positive

integers such that λi ≥ 2 for all but �nitely many i ∈ N . Then there exists a

generalized di�erence set S of type Λ.

The idea that allows construction of such a g.d.s. relies on the possibility

to push pairs of elements for an un�t di�erence further into positive numbers.

E.g. when we come to a di�erence λk in a sequence, that does not �t within

existing elements, we can always �nd very large numbers that di�er by this

number. The exact construction method described by Grosek and Jajcay [2]

follows:

Construction 1. Let Λ = {λi}∞i=1 be a sequence of positive integers, let

{Mn}∞i=1 be a sequence of subsets of N de�ned recursively as follows:

1. M1 = {m0,m0 + 1}, where m0 is an arbitrary element of N ;

2. the set Mn+1 is de�ned from the set Mn by setting

Mn+1 = Mn ∪ {2(k + 1), 2(k + 1) + j}

where k is the maximal element of Mn and j is the smallest positive

integer which appears in D(Mn) fewer than λj times.



6 CHAPTER 1. PRELIMINARIES

Then, let SΛ denote the union ∪{Mn|n ∈ N}

Jajcayova and Jajcay [4] further de�ned conditions for other types of in�nite

frequency sequences to determine, if they allow for generalized frequency sets.

Proofs and construction methods are described in their work [4].

1. Let Λ = {λi}∞i=1 be a sequence consisting entirely of 1's and 2's, λi ∈
{1, 2}, for all i ∈ N , such that λi = 2 for in�nitely many i's. Then there

exists a generalized di�erence set SΛ of type Λ.

2. Let N = N1 ∪ N2 be a partition of the set of natural numbers into two

in�nite sets with the second set satisfying the property n+nprime 6∈ N2,

for all n, n′ ∈ N2. Let Λ = {λi}∞i=1 be any sequence of positive integers

such that λi = 1 for all i ∈ N1 and λj ≥ 3 for all j ∈ N2. Then Λ does

not allow the existence of a g.d.s.

3. Let N = N1 ∪ N2 be a partition of the set of natural numbers into two

non-empty sets with the �rst set satisfying the property n+nprime 6∈ N1,

for all n, n′ ∈ N1 Let Λ = {λi}∞i=1 be any sequence of positive integers

such that λj ≥ 3 for all i ∈ N1 and λj = 1 for all j ∈ N2.4Then there

exists a g.d.s. S of type Λ.

Kopparty [6] described other conditions of in�nite frequency sets:

1. If generalized di�erence set is in the form S = {1, α, α2, α3, ...}, where
α ≥ 2, its frequency sequences consist only of 0's or 1's.

2. If Λ = {λi}∞i=1 such that λi ≤ 1 and λi = 1 for all but �nitely many i,

then Λ is a frequency sequence.

3. Any �nite sequence of nonnegative numbers is the initial segment of some

in�nite frequency sequence.

4. The sequence Λ = (x1, 0, x2, 0, x3, 0...), where xi ≥ 1 for all i, is not the

frequency sequence of any set of natural numbers.

5. Let N = N1 ∪ N2be a partition of the set of natural numbers with N2

satisfying the property that n + n0 is not in N2 for all n and n0 in N2.

Let Λ = (λk)∞k=1 be any sequence of positive integers such that λi = 0 for

all i in N1 and λi = 1 for all i in N2. Then Λ is not a frequency sequence.
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1.2.2 Finite frequency sequences

While constructing generalized di�erence sets form �nite frequency sequences,

the conditions and process di�ers from in�nite ones. Because of the �limited

space� there are more restrictions and the process of reconstruction of the

original di�erence set is more complicated. Kopparty [6] described several

necessary conditions for a �nite frequency sequence to represent a generalized

di�erence set.

Theorem 2. (Theorem 6 [6]). For any �nite frequency sequence, the sum of

the elements of the sequence is of the form
(
n
2

)
for some n.

Proof. Let S = {s1, s2, s3, ..., sn} be a subset of N and Λ = (λ1, λ2, λ3, ..., λk)

be its frequency sequence. The total number of di�erences in the set S is given

by (λ1 + λ2 + λ3 + ... + λk). A di�erence is between any two numbers, so
(
n
2

)
is the total number of di�erences in S, and

(
n
2

)
= (λ1 + λ2 + λ3 + ...+ λk).

Theorem 3. (Theorem 7 [6]). For any �nite sequence Λ = (λi)
n
i=1 λi ≤

n− i+ 1,∀i 6= n and λn = 1.

Proof. Let S = {s1, s2, s3, ..., sn} be a subset of N and Λ = {λ1, λ2, λ3, ..., λk}
be its frequency sequence, where λi is the number of times i appears as a

di�erence of elements in S. Since k is the largest di�erence, λk must be 1

because there is only one largest di�erence (which is sn − s1). Similarly, λk−1

can be atmost 2 second largest di�erences sn−1−s1 and sn−s2. Hence k−1 ≤ 2.

Similar arguments give the results for λk−3, λk−4, ..., λ1.

Theorem 4. (Theorem 8 [6]). A �nite sequence {λi}ki=1, where λi = 1 and

k ≥ 10 does not allow the existence of a generalized frequency set.

Proof. Let us try to construct a g.d.s. S with a frequency sequence λi = 1,

where k ≥ 10. Let us then take frequency λk = 1. Based on that we know that

1 and k + 1 must be in S. Then the next two elements of S could be either 2

or k − 1. When we take 2 as the next element of S, we will need a di�erence

k − 2, so for the next step we will have following possibilities:

(1) 1 + (k − 2) = k − 1 ∈ S
(2) 2 + (k − 2) = k ∈ S
(3) k + 1− (k − 2) = 3 ∈ S
The third options is impossible: 3 cannot be an element in S, because that

would require 1 as a di�erence of (2 − 1) and (3 − 2) to be present at least

twice in Λ. Also the second option would require k to be present twice. Only

the �rst option is possible. So we have S ⊃ {1, 2, k − 1, k + 1} and D(S) ⊃
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{1, 2, k − 3, k − 2, k − 1, k}. The next di�erence we could add could be k − 4,

which gives us following options:

(1) 1 + (k − 4) = k − 3 ∈ S
(2) 2 + (k − 4) = k − 2 ∈ S
(3) k − 1 + (k − 4) = 3 ∈ S
(4) k + 1− (k − 4) = 5 ∈ S
This time the �rst three options would lead to multiple di�erences and thus to

violation of the de�nition of our g.d.s., so only last option is plausible. So S ⊃
{1, 2, 5, k−1, k+1} and D(S) ⊃ {1, 2, 3.4, k−6, k−4, k−3, k−2, k−1, k}. So
we are missing a di�erence k−5, but by trying to add this di�erence we violate

the conditions of our g.d.s., because we would found duplicate di�erences:

(1) 1 + (k − 5) = k − 4 ∈ S
(2) 2 + (k − 5) = k − 3 ∈ S
(3) 5 + (k − 5) = k ∈ S
(4) k − 1− (k − 5) = 4 ∈ S
(5) k + 1− (k − 5) = 6 ∈ S
Thus, we cannot move on to constuct a �ve-element set which has a frequency

sequence consisting entirely of ones. The set S = {1, 2, 5, 7} has the frequency
sequence Λ = (1, 1, 1, 1, 1, 1). No set consisting of more than four elements can

have a frequency sequence consisting entirely of ones.

1.3 Algorithms for construction of �nite g.d.s

For construction of �nite g.d.s. from frequency sequence, we could try to �nd

the g.d.s. by di�erent approaches. Basic algorithm could take an integer to

be the lowest element in g.d.s. and then choose the �rst non-zero element of

frequency sequence and by adding it to the �rst element of g.d.s. generate the

next g.d.s. element. Each new element must satisfy condition of having di�er-

ences to any previous elements within unused multiset of di�erences. If a new

element does not satisfy this condition, other element is chosen by backtrack-

ing. This process would be very time consuming, since the input sizes grow

quadratically. Stefanak [9] described two other approaches that could be used

in �nding �nite generalized di�erence sets. For the introduction of the algo-

rithms, it is useful to de�ne speci�c set of di�erences: the base di�erences are

the di�erences between neighboring elements in ordered generalized di�erence

set, and the slope di�erences are the di�erences between the largest element

and any other element. The names are derived from pyramid representation

of visualization of di�erences in [9].
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Imagine the elements of B as base bricks of the pyramid. We shall put other

elements of D on top of them in such a fashion that the element dt = bi+...+bj

would be on top of the elements dm = bi + ... + bj−1 and dn = bi+1 + ... + bj

where bi, bj ∈ B = {b1, ..., bn}; i < j ≤ |B|.
The representation can be best shown on an example in Figure X. Given a

generalized di�erence set S = {1, 2, 4, 7, 14}, we align the base di�erences, e.g.

di�erences between neighboring elements of g.d.s., as the base of a pyramid.

In our example, the base di�erences are B = {1, 2, 3, 7}. Next level of the

pyramid would be constructed by di�erences between the �rst and the third

element, the second and the fourth, etc. When we build the pyramid all the

way up, we would get all the di�erences of g.d.s. and the bricks furthest right

at each level of the pyramid de�ne the slope di�erences, e.g. the di�erences

between the highest element, 14 in our example, and each other element in

g.d.s., consisting the set of slope di�erences {7, 10, 12, 13}.

Figure 1.2: Example of pyramid visualization of g.d.s. and its di�erence set.

The set of base di�erences is in yellow B = {1, 2, 3, 7} and the set of slope

di�erences is in blue {7, 10, 12, 13}.

Base on this representation of g.d.s. and di�erence set, [9] introduced two

algorithms to optimize construction of g.d.s.: the base �nding algorithm and

the slope �nding algorithm.

The base �nding algorithm, as the name suggests, is trying to construct

the g.d.s. by identifying the set of base di�erences �rst. Knowing the base set

as an ordered list, we can choose a starting integer and exactly construct the

whole di�erence set, either by adding or subtracting base di�erences starting

with the �rst element. [9] therefore de�nes several conditions that a set of base

di�erences must ful�l.

Extrapolating from theorem 6, we can calculate the number of elements in

the set of base di�erences.
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Theorem 5. (Theorem 4 [9]). The size of the set of base di�erences |B|

is de�ned as |D| = (|B|+1)*|B| / 2, where |D| is the size of its generalized

di�erence set.

Proof. From Theorem 6, the number of all di�erences is
(
n
2

)
, where n is number

of elements in g.d.s. and the number of elements in set of base di�erences is

n-1 as the number of gaps between n elements of g.d.s. Therefore

|D| = n =

(
n

2

)
=
n(n− 1)

2
=
|B|+ 1)|B|

2

Then we can de�ne necessary condition for each element of the set of all

di�erences D derived from the associative property of addition.

Theorem 6. (Theorem 5 [9]). Every element of the set of all di�erences D

can be described by the set of base di�erences B as D = {d|d =
∑j

k=i bk}

Stefanak [9] further describes three other conditions for reducing the num-

ber of candidates for set of base di�erences:

Theorem 7. (Theorem 6 [9]). For every element d =
∑j

k=i bk, there are at

least j − i di�erent pairs of elements d′1, d
′
2 such that d′1 + d′2 = d.

Theorem 8. (Theorem 7 [9]). ∀b ∈ B, there are at least |B| -1 elements

p ∈ D such that b+ p ∈ D.

Theorem 9. (Theorem 8 [9]). For any set of di�erences D, the �rst element

of B (and last of reverse(B)) will be equal to the di�erence of the largest and

the second largest element of D.

Proofs for these theorems can be found in [9].

The base �nding algorithm consists of the following steps:

1. Create a subset M of D, consisting of those elements of D that cannot

be expressed as a sum of other elements of D.

2. Find every subset B0 of D, that contains every element from M and

where
∑
B0 = max(D) and put them at the beginning of a stack (depth-

�rst search).

3. Get the �rst element of a stack. If any permutation of B0 creates a

di�erence bag, return this permutation. Else, get the next candidate

from the stack until the stack is empty.
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The slope �nding algorithm in [9] on the other hand, is trying to con-

struct the g.d.s. by identifying the slope. It starts with the peak element and

tries to divide it between base element and a slope element. Then follows with

further dividing the slope element, until it gets enough elements for the base

set. If at any point the algorithm comes to an non-existing or non-plausible

element, it backtracks to previous step. Unlike the base �nding algorithm, the

slope �nding algorithm populates an ordered list of base di�erences

Variables: a stack of partial results, dnext as element to be divided to

possible slope and base members, B0 as possible base.

1. Insert a partial result consisting of empty possible base and a peak ele-

ment as the next divided element dnext into a stack.

2. If a stack is not empty, take the �rst Partial result, else inputed sequence

is not a frequency sequence.

3. If size of the possible base + 1 is equal to the size of a base list then

jump to 4, else jump to 5.

4. Add the divided element to the possible base and check if it constructs a

set of di�erences equal to a bag of di�erences. If yes, return it as result,

else go to 2.

5. For every two elements e1, e2 ∈ Dsuch that e1 + e2 = dnext, add 2 new

partial results where dnext = e1, B0 = B0+e2 and dnext = e2, B0 = B0+e1

to the head of the stack. Then go to 2.

Since every element of the bag of di�erences can be expressed as d =
∑k=i

j bk

where i ≤ j, bk ∈ B, there exists at least j − i − 1 di�erent pairs of elements

with a sum equal to d. In this case, algorithm is looking for the elements e1

and e2 such that e1 is from the base and e2 lies on the side of �pyramid�. But

since we can't predict which pair that is, backtracking is needed. If we were

to divide peak element to the number of elements equal to base size, we will

end up with the base �nding algorithm (2.3).

When comparing the base and slope �nding algorithms, Stefanak [9] found

that the slope �nding algorithm is far superior to the base �nding algorithm

for any input. The reason for the superiority is the fact, that slope �nding

algorithm identi�es ordered list of base di�erences.
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