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Dense sentence embeddings, such as those from Sentence-BERT, are a
cornerstone of modern NLP, powering tasks from semantic search to clustering.
However, recent work [1] suggests these dense vectors face a representational
capacity bottleneck, limiting their ability to distinguish between a growing
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Sparse embeddings (e.g., SPLADE) offer a powerful alternative, aligning well
with traditional search indices. However, these methods typically generate
sparse vectors by repurposing Masked Language Model (MLM) predictions to
assess vocabulary token importance, thereby tying sparse embeddings to the
original vocabulary tokens.

The main goal of the thesis is to design and evaluate a sparse pooling layer for
BERT-like models that directly learns to construct a sparse sentence embedding
from individual token embeddings without using the MLM prediction head.
[1] Weller, Orion, et al. "On the theoretical limitations of embedding-based
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Introduction

Sentence embeddings have become an essential component of modern Natural Language
Processing and represent a significant milestone in the field of text understanding.
Their ability to map sentences into fixed dimensional vector spaces, where semantic
similarity corresponds to geometrical proximity, has opened new possibilities in se-
mantic search, information retrieval, text clustering, and question answering systems.
Models like Sentence-BERT [8], built upon transformer architectures, have demon-
strated that neural encoders can produce high-quality dense vector representations
that capture semantic meaning effectively. Their widespread deployment across vari-
ous domains, from customer support chatbots to academic search engines, highlights
their growing importance and potential. Despite their impressive capabilities, however,
dense sentence embeddings face several challenges, one of the most pressing being the
representational capacity bottleneck.

The representational capacity bottleneck refers to a fundamental limitation of dense
vector representations, as the number of distinct semantic concepts that need to be
distinguished grows, the ability of fixed-dimensional dense vectors to reliably separate
them declines. This phenomenon has been recently formalized in theoretical work
by Weller et al. [13], who demonstrate that embedding based retrieval systems face
inherent limitations when scaling to large document collections. The issue becomes par-
ticularly relevant in large-scale retrieval scenarios where millions of documents must
be differentiated based on subtle semantic distinctions. In such settings, dense embed-
dings may struggle to maintain sufficient selective power, leading to degraded retrieval
performance and reduced precision different applications.

Given the described limitations and the increasing scale of modern retrieval sys-
tems, exploring alternative representation strategies is a crucial task for improving
the reliability and scalability of semantic search. Sparse embeddings offer a com-
pelling alternative to dense representations. Unlike dense vectors where all dimensions
carry information, sparse embeddings concentrate meaning in a small number of ac-
tive dimensions, with most values being exactly zero. Methods like SPLADE |[2] have
demonstrated that learned sparse representations can achieve competitive or even supe-
rior performance on retrieval benchmarks while maintaining computational efficiency.

However, current approaches to learning sparse sentence embeddings typically rely on
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repurposing the Masked Language Model prediction head, which ties the sparse repre-
sentation to the original tokenizer vocabulary.

The goal of this thesis is to design and evaluate a sparse pooling layer for BERT-like
models that directly learns to construct a sparse sentence embedding from individual
token embeddings, without using the Masked Language Model prediction head. Specif-
ically, we hypothesize that a learnable sparse pooling mechanism can produce sentence
embeddings that are both genuinely sparse and semantically meaningful, while being
independent of vocabulary based projections. This sparsity should emerge through
learned dimension selection at the embedding level rather than through token impor-

tance evaluation over the vocabulary.
FINISH UP HERE BASED ON THE WHOLE THESIS



Chapter 1
From Words to Sentences

Before we can represent entire sentences as vectors, we must first understand how indi-
vidual pieces of text are processed by neural language models. This chapter introduces
the fundamental concepts of tokenization and embeddings, which form the foundation
for all modern sentence representation methods. We begin with tokenization, the pro-
cess of breaking text into discrete units, then examine how these units are transformed
into continuous vector representations. Finally, we trace the evolution from static word
embeddings to contextual embeddings and discuss the challenge of aggregating token

representations into sentence-level embeddings.

1.1 Tokenization

Neural language models do not process raw text directly. Instead, they operate on
discrete units called tokens [12, 11]. A token may represent a complete word, a subword
fragment, a punctuation mark, or a special character such as a newline. The process
of splitting input text into such units is called tokenization, and it represents the first
and arguably one of the most critical steps in any text processing pipeline [6].

When users interact with large language models through web interfaces, they ob-
serve that responses are generated incrementally rather than all at once. This incre-
mental generation reflects the fundamental nature of these models: they predict and
produce one token at a time, with each new token conditioned on all previous tokens
[12, 11]. Understanding tokenization is therefore essential for understanding how these

models process and generate language.

1.1.1 From Text to Tokens

The way we divide text into tokens significantly impacts model performance, vocab-
ulary size, and the ability to handle different languages and domains [10, 4]. Several

approaches exist, each with distinct trade-offs.
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Word-level tokenization. The simplest approach to tokenization is splitting text
by whitespace [10]. This method treats each space-separated unit as a token, which
aligns with our intuitive understanding of words. However, this approach has significant
drawbacks. Punctuation marks become attached to adjacent words, so “hello!” and
“hello” would be treated as completely different tokens. More problematically, the
resulting vocabulary can grow extremely large, as every unique word form requires its
own entry [10, 7, 4].

A large vocabulary creates several problems. First, it increases memory require-
ments, as each token needs its own embedding vector. Second, rare words may not have
enough training examples to learn good representations. Third, the model cannot han-
dle words it has never seen during training, a problem known as the out-of-vocabulary
(OOV) problem [10, 7].

An improvement is to split on both whitespace and punctuation, treating punc-
tuation marks as separate tokens [10|. This reduces vocabulary size while preserving
meaningful distinctions between words and their surrounding punctuation. Further re-
finements include rule-based tokenization, which handles language-specific phenomena
such as contractions [10, 4, 7|. In English, for example, treating the contraction suffix
“n’t” as a separate token allows words like don’t, won’t, and can’t to share common com-
ponents rather than requiring entirely separate vocabulary entries for each contracted

form.

Character-level tokenization. At the opposite extreme, character-level tokeniza-
tion reduces the vocabulary to just the alphabet and special characters [10, 4]. For
English, this means a vocabulary of roughly 26 letters plus digits, punctuation, and
special symbols. This approach completely eliminates the out-of-vocabulary problem,
as any text can be represented as a sequence of known characters.

However, individual characters carry little semantic meaning on their own [10, 7].

W gk
1 1
)

The word “king” as a sequence of four character tokens ( , “g”) loses the rich
semantic associations that the complete word carries. Models must learn to compose
characters into meaningful units, which requires processing much longer sequences
and makes training more difficult. Character-level models can be useful for specific
applications such as spelling correction, but they generally underperform word-level or

subword-level approaches for tasks requiring semantic understanding [10, 7].

1.1.2 Subword Tokenization

Modern language models typically use subword tokenization, which strikes a balance
between word-level and character-level approaches [10, 4]. The key insight is that while

we want to preserve whole words when possible, we can decompose rare or complex
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words into smaller meaningful units. This keeps the vocabulary manageable while
maintaining semantic information and handling previously unseen words.

For example, the word “woodcutter” might be split into “wood” and “cutter”, pre-
serving the semantic components (something related to wood, something that cuts)
while avoiding the need for a separate vocabulary entry for this compound word. Sim-
ilarly, “unhappiness” might become “un”, “happi”, and “ness”, capturing the negation
prefix, the root, and the noun-forming suffix. The target vocabulary size is typically
around 30,000 tokens for base models, though this can vary depending on the applica-
tion and the diversity of the training data [10, 4].

Byte-Pair Encoding. The most widely used subword algorithm is Byte-Pair En-
coding (BPE) [9, 4, 10, 3|. Originally developed as a data compression algorithm,
BPE was adapted for neural machine translation and has since become the standard
tokenization approach for transformer models.

BPE works through an iterative merging process. Starting from individual charac-
ters, the algorithm counts all adjacent pairs of tokens in the training corpus and merges
the most frequent pair into a new token. This process repeats until reaching a target
vocabulary size. For example, if “t” and “h” frequently appear together, they would be
merged into “th”. Later iterations might merge “th” and “e” into “the” if this trigram
is common enough.

The result is a vocabulary that includes common words as single tokens, while rare
words are decomposed into frequent subword units. Importantly, the merge opera-
tions are learned from data, so the tokenization automatically adapts to the statistical

properties of the training corpus [4, 10, 3].

Other subword algorithms. Several variants of subword tokenization exist. Word-
Piece [14], used by BERT, is similar to BPE but selects merges based on likelihood
improvement rather than raw frequency. SentencePiece [5] treats the input as a raw
stream of Unicode characters, avoiding the need for language-specific pre-tokenization
rules. Unigram language modeling |?] takes a different approach, starting with a large
vocabulary and iteratively removing tokens that least affect the likelihood of the train-

ing data.

1.1.3 Implications of Tokenization Choices

The choice of tokenization strategy affects model performance in subtle but important
ways [1]. Poor tokenization can cause difficulties that might mistakenly be attributed
to the model architecture rather than the preprocessing step.

One well-known issue is that tokenization can make simple arithmetic surprisingly
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difficult for language models [1]. Numbers may be split inconsistently (“123” might
become “12” and “3” in one context but “1” and “23” in another), making it hard for the
model to learn numerical relationships. Similarly, spelling tasks become challenging
when words are split into subword units that do not align with individual letters.
Non-English languages often suffer from less efficient tokenization [6]. Because
most tokenizers are trained primarily on English text, they develop subword units
optimized for English morphology. Other languages, especially those with different
writing systems or richer morphology, may require more tokens to represent the same

content, effectively reducing the model’s capacity for those languages.
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Sparse embeddings



Chapter 3
Experiments

Before developing innovative sparse pooling mechanisms, it is essential to establish a
solid experimental foundation. This chapter describes the implementation of a bench-
marking framework that allows systematic comparison of different pooling strategies
for sentence embeddings. We begin with an overview of the experimental setup, then
describe the architecture of each pooling layer, and finally present the training and

evaluation pipeline. This framework serves as the basis for all experiments.

3.1 Experimental Setup

3.1.1 Base Encoder

We use bert-base-uncased as the base encoder for all experiments. This model
consists of 12 transformer layers and produces 768-dimensional token embeddings. By
keeping the encoder constant across all experiments, we ensure that any differences in
performance can be attributed entirely to the pooling strategy. The only component

that varies between experiments is the pooling layer.

3.1.2 Training Data

For training, we use the MNLI (Multi-Genre Natural Language Inference) dataset.
Specifically, we extract sentence pairs labelled as entailment, that is, cases where one
sentence logically follows from another. These pairs are semantically related and pro-
vide a good training signal for learning sentence similarity. We use up to 50,000 such
pairs for training.

We employ Multiple Negatives Ranking Loss for training. The idea is straightfor-
ward, for each pair of related sentences, the model should produce embeddings that
are more similar to each other than to embeddings of unrelated sentences in the same

batch. This contrastive objective encourages the model to learn meaningful sentence
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representations.

3.1.3 Evaluation

We evaluate all methods on the STS-B (Semantic Textual Similarity Benchmark) vali-
dation set, which contains 1,500 sentence pairs with human-annotated similarity scores
ranging from 0, which represents complete difference, to 5 what represents essential
equivalence.

Our primary metric is Spearman correlation, which measures how well the ranking
of pairs by the model matches the human ranking. We also report Pearson correlation,
which measures the linear correlation between model scores and human scores. For
sparse methods, we additionally compute sparsity statistics, including the percentage of

dimensions that are zero and the average number of active dimensions per embedding.

3.2 Pooling Strategies

We compare three categories of pooling strategies. Baseline methods without learnable

parameters, learnable pooling layers, and sparse pooling layers.

3.2.1 Baseline Pooling

These strategies have no learnable parameters and serve as reference points.

Mean pooling computes the average of all token embeddings. This is often the
default choice and works surprisingly well in practice. CLS pooling uses the embed-
ding of the special [CLS] token as the sentence representation. While this token was
designed for classification tasks, it is sometimes used for sentence-level representations.
Max pooling takes the element-wise maximum across all token embeddings, which

can capture the most prominent features.

3.2.2 Learnable Pooling

These strategies have parameters that are trained alongside or instead of the encoder.

Attention Pooling. This layer learns to assign different weights to different tokens,
recognizing that some words are more important for the sentence meaning than others.
It consists of a single linear layer that computes an importance score for each token.
These scores are normalized using softmax, and the final embedding is a weighted

average of token embeddings according to these learned weights.
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Formally, given token embeddings H = [hy, ..., h,] where h; € R?, attention pool-

ing computes:

exp(a;)
G = =n 7/
Zj:l exp(a;)

n

=1

(3.2)

where w € R? is a learnable weight vector and s is the resulting sentence embedding.

Weighted Pooling. Instead of weighting tokens, this approach learns weights for
each dimension of the embedding. It first computes the standard mean of token em-
beddings and then multiplies each dimension by a learned weight. The hypothesis
is that some dimensions may be more useful than others for capturing sentence-level

semantics.

Hierarchical Pooling. This more complex approach uses two levels of attention.
First, a multi-head self-attention layer allows tokens to exchange information with
each other, producing enhanced token representations. Then, a global attention mech-
anism combines these enhanced representations into a single sentence embedding. This
architecture can capture more complex interactions between tokens before aggregating
them.

3.2.3 Sparse Pooling

These strategies produce embeddings where most dimensions are exactly zero.

Top-K Sparse Pooling. After computing a dense embedding through mean pooling
and a learned projection, this layer retains only the K dimensions with the largest
absolute values. All other dimensions are set to zero. We experiment with K €
{50, 100,200} out of the total 768 dimensions.

The forward pass proceeds as follows. First, we compute the mean of token em-
beddings to obtain a dense representation. This representation is then passed through
a learned linear projection, which we call the activation head. Next, we identify the
K dimensions with largest absolute values and zero out all other dimensions. This ap-
proach is simple but effective, forcing the model to concentrate information in a small

subset of dimensions.
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3.3 Implementation Details

3.3.1 Project Structure

The implementation is organized into several Python modules within a src direc-
tory. The learnable_pooling.py file contains all pooling layer definitions, while
modeling.py handles model assembly. The log_results.py module defines the re-
sult data structure and handles appending results to CSV files, while eval_stsb.py
implements the evaluation script. Training is handled by train_sparse_pooling.py.
A shell script run_full_experiment.sh runs all experiments. Results are stored in a
results directory containing results. csv for the main results table and sparsity_stats. json

for sparsity statistics. Trained models are saved in an outputs directory.

3.3.2 Pooling Layer Implementation

All learnable pooling layers are implemented as PyTorch modules in 1earnable_pooling.py.
Each layer takes token embeddings and an attention mask as input and returns a sen-
tence embedding.

Code seen in 3.1 shows the implementation of attention pooling. The module
contains a single linear layer that projects each token embedding to a scalar attention
score. During the forward pass, these scores are computed for all tokens, masked to
ignore padding tokens, normalized with softmax to obtain attention weights, and finally

used to compute a weighted sum of token embeddings.

Algorithm 3.1: Attention pooling implementation

class AttentionPooling(nn.Module):
def __init__(self, hidden_dim):
super () .__init__()

self.attention = nn.Linear (hidden_dim, 1)

def forward(self, token_embeddings, attention_mask):
scores = self.attention(token_embeddings) .squeeze(-1)
scores = scores.masked_fill(
attention_mask == 0, float(’-inf?’)
)
weights = F.softmax(scores, dim=1)
sentence_embedding = torch.bmm(
weights.unsqueeze(1), token_embeddings
) .squeeze(1)

return sentence_embedding
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The sparse pooling implementation, shown in 3.2, includes a learned projection
layer and top-K selection. The module first computes mean pooling over the token
embeddings, accounting for the attention mask to ignore padding. The result is passed
through a linear projection layer. Finally, only the K dimensions with the largest
absolute values are retained, while all other dimensions are set to zero using scatter

operations.

Algorithm 3.2: Sparse top-K pooling implementation

class SparsePooling(nn.Module):
def __init__(self, hidden_dim, k=None):
super () . __init__()
self.k = k if k is not None else hidden_dim // 10

self.activation_head = nn.Linear(hidden_dim, hidden_dim)

def forward(self, token_embeddings, attention_mask):
mask_expanded = attention_mask.unsqueeze(-1).float()
sum_emb = torch.sum(
token_embeddings * mask_expanded, dim=1
)
sum_mask = torch.clamp(
mask_expanded.sum(dim=1), min=1le-9
)
dense_embedding = sum_emb / sum_mask
activation_scores = self.activation_head(dense_embedding)
topk_vals, topk_idx = torch.topk(
torch.abs(activation_scores), k=self.k, dim=1
)
sparse_embedding = torch.zeros_like(activation_scores)
sparse_embedding.scatter_(
1, topk_idx,
activation_scores.gather(1l, topk_idx)
)

return sparse_embedding

3.3.3 Model Assembly

The modeling.py file connects the BERT encoder with pooling layers to create a com-
plete SentenceTransformer model. The main function build_sbert_from_hf accepts
a model name and pooling type, and returns a ready-to-use model.

For standard pooling strategies such as mean, CLS, and max pooling, we use the

built-in implementation from the sentence-transformers library. For custom pooling
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layers, we create a CustomPoolingModule wrapper that ensures compatibility with the

SentenceTransformer API and handles saving and loading of model weights.

3.3.4 Training Pipeline

The training script train_sparse_pooling.py implements the complete training pro-
cedure. The process begins by loading the BERT model and attaching the selected
pooling layer. Next, entailment pairs are extracted from the MNLI dataset. The
model is then trained using Multiple Negatives Ranking Loss, with periodic evaluation
on the STS-B validation set. Finally, the trained model is saved to disk.

The script supports two training modes. In the frozen encoder mode, only the
pooling layer is trained while BERT weights remain fixed. This is faster and tests
whether the pooling layer alone can improve results. In full training mode, both the
pooling layer and BERT encoder are trained together, allowing the encoder to adapt
to the new pooling strategy.

Training hyperparameters used in our experiments are as follows. We use a batch
size of 64 and a learning rate of 2 x 107°. The training set consists of 50,000 pairs
from MNLI, and we train for one epoch with a warmup period covering 10% of training

steps.

3.3.5 Evaluation Pipeline

The evaluation script eval_stsb.py measures embedding quality on the STS-B bench-
mark. The process starts by loading the model, either from Hugging Face or a trained
checkpoint. All sentences from STS-B are then encoded, and cosine similarity is com-
puted between each sentence pair. Spearman and Pearson correlations with human
judgments are calculated, and for sparse methods, sparsity statistics are also com-
puted. All results are logged to a CSV file.

Sparsity statistics include the sparsity ratio, which represents the percentage of
zero dimensions, the average number of non-zero dimensions, and the Gini coefficient

of activation magnitudes.

3.4 Summary

This chapter presented the implementation of a benchmarking framework for compar-
ing pooling strategies in sentence embeddings. We described the experimental setup,
including the base encoder, training data, and evaluation metrics. We then detailed the
architecture of baseline, learnable, and sparse pooling layers, along with the complete

training and evaluation pipeline.
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This framework establishes a reproducible baseline against which we can measure
the impact of future improvements. In the following chapters, we will use this infras-
tructure to evaluate innovative sparse pooling mechanisms and analyse the trade-offs
between sparsity and embedding quality. Any new method we develop will be compared

directly against the baselines established here.



Conclusion

See file zaver.tex for information about recommended contents of the Conclusion

chapter.
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Appendix A: Contents of the Online
Appendix

The online appendix attached to this work contains the source code data files used in
the analysis. The source code is available also at http://mojadresa.com/.

Ak uznéate za vhodné, mézete tu aj podrobnejsie rozpisat obsah elektronickej prilohy,
pripadne poskytnit navod na instalaciu programu. Alternativou je tieto informacie

zahrnit do samotnej prilohy, alebo ich uviest na obidvoch miestach.
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http://mojadresa.com/

Appendix B: User Manual

V tejto prilohe uvadzame pouzivatel'ska prirucku k néasmu softvéru. Tu by dalej
pokracoval text prirucky. V préci nie je potrebné uvadzat pouZivatelski prirucku,
pokial je pouZivanie softvéru intuitivne alebo ak vysledkom préace nie je uceleny soft-
vér uréeny pre pouZzivatelov.

V prilohdch mozete uviest aj dalsie materialy, ktoré by mohli posobit rusivo v
hlavnom texte, ako napriklad rozsiahle tabulky a podobne. Materialy, ktoré su prilis

dlhé na ich tla¢, odovzdajte len v elektronickej prilohe.
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