e—=

LLLLE Comenius University in Bratislava

Sparse Sentence
Embeddings

Bc. Tomas Varga
Supervisor: Mgr. Vladimir Boza, PhD.

Introduction & Motivation

Sentence Embeddings Applications

« Map sentences — fixed dimensional « Semantic search engines
vectors * Information retrieval

« Semantic similarity = geometric proximity « Text clustering & classification

Foundation of modern NLP * Question answering systems

Built on transformer architectures, produces high-quality dense vector representations that effectively
capture semantic meaning

Background: From Words to
Sentences

Tokenization: The First Critical Step

Neural models don't process raw text. They operate on discrete units called tokens

Word-level Character-level Subword (BPE)

Pros:
Pros: Pros:
o . : Balanced approach, handles rare
Intuitive, semantic meaning Small vocabulary
words
Cons: Cons:
Cons:

Large vocabulary Long sequences, less semantic Standard for modem LLMs

The Problem

As the number of distinct semantic concepts grows, fixed-dimensional dense vectors
struggle to reliably separate them.
Weller et al. (2025)

Large-Scale Retrieval Theoretical Limitations
* Millions of documents * Inherent scaling limits

* Subtle semantic distinctions * Reduced precision
* Degraded retrieval performance * Fixed dimensionality constraint

The Alternative: Sparse
Embeddings

Dense vs Sparse

Dense Embeddings Sparse Embeddings

[0.23, -0.45, 0.12, 0.87, -0.33, ...] [0, 0, ©.92, @0, @0, 1.45, 0, ...]

All dimensions carry information Most values are exactly zero

Uses Masked Language Model (MLM) predictions
Assesses vocabulary token importance
Limitation: Ties sparse embeddings to original vocabulary tokens

Our Approach: Thesis Goal

Hypothesis

o Learnable sparse pooling can produce sparse embeddings
e Embeddings remain semantically meaningful

e Independence from vocabulary-based projections

Experimental Setup

. bert-base-uncased . STS-B validation set
. MNLI dataset)

. 12 transformer layers . Entailment pairs onl . 1,500 sentence pairs

. 768-dim embeddings P y . Spearman correlation

. Constant across experiments SEUIHERY el . Sparsity statistics

Pooling Strategies

Baseline

. Mean pooling: average all tokens
. CLS pooling: use [CLS] token
. Max pooling: element-wise maximum

Learnable Pooling

. Attention: learned token weights
. Weighted: learned dimension weights
. Hierarchical: multi-head self-attention

> aihi

Attention Pooling Formula: a; = W'h; > a; = softmax(ai) > S

where w is learnable weight vector, h are token embeddings, s is sentence embedding

Results & Analysis
I O S

Attention (full) Learnable
Hierarchical (frozen) Learnable
Max pooling Baseline
Mean pooling Baseline
Sparse Top-K (k=200) Sparse
Sparse Top-K (k=50) Sparse
CLS pooling Baseline

Key Findings
Best: Attention (full training)

Spearman 0.811. Significantly outperforms all other methods

0.811 0%
0.694 0%
0.621 0%
0.593 0%
0.593 74.0%
0.580 93.5%
0.317 0%

Sparse: Competitive at 74% sparsity

Top-K (k=200) matches Mean pooling while using only 26% of
dimensions

Conclusion & Future Work

« Implemented benchmarking framework

« Compared baseline, learnable, sparse pooling
« Top-K sparse pooling achieves sparsity

« Trade-off: sparsity vs quality

» Different sparsity mechanisms
* Larger-scale evaluation
« Comparison with SPLADE variants

Thank you for your attention

