
Comenius University in Bratislava

Sparse Sentence
Embeddings
Master's Thesis

Bc. Tomáš Varga
Supervisor: Mgr. Vladimír Boža, PhD.

2026

Introduction & Motivation
Sentence Embeddings

• Map sentences → fixed dimensional
vectors

• Semantic similarity = geometric proximity
• Foundation of modern NLP

Applications

• Semantic search engines
• Information retrieval
• Text clustering & classification
• Question answering systems

Key Models: Sentence-BERT (2019)

Built on transformer architectures, produces high-quality dense vector representations that effectively
capture semantic meaning

Background: From Words to
Sentences
Tokenization: The First Critical Step

Neural models don't process raw text. They operate on discrete units called tokens

Word-level

Pros:
Intuitive, semantic meaning
Cons:
Large vocabulary

Character-level

Pros:
Small vocabulary
Cons:
Long sequences, less semantic

Subword (BPE)

Pros:
Balanced approach, handles rare
words
Cons:
Standard for modern LLMs

The Problem
Representational Capacity Bottleneck

As the number of distinct semantic concepts grows, fixed-dimensional dense vectors
struggle to reliably separate them.
Weller et al. (2025)

Large-Scale Retrieval

• Millions of documents
• Subtle semantic distinctions
• Degraded retrieval performance

Theoretical Limitations

• Inherent scaling limits
• Reduced precision
• Fixed dimensionality constraint

The Alternative: Sparse
Embeddings
Dense vs Sparse

Dense Embeddings

[0.23, -0.45, 0.12, 0.87, -0.33, ...]

All dimensions carry information

Sparse Embeddings

[0, 0, 0.92, 0, 0, 1.45, 0, ...]

Most values are exactly zero

Current Approach: SPLADE

• Uses Masked Language Model (MLM) predictions
• Assesses vocabulary token importance
• Limitation: Ties sparse embeddings to original vocabulary tokens

Our Approach: Thesis Goal
Design and evaluate a sparse pooling layer for BERT-like models

Directly learns to construct sparse sentence embeddings from token embeddings without using
the MLM prediction head

Hypothesis
1 Learnable sparse pooling can produce sparse embeddings

2 Embeddings remain semantically meaningful

3 Independence from vocabulary-based projections

4

Experimental Setup
Base Encoder

• bert-base-uncased
• 12 transformer layers
• 768-dim embeddings
• Constant across experiments

Training Data

• MNLI dataset
• Entailment pairs only
• 50,000 training pairs

Evaluation

• STS-B validation set
• 1,500 sentence pairs
• Spearman correlation
• Sparsity statistics

Hyperparameters: Batch size: 64 | Learning rate: 2×10⁻⁵ | 1 epoch | 10% warmup

Pooling Strategies
Baseline

• Mean pooling: average all tokens
• CLS pooling: use [CLS] token
• Max pooling: element-wise maximum

Learnable Pooling

• Attention: learned token weights
• Weighted: learned dimension weights
• Hierarchical: multi-head self-attention

Sparse Pooling (Our Focus)

Top-K Sparse Pooling

• Mean pool → Linear projection
• Keep only K largest dimensions
• Zero out all other dimensions
• K ∈ {50, 200} out of 768

Attention Pooling Formula: αᵢ = wᵀhᵢ → aᵢ = softmax(αᵢ) → s = Σ aᵢhᵢ

where w is learnable weight vector, h are token embeddings, s is sentence embedding

Results & Analysis
SparsitySpearmanTypeMethod

0%0.811LearnableAttention (full)

0%0.694LearnableHierarchical (frozen)

0%0.621BaselineMax pooling

0%0.593BaselineMean pooling

74.0%0.593SparseSparse Top-K (k=200)

93.5%0.580SparseSparse Top-K (k=50)

0%0.317BaselineCLS pooling

Key Findings

Best: Attention (full training)

Spearman 0.811. Significantly outperforms all other methods

Sparse: Competitive at 74% sparsity

Top-K (k=200) matches Mean pooling while using only 26% of
dimensions

Conclusion & Future Work
Summary

• Implemented benchmarking framework
• Compared baseline, learnable, sparse pooling
• Top-K sparse pooling achieves sparsity
• Trade-off: sparsity vs quality

Future Directions

• Different sparsity mechanisms
• Larger-scale evaluation
• Comparison with SPLADE variants

Thank you for your attention

