

Comenius University in Bratislava

Sparse Sentence Embeddings

Master's Thesis

Bc. Tomáš Varga

Supervisor: Mgr. Vladimír Boža, PhD.

2026

Introduction & Motivation

Sentence Embeddings

- Map sentences → fixed dimensional vectors
- Semantic similarity = geometric proximity
- Foundation of modern NLP

Applications

- Semantic search engines
- Information retrieval
- Text clustering & classification
- Question answering systems

Key Models: Sentence-BERT (2019)

Built on transformer architectures, produces high-quality dense vector representations that effectively capture semantic meaning

Background: From Words to Sentences

Tokenization: The First Critical Step

Neural models don't process raw text. They operate on discrete units called tokens

Word-level	Character-level	Subword (BPE)
<p>Pros: Intuitive, semantic meaning</p> <p>Cons: Large vocabulary</p>	<p>Pros: Small vocabulary</p> <p>Cons: Long sequences, less semantic</p>	<p>Pros: Balanced approach, handles rare words</p> <p>Cons: Standard for modern LLMs</p>

The Problem

Representational Capacity Bottleneck

As the number of distinct semantic concepts grows, fixed-dimensional dense vectors struggle to reliably separate them.

Weller et al. (2025)

Large-Scale Retrieval

- Millions of documents
- Subtle semantic distinctions
- Degraded retrieval performance

Theoretical Limitations

- Inherent scaling limits
- Reduced precision
- Fixed dimensionality constraint

The Alternative: Sparse Embeddings

Dense vs Sparse

Dense Embeddings

[0.23, -0.45, 0.12, 0.87, -0.33, ...]

All dimensions carry information

Sparse Embeddings

[0, 0, 0.92, 0, 0, 1.45, 0, ...]

Most values are exactly zero

Current Approach: SPLADE

- Uses Masked Language Model (MLM) predictions
- Assesses vocabulary token importance
- Limitation: Ties sparse embeddings to original vocabulary tokens

Our Approach: Thesis Goal

Design and evaluate a sparse pooling layer for BERT-like models

Directly learns to construct sparse sentence embeddings from token embeddings without using the MLM prediction head

Hypothesis

- 1 Learnable sparse pooling can produce sparse embeddings
- 2 Embeddings remain semantically meaningful
- 3 Independence from vocabulary-based projections

Experimental Setup

Base Encoder	Training Data	Evaluation
<ul style="list-style-type: none">• bert-base-uncased• 12 transformer layers• 768-dim embeddings• Constant across experiments	<ul style="list-style-type: none">• MNLI dataset• Entailment pairs only• 50,000 training pairs	<ul style="list-style-type: none">• STS-B validation set• 1,500 sentence pairs• Spearman correlation• Sparsity statistics

Pooling Strategies

Baseline

- Mean pooling: average all tokens
- CLS pooling: use [CLS] token
- Max pooling: element-wise maximum

Learnable Pooling

- Attention: learned token weights
- Weighted: learned dimension weights
- Hierarchical: multi-head self-attention

Sparse Pooling (Our Focus)

Top-K Sparse Pooling

- Mean pool → Linear projection
- Keep only K largest dimensions
- Zero out all other dimensions
- $K \in \{50, 200\}$ out of 768

$$\text{Attention Pooling Formula: } a_i = w^T h_i \rightarrow a_i = \text{softmax}(a_i) \rightarrow s = \sum a_i h_i$$

where w is learnable weight vector, h are token embeddings, s is sentence embedding

Results & Analysis

Method	Type	Spearman	Sparsity
Attention (full)	Learnable	0.811	0%
Hierarchical (frozen)	Learnable	0.694	0%
Max pooling	Baseline	0.621	0%
Mean pooling	Baseline	0.593	0%
Sparse Top-K (k=200)	Sparse	0.593	74.0%
Sparse Top-K (k=50)	Sparse	0.580	93.5%
CLS pooling	Baseline	0.317	0%

Key Findings

Best: Attention (full training)

Spearman 0.811. Significantly outperforms all other methods

Sparse: Competitive at 74% sparsity

Top-K (k=200) matches Mean pooling while using only 26% of dimensions

Conclusion & Future Work

Summary

- Implemented benchmarking framework
- Compared baseline, learnable, sparse pooling
- Top-K sparse pooling achieves sparsity
- Trade-off: sparsity vs quality

Future Directions

- Different sparsity mechanisms
- Larger-scale evaluation
- Comparison with SPLADE variants

Thank you for your attention