
Introduction to Data Analytics
Hadoop

András Varga
IBM Consulting

Bratislava, 2022

Contents

1 Introduction

2 Distributed File System

3 MapReduce

4 Hadoop

5 Efficient MapReduce Algorithms

6 Graphs in MapReduce

7 References

2 / 73

Introduction

Business Card

Definition

Apache Hadoop is Hadoop is one of the first big data processing
frameworks

Details:

Provides a distributed filesystem

A distributed execution framework

Built on top of commodity hardware

Open source

3 / 73

Introduction

Motivation, History and Trends

File System

Being replaced (e.g.
S3)

Data Processing
Framework

Replaced by Spark

Job Scheduling
Framework

Superseded (e.g.
Kubernetes, Mesos)

4 / 73

Introduction

Processing Big Volumes of Data

An abstraction of the processing:

fetch input from storage
load the data into memory
process the data
write back the results

Memory is cheap, compared to CPU time

In big volumes of data the network becomes a bottleneck

Fast network devices are expensive

It is cheaper to use commodity hardware, so failures are
anticipated

5 / 73

Distributed File System

Basics

The Distributed File System

A solution that addresses the challenges from the previous
slide

Google File System

Hadoop Distributed File System

6 / 73

Distributed File System

Basics

Terminology

Basic computation entities (computers, servers) are called
nodes

Cluster is a set of connected nodes working together and can
be viewed as a single system

Data center is a facility hosting computer systems

File operations are sometimes called mutations

7 / 73

Distributed File System

Basics

Properties I

The parts of the file system is built from cheap commodity
parts (usually on some linux OS)

As there may be several hundreds of nodes, failures are a
expected

Multi GB files are common, small files are rare

Possibly millions of files (smaller numbers of big files is
encouraged)

8 / 73

Distributed File System

Basics

Properties II

Appending files is more common than rewriting them

Sequential read is more efficient than seeks (searching specific
position in the file)

Multiple users can use the same system, concurrent file
changes can happen

Neither HDFS nor GFS present a general POSIX-compliant
API

File permissions in HDFS are only meant to prevent
unintended operations

9 / 73

Distributed File System

Google File System

Google File System

A single cluster consists of

Single GFS master node
Multiple chunkservers

Clients are accessing the cluster

Clients and chunkservers can run on the same nodes

Files are divided into fixed-size chunks (also called as blocks)
with a globally unique 64 bit chunk handle assigned by the
master (upon creation)

By default each chunk is stored in 3 replicas

Chunks are much bigger than usual OS block sizes (128 MB
default)

10 / 73

Distributed File System

Google File System

GFS Node Roles

GFS master

maintains all file system metadata (Access control, etc.)
garbage collection
chunk migration between chunkservers
HeartBeat communication between master and chunkserver to
collect its state

Client

implements the file system API and communicates with the
master and chunkservers to read or write data
interact with the master for metadata
data-bearing communication goes directly to the chunkservers

11 / 73

Distributed File System

Google File System

Overview of GFS

12 / 73

Distributed File System

Google File System

Overview of GFS

13 / 73

Distributed File System

Google File System

Overview of GFS

14 / 73

Distributed File System

Mutations

Metadata

Is kept in the memory of the master

Metadata contains:

the file and chunk namespaces
the mapping from files to chunks
the locations of each chunk’s replicas

The first two are stored on the hard drive with logging
mutations to an operation log

The master does not store chunk location

The master asks the chunkserver for chunk locations on
startup (or when new chunkserver is added)

15 / 73

Distributed File System

Mutations

Mutations

File namespace mutations (e.g., file creation) are atomic

Each (data) mutation is executed on all chunk replicas

The master grants a chunk lease to one of the replicas
(primary)

The primary is responsible for the serialization of multiple
concurrent mutations

Chunk version number is used by the master to distinguish
between up-to-date replicas and outdated ones (e.g.
chunkserver failure)

16 / 73

Distributed File System

Mutations

Mutation Example

17 / 73

Distributed File System

Mutations

Mutation Example With Unavailable Node

18 / 73

Distributed File System

Hadoop Distributed File System

HDFS

Namenode ! GFS Master

Datanode ! chunkserver

In HDFS the clusters are built from racks, which in turn are
built from nodes

19 / 73

Distributed File System

Hadoop Distributed File System

HDFS Cluster

• Node

• Rack

• Cluster

20 / 73

Distributed File System

High Availability

Failures of GFS Master/HDFS Namenode

Brewer’s CAP Theorem - in large-scale distributed systems,
simultaneously providing consistency, availability, and partition
tolerance is impossible

In this case partitioning is unavoidable

Real trade-off is between consistency and availability

In a single master setup the consistency is provided but
availability can not be guaranteed

The chunks are stored on multiple nodes, but the master is
not replaceable

A Master/Namenode is a single point of failure

Multiple Master nodes provide high availability

21 / 73

MapReduce

Basic Concept of MapReduce

A divide and conquer approach

If sub-problems are independent, they can be processed in
parallel

Independent sub-problems can be assigned to different workers
(nodes, processors, etc.)

The result of each independent worker needs to be combined
into the final result

22 / 73

MapReduce

Interaction with DFS

MapReduce does not necessarily require a distributed file
system, but it provides many advantages

DFS was not created solely for MapReduce Frameworks, the
basic concept is unrelated

DFS enables efficient speculative execution approach

23 / 73

MapReduce

Inspiration

Inspiring MapReduce

High-order functions - Functions which can take other
functions as arguments or return them as result

Two examples, both working on a list of values:
map

Takes a function f with one parameter as an argument
Applies f to all elements in a given list

fold

Takes a function g with two parameters as an argument + an
initial value
Applies g to the initial value and the first element on the list
Iteratively applies g to the last intermediate result and the
next element of the list

24 / 73

MapReduce

Inspiration

map-fold Example

Compute the sum of squares from the list

map function takes parameter λx .x2

fold function takes parameter λxλy .x + y

fold function has an initial value 0

25 / 73

MapReduce

Inspiration

Visualisation of map-fold

26 / 73

MapReduce

High-level Overview

High-level Overview of MapReduce

Consists of 2 steps over large datasets

First step: apply computation on datasets separately/in
parallel

Second step: apply aggregation over all precomputed
intermediate results

In MapReduce Framework programmers have to define the
user-specific computation and the user-specific aggregation
(like f and g from the map-fold example)

27 / 73

MapReduce

High-level Overview

Basic Data Structures

Basic data types

primitives: integers, floating points, strings, raw data, . . .
complex structures: tuples, lists, arrays, . . .

Key-value pairs built from basic data types

Examples:
Web pages Key - URLs Value - HTML content
Files Key - Filename Value - content
Graphs Key - Vertex Value - list of neighbors

28 / 73

MapReduce

Mappers and Reducers

Mappers and Reducers

The programmer defines a mapper and a reducer:

map: (k1, v1)→ [(k2, v2)]
reduce: (k2, [v2])→ [(k3, v3)]
where [. . .] denotes a list

Semantics:

The mapper is applied to every input key-value pair (split
across an arbitrary number of files) to generate an arbitrary
number of intermediate key-value pairs
The reducer is applied to all values associated with the same
intermediate key to generate output key-value pairs

29 / 73

MapReduce

Mappers and Reducers

MapReduce Schema

30 / 73

MapReduce

Mappers and Reducers

Technical Details

Reduce can be imagined as distributed ”group by”

Intermediate data arrives to each reducer in order, sorted by
the key

Intermediate key-value pairs are not preserved after the end of
the MapReduce job

Output key-value pairs are written persistently onto the file
system

The output usually appears as r files, where r is the number
of reducers

31 / 73

MapReduce

Execution Framework

The Execution Framework

The MapReduce Framework separates the code from
distributed processing (the execution framework)

The developer submits the job to the submission node of a
cluster

The execution framework (sometimes called the “runtime”)
takes care of everything else

32 / 73

MapReduce

Execution Framework

Scheduling - Motivation

Each MapReduce job is divided into tasks (Map task, Reduce
task,...)

In large jobs, the total number of tasks may exceed the
number of tasks that can run on the cluster concurrently

Therefore a task queue is needed

Coordination among tasks belonging to different jobs (and
users) is mandatory

33 / 73

MapReduce

Execution Framework

Scheduling - Speculative Execution

The Map phase of a job is as long as the slowest map task

Similarly the reduce phase is as long as the slowest reduce task

These slowest tasks are the so called stragglers

34 / 73

MapReduce

Execution Framework

Speculative Execution - Handling the Stragglers

Identical copy of the same task is executed on different
machines, and the framework uses the result of the fastest
instance

More efficient with Map tasks as Reduce needs data from the
network

Resolves problem with insufficient hardware

Does not solve problems, when data is not distributed
properly amongst the nodes

35 / 73

MapReduce

Execution Framework

Data-Code Co-location

Basic idea: move the code, not the data

The scheduler will start the code on a node that holds the
data

This is not always possible (e.g. already too big workload on a
given node)

Solution is to start the code on a different node and stream
the data there

36 / 73

MapReduce

Execution Framework

Synchronization

There is a ”barrier” between Map and Reduce phases

”shuffle and sort” - distributed sort of intermediate key-value
pairs, which involves copying intermediate data over the
network

m mappers and r reducers involves up to m × r distinct copy
operations

37 / 73

MapReduce

Partitioners and Combiners

Partitioners and Combiners

The above is a simplified view

In reality there are 2 additional elements: partitioners and
combiners

38 / 73

MapReduce

Partitioners and Combiners

Partitioners

Are responsible for splitting up the intermediate key space and
assigning intermediate key-value pairs to reducers

Specifies the (reduce) task to which an intermediate key-value
pair must be copied

Keys are processed in sorted order

39 / 73

MapReduce

Partitioners and Combiners

Default Partitioner Method

Simplest/Default method: compute the hash value of the key
mod by number of reducers

Copies the key-value pair to the reducer with ID computed as
above

Ignores the value of the key value pair may yield large
differences in the number of key-values pairs assigned to the
reducer nodes

40 / 73

MapReduce

Partitioners and Combiners

Combiners

Are an optimization in MapReduce

A local aggregation before the shuffle and sort phase

Motivation: Once Mapper is finished intermediate key-value
pairs are copied across the network

Solution: Local aggregation of the result emitted by a specific
Mapper can reduce the size of the data

Operates in isolation, reading only the output of the assigned
mapper (running on the same node)

Not necessarily have the opportunity to process all values
associated with the same key

Therefore the correctness of the Job can not rely on
Combiners

41 / 73

MapReduce

Partitioners and Combiners

Full MapReduce Schema

42 / 73

MapReduce

Basic Properties of a MapReduce Program

Translating Algorithms into MapReduce jobs

Some algorithms cannot be implemented as a single
MapReduce job

Solution: Decomposition into a sequence of MapReduce jobs
executed consecutively

43 / 73

Hadoop

First Hadoop Program

One’s First Hadoop Program

Problem Statement (WordCount)

Count the number of occurrences of each word from a file/set of
files.

The ”Hello World” of Hadoop

Technical details of Hadoop are highlighted on this example

Basic optimization techniques can be easily displayed

44 / 73

Hadoop

First Hadoop Program

Naive Implementation - Mapper

pub l i c s t a t i c c l a s s TokenizerMapper extends
Mapper<Object , Text , Text , I n t W r i t a b l e >{

p r i v a t e f i n a l s t a t i c I n t W r i t a b l e one = new I n t W r i t a b l e (1) ;
p r i v a t e Text word = new Text () ;

pub l i c vo id map(Object key , Text v a l u e , Context c o n t e x t)
throws IOExcept ion , I n t e r r u p t e d E x c e p t i o n {

S t r i n g T o k e n i z e r i t r = new S t r i n g T o k e n i z e r (v a l u e . t o S t r i n g ()) ;
wh i l e (i t r . hasMoreTokens ()) {

word . s e t (i t r . nextToken ()) ;
c o n t e x t . w r i t e (word , one) ;

}
}

}

45 / 73

Hadoop

First Hadoop Program

Naive Implementation - Reducer

pub l i c s t a t i c c l a s s IntSumReducer extends
Reducer<Text , I n t W r i t a b l e , Text , I n t W r i t a b l e> {

p r i v a t e I n t W r i t a b l e r e s u l t = new I n t W r i t a b l e () ;

pub l i c vo id r e d u c e (Text key , I t e r a b l e <I n t W r i t a b l e> v a l u e s , Context c o n t e x t)
throws IOExcept ion , I n t e r r u p t e d E x c e p t i o n {

i n t sum = 0 ;
f o r (I n t W r i t a b l e v a l : v a l u e s) {

sum += v a l . g e t () ;
}
r e s u l t . s e t (sum) ;
c o n t e x t . w r i t e (key , r e s u l t) ;

}
}

46 / 73

Hadoop

Code Execution

Submitting a Job

When the Job is submitted:

The job’s jar is copied into the distributed filesystem
The input is ”prepared”

Some of the additional options:

Jobs can be submitted into queues
Jobs can be chained
Monitoring settings can be configured

Technical details shall be presented during lab sessions

47 / 73

Hadoop

Code Execution

MapReduce Version 1 I

An older execution framework for Hadoop

Consists of a single JobTracker and several TaskTrackers

Both trackers are persistent, not related to any specific job or
task

JobTracker:

Primary user interface to a MapReduce cluster (”MapReduce
master”)
Handles the distribution and management of tasks
Often paired with the Namenode (hosted on the same
machine)
Sends out heartbeats to all TaskTrackers to maintain an up to
date table of available TaskTrackers

48 / 73

Hadoop

Code Execution

MapReduce Version 1 II

Jobs are broken down into tasks: Map task and Reduce task

Each task is assigned by the JobTracker to a TaskTracker,
handling the execution of the task

TaskTrackers:

Provides execution services for the submitted jobs
(”MapReduce worker/slave”)
Manages the execution of tasks on an individual computation
node
One instance of this server is running on each computation
node (usually) paired with the HDFS Datanodes

49 / 73

Hadoop

Code Execution

Execution in MapReduce Version 1

50 / 73

Hadoop

Code Execution

Limitations of MapReduce (v1)

Only one JobTracker scalability

JobTracker has two responsibilities

Management of computational resources
Coordination of all tasks running on a cluster

Supporting different kind of workload as MapReduce

Solution: Yet Another Resource Negotiator [YARN]

51 / 73

Hadoop

Code Execution

MapReduce Version 2 - YARN

Idea: splitting up JobTracker

Resource manager

Global as a master daemon
Tracks available nodes and resources

Application manager

Started when an application/job is submitted
Coordinates execution of tasks, speculative executions
Handles failures of tasks
Each job has its own application manager instance

Nodemanager

More generic than TaskTracker
Works using dynamically created resource containers

52 / 73

Hadoop

Code Execution

Execution with YARN

53 / 73

Hadoop

Code Execution

Execution with YARN

54 / 73

Hadoop

Code Execution

Execution with YARN

55 / 73

Hadoop

Code Execution

Diagram - Start of YARN Application

Application client

client node

ResourceManager

resource manager node

NodeManager Application process

node manager node

NodeManager ApplicationManager

node manager node

1. Submit

2. Starts Container
3. Launch

4. Allocate Resources

5. Start Container

6. Launch

56 / 73

Hadoop

Code Execution

MapReduce Version 1 vs YARN

MRv1 YARN

Cluster Manager Resource Manager

JobTracker ApplicationMaster
(dedicated and short lived)

TaskTracker NodeManager

MapReduce Job Distributed Application

Slot Container

57 / 73

Hadoop

Code Execution

YARN Properties

Application manager is no longer a bottleneck

Containers are general purpose - in fact Application managers
run in them

Resource Manager is a bottleneck

True High Availability can be achieved using Apache Mesos

58 / 73

Hadoop

Reading the Input

Basics of Reading Data

Input data is usually stored in HDFS, hence split into chunks

Data is not read directly

Data is tokenized - split into words using whitespace by
default

Tokens are provided to Mapper for computation

Shortcoming of the WordCount program

 Words elephant and elephant. are considered to be different

During initialization the data is split into so called input splits,
which are being sent to dedicated Mappers

59 / 73

Efficient MapReduce Algorithms

Local Aggregation

Local Aggregation

Motivation:

During the shuffle and sort stage the intermediate results are
often transferred via network

Network latencies are relatively expensive compared to other
operations

In Hadoop, intermediate results are written to local disk
before being sent over the network

Reductions in the amount of intermediate data translate into
increases in algorithmic efficiency

Effective technique for dealing with reduce stragglers (As
counting some words can be much slower than other words)

60 / 73

Efficient MapReduce Algorithms

Local Aggregation

Possible Local Aggregations

Use of combiners

In-Mapper aggregation

It is not a supported part of the system
In-mapper aggregation drawback: Needs memory to store
intermediate results

61 / 73

Efficient MapReduce Algorithms

Secondary Sorting

Secondary Sorting

Shuffle and sort phase - is very convenient if computations
inside the reducer rely on an ordering of keys

But: How can we sort by value?

Google’s MapReduce provides a built in option for secondary
sorting

62 / 73

Efficient MapReduce Algorithms

Secondary Sorting

Secondary Sorting Other Solutions

In memory buffering and sorting is a scalability bottleneck

Value-to-key conversion - a general design pattern for
secondary sorting

Move part of the value into the intermediate key to form a
composite key
Let the sorting to MapReduce, with a correctly defined order
Custom partitioner is needed so the real key from the emitted
complex key is taken into account when shuffling to reducers

This approach can be generalized to any number of secondary
sorting

63 / 73

Efficient MapReduce Algorithms

Secondary Sorting

Secondary Sorting

Key Secondary Key Value

In the mapper the part of value is moved to the key:

Key Secondary Key Value

Using the partitioner assign each pair in accordance with the
original key, secondary key is ignored:

Key Secondary Key Value

64 / 73

Graphs in MapReduce

Graphs

Different problem than text processing

Documents may exist in the context of some underlying
network

Examples:

Social Graphs (Twitter, Facebook, etc.)
Transportation networks
Graphs created by transactions (money transfers, etc.)

The main goal is to create scalable algorithms for graph
processing

65 / 73

Graphs in MapReduce

Graph Representations

Usual graph representations:

Adjacency matrix
Incidence matrix
Edge lists
Adjacency lists

Common algorithms are based on adjacency matrix

66 / 73

Graphs in MapReduce

Adjacency matrix

A square matrix M, mij represents the edge from node ni to
node nj

A handy representation for linear algebra

Can be too huge to store in memory

Inefficient for sparse graphs, holding several 0s as most of the
edges do not exist

Social and web graphs are usually sparse

Solution for big data: Adjacency list

67 / 73

Graphs in MapReduce

Incidence matrix

For a graph with V = {v1, . . . , vn} vertices and
E = {e1, . . . , em} edges

The incidence matrix is an n ×m matrix, where xij represents
vertex vi being incidental with edge ej

Orientated graph can be represented by enabling more than 2
values (True, False)

Too huge, rarely used

68 / 73

Graphs in MapReduce

Edge lists

For a graph with list of edges E the edges are split into 2
groups:

Oriented edges
Unoriented edges

Edge lists are a representation where each edge is represented
as a pair of vertices incidental with it (v1, v2) given as two
lists, one for oriented one for unoriented edges

Unoriented edges may be split into two oriented once

Weights can be added as a third ”column” into the list

Compact for sparse graphs

Time consuming to find all edges related to a given vertex

69 / 73

Graphs in MapReduce

Adjacency List

For each node n from the graph there is a list containing all
nodes ni , such that an edge (n, ni) exists

May be directed or undirected

There are two possibilities to encode undirected graphs:

Each undirected edge can be stored as a pair of directed edges
Or the edges can be ordered in some order and each edge will
be stored once in the adjacency list of the vertex with smaller
label

70 / 73

Graphs in MapReduce

Adjacency Matrix vs Adjacency List

Using adjacency lists it is a more complex problem to find the
list of incoming edges for a given vertex, whereas it can be
done easily using the adjacency matrix

For sparse graphs the list representation is more efficient

For dense graphs the matrix is more compact

71 / 73

Graphs in MapReduce

Example Graph

72 / 73

References

References I

J. Lin and C. Dyer, Data-Intensive Text Processing with
MapReduce.
Morgan & Claypool Publishers, 2010.

“ApacheTM Hadoop R© Official Web Page.”

“Big Data University.”

“Hadoop official tutorial.”

J. Plesńık, Grafové Algoritmy.
SAV, 1983.

“Apache Giraph Official Web,” 2018.

S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file
system,” ACM, 2003.

73 / 73

