
Introduction to Data Analytics
Zookeeper

András Varga
IBM Consulting

Bratislava, 2022



Contents

1 Introduction and Motivation

2 Architecture

3 Workflow

4 Leader Election in General

5 Leader Election in ZooKeeper

6 Using ZooKeeper

2 / 41



Introduction and Motivation

Motivation

Motivation

In a distributed systems the following problems can be difficult to
solve:

Synchronization

Maintaining configuration information

This can be even more problematic when taking into account race
conditions

In the past usually all applications came with some sort of own
solution, which complicated co-operation and maintenance

3 / 41



Introduction and Motivation

Introduction

Introduction

Definition

A Distributed Coordination Service for Distributed Applications

”Because Coordinating Distributed Systems is a Zoo”

ZooKeeper can be used for

maintaining configuration information

naming

providing distributed synchronization

providing group services

4 / 41



Introduction and Motivation

Introduction

Basics

The coordination with each other is achieved through a shared
hierarchal namespace (similar to a filesystem)

ZooKeeper itself is intended to be replicated over a sets of
hosts called an ensemble

ZooKeeper transactions are ordered

It runs in Java

Highly-available and provides good performance

5 / 41



Introduction and Motivation

Introduction

Guarantees

Sequential Consistency

Client updates are applied in order

Atomicity

Single system image

Client sees the same view regardless of which server is
connected to

Reliability

If the update succeeds it persists

Timelessness

The client view is up-to-date within a time-period

6 / 41



Architecture

Data Model

The Namespace

There is a hierarchical namespace

The basic blocks of the namespace are called znodes

The whole namespace is stored in memory (for fast access)

The namespace starts with the root element (denoted by /)

And each znode is identified by its path starting at root
containing path elements separated by slash

Every znode has a unique parent znode whose path is a prefix
of the znode with one less element

7 / 41



Architecture

Data Model

Example of ZooKeeper Namespace

/

/app1 /app2

/app1/prop1 /app1/prop2 /app1/prop3/app2/prop1 /app2/prop2

8 / 41



Architecture

Data Model

Properties of the Znodes

The znodes are similar to files and directories in the normal
filesystem

A znode cannot be deleted if it has any children

Every znode can have data associated with it (every znode is
a file and directory at the same time)

Znodes have limited amount of space for data (Unlike real
files)

Znodes store metadata alongside real data, such as ACL,
version number, timestamps, etc. called as Stat Structure

9 / 41



Architecture

Data Model

Ephemeral ZNode

Is a temporary znode

These znodes exist only as long as the session creating them
is active

Once the session is closed all ephemeral nodes are deleted

Therefore these znodes can not have children

10 / 41



Architecture

Data Model

Sequential Znode

Can be persistent or ephemeral

When creating a sequential znode ZooKeeper append a
monotonically increasing counter to the end of path

This counter is owned by the parent znode of the sequential
znode

The number is aligned to 10 digits by left padding of 0s

11 / 41



Architecture

Data Model

Example of Sequential Znode

Creating znode ”named property” in /app1/block1

/app1/block1/property0000000001 is created

The next sequential znode with the same name will be
/app1/block1/property0000000002, etc.

The actual counter (0000000002) is stored in znode
/app1/block1

12 / 41



Architecture

Data Model

Read, Write and Versioning

Read and write of a znode data is atomic (reading or
re-writing every data from the znode)

Each new data update increases the version number of the
znode

The access one has on the znode is defined by ACL for each
node

The following accesses can be defined: CREATE (a child
node), READ, WRITE, DELETE (a child) and ADMIN

13 / 41



Architecture

Architecture

The Ensemble

ZooKeeper is deployed to a set of servers (machines, nodes)
called as ensemble

These servers know each other and maintain a local copy of
the in-memory namespace and the transaction logs and
snapshots in the persistent store

One of the servers acts as a leader

As long as the majority of the servers is available the
ZooKeeper is available

14 / 41



Architecture

Architecture

Connections from Clients

Client connects to a single ZooKeeper server

They maintain a TCP connection during the whole
communication

When the client first connects to the ZooKeeper service the
server creates a session, which will be associated with a client
and when the client needs to connect to different server the
same session will be reestablished

15 / 41



Architecture

Architecture

Ensemble Example

16 / 41



Architecture

Architecture

Sessions

A session is created when a client connects to the ZooKeeper
service

A session can be in several different states: Connecting,
Connected, Close, etc.

The client sends periodic heartbeats to keep the session alive

Requests in a session are executed in FIFO order

A client is provided with a list of IP:Port related to the servers
in the ZooKeeper ensemble

When a server fails for any reason the client will try to
re-establish the connection to a different server in the list

17 / 41



Architecture

Time in ZooKeeper

Time in ZooKeeper I

Zxid - Every change to the ZooKeeper state receives a unique
stamp (ZooKeeper Transaction Id). This exposes the total
ordering of all changes to ZooKeeper

if zxid1 < zxid2 then zxid1 happened before zxid2

Version numbers - Every change to a znode increases its
version. There are 3 types of version:

version - number of data changes
cversion - number of child changes
aversion - number of ACL changes

18 / 41



Architecture

Time in ZooKeeper

Time in ZooKeeper II

Ticks - Serves in a communication between the servers.
Servers use ticks to define timing of events such as status
uploads, different timeouts, etc.

This is an internal time
Minimum session timeout = 2 times the tick time

Real Time - Used only for putting timestamps to the stat
structure during znode creation/modification

19 / 41



Architecture

Watches

Watches Motivation

Usually the data read operations are one-time actions

This creates a problem, when a client needs to wait for data
changes

A solution with trying to read data in an infinite cycle from
client side is inefficient

Watches are implemented by ZooKeeper for efficient
resolution of this problem

20 / 41



Architecture

Watches

Watches

Client queries to read data from ZooKeeper have an
additional option: a watch parameter

If a watch is false the query acts as usual

If the watch is set true the server will send out a notification
to the client, when the next tracked change occurs

21 / 41



Architecture

Watches

Properties of Watches

One-time trigger

Once the event occurs and the notification is sent the watch is
removed, no more notifications shall be sent to the same client
(unless the watch is re-enabled)

Sent to a client

ZooKeeper provides an ordering guarantee: a client will never
see a change for which it has set a watch until it first sees the
watch event

The data for which the watch was set

ZooKeeper ”provides” two kinds of watches - one for data
change and one for child change, each function (create,
setData, etc.) triggers the respective watch for the given node
and its parent (if needed)

22 / 41



Architecture

Watches

New Options of Watches

Persistent Watches

Recursive Watches

Sending data for each change of the znode and its (recursive)
descendants

23 / 41



Workflow

High Level Workflow

Each node in the ensemble own a replicated database

In addition the leader uses

a dedicated request processor to handle incoming write
requests from the follower nodes
atomic broadcast to send changes from the leader to followers

Write request is handled by the leader, propagates the request
to all followers, if at least half of the ensemble accepts the
change is accepted

Read is performed locally no cluster interaction needed

24 / 41



Workflow

Workflow Chart

Client

Client

Client

Client

Replicated

Database

Atomic

Broadcast

Replicated

Database

Atomic

Broadcast

Request

Processor

Replicated

Database

Atomic

Broadcast

25 / 41



Workflow

Quorum

Ensemble vs Qourum

Ensemble is the array of all servers

The ensemble needs majority to handle requests

This majority is called qourum

So essentially the qourum is the array of nodes handling
requests

26 / 41



Workflow

Quorum

Options of Qourum

majority qourum

using weights

hierarchy groups

27 / 41



Leader Election in General

Leader Election in General

Problem description:

Definition

It is a process to select a single designated coordinator for a
distributed computation among several available processes/nodes.

The scope of ZooKeeper:

Servers have IDs

Topology is a complete graph

28 / 41



Leader Election in General

Simple Solution

Processes may fail

Messages are delivered reliably

Bully algorithms

Asking for election
Responding to the election message
The node with lowest/biggest ID sends victory message

29 / 41



Leader Election in ZooKeeper

ZooKeeper Specifics

This section contains the implementation specific to ZooKeeper

Atomic Broadcast Protocol

Leader Election

30 / 41



Leader Election in ZooKeeper

Implementing Messaging

FIFO channel is created between each servers

Implemented using TCP as

Ordered delivery
No message after close

Messages are timestamped

Each proposal is marked by zxid = epoch + counter

31 / 41



Leader Election in ZooKeeper

Leader Election, ZAB

Electing a New Leader

Two possible algorithms implemented:

LeaderElection

FastLeaderElection

Both provide:

The leader has seen the highest zxid of all the followers

A quorum of servers have committed to following the leader

The leader election also includes post election synchronization of
servers

32 / 41



Leader Election in ZooKeeper

Leader Election, ZAB

Fast Leader Election

It is a bully algorithm

Which elects the leader with:

Most recent transaction history
Biggest ID of all such nodes
The majority of the qourum must elect this server

As long as the leader is active no other server can be elected
as a new leader

33 / 41



Leader Election in ZooKeeper

Leader Election, ZAB

Post Election Synchronization

The new leader establishes a new zxid

By getting a new epoch and the highest transaction ID

As a next thing it will give a NEW LEADER proposal

34 / 41



Leader Election in ZooKeeper

Leader Election, ZAB

ZAB - Handling the NEW LEADER Request

A follower will ACK the NEW LEADER proposal after it has
synced with the leader

A follower will only ACK a NEW LEADER proposal with a
given zxid from a single server

A new leader will COMMIT the NEW LEADER proposal
when a quorum of followers have ACKed it

A follower will commit any state it received from the leader
when the NEW LEADER proposal is COMMIT

A new leader will not accept new proposals until the
NEW LEADER proposal has been COMMITED

35 / 41



Using ZooKeeper

Configuration

Places for Configuration

Installation is mostly a configuration

Main configuration file: conf/zoo.cfg

This file can be shared across the whole ensemble

36 / 41



Using ZooKeeper

Configuration

Basic Configuration

clientPort

the port clients listen into

dataDir

holds snapshots of database and transaction logs

tickTime

time in miliseconds

and a lot more can be configured

Starting ZooKeeper by issuing bin/zkServer.sh start

37 / 41



Using ZooKeeper

Configuration

Replicating ZooKeeper

The basic configuration creates a stand-alone ZooKeeper node

For High Availability more nodes are needed

As ZooKeeper uses a voting system, where majority decides

So an odd number of servers is favored

This ensemble must be defined during the configuration

38 / 41



Using ZooKeeper

Configuration

Defining an Ensemble

Additional configuration in the conf/zoo.cfg file:

initLimit

Amount of ticks a node must connect into the leader

syncLimit

Amount of how out-of-date a node can be compared to the
leader

server.X

X - number of the server
One line of definition for each server in the ensemble
value: hostname:communication port:leader election port
example: myHost:2888:3888

39 / 41



Using ZooKeeper

Standard Problems

Resolving Standard Problems Using ZooKeeper

Resolutions are purely client based

No support is needed from zookeeper side

ZooKeeper is asynchronous in nature

But, it can be used to resolve some synchronous problems,
such as locks

All of this solutions are published in recipes

40 / 41



References

References I

“Apache™ Zookeeper Official Web Page.”

“Big Data University.”

“Tutorialspoint for ZooKeeper.”

41 / 41


