
Introduction to Data Analytics
Kafka

András Varga
IBM Consulting

Bratislava, 2022



Contents

1 Introduction

2 Design

3 Installation and Configuration

4 Kafka APIs

5 Additional Options

6 References

2 / 48



Introduction

Introduction

Definition

Apache Kafka is a distributed streaming platform.

Capabilities:

Publish and subscribe to streams of records
(similar to message queues)

Store streams of records in a fault-tolerant
and durable way

Process streams of events in real-time as
they occur

3 / 48



Introduction

Kafka Basics

Deployed over a cluster

Kafka servers are called Brokers

Kafka is streaming records in categories called topics

Producers are creating new records

Clients reading records are called Consumers

Both are communicating using TCP/IP

Each message (record or event) has a header (with a
timestamp), a key and a value

4 / 48



Introduction

Topics

Kafka Topics I

The ”feed” into which records are published

It is partitioned into buckets

Events are consumed by possibly several consumers
(multi-subscribers)

Kafka maintains a partitioned log for each topic

It is a structured commit log

Each partition is an ordered, immutable sequence of records

Offset - An unique ID of a record within a partition

5 / 48



Introduction

Topics

Kafka Topics II

6 / 48



Introduction

Topics

Kafka Topics III

Kafka stores records for a configurable retention period

Records are stored regardless if they were consumed or not

Kafka stores the position of each consumer on the log

This position (offset) is controlled by the consumer - can
make ”jumps”

Nothing else is stored about the consumers, so consumers are
cheap

7 / 48



Introduction

Topics

Kafka Topics IV

The partitions of the log are distributed among the brokers

Each partition is replicated across several brokers

Each partition has a ”leader” server - handles reads and writes

All other servers are handling the same partitions are followers
- simply replicating the leader

If the leader fails one of the followers become a new leader

The metadata of each topic is stored in ZooKeeper or KRaft

8 / 48



Introduction

Topics

Kafka Topic Example

9 / 48



Introduction

Roles

Producers

Publish records into the topics of their choice

Producer chooses which partition the message is being sent to
(default is random)

Communicates directly with the (topic) partition leader

10 / 48



Introduction

Roles

Consumers

Consumers are subscribed to topics they consume

Consumers can be assigned to groups - consumer group

Each new record in the topic is delivered to one consumer
from each subscribed consumer group

Kafka provides a total order of records, but only within a
partition

11 / 48



Introduction

Guarantees

Guarantees

Messages sent by a producer to a particular topic partition will
be appended in the order they are sent

A consumer instance sees records in the order they are stored
in the log

For a topic with replication factor N, we will tolerate up to
N − 1 server failures

12 / 48



Introduction

Context

Messaging System

Usual approaches:

Queue
Publish-subscribe

Kafka combines both approaches

Traditionally queues can not maintain order with multiple
consumers

Using consumer groups it provides ”multicasting” instead of
traditional broadcasting of publish-subscriber design

Is Kafka a message system?

Not in the purest sense
But can act as one

13 / 48



Introduction

Context

Additional Context

Storage System

Fault tolerant distributed storage system

Producer received acknowledgment once the data is fully
replicated and guaranteed to persist

Is Kafka a storage system?

It has to be
To store the messages during the retention period

Stream Processing

Producer - Consumer approach is valid

Kafka provides Streams API in addition

14 / 48



Introduction

Use Cases

Kafka Use Cases

Kafka can be used for several use cases

Most of them directly follow from the nature of Kafka

Other use cases are less trivial

15 / 48



Introduction

Use Cases

Use Case Examples

Messaging

Website Activity Tracking

Fun fact: this was one of the original use cases

Log Aggregation

Stream Processing

External Commit Log

16 / 48



Design

Motivation

To create a design capable handling of data from a large
company

Needs to deal with huge backlogs ...

... and high volume (big data)

As a result some parts of the design are more similar to
databases than streaming/messaging platforms

17 / 48



Design

Using the Filesystem

Filesystem

Kafka relies on filesystem

Design must find a way around ”disk are slow” perception

OS usually caches huge parts of disk into memory

It also runs in JVM, which handles data ”lazily” (garbage
collector)

Actually Kafka tries to leverage these facts

Writing into file means writing into cache in most cases

And this cache can survive service restarts

18 / 48



Design

Additional Optimizations

I/O Operations

Too small I/O can cause problems

To resolve this the protocol is set up to enable message
grouping

This enables the protocol to lower the messaging overhead

This way the server appends a bigger linear chunk of messages
into the log

And consumers can also read linear chunks from the logs,
lowering the amount of seeks

19 / 48



Design

Additional Optimizations

Compression

Network bandwidth can cause problems as well

Especially when dealing width huge data in a widespread
network

Users can compress their data

Compressing messages individually leads to bad ratios
It is more efficient to compress multiple messages together

Kafka supports a batch format enabling compression of
multiple messages at once

These compressed batches are written into the logs
compressed and decompression is done by the consumers

Supports: GZIP, Snappy, LZ4 and ZStandard

20 / 48



Design

The Producer

The Producer

Sends data directly to the broker - leader of the partition of
the topic

Producer can load balance - by selecting a partition in the
topic, such as random, or according to a hash

Can store all keys in one partition to achieve locality

Tries to accumulate requests in memory and sends them as a
batch in a single request

This can be limited by amount of data or duration

21 / 48



Design

The Consumer

The Consumer

Sends ”fetch” request to the broker - partition leader

The consumer can set the offset of the log

A chunk of the log is sent to the consumer starting from that
partition

So consumer can re-consume the same data several times

This approach means that the data is pulled from the broker
by the consumer

The current offset of the consumer is stored by the broker

22 / 48



Design

Message Delivery

Message Availability

Once a message is committed into a log it is available

This message is not lost until at least one broker that
replicates the partition is ”alive”

Publisher obtains a response once the message is committed:
(publisher can choose)

Once message is committed in the leader
Once the message is fully replicated
Or work asynchronously

23 / 48



Design

Message Delivery

Failure During Publishing

Upon failure publisher can not determine if the message is
committed or not

The return message might be lost
The commit was not processed, etc.

Publisher must re-send the message to be sure

Which could lead to duplicates in the log

Kafka also provides an idempotent delivery option:

Each producer is assigned an ID
Each message is assigned a sequence number (by the publisher)
Kafka identifies duplicates using the sequence number

24 / 48



Design

Message Delivery

Consumer Failures

The consumer can do the following:

Read message, save new position, process message

Upon failure this can lead to message loss
”at-most-once” semantics

Read message, process message, save new position

If consumer crashes between processing and storing the new
position some messages might be read again
”at-least-once” semantics

Kafka Streams provide ”exactly-one” delivery semantics as
well

25 / 48



Design

Replication

Kafka Cluster

Kafka replicates each topic’s partition across a number of
servers

The amount of servers is configurable for each topic separately

Each partition has an associated leader

Each operation goes into the leader

Followers keep an up-to-date replica of the log of the leader

Followers act as consumers to replicate the messages from the
leader

26 / 48



Design

Replication

Status of Kafka Nodes

Kafka node is ”in sync”, when:

Maintains a connection to ZooKeeper (Kafka uses ZK to
track the cluster)

Replicates the writes on the leader

Is not ”too-far” behind

A leader keeps a list of each ”in sync” follower
A message is committed, when all ”in sync” replicas have applied it

27 / 48



Design

Replication

Replicated Logs

Basic distributed structure

Main goal: Coming into consensus on the order of a series of
values

Naive resolution: Leader determines the order

Problems arise with failures

Followers must replicate and leader waits till their
acknowledgment

Leader can wait till a majority of cluster reacts =⇒ quorum

This is not how Kafka works

28 / 48



Design

Replication

Leaders in Kafka

Kafka is not using a majority vote quorum

Set of in sync replicas is maintained (ISR)

Only members of ISR are eligible to become a leader

Kafka uses ZooKeeper for leader election

Followers must catch up before getting back to ISR

When all ISR replicas become unavailable no guarantees hold

Two options to resolve this issue:

Select a node not within the ISR as leader
Wait till the first node from ISR to become online - to become
a leader (Default option)

29 / 48



Design

Replication

Influencing Availability

Following topic related options are available:

Disable unclean leader election (with empty ISR)

Specify minimal ISR size

30 / 48



Design

Additional Information

Quotas

Kafka accepts the following quotas:

Network bandwidth quotas

Request rate quotas define CPU utilization thresholds as a
percentage of network

31 / 48



Design

Additional Information

Message Format

Message parts:

variable-length header
variable length opaque key byte array
variable length opaque value byte array

Messages are stored in record batches

32 / 48



Design

Additional Information

Record Batch

A record batch contains a header and a set of
records/messages

Contains the

Partition Leader epoch
Compression settings
Several timestamps
. . .

For more details see the official documentation

33 / 48



Design

Additional Information

Record

On disk:

length

timestamps

keyLength

key

ValueLength

value

headers

. . .

34 / 48



Installation and Configuration

Installation

Installation

Download the source

Uncompress it

Configure Zookeeper or KRaft connection

Ready to go

35 / 48



Installation and Configuration

Configuration

Broker Configuration

broker.id

log.dirs

zookeeper.connect

compression.type

log.retention.hours/minutes/. . .

SSL configuration

36 / 48



Installation and Configuration

Configuration

Topic-Level Configs

Can be configured globally or per-topic, if no per-topic
configuration is set a general global configuration is used as default

compression.type

retention.ms

max.message.bytes

37 / 48



Installation and Configuration

Configuration

Adding New Machines

Adding new machines is installing the machines, adding them
broker ID and starting the servers

New servers will not have any partitions

Partitions must be re-arranged

38 / 48



Kafka APIs

Basic Java APIs

Producer

Consumer

Streams

Connect

AdminClient

ProducerRecord

ConsumerRecords

39 / 48



Kafka APIs

Producer API

Producer

KafkaProducer Java class

Main functions:

send() - asynchronous
send() - waiting for callback

Sends classes ProducerRecord<K,V>

40 / 48



Kafka APIs

Producer API

ProducerRecord<K,V>

Topic

Partition

Key

Value

41 / 48



Kafka APIs

Consumer API

Consumer API

KafkaConsumer Java class

Main functions:

subscribe() - to a list of topics
assign() - assign partitions to the consumer
close()
position() - get offset of next record
seek() - sets offset
poll() - read the messages

Obtains ConsumerRecords<K,V>

42 / 48



Kafka APIs

Consumer API

ConsumerRecords<K,V>

count() - number of records

Iterator over ConsumerRecord<K,V>

ConsumerRecord<K,V>

key()
value()
topic()

43 / 48



Additional Options

Security

Kafka is capable of:

SSL

ACL

ZooKeeper Authentication

44 / 48



Additional Options

Kafka Streaming

Client library for building applications and microservices

No external dependencies

Exactly-once processing semantics

One-record-at-a-time processing to achieve millisecond
processing latency

The streaming library runs directly on the application side, not
Kafka side

45 / 48



Additional Options

Kafka Streaming Architecture

46 / 48



Additional Options

Kafka Streaming Architecture

Kafka Streaming is utilizing the existing Consumers and
Producers

Streaming partitions data utilizing topic partitions

Data records map to messages

Keys determine the partitions, it can not be changed

It helps scaling, the load from additional applications is
distributed amongst the partitions using keys

47 / 48



References

References I

“Apache™ Kafka Official Web Page.”

“Big Data University.”

48 / 48


