
Introduction to Data Analytics
Spark

András Varga
IBM Consulting

Bratislava, 2022

Contents

1 Introduction

2 Spark Components

3 Scala

4 Coding in Spark

5 Spark SQL

6 MLlib

7 GraphX

8 Structured Streaming

2 / 62

Introduction

Spark

Definition

Apache Spark is a unified analytics engine for large-scale data
processing. It can run in Hadoop clusters through YARN or Spark’s
standalone mode, and it can process data from various sources.

Provides APIs for several languages: Java,
Scala, Python, R (SparkR)

Additionally supports SQL for certain
operations

MLlib - Spark Machine Learning library

GraphX - Graph Processing library

Stream analysis is supported

3 / 62

Introduction

Spark Fundamentals

Expands the MapReduce framework

Speed is achieved by in memory operation

Runs on top of YARN or Mesos, or in a stand-alone mode

The Spark application is divided into a Driver Program and
Executors

Executors are running on Worker nodes and executing Tasks,
i.e., units of work

4 / 62

Introduction

Spark Application

5 / 62

Introduction

Installation

Install Scala or Python (versions must match across the
cluster)

Download and unpack Spark

Configure

6 / 62

Introduction

Configuration

Each application gets its own executor

Each application runs in isolation, no sharing data between
applications

Three configuration options:

SparkConf object inside the application
Environment variables conf/spark-env.sh
Logging log4j.properties

Configuration can be set using the SparkConf object or
dynamically during spark-submit

Or by using global defaults from conf/spark-defaults.conf

7 / 62

Spark Components

Spark Stack

Spark SQL Spark Streaming MLlib GraphX

Spark Core

Standalone Scheduler YARN Mesos K8s

8 / 62

Scala

Scala Basics

Spark itself is written in Scala

Scala is an OOP running on JVM

Statically typed language

Scala is a functional language

Side effects, like JVM exceptions, are usually handled early
and without breaking execution

9 / 62

Scala

Scala Class

class Study(name: String, val promotedParam: Int){
println(”New instance: ”++name)
val inMutableField: String = ”This is immutable”
var mutableField: String = ”This is mutable”

}
new Study()

Classes are instantiated via a constructor using ”new” keyword

Field is part of the class, visible to outside of the class

Mutable
Inmutable

Scala provides type inference, but it is a good practice to not
overusing it

Constructor arguments are private, unless ”promoted” using
keywords

10 / 62

Scala

Methods

def echo(voice: String): String = voice
def addInt(a:Int, b:Int): Int = {

var sum:Int = a + b
return sum

}
Methods return at most one value, a type of which must be
defined

Methods can look like fields: def myValue: Int = 3

Methods with one argument can be called using an infix
notation, i.e., without the dots and parentheses:
”Andras Varga” split ” ”

11 / 62

Scala

Arguments

Default

Set a default value for an argument at definition time, in case
it is not defined
def echo(voice: String = ”Nothing”): String = voice
echo()

Named

Names allow to omit the leading arguments with default values
def addInt(a:Int = 0, b:Int): Int = a + b
addInt(b = 5)

12 / 62

Scala

Objects

object MySingleton {
def interesting: String = ”This will never change”

}
MySingleton.interesting

Provides a simple way to define singletons

It is instantiated lazyly, but automatically during runtime

Scala application is started by the main method being defined
in any object:
object MyApplication {

def main(args: Array[String]): Unit = {
println(”Hello World!”)

}
}
Unit ≈ void

13 / 62

Scala

Accessibility of Fields and Methods

Accessibility:

public (default)
private
protected

An object and a class can share a name in the same source
file as so called companions

Companion class can access private fields and methods inside
a companion object

14 / 62

Scala

Data Structures - Collections

Array (fixed size)
val numbers = Array(1, 2, 3, 4)

List (can grow using append or prepend)
val fruit: List[String] = List(”apples”, ”oranges”, ”pears”)

Vector (immutable, indexed by hashing)
val strings = Vector(”one”, ”two”)

Set (no duplicates, no indices)
val fruit = Set(”apple”, ”orange”, ”peach”, ”banana”)

Tuple
val values = (1,”2”,3,”h”)
values. 3 returns 2

Map (”x” -> 24 is actually a pair = tuple of two elements)
var mapping = Map(”x” -> 24, ”y” -> 25, ”z” -> 26)
mapping.getOrElse(”v”,16)

15 / 62

Scala

Higher Order Functions

Higher order functions function takes another function as an
argument

Notable higher order functions:

map()
flatmap() - it also flattens one layer
filter()
foreach() - applies the function to the original collection
reduce(), foldLeft() or foldRight()
groupBy()

Code examples:
something.foreach(println)
mylist.map(x => x * x)
myCollection.flatmap(+ 1)

16 / 62

Coding in Spark

RDD

Storing Data in Spark

RDD DataFrame DataSet

17 / 62

Coding in Spark

RDD

Resilient Distributed Dataset (RDD)

Sparks oldest data abstraction

Distributed collection of data

Immutable

Operations:

Transformation - no return value, lazy evaluation
Actions - returns a value

18 / 62

Coding in Spark

RDD

Creating an RDD

Parallelizing existing data from Spark (Driver)

S val data = Array(1, 2, 3, 4, 5)
val distData = sc.parallelize(data)

P data = [1, 2, 3, 4, 5]
distData = sc.parallelize(data)

Referencing a Hadoop dataset (or s3 buckets, Cassandra)

S val distFile = sc.textFile(”data.txt”)
P distFile = sc.textFile(”data.txt”)

Transforming an existing RDD to a new one

19 / 62

Coding in Spark

RDD

RDD Architecture

RDD is partitioned

when an RDD is created from another RDD (Or based on
HDFS dataset) the partitioning is inherited

It is better to distribute partitions evenly on the cluster, but
shuffling is expensive

S someRDD.partitions.size

P someRDD.getNumPartitions()

partitionBy(numPartition, partitioningFunc) changes
partitions for RDD, causes shuffling

20 / 62

Coding in Spark

RDD

RDD Transformations I

When an RDD is created an empty DAG is created

Each transformation defined on the RDD is added to the
DAG, but it is not performed

Actions start the execution of the transformations from the
DAG, consequently executing the action itself

Transformation examples

map(func)
reduceByKey(func)
filter(func)
join(other dataset,[numTasks])

21 / 62

Coding in Spark

RDD

RDD Transformations II

toDebugString() method returns the DAG for a given RDD

The lazy behaviour supports fault tolerance - a node does not
need to copy data to catch up after failure, only copies a DAG
of transformations

22 / 62

Coding in Spark

RDD

RDD Actions

Data is partitioned into blocks for Executors across the cluster

Code is sent to data blocks to be executed

Action example

collect() - returns all elements as an array to the driver, make
sure dataset is small so driver can handle it
count()
first(), take(n)
foreach(func) - apply func on each element in a dataset

23 / 62

Coding in Spark

RDD

RDD Persistence I

Two functions: persist() and cache()

persist() take an option of storage to use: MEMORY ONLY,
MEMORY AND DISK, DISK ONLY, etc.

cache() = persist(MEMORY ONLY)

Lazy evaluation

When evaluated (per partition!) stores data to the storage

Acts as a safe point for additional transformations or actions

So intermediate data does not need to be re-created again

24 / 62

Coding in Spark

RDD

RDD Persistence II

It is fault-tolerant, when data partition is lost a new Worker
recreates lost data automatically

There is an option to replicate the partitions in two cluster
nodes

When data partition does not fit into the storage it is
recomputed on the fly

Data can be serialized

25 / 62

Coding in Spark

RDD

Best Practices for Caching

It is good idea to cache after preparation for downstream
processing (e.g. filtering)

When an cached RDD is no longer needed call unpersist() to
free up memory

calling the count() action on the RDD forces all partitions to
be cached - call count separately

Split data into equisized partitions

26 / 62

Coding in Spark

RDD

Shared Variables

When a function passed to a Spark operation (e.g. map) is
executed, it works on separate copies of all the variables
Two types of shared variables are provided:

Broadcast Variables
A read-only variable cached on each machine rather than
shipping a copy of it with tasks

S val broadcastVar = sc.broadcast(Array(1, 2, 3))
P broadcastVar = sc.broadcast([1, 2, 3])

Accumulators
Collect data from workers, through associative and
commutative operations
Usually used as counters, numbers are natively supported by
Spark
Read-only for the driver

S val accum = sc.longAccumulator(”My Accumulator”)
mydata.foreach(x => accum.add(x))

P accum = sc.accumulator(0)
mydata.foreach(lambda x: accum.add(x))

27 / 62

Coding in Spark

RDD

Variable Scope and Life-cycle

var counter = 0
rdd.foreach(x => counter += x)
println(”Counter: ” + counter)

The counter sent to the executors is a copy and not the same
as in the driver

This is the use case for accumulators

28 / 62

Coding in Spark

SparkContext

SparkContext I

The main entrypoint, represent a connection to a Spark cluster

Usually named ”sc”

Created by loading libraries into the application

S import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
val conf = new
SparkConf().setAppName(appName).setMaster(master)
new SparkContext(conf)

P from pyspark import SparkContext, SparkConf
conf =
SparkConf().setAppName(appName).setMaster(master)
sc = SparkContext(conf=conf)

29 / 62

Coding in Spark

SparkContext

SparkContext II

It is a good practice to don’t hardcode the master information
into the application, but to pass it as a parameter, simplifies
releases

30 / 62

Coding in Spark

SparkContext

Passing Functions to Spark Using Scala

Code is sent to workers as functions

Anonymous functions

S (x: Int, y: Int) => x + y

Static methods in a global singleton object

S object MyFunctions {
def func1(s: String): String = { ... }

}
myRdd.map(MyFunctions.func1)

Sending the reference of the object

31 / 62

Coding in Spark

SparkContext

Passing Functions to Spark Using Python

Code is sent to workers as functions

Lamba expressions

P lambda x, y : x + y

Top-level functions in a module

Local defs inside the function calling into Spark, for longer
code

When calling objects using reference the whole object is sent
to Spark. To send smaller objects copy external variables to
local variables:

P def doStuff(self, rdd):
field = self.field
return rdd.map(lambda s: field + s)

32 / 62

Coding in Spark

Running an Application

Submitting Spark Applications

./bin/spark-submit Options:

class - main class to start

master - the master URL, if not specified in the code itself

deploy-mode - cluster or client (runs locally, sometimes
causes things to work, which would not work in the cluster)

conf - additional configuration in a key-value pairs format

application-jar (can be from HDFS or a local file) and
application arguments

And there are additional options controlling the application
execution

.bin/pyspark is a Python alternative

33 / 62

Coding in Spark

Running an Application

Submitting Spark Applications on Yarn - Example

./bin/spark-submit --class org.apache.spark.examples.SparkPi
--master yarn
--deploy-mode cluster
--driver-memory 4g
--executor-memory 2g
examples/jars/spark-examples*.jar
10

In cluster mode, the driver application itself runs on YARN as
well

34 / 62

Coding in Spark

Running an Application

Submitting Spark Applications Locally

deploy-mode client is default

In this case the amount of parallelism can be defined in the
master parameter: local [K] - Start the application locally with
K workers

P ./bin/pyspark --master local[2]

35 / 62

Coding in Spark

Running an Application

Monitoring

Spark provides a Web UI for monitoring (port 4040)

Or by using external monitoring tools

36 / 62

Coding in Spark

Running an Application

Tuning

Data serialization

Java - slower, flexible
Kyro - faster, but less types are supported

Memory Tuning

Use primitives and arrays
Avoid nested structures
Analyze GC (SPARK JAVA OPTS)

Level of parallelism (2-3 tasks per CPU core in the cluster)

OutOfMemory error can be resolved by increased parallelism

Broadcasting variables

37 / 62

Spark SQL

DataFrame

DataFrame

DataFrame is an immutable collection of rational data, i.e.,
organized into columns

An SQLContext supports additional functionality

It is partitioned and can be persisted as RDDs

DataFrames can be loaded from several external sources, e.g.
spark.read.load(filename)

Or by adding schema to an existing RDD
sqlContext.createDataFrame(RDD,Schema)

38 / 62

Spark SQL

DataFrame

DataFrame Operations

DataFrames support many relational operations:

select(colName)

df.filter(condition)

df.groupBy()

df.printSchema() shows the shcema itself

39 / 62

Spark SQL

Executing SQLs

Running SQL in Spark

The simplest way to execute SQL in Spark is to use the sql()
method of the SparkContext, returning a new FataFrame

This requires a DataFrame to be registered as a local/global
temporary view

S df.createOrReplaceTempView(”people”)
val sqlDF = spark.sql(”SELECT * FROM people”)

P df.createGlobalTempView(”people”)
spark.sql(”SELECT * FROM global temp.people”)

40 / 62

Spark SQL

Executing SQLs

Executing SQL Over Hive Tables

./bin/spark-sql

Provides a CLI to execute SQL over a pre-defined Hive
connection

Spark can become the execution engine of Hive itself,
speeding it up

41 / 62

Spark SQL

Datasets

Datasets

Datasets are present only in Scala and Java

It provides an abstraction for DataFrame (DataFrame become
an alias for Dataset[Row])

The advantage of Datasets is its ability to throw some of the
analytical errors during compile time

Datasets can hold semi-structured data, while DataFrames
only relational data

Backed by the Spark SQL’s optimized execution engine

Datasets have different internal encoding than RDDs, making
them smaller in size for most data types

42 / 62

MLlib

Local Data Types

Local Data Types

A local data type is stored on a single executor, it is not
distributed

Double typed values

Vector

Dense - the usual representation of a vector
Sparse - represented by a binary search tree on indices

LabeledPoint - a point with assigned label (name)

43 / 62

MLlib

Local Data Types

Matrices

Local matrix representations:

Dense
Sparse - represented by three vectors:

values: [1.5, 2.2, 3.0, 5.0, 4.0, 1.0]
rowIndices: [0, 2, 0, 0, 1, 2]
colPointers: [0, 2, 3, 6] - which values (indices) represent the
start of the new column

Distributed Matrices:

RowMatrix - RDD of local vectors
IndexedRowMatrix - each row is named, so it is better for joins
CoordinateMatrix - sparse with huge possible dimensions

44 / 62

MLlib

Machine Learning Library

Machine Learning in Spark

Two libraries are provided, both providing the same functionality:

MLlib

Older one
Using RDDs - RDD[LabeledPoint]

Spark.ml

Newer one
Utilizes DataFrame and Dataset

Data transformation can be built into data pipelines for simpler
maintenance

45 / 62

MLlib

Machine Learning Library

Simpler Functionaity

Dataframe.describe() - computes statistics

.stats() - additional statistics

random split

na methods - dropping or filling missing data

dropDuplicates()

transformation() and estimators (fit() functions)

46 / 62

MLlib

Machine Learning Library

ML Capabilities

Classification

Clustering

Feature detection

Evaluation

Regression

Outlier detection (Mahalanobis)

Decision Trees and Random Forests

...

47 / 62

GraphX

GraphX

Dedicated to Graph computations

import org.apache.spark.graphx.*

The basic data structure is called Property Graph

It is distributed, immutable, fault-tolerant and can be
persisted, similarly to RDDs
It is partitioned using vertex partitioning
When changing a graph substantial parts of the original graph
is reused, reducing the cost

48 / 62

GraphX

Property Graph

Directed multigraph

User defined objects attached to each vertex and edge

Vertices are assigned an unique numeric ID

VertexID is used to define edges

Additionally EdgeTriplet[VD, ED] view is provided for the
graph

class Graph[VD, ED] {
val vertices: VertexRDD[VD]
val edges: EdgeRDD[ED]

}

49 / 62

GraphX

Graph Operations

mapVertices, mapEdges and mapTriplets - changing the
objects themselves, but not the graph structure

collectNeighbors

reverse

subgraph

joinVertices

sendMsg and mergeMsg - graph based map/reduce

50 / 62

GraphX

Building Graphs

Several graph file format can be read from RDD or disk to
build graphs

Once the graph is built the edges are not repartitioned, so
partitionBy must be called for efficient computations

51 / 62

GraphX

Graph Algorithms

PageRank

Triangle Counting

Connected Components

Strongly Connected Components

52 / 62

Structured Streaming

Introduction

Problem Statement - Stream Analysis

53 / 62

Structured Streaming

Introduction

Spark Streaming

The new version is called Structured Streaming

Built on top of the Spark SQL engine

Two processing models:

Micro-batch processing model
Continuous processing model

Fully integrated with Kafka Topics

54 / 62

Structured Streaming

Introduction

Scala Example

import org.apache.spark.sql.functions.
import org.apache.spark.sql.SparkSession

val spark = SparkSession
.builder
.appName(”StreamingTest”)
.getOrCreate()

import spark.implicits.

val lines = spark.readStream
.format(”socket”)
.option(”host”, ”localhost”)
.option(”port”, 9999)
.load()

55 / 62

Structured Streaming

Introduction

Python Example

from pyspark.sql import SparkSession
from pyspark.sql.functions import explode
from pyspark.sql.functions import split

spark = SparkSession \
.builder \
.appName(”StreamingTest”) \
.getOrCreate()

lines = spark \
.readStream \
.format(”socket”) \
.option(”host”, ”localhost”) \
.option(”port”, 9999) \
.load()

56 / 62

Structured Streaming

Micro-Batch Processing Model

Unbounded Table

Incremental query execution on the unbounded input table, defined
as standard query on a standard table.

57 / 62

Structured Streaming

Micro-Batch Processing Model

Computation Windows I

How much of data should be aggregated?

58 / 62

Structured Streaming

Micro-Batch Processing Model

Computation Windows II

Tumbling windows are a series of fixed-sized, non-overlapping
and contiguous time intervals

Sliding windows are a series of fixed-sized, possibly
overlapping time intervals, defined by their length and slide

Session window has a dynamic length, depending on the
input. A session window starts with an input, and expands
itself if following input has been received within gap duration

59 / 62

Structured Streaming

Micro-Batch Processing Model

Watermarking

Handling ”late” data

m1 sent before m2 and m3, but arrives after them

To be able to properly aggregate late data the results of the
aggregation must be kept in memory (and not written to
output)

Waiting indefinitely makes no sense

Watermarking allows to identify late data by comparing event
timestamps from data

Threshold can be defined, data within the threshold will be
aggregated, but data later than the threshold will start getting
dropped

60 / 62

Structured Streaming

Micro-Batch Processing Model

Examples

val sessionizedCounts = events
.withWatermark(”timestamp”, ”10 minutes”)
.groupBy(

session window($”timestamp”, ”5 minutes”),
$”userId”)

.count()

sessionizedCounts = events \
.withWatermark(”timestamp”, ”10 minutes”) \
.groupBy(

session window(events.timestamp, ”5 minutes”),
events.userId) \

.count()

61 / 62

References

References

“Apache Spark Website,” 2022.

“Databricks Documentation and Glossary,” 2022.

“CognitiveClass.ai,” 2022.

“Scala official documentation,” 2022.

62 / 62

