Introduction to Data Analytics
Spark

Andras Varga
IBM Consulting

Bratislava, 2022

Contents

Introduction
Spark Components
Scala

Coding in Spark
Spark SQL

@ MLIib

GraphX

B Structured Streaming

2/62

L Introduction

Spark

Definition

Apache Spark is a unified analytics engine for large-scale data
processing. It can run in Hadoop clusters through YARN or Spark’s
standalone mode, and it can process data from various sources.

m Provides APIs for several languages: Java,
APACHE & Scala, Python, R (SparkR)
Spqr [Additic.)nally supports SQL for certain
operations
m MLIib - Spark Machine Learning library
m GraphX - Graph Processing library

m Stream analysis is supported

3/62

L Introduction

Spark Fundamentals

Expands the MapReduce framework
Speed is achieved by in memory operation
Runs on top of YARN or Mesos, or in a stand-alone mode

The Spark application is divided into a Driver Program and
Executors

Executors are running on Worker nodes and executing Tasks,
i.e., units of work

4/62

L Introduction

Spark Application

Driver Program

/’;}

SparkContext

¥ Cluster Manager

h .

\

Worker Node

Executor | Cache

—

Worker Node

Executor | Cache

5/62

L Introduction

Installation

m Install Scala or Python (versions must match across the
cluster)

m Download and unpack Spark

m Configure

6/62

L Introduction

Configuration

Each application gets its own executor

Each application runs in isolation, no sharing data between
applications

m Three configuration options:

m SparkConf object inside the application

m Environment variables conf/spark-env.sh

m Logging log4j.properties
Configuration can be set using the SparkConf object or
dynamically during spark-submit

Or by using global defaults from conf/spark-defaults.conf

7/62

LSpark Components

Spark Stack

Spark SQL Spark Streaming MLIib GraphX
Spark Core
Standalone Scheduler YARN Mesos K8s

8/62

LScala

Scala Basics

Spark itself is written in Scala
Scala is an OOP running on JVM
Statically typed language

Scala is a functional language

Side effects, like JVM exceptions, are usually handled early
and without breaking execution

9/62

LScala

Scala Class

class Study(name: String, val promotedParam: Int){
printin(" New instance: " ++name)
val inMutableField: String = " This is immutable”
var mutableField: String = " This is mutable”

}
new Study()

m Classes are instantiated via a constructor using "new” keyword

m Field is part of the class, visible to outside of the class

m Mutable
m Inmutable

m Scala provides type inference, but it is a good practice to not
overusing it

m Constructor arguments are private, unless " promoted” using
keywords

10/62

LScala

Methods

def echo(voice: String): String = voice
def addInt(a:Int, b:Int): Int = {

var sum:int =a + b

return sum

m Methods return at most one value, a type of which must be
defined
m Methods can look like fields: def myValue: Int = 3

m Methods with one argument can be called using an infix
notation, i.e., without the dots and parentheses:
" Andras Varga” split " "

11/62

LScala

Arguments

m Default
m Set a default value for an argument at definition time, in case
it is not defined
def echo(voice: String = " Nothing”): String = voice
echo()
m Named
m Names allow to omit the leading arguments with default values
def addInt(a:Int =0, b:Int): Int =a + b
addInt(b = 5)

12/62

LScala

Objects

object MySingleton {
def interesting: String = " This will never change”
}

MySingleton.interesting
m Provides a simple way to define singletons
m It is instantiated lazyly, but automatically during runtime

m Scala application is started by the main method being defined
in any object:
object MyApplication {
def main(args: Array[String]): Unit = {
printIn(" Hello World!")
}

}

m Unit ~ void

13/62

LScala

Accessibility of Fields and Methods

m Accessibility:
m public (default)
m private
m protected
m An object and a class can share a name in the same source
file as so called companions

m Companion class can access private fields and methods inside
a companion object

14 /62

LScala

Data Structures - Collections

m Array (fixed size)
val numbers = Array(1, 2, 3, 4)

m List (can grow using append or prepend)
val fruit: List[String] = List("apples”’, "oranges”, "pears")
m Vector (immutable, indexed by hashing)

val strings = Vector("one”, "two")

m Set (no duplicates, no indices)
val fruit = Set("apple”, "orange”, "peach”, "banana")

m Tuple
val values = (1,"2",3,"h")
values._3 returns 2

m Map ("X" -> 24 is actually a pair = tuple of two elements)
var mapping = Map("x" -> 24, "y" -> 25, "z" -> 26)
mapping.getOrElse("v",16)

15/62

LScala

Higher Order Functions

m Higher order functions function takes another function as an

argument
m Notable higher order functions:
= map()
m flatmap() - it also flattens one layer
m filter()
m foreach() - applies the function to the original collection
m reduce(), foldLeft() or foldRight()

groupBy()

Code examples:
something.foreach(printlin)
mylist.map(x => x * x)
myCollection.flatmap(- + 1)

16 /62

I—Coding in Spark
LRDD

Storing Data in Spark

17/ 62

I—Coding in Spark
LrDD

Resilient Distributed Dataset (RDD)

m Sparks oldest data abstraction
m Distributed collection of data
® Immutable
m Operations:

m Transformation - no return value, lazy evaluation
m Actions - returns a value

18/62

I—Coding in Spark
LrDD

Creating an RDD

m Parallelizing existing data from Spark (Driver)
S val data = Array(1, 2, 3, 4, 5)
val distData = sc.parallelize(data)
P data =1, 2, 3, 4, 5]
distData = sc.parallelize(data)
m Referencing a Hadoop dataset (or s3 buckets, Cassandra)
S val distFile = sc.textFile(" data.txt")
P distFile = sc.textFile(" data.txt")

m Transforming an existing RDD to a new one

19/62

I—Coding in Spark
LrDD

RDD Architecture

m RDD is partitioned
m when an RDD is created from another RDD (Or based on
HDFS dataset) the partitioning is inherited

m It is better to distribute partitions evenly on the cluster, but
shuffling is expensive

S someRDD.partitions.size
P someRDD.getNumPartitions()

m partitionBy(numPartition, partitioningFunc) changes
partitions for RDD, causes shuffling

20/62

I—Coding in Spark
LrDD

RDD Transformations |

m When an RDD is created an empty DAG is created

m Each transformation defined on the RDD is added to the
DAG, but it is not performed

m Actions start the execution of the transformations from the
DAG, consequently executing the action itself

m Transformation examples

map(func)

reduceByKey(func)

filter(func)

join(other dataset,[numTasks])

21/62

I—Coding in Spark
LrDD

RDD Transformations I

m toDebugString() method returns the DAG for a given RDD

m The lazy behaviour supports fault tolerance - a node does not

need to copy data to catch up after failure, only copies a DAG
of transformations

22/62

I—Coding in Spark
LrDD

RDD Actions

m Data is partitioned into blocks for Executors across the cluster

m Code is sent to data blocks to be executed
m Action example

m collect() - returns all elements as an array to the driver, make
sure dataset is small so driver can handle it

m count()

m first(), take(n)

m foreach(func) - apply func on each element in a dataset

23/62

I—Coding in Spark
LrDD

RDD Persistence |

Two functions: persist() and cache()

m persist() take an option of storage to use: MEMORY_ONLY,
MEMORY_AND_DISK, DISK_ONLY, etc.

cache() = persist(MEMORY_ONLY)
Lazy evaluation
When evaluated (per partition!) stores data to the storage

Acts as a safe point for additional transformations or actions

So intermediate data does not need to be re-created again

24/62

I—Coding in Spark
LrDD

RDD Persistence |l

m It is fault-tolerant, when data partition is lost a new Worker
recreates lost data automatically

m There is an option to replicate the partitions in two cluster
nodes

m When data partition does not fit into the storage it is
recomputed on the fly

m Data can be serialized

25/62

I—Coding in Spark
LrDD

Best Practices for Caching

m It is good idea to cache after preparation for downstream
processing (e.g. filtering)

m When an cached RDD is no longer needed call unpersist() to
free up memory

m calling the count() action on the RDD forces all partitions to
be cached - call count separately

m Split data into equisized partitions

26/ 62

I—Coding in Spark
LrDD

Shared Variables

m When a function passed to a Spark operation (e.g. map) is
executed, it works on separate copies of all the variables
m Two types of shared variables are provided:
m Broadcast Variables
®m A read-only variable cached on each machine rather than
shipping a copy of it with tasks
S val broadcastVar = sc.broadcast(Array(1, 2, 3))
P broadcastVar = sc.broadcast([1, 2, 3])
m Accumulators
m Collect data from workers, through associative and
commutative operations
m Usually used as counters, numbers are natively supported by
Spark
m Read-only for the driver
S val accum = sc.longAccumulator(” My Accumulator”)
mydata.foreach(x => accum.add(x))
P accum = sc.accumulator(0)
mydata.foreach(lambda x: accum.add(x))
27/62

I—Coding in Spark
LrDD

Variable Scope and Life-cycle

var counter = 0
rdd.foreach(x => counter += x)
printIn(" Counter: " + counter)

m The counter sent to the executors is a copy and not the same
as in the driver

m This is the use case for accumulators

28/62

I—Coding in Spark
L SparkContext

SparkContext |

m The main entrypoint, represent a connection to a Spark cluster

m Usually named "sc”
m Created by loading libraries into the application
S import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
val conf = new
SparkConf().setAppName(appName).setMaster(master)
new SparkContext(conf)
P from pyspark import SparkContext, SparkConf
conf =
SparkConf().setAppName(appName).setMaster(master)
sc = SparkContext(conf=conf)

29/62

I—Coding in Spark
L SparkContext

SparkContext |l

m It is a good practice to don't hardcode the master information
into the application, but to pass it as a parameter, simplifies
releases

30/62

I—Coding in Spark
L SparkContext

Passing Functions to Spark Using Scala

Code is sent to workers as functions
m Anonymous functions
S (x: Int, y: Int) =>x+vy
m Static methods in a global singleton object

S object MyFunctions {
def funcl(s: String): String = { ... }

myRdd.map(MyFunctions.funcl)

m Sending the reference of the object

31/62

I—Coding in Spark
L SparkContext

Passing Functions to Spark Using Python

Code is sent to workers as functions
m Lamba expressions
P lambdax,y: x+y

m Top-level functions in a module

m Local defs inside the function calling into Spark, for longer
code

m When calling objects using reference the whole object is sent
to Spark. To send smaller objects copy external variables to
local variables:

P def doStuff(self, rdd):
field = self.field
return rdd.map(lambda s: field + s)

32/62

I—Coding in Spark
LRunning; an Application

Submitting Spark Applications

./bin/spark-submit Options:

class - main class to start
master - the master URL, if not specified in the code itself

deploy-mode - cluster or client (runs locally, sometimes
causes things to work, which would not work in the cluster)

conf - additional configuration in a key-value pairs format

application-jar (can be from HDFS or a local file) and
application arguments

And there are additional options controlling the application
execution

.bin/pyspark is a Python alternative

33/62

I—Coding in Spark
LRunning; an Application

Submitting Spark Applications on Yarn - Example

./bin/spark-submit --class org.apache.spark.examples.SparkPi
—-—master yarn

--deploy-mode cluster

—-=driver-memory 4g

-—executor-memory 2g

examples/jars/spark-examples* jar

10

m In cluster mode, the driver application itself runs on YARN as
well

34/62

I—Coding in Spark
LRunning; an Application

Submitting Spark Applications Locally

m deploy-mode client is default

m In this case the amount of parallelism can be defined in the

master parameter: local[K] - Start the application locally with
K workers

P ./bin/pyspark ——master local[2]

35/62

I—Coding in Spark
LRunning an Application

Monitoring

m Spark provides a Web Ul for monitoring (port 4040)

m Or by using external monitoring tools

36/ 62

I—Coding in Spark
LRunning an Application

Tuning

m Data serialization

m Java - slower, flexible
m Kyro - faster, but less types are supported

Memory Tuning

m Use primitives and arrays
m Avoid nested structures
m Analyze GC (SPARK_JAVA_OPTS)

Level of parallelism (2-3 tasks per CPU core in the cluster)

OutOfMemory error can be resolved by increased parallelism

Broadcasting variables

37/62

L Spark SQL
L DataFrame

DataFrame

m DataFrame is an immutable collection of rational data, i.e.,
organized into columns

m An SQLContext supports additional functionality
m It is partitioned and can be persisted as RDDs

m DataFrames can be loaded from several external sources, e.g.
spark.read.load(filename)

m Or by adding schema to an existing RDD
sqlContext.createDataFrame(RDD,Schema)

38/62

L Spark SQL
L DataFrame

DataFrame Operations

DataFrames support many relational operations:
m select(colName)
m df filter(condition)
m df.groupBy()

m df.printSchema() shows the shcema itself

39/62

L Spark SQL
LExecuting SQLs

Running SQL in Spark

m The simplest way to execute SQL in Spark is to use the sql()
method of the SparkContext, returning a new FataFrame

m This requires a DataFrame to be registered as a local/global
temporary view

S df.createOrReplaceTempView(" people”)
val sqIDF = spark.sql("SELECT * FROM people")

P df.createGlobalTempView(" people”)
spark.sql("SELECT * FROM global_temp.people”)

40/62

L Spark SQL
LExecuting SQLs

Executing SQL Over Hive Tables

m ./bin/spark-sql

m Provides a CLI to execute SQL over a pre-defined Hive
connection

m Spark can become the execution engine of Hive itself,
speeding it up

41/62

L Spark SQL
LDatasets

Datasets

m Datasets are present only in Scala and Java

m It provides an abstraction for DataFrame (DataFrame become
an alias for Dataset[Row])

m The advantage of Datasets is its ability to throw some of the
analytical errors during compile time

m Datasets can hold semi-structured data, while DataFrames
only relational data

m Backed by the Spark SQL's optimized execution engine

m Datasets have different internal encoding than RDDs, making
them smaller in size for most data types

42/62

—MLIib
LLocal Data Types

Local Data Types

m A local data type is stored on a single executor, it is not
distributed

m Double typed values

m Vector

m Dense - the usual representation of a vector
m Sparse - represented by a binary search tree on indices

m LabeledPoint - a point with assigned label (name)

43/62

—MLIib
L Local Data Types

Matrices

m Local matrix representations:
m Dense
m Sparse - represented by three vectors:
®m values: [1.5, 2.2, 3.0, 5.0, 4.0, 1.0]
® rowlndices: [0, 2, 0, 0, 1, 2]
m colPointers: [0, 2, 3, 6] - which values (indices) represent the
start of the new column
m Distributed Matrices:

m RowMatrix - RDD of local vectors
m IndexedRowMatrix - each row is named, so it is better for joins
m CoordinateMatrix - sparse with huge possible dimensions

44 /62

—MLIib
L Machine Learning Library

Machine Learning in Spark

Two libraries are provided, both providing the same functionality:
m MLlib

m Older one
m Using RDDs - RDD[LabeledPoint]

m Spark.ml

m Newer one
m Utilizes DataFrame and Dataset

Data transformation can be built into data pipelines for simpler
maintenance

45 /62

—MLIib
L Machine Learning Library

Simpler Functionaity

Dataframe.describe() - computes statistics
.stats() - additional statistics

random split

na methods - dropping or filling missing data
dropDuplicates()

transformation() and estimators (fit() functions)

46 /62

—MLIib
L Machine Learning Library

ML Capabilities

Classification

Clustering

Feature detection

Evaluation

Regression

Outlier detection (Mahalanobis)

Decision Trees and Random Forests

47 /62

I—GraphX

GraphX

m Dedicated to Graph computations

m import org.apache.spark.graphx.*
m The basic data structure is called Property Graph
m It is distributed, immutable, fault-tolerant and can be
persisted, similarly to RDDs
m It is partitioned using vertex partitioning
m When changing a graph substantial parts of the original graph
is reused, reducing the cost

48 /62

I—GraphX

Property Graph

Directed multigraph

User defined objects attached to each vertex and edge

VertexID is used to define edges
Additionally EdgeTriplet[VD, ED] view is provided for the
graph

[
[
m Vertices are assigned an unique numeric 1D
[
[

class Graph[VD, ED] {
val vertices: VertexRDD[VD]
val edges: EdgeRDDI[ED]

49 /62

I—GraphX

Graph Operations

m mapVertices, mapEdges and mapTriplets - changing the
objects themselves, but not the graph structure

collectNeighbors
reverse

subgraph
joinVertices

sendMsg and mergeMsg - graph based map/reduce

50 /62

I—GraphX

Building Graphs

m Several graph file format can be read from RDD or disk to
build graphs

m Once the graph is built the edges are not repartitioned, so
partitionBy must be called for efficient computations

51/62

I—GraphX

Graph Algorithms

PageRank
Triangle Counting
Connected Components

Strongly Connected Components

52/62

L Structured Streaming
L Introduction

Problem Statement - Stream Analysis

Input

I
A

Output

53/62

L Structured Streaming
L Introduction

Spark Streaming

The new version is called Structured Streaming
Built on top of the Spark SQL engine

Two processing models:

m Micro-batch processing model
m Continuous processing model

Fully integrated with Kafka Topics

54 /62

L Structured Streaming
L Introduction

Scala Example

import org.apache.spark.sql.functions._
import org.apache.spark.sql.SparkSession

val spark = SparkSession
.builder
.appName(" StreamingTest")
.getOrCreate()

import spark.implicits._

val lines = spark.readStream
format (" socket")
.option("host”, "localhost™)
.option(" port”, 9999)
Joad()

55 /62

L Structured Streaming
L Introduction

Python Example

from pyspark.sql import SparkSession
from pyspark.sql.functions import explode
from pyspark.sql.functions import split

spark = SparkSession \
builder \
.appName(" StreamingTest") \
.getOrCreate()

lines = spark \
.readStream \
format("socket”) \
.option("host”, "localhost™) \
.option(" port”, 9999) \
Joad()

56 /62

L Structured Streaming
LMicrcv-Batch Processing Model

Unbounded Table

Data stream Unbounded Table

new datain the
datastream

J new rows appended
to a unbounded table

Data stream as an unbounded table

Incremental query execution on the unbounded input table, defined
as standard query on a standard table.

57 /62

L Structured Streaming
I—Micro-Batch Processing Model

Computation Windows |

How much of data should be aggregated?

Tumbling Windows (5 mins)

Time lZlDO 12|05 12]:10 12|15 12]:20 ‘ i
Sliding Windows (10 mins, slide 5 mins)
|
| |
Time 12{00 12:05 d:m 12:15 12:20 >
Session Windows (gap duration 5 mins)
Time _12:00 | 12:05 . 12:10 | l2l15 12|20 ‘ N
12:04 12:09 12:14 12:22

Session closed at 12:08 + 5 mins =12:14

Session closed at12:15+ 5 mins = 12:20

58 /62

L Structured Streaming
LMicrcv-Batch Processing Model

Computation Windows Il

m Tumbling windows are a series of fixed-sized, non-overlapping
and contiguous time intervals

m Sliding windows are a series of fixed-sized, possibly
overlapping time intervals, defined by their length and slide

m Session window has a dynamic length, depending on the
input. A session window starts with an input, and expands
itself if following input has been received within gap duration

59 /62

L Structured Streaming
LMicrcv-Batch Processing Model

Watermarking

m Handling "late” data
m m; sent before my and ms, but arrives after them

m To be able to properly aggregate late data the results of the
aggregation must be kept in memory (and not written to
output)

m Waiting indefinitely makes no sense

m Watermarking allows to identify late data by comparing event
timestamps from data

m Threshold can be defined, data within the threshold will be
aggregated, but data later than the threshold will start getting
dropped

60 /62

L Structured Streaming
LMicrcv-Batch Processing Model

Examples

val sessionizedCounts = events
.withWatermark(” timestamp”, " 10 minutes”)
.groupBy(
session_window($" timestamp”, "5 minutes”),
$" userld”)
.count()

sessionizedCounts = events \
.withWatermark(" timestamp”, " 10 minutes") \
.groupBy(
session_window(events.timestamp, "5 minutes”),
events.userld) \
.count()

61/62

“Databricks Documentation and Glossary,” 2022.
“CognitiveClass.ai,” 2022.
“Scala official documentation,” 2022.

“Apache Spark Website,” 2022.

62 /62

