
Vybrané technológie analýzy dát, FMFI UK

NoSQL Databases

12.12.2024

Jana Kostičová

A bit of history
● Non-relational databases existed since 1960s

○ Hierarchical DBs, Network DBs, Object-oriented DBs,
XML DBs, …

● 1998: Carlo Strozzi used the term “NoSQL” for his
relational database that does not use SQL:

○ Strozzi NoSQL
● 2009: Johan Oskarson organized a meetup called

“NoSQL 2009” on newly appeared distributed
non-relational databases

 → “NoSQL movement”
 NoSQL was first interpreted as “no SQL”, later “not only SQL”

Today’s reality:
● NoSQL databases = non-relational databases that has been part of “NoSQL movement”
● Many of these databases support SQL-like query languages

STROZZI: “NoSQL is a relational database
to all effects and just it intentionally does not
use SQL as a query language”

“The newborn NoSQL movement departs
from the relational model altogether and it
should therefore have been called more
appropriately "NoREL", or something to that
effect, since its not being SQL-based is just an
obvious consequence of not being relational,
and not the other way around.”

http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/NoSQL/Home%20Page

“NoSQL movement”
● Key-value stores

○ 2003 Memcached
○ 2009 Redis

● Document stores
○ 2005 CouchDB
○ 2009 MongoDB

● Column-wide stores
○ 2007 Apache HBase
○ 2008 Apache Cassandra

● Graph databases
○ 2005 AllegroGraph
○ 2007 Neo4j

+ many more appeared later

NoSQL databases - common properties
● Non-relational logical structure
● SQL-like or custom query language
● Often schema-less or with flexible schema → suitable for storing semi-structured data
● Mostly designed for distributed environment and high scalability
● Mostly relaxing ACID
● Mostly limited:

○ Referential integrity and constraints
○ The complexity of queries

● Many are primarily designed for cloud environment
○ Some of them designed exclusively for specific cloud: Amazon DynamoDB, Google BigTable, ..

NoSQL databases - common properties
● Non-relational logical structure
● SQL-like or custom query language
● Often schema-less or with flexible schema → suitable for storing semi-structured data
● Mostly designed for distributed environment and high scalabilitzý
● Mostly relaxing ACID
● Mostly limited:

○ Referential integrity and constraints
○ The complexity of queries

● Many are primarily designed for cloud environment
○ Some of them designed exclusively for specific cloud: Amazon DynamoDB, Google BigTable, ..

Logical data structure
1. Key-value pairs (key value stores)
2. Documents accessed by keys (document stores)
3. Wide-column format (wide-column stores)
4. Graph (graph databases)

Example
Product catalog in e-commerce store
Common product attributes: code, name, description, price, …

Category /
attribute

Frame size
(enum)

Wheel size
(enum)

Recomme
nded age
(range of
positive
numbers)

Weight
(decimal
number)

Number of
pieces
(positive
number)

Number of
washing
cycles
(positive
number)

For babies
(yes/no)

Bikes X X X X

Lego sets X X

Washing
powders

X X X

Category-specific attributes:

Relational model;
● Naive approach - wide,

sparse table →
inefficient

Relational logical data model 1

+ corresponding constraints

Polymorphic schema

Relational logical
data model 2

EAV =
entity-attribute-value
model

+ corresponding
constraints

Key-value stores (1)
Key1 Value1

Key2 Value2

Key3 Value3

● Unique keys - mostly strings
○ “KA23E”, “product.KA23E”, …

● Values:
○ Various types - string, set, list, JSON object, …
○ “Opaque” to the key-value store

● Only simple queries based on the key

● Most common use cases
○ Fast key-based lookups in distributed environment
○ In-memory key-value stores (Redis, Memcached) are used as distributed caches to store

precomputed or intermediate results
● Data caching for faster analytics
● Data buffering in real-time stream processing pipelines
● Temporary data storage for data transformation

● Redis, Memcached, Amazon DynamoDB, CouchBase

….

Key value stores (2)

Key Value

product:KA23E {"name": "BestBike Junior", "description": "This is the best bicycle for 4-6 years old kids"}

product:XT78S {"name": "Lego SuperMario", "description": "Luigi's mansion", ...}

product:BG234W {"name": "SuperColor Washing Powder", "description": "Bright colors!", ...}

SET product:KA23E '{"name": "BestBike Junior",...}'
● SETNX key value (set if not exists)
● MSET key1 value1 key2 value2 … (set multiple key-value pairs)

GET product:KA23E
● MSET key1 key2 … (get values for multiple keys)

EXISTS product:KA23E
DEL product:KA23E

Example key-based
operations in Redis

Document stores

● A document is identified by a unique key
● Document format

○ JSON (BSON), XML, YAML, ..
● Less joins are needed

● Most common use cases:
○ Processing hierarchical data and/or

semi-structured data in distributed
environment

○ (outside data analytics) Fast and flexible
development of web application

■ MERN stack: MongoDB,
Express.js, React, Node.js

● MongoDB, CouchDB, Couchbase, …

[
 {
 "code": "KA23E",
 "name": "BestBike Junior",
 "description": "This is the best bicycle
 for 4-6 years old kids",
 "category": "Bicycles",
 "frameSize": "15",
 "wheelSize": "16",
 "recAgeLo": "4",
 "recAgeHi": "7",
 "weight": "4.5"
 },
 {
 "code": "XT78S",
 "name": "Lego SuperMario",
 "description": "Luigi's mansion",
 "category": "Lego sets",
 "piecesCount": "450",
 "recAgeLo": "7"
 },
 {
 "code": "BG234W",
 "name": "SuperColor Washing Powder",
 "description": "Bright colors!",
 "category": "Washing powders",
 "washCyclescount": "30",
 "weight": "3"
 }
]

JSON shredding [
 {

"firstName": "Wood",
 "lastName": "Lyons",
 "personalId": 87695,
 "addresses": [
 {
 "street": "Ralph Avenue",
 "number": 895,
 "city": "Bynum",
 "postalCode": 9981,
 },
 {
 "street": "Surf Avenue",
 "number": 386,
 "city": "Fairlee",
 "postalCode": 4470,
 },
 {
 "street": "Hull Street",
 "number": 210,
 "city": "Rockhill",
 "postalCode": 5301
 }
]
 }
]

_id firstName lastName personalId

1 Wood Lyons 87695

… … … …

id street number city postal
Code

person
Id

1 Ralph Avenue 895 Bynum 9981 1

2 Surf Avenue 386 Fairlee 4470 1

3 Hull Street 210 Rockhill 5301 1

… … … … … …

Persons

Addresses

Wide-column stores
Col11
key

Value11

Row1
key

Col12
key

Value12

Col13
key

Value13

Row2
key

….

….

….

● Unique row keys
● Column keys:

○ Not prescribed, each row can have
different columns

○ Unique for a specific row key
● Row-based queries

○ Single key / range
● Column-based queries

○ Selective column retrieval

Col21
key

Value21

Col22
key

Value22

Col23
key

Value23

● Use cases:
○ Semi-structured / evolving data, sparse data, time

series data (timestamps in row keys)
○ Applications that require scalability, high-throughput

read and write operations

● Apache Cassandra, Apache HBase, Google BigTable

Another abstractions:
● 2-dimensional

array of key-value
pairs

● Sparse matrix

Graph databases
● Store efficiently (and natively) graph structures

○ Nodes, edges and their properties

● Highly scalable (Neo4j from 2020), ACID is mostly guaranteed
● Use cases;

○ Processing graph data, also in distributed environment

● Neo4j, AllegroGraph, ..

● Nodes: id, properties (key-value pairs), labels and relations (=edges)
● Edges: type (FRIENDS, LIKES, BELONGS), direction and properties (key-value pairs)

Example

Cypher language - find all movies in which Tom Hanks acted:

MATCH (tomhanks:Person {name: 'Tom Hanks'})-[:ACTED_IN]->(movies)
RETURN movies;

Example - Neo4j

https://neo4j.com/docs/getting-started/_images/graph_simple-arr.svg

NoSQL databases - common properties
● Non-relational logical structure
● Often schema-less or with flexible schema → suitable for storing semi-structured data
● SQL-like or custom query language
● Mostly designed for distributed environment and high scalability
● Mostly relaxing ACID
● Mostly limited:

○ Referential integrity and constraints
○ The complexity of queries

● Many are primarily designed for cloud environment
○ Some of them designed exclusively for specific cloud: Amazon DynamoDB, Google BigTable, ..

Centralized database vs distributed database

Centralized database
 => runs and stores data in a single machine

Distributed database
 => runs and stores data across multiple computers (possibly in multiple
 physical locations)

Why to distribute data? - avoid single point of failure, scalability, availability,
reliability, response time, ..

Drawbacks: increased operational complexity (network communication), increased
learning curve, …

Replication vs partitioning (1)
● The process of distributing a database across multiple nodes typically involves two key

concepts:

1. Replication
2. Partitioning

● Replication - storing separate copies of data at two or more nodes
○ Leader(s) - server(s) that receives writes
○ Single leader, Multileader, Leaderless architectures (single leader is the most

common)

● Partitioning (sharding) - data are divided into smaller parts and then store on
separate nodes, i.e., particular partitions (shards) do not share data

The process is very similar to the one
applied in distributed storage systems
(Hadoop, cloud object storages)

Replication vs partitioning (2)
Replication

→ fault tolerance (avoiding single point of failure)
→ load balancing
→ response time (latency)
→ availability

Partitioning

→ (horizontal) scalability
→ efficient querying

● NoSQL DBs mostly support both
concepts extensively

● Automatic process with little
manual intervention

● Many NoSQL DBs can be used
also in a single machine

ACID (RDBMSs)
Atomicity: Either all the changes within the transaction are committed to the database,
or none of them are.

Consistency: A transaction brings the database from one consistent state to another,
maintaining database invariants.

Isolation: Concurrent execution of transactions leaves the database in the same state
that would have been obtained if the transactions were executed sequentially.

Durability: Once a transaction is committed, its changes are permanent and will
survive system failures, such as power outages or crashes.

Examples: financial systems, healthcare databases

CAP theorem
We cannot achieve all consistency, availability, and
partition tolerance in asynchronous network model.

● Consistency: Every read operation returns the
most recent write result (= strong consistency)

● Availability: Every request receives a response
(without guaranteeing it's the most recent data).

● Partition tolerance: The system can continue
to operate even in the presence of network
partitions or communication failures.

Distributed DB must always
guarantee partition tolerance.
Thus it has do decide between
consistency and availability.

ACID vs CAP consistency
If a distributed database guarantees ACID consistency, it must also guarantee
CAP consistency.

If a distributed database guarantees CAP consistency, it must compromise
availability.

ACID Consistency: A transaction
brings the database from one
consistent state to another,
maintaining database invariants.

CAP consistency: Every read
operation returns the most
recent write result

Compromised availability

Why NoSQL DBs are easier to distribute
● Relaxed ACID guarantees & no integrity constraints

○ Less communication between network nodes, less locks
○ BASE approach (eventual consistency)

● Flexible schema or schema-less approach
○ Easier partitioning
○ Faster writes (no need to validate data against schema)

● Related data are stored together (document stores)
○ Less joins between documents
○ Less communication between network nodes

● Support for distributed environment by design
○ Both for replication and partitioning

Not all NoSQL databases provide the same level of support for horizontal scaling!

BASE (NoSQL DBs)
Basically Available: The system prioritize high availability, even in case of
network partitions or failures.

Soft state: The system can be in a "soft" or intermediate state, which means that
data consistency is not guaranteed at all times.

Eventually consistent: Data consistency is achieved over time. There is no
requirement for immediate consistency, and different replicas of the data may be
out of sync temporarily. However, over time, the data will become consistent
through mechanisms like background reconciliation and conflict resolution.

Examples: social media platforms, distributed content delivery networks

Example - MongoDB replication
● Single leader replication
● Read preference

○ Specifies where the data are read from
○ Primary, secondary, primaryPreferred,

secondaryPreferred, nearest
● Write concern

○ Specifies how many replicas must acknowledge a write
operation before it is considered successful

● w = 1: primary node only - lowest latency, highest
risk of data loss

● w = majority: majority of replicas
● w = all: all replicas - highest latency, highest data

durability
● If primary node fails, a new one is elected
● Distributed transaction with read operations must use

read preference primary

Primary

Secondary

Secondary

Client application

Read with
read
preference
secondary

Write +
Read with
preference
primary

New approaches in “relational” world
● Goal: Relational tables + horizontal scalability

1. Columnar databases
○ Columnar physical storage
○ ACID not guaranteed
○ Primarily intended for analytical processing
○ Google BigQuery, Amazon Redshift, Apache Druid, Apache Kudu

2. NewSQL databases
○ Mostly row-based physical storage
○ ACID guaranteed

■ Availability is compromised in case of network partitions
○ Primarily intended for transactional processing (i.e., sources for data analytics)
○ Google Spanner, Cockroach DB, …

3. Support for horizontal scaling in traditional RDBMS
○ Automatic replication mostly supported
○ Partial support for partitioning (often manual approaches through 3rd party tools)

columnar DBs
≠

wide-column DBs

Resources
● Robert Lukotka: Persistence and Databases
● C. M. Ricardo, Susan D. Urban: Databases Illuminated, 3rd edition, 2015.
● Wikipedia: NewSQL
● S.Gilbert, N.Lynch: Brewer's conjecture and the feasibility of consistent,

available, partition-tolerant webservices
● Cassandra Documentation
● MongoDB Documentation
● Redis Documentation

http://www.dcs.fmph.uniba.sk/~lukotka/PTS/19Persistence.pdf
https://en.wikipedia.org/wiki/NewSQL
https://dl.acm.org/doi/10.1145/564585.564601?CFTOKEN=15997970&CFID=609557487
https://dl.acm.org/doi/10.1145/564585.564601?CFTOKEN=15997970&CFID=609557487
https://cassandra.apache.org/doc/latest/
https://www.mongodb.com/docs/
https://redis.io/docs/latest/

